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ABSTRACT

Routine cervical cancer screening at regular periodic intervals leads
to either over-screening or too infrequent screening of patients. For
this purpose, personalized screening intervals are desirable that ac-
count for cancer risk development of individual patients. However,
developing and training personalized risk prediction models is chal-
lenging since cancer screening data are scarce, irregular, and skewed.
This paper proposes a personalized time-dependent cervical cancer
risk prediction scheme using geometric deep learning (GDL) and
spectral geometric matrix completion (SGMC) frameworks. The
proposed approach learns row- and column-graphs from irregular
and sparse cancer screening data. Then, we leverage the graph struc-
ture to reconstruct the continuous latent risk of individuals from
screening data. During inference, the completed screening data ma-
trix, comprising estimated individual continuous latent risk, serves
as a dictionary for forecasting the cancer risk of new patients. We
conducted experiments on synthetic and real-life screening data from
the Cancer Registry of Norway.

1. INTRODUCTION

Various strains of the human papillomavirus (HPV) play a major role
in causing cervical cancer, which develops cellular changes, from
low-grade lesions to high-grade (pre-cancerous) lesions to invasive
cancer [1]. Cervical cancer ranks third among the most common
types of cancer for Norwegian women of ages 25 to 49. It is es-
timated that approximately 1% of Norwegian women will develop
cervical cancer by the age of 75 [2]. The risk of developing cervical
cancer can be observed from screening tests, e.g., cytology, histol-
ogy, or HPV tests [3]. To this end, a class of mass-screening pro-
grams against cervical cancer have been established and successfully
prevented 80% of cancer cases in the Nordic countries [4]. The cur-
rent Norwegian Cervical Cancer Screening Program (NCCSP) rec-
ommends routine screening every third year from the age of 25 to
69 years, i.e., a total of 15 screenings if all would be normal. Since
the risk of being infected with HPV and carcinogenesis varies signif-
icantly between females and also over time [5], the routine screen-
ing leads to a large number of unnecessary screening tests for pa-
tients unlikely to develop the disease (over-screening) and too infre-
quent screening of patients at high risk, resulting in under-treatment
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of pre-cancerous lesions [6]. Hence, our goal is to avoid the over-
screening or under-treatment problem by predicting the personalized
time-dependent risk of cervical cancer development.

The screening data collected through NCCSP contain the results
of three clinical examinations: cytology, histology, and HPV, with
no other medical information. These test results are categorized into
four states that reflect the risk of receiving a future cancer diagno-
sis and the clinical consequences [7]. The first state, the normal
state, indicates an accepted baseline risk. The second state, the low-
risk state, indicates an early stage of carcinogenesis, which warrants
more frequent screening to catch the disease before becoming inva-
sive, but no treatment is usually required. The third state, the high-
risk state, indicates a high probability for further cancer progress and
requires immediate treatment. Finally, a cancer state is a failure of
the screening program and a potential state for a patient. The large
amount of screening data centrally organized at nationwide registries
motivated us to use modern deep learning (DL) strategies for de-
veloping personalized preventive strategies that offer similar or in-
creased protection at reduced over-screening and expenditure.

Sparse cervical screenings lead to a small fraction of the entries
in the screening data matrix, whose rows represent screening history
and columns represent time points in age. Furthermore, the recom-
mendations are not strictly adhered to, and the individual screening
histories are also irregular over time. In addition to the above, the
screening data is also skewed, i.e., most screening results are nor-
mal. Specifically, the screening results in the NCCSP dataset are
94% normal, 4-5% low-risk, and around 1% are high-risk or can-
cer [8]. Personalized cancer risk prediction models have to be de-
veloped from this highly challenging data. To develop personalized
screening models, we first reconstruct the underlying continuous la-
tent risk of individuals from their partially observed screening histo-
ries using matrix completion. Then, the completed cancer screening
data matrix is used as a dictionary to predict future screening out-
comes of new patients to assist screening experts in recommending
screening intervals.

Recently, geometric deep learning (GDL) [9, 10] and spectral
geometric matrix completion (SGMC) [11] frameworks extensively
pursued the matrix completion problem from a graph-perspective,
where the graphs encode the relations among the rows or columns
of the incomplete matrix. By imposing the smoothness priors on
the row- and column-graphs, these above-mentioned techniques ef-
ficiently perform the task of matrix completion. However, for the
cancer screening data, row- and column-graphs are not available. To



this end, we learn a row-graph under smoothness constraints [12,13],
i.e., screening histories are assumed to be smooth over the graph
to be estimated. Furthermore, we generate a column-graph under
the assumption that the risk of cancer development does not change
rapidly within a year. Leveraging these geometric structures, we first
reconstruct the continuous screening profiles from the partially ob-
served screening histories through GDL and the SGMC frameworks.
We then predict the future cancer development risk of an individual
by computing and maximizing the conditional probabilities of the
possible states. Finally, we apply the proposed approach on syn-
thetic and real datasets to demonstrate its ability in predicting the
future risk of cancer development.

2. PERSONALIZED CERVICAL CANCER RISK
PREDICTION

In this work, the cervical cancer screening data is represented as a
highly sparse matrix X ∈ NN×T , where each row xn is the partially
observed screening history of the nth patient Recall that the NCCSP
currently recommends 3-year screening intervals for healthy patients
and three to six months for patients at low risk. Hence, to provide a
reasonable tradeoff between the temporal resolution and sparsity of
the data, a three-month interval is considered for the time discretiza-
tion of the data. In the following, Ω denotes the set of indices where
xn,t ∈ {1, 2, 3, 4} is an integer encoding the observed states during
the screening exam labeled normal, low-risk, high-risk of a cancer
diagnosis, and actual cancer.

2.1. Reconstructing the Latent Risk of Cervical Cancer

The discrete observed states of a patient Xn,t are assumed to be
noisy measurements of an underlying continuous latent risk Yn,t that
evolves slowly over time. In particular, we assume that an observed
state is sampled from a discrete Gaussian distribution with mean Yn,t
and variance 1

2θ
. Here, the parameter θ > 0 models the reliability of

the risk assessment, which is given by

P (Xn,t = s | Yn,t) = CYn,t exp(−θ(s− Yn,t)2), (1)

where CMn,t is a risk-dependent normalization constant and s de-
notes the state of screening result. We estimate the underlying con-
tinuous latent risk from the partially observed screening histories by
taking the recourse to the philosophy of geometric matrix comple-
tion. By constraining the space of solutions to be smooth w.r.t. cer-
tain geometric structure on the rows and columns of the screening
matrix, the geometric matrix completion approach [14] can estimate
the underlying continuous latent risk, i.e., Ŷn,t.

Let the undirected weighted row-graph Gr encode similarities
among screening histories and the column-graph Gc encode the tem-
poral smoothness of screening histories. Matrices Lr = ΦΛrΦ

T

and Lc = ΨΛcΨ
T are the associated graph Laplacians. Note that

the eigenbases of graph Laplacians represent the signals living on
these graphs [15]. By exploiting the geometric structures and par-
tially observed screening data matrix X, the geometric matrix com-
pletion approach recovers the matrix Y that contains the continuous
screening profiles of an individual, solving the following optimiza-
tion problem [14]:

min
Y
‖PΩ � (Y −X)‖2F +

γr
2
‖Y‖2Lr

+
γc
2
‖Y‖2Lc

, (2)

where the symbol � is the Hadamard product operator and PΩ :
RN×T → RN×T is a projection onto the masked entries, which sets

all matrix entries not contained in Ω to 0 and the others unchanged.
The quantity ‖Y‖2Lr

= tr(YTLrY) is the Dirichlet norm that quan-
tifies the smoothness of screening profiles over the row graph. Simi-
larly, the quantity ‖Y‖2Lc

= tr(YTLcY) quantifies the smoothness
of each screening profile along time. Here, tr(·) denotes the trace of
its argument matrix. The regularization coefficients γr, γc > 0.

2.1.1. Separable Recurrent Multi-Graph Convolution Neural Net-
work (sRMGCNN)

To reduce computational complexity and make it more suitable for
large datasets, we adopt the factorized model for solving the opti-
mization problem (2). Under the assumption that the latent risk pro-
file of each patient is a linear combination of a small number of basic
profiles {v1,v2, . . . ,vr} with r << min{N,T}, the matrix Y of
all such risks can be approximately decomposed as Y = UVT with
v ∈ RT×r is the collection of basic risk profiles and U ∈ RN×r
contains the patient-specific coefficients. By introducing the fac-
torization model, the aforementioned geometric matrix completion
problem in (2) reduces to [9]:

min
U,V
‖PΩ � (UVT −X‖2F +

γr
2
‖U‖2Lr

+
γc
2
‖V‖2Lc

. (3)

The factorized approach decouples the regularization that operates
simultaneously in both rows and columns of Y in (2). To solve
the optimization problem given in (3), we use geometric deep learn-
ing concepts. In particular, we use separable recurrent multi graph
convolutional neural networks (sRMGCNN) formulated in the graph
spectral domain [9]. The sRMGCNN solves the matrix completion
problem in two stages. Firstly, one-dimensional multi-raph convolu-
tions (MGC) will be applied to each factor w.r.t its graph. Let T (Lr)
and T (Lc) be the respective Chebyshev polynomial of scaled Lapla-
cians of the row- and column-graphs; then, the functionality of the
multi-graph convolution neural network (MGCNN) layer can be de-
scribed as [9]:

ũl = σ
( q∑
l′=1

p∑
j=0

θrj,ll′ T (Lr) ul′
)
, (4)

and

ṽl = σ
( q∑
l′=1

p∑
j=0

θcj,ll′ T (Lc) vl′
)
, (5)

where θrj,ll′ and θcj,ll′ are the filtering coefficients in the MGCNN
layer. In the next step, these extracted spatial features from MGCNN
layers will be feeding to the recurrent neural network (RNN) that
progressively reconstructs the complete screening profiles matrix by
implementing a diffusion process. The sRMGCNN uses an LSTM
architecture to learn complex non-linear diffusion processes [9]. The
MGCNN, together with LSTM predict accurately small changes of
the factors U, V that can propagate through the full temporal steps.

2.1.2. Spectral Geometric Matrix Completion (SGMC)

In order to solve the problem in (2), the SGMC approach assumes
the matrix Y is a permuted version of certain low-rank matrix Z,
i.e., Y = AZBT [11]. The SGMC interprets that the signal Z is sit-
ting on a latent product graph factorsG′r and G′c and it is transported
onto the reference graph factors Gr and Gc via the linear transforma-
tion AZBT. By parameterizing the screening data matrix Y with



this matrix product, SGMC reduces the geometric matrix comple-
tion problem (2) to that of minimizing [11]:

min
A,Z,B

‖PΩ�(AZBT−Y‖2F +
γr
2
‖AZBT‖2Lr

+
γc
2
‖AZBT‖2Lc

.

(6)

Note that the latent graph factors G′r and G′c illustrate the geometric
interpretation, and there is no need to find them explicitly. Denoting
the Laplacians of the latent graph factors by L′r , L′c and their eigen-
bases by Φ′, Ψ′, then, using these eigenbases and the eigenbases of
reference Laplacians Lr , Lc, the factors can be expressed as [11]:

Z = Φ′CΨ′T
,A = ΦPΦ′T

, and B = ΨQΨ′T
. (7)

Using (7), the screening data matrix Y can be reparameterized as
Y = AZBT = ΦPCQTΨT. Therefore, using this reparameteri-
zation of Y, (2) becomes [11]:

min
P,C,Q

‖PΩ � (ΦPCQTΨT−Y‖2F +
γr
2

tr
(
QCTPTΛrPCQT)

+
γc
2

tr
(
PCQTΛcQCTPT).

(8)

The above optimization problem can be solved using a gradient-
descent.

2.1.3. Learning the Graphs

For reconstructing the continuous screening profiles, GDL and
SGMC frameworks require row- and column-graphs. Since the
graphs are not readily available with the screening data, we need
to learn them from the partially observed screening data. Of these,
we learn the row-graph under smoothness constraints, i.e., the un-
derlying continuous latent risk is smooth over the row-graph. In
other words, we assume that certain patients in the population ex-
hibit similar screening histories. Under this assumption, the graph
structure can be obtained by solving the following optimization
problem [12, 13]:

min
Wr∈Wm

T∑
t=1

xT
tLrxt + f(Wr), (9)

where xt is the tth column of the partially observed screening data
matrix X, Wr is the weighted adjacency matrix of the row-graph
andWm is the space that contains all valid non-negative, symmetric
weighted adjacency matrices, i.e.,Wm = {Wr ∈ RN×N+ : Wr =

WT
r , diag(Wr) = 0}. The regularization function f(Wr) in (9)

prevents Wr being a zero matrix. Furthermore, the first term in (9)
quantifies the smoothness of the screening histories over the selected

graph, and it can also be expressed as
T∑
t=1

xT
tLrxt = 1

2
Tr(WrR) =

‖Wr �R‖1, where R is the pairwise distance matrix. Researchers
used various functions for f(Wr) in the literature. However, we fol-
low [12] to obtain the sparse solution which is important in the case
of large scale applications, and use f(Wr) = −α1T log(Wr1) +
β‖Wr‖2F with α ≥ 0 and β ≥ 0. The logarithmic barrier forces
the node degrees to be positive and the parameter β helps to control
the sparsity of the graph, i.e., as β decreases, the solution of (9) be-
comes more sparse. The primal-dual techniques [16] can be used to
obtain a solution for the optimization problem stated in (9). We con-
struct the column-graph under the assumption that the risk of cancer
development does not change rapidly within a year.

2.2. Predicting the Risk of Cervical Cancer Development

In this section, we present a method for predicting the future state
of a patient given her screening record x, i.e., the screening results
from t1, · · · , tk. We then predict the future state xt̂, for t̂ > tk, by
computing and maximizing the conditional probabilities of the pos-
sible states based on the model (1). For this purpose, the empirical
distribution of reconstructed latent risk Ŷn,t̂ is used in the place of
their true distribution. Therefore, the conditional probabilities for
the future state xt̂ are given by

p(xt̂ = s | x) ∝
N∑
n=1

CŶn,t̂
exp(−θ(s− ŷn,t̂)

2)

×
k∏
j=1

CŶn,tj
exp(−θ(ytj − ŷn,tj )2).

(10)

Using (10), the conditions probabilities have to be calculated for
∀s ∈ {1, 2, 3, 4}. Then, the predicted state is the one with the max-
imum conditional probability.

3. NUMERICAL SIMULATIONS

This section demonstrates the ability of various algorithms for pre-
dicting the future risk of cervical cancer development. For this,
numerical experiments were conducted on synthetic and real-life
screening data. In all these experiments, the continuous latent risk
matrix was reconstructed from training data and used it to estimate
the conditional probabilities as described in Section II-B. Finally,
these conditional probabilities have been used to predict the future
risk at specific time points in independent test data. Each dataset
was partitioned into 80% training and 20% test samples. The hy-
perparameters were optimized through cross-validation. In order to
measure the quality of the prediction task, the k-category Matthews
correlation coefficient (MCC) [17] was taken as a performance met-
ric, which is given by

MCCk =

m+m−
4∑
s=1

psts√(
m2 −

4∑
s=1

p2
s

)(
m2 −

4∑
s=1

t2s
) (11)

In the above, m is the total number of test samples, and the
number of correctly predicted test samples is m+. Furthermore, the
quantities ts and ps are the number of times a state s truly occurred
and correctly predicted, respectively. The Matthews correlation co-
efficient summarizes the confusion matrix by a number MCCk ∈
[−1, 1].

In the task of predicting the future risk of cancer development,
we used forward fill (FF) (in which the last screening result is re-
peated to fill the missing screening result), sRMGCNN, and SGMC
for matrix completion. The weighted row-graph utilized in the sR-
MGCNN and SGMC was obtained by solving (9). For comparative
assessment, the same prediction exercise has also been carried out
by matrix factorization (MF) [18] approach.

3.1. Results for Synthetic Data

The synthetic data was generated so that it resembles the high spar-
sity, randomness, and imbalance of the screening data. A latent risk
matrix Y = UVT is synthesized from a rank-five basis of the form
Vt,k = exp(−103(t−µk)2) with µk ∈ {70, 95, 120, 145, 170} and



the patient-specific coefficients drawn from an exponential distribu-
tion. Combining inversion sampling with model (1) at θ = 2.5, the
real-valued risk matrix entries Yn,t ∈ [1, 4] are the integers repre-
senting the cancer risk states. This gives a complete state matrix S,
from which we derive a partially observed matrix X = PΩ(S), by
using inversion sampling with probabilities from the NCCSP data of
observing an entry Sn,t forward in the time given the result of the
previous test to simulate Ω. For instance, a low-risk result calls for
a follow-up screening within the next 3-6 months, whereas a high-
risk result calls for immediate treatment. We further extend the data
generation model by truncating each sample at times for the first and
last screening, derived from the empirical distribution of the NCCSP
data.

We repeat the procedure of synthesizing six datasets of each hav-
ing 10000 samples with similar density (i.e., the fraction of observed
entries in X) for five different random seeds. We compared the mod-
els to an Oracle, which returns the most likely screening result given
the true latent risk Yn,t; with the error model (1); this amounts to
rounding the true latent risk to the nearest integer. The MCCk scores
of various models vs. dataset density are illustrated in Fig. 1.
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Fig. 1. Performance of various approaches on synthetic data given
as the K-category Matthews correlation coefficient (MCCk) against
dataset density.

From Fig. 1, we see that the performance of all approaches
is proportional to the synthetic dataset density. Furthermore, sR-
MGCNN based approach exhibited better performance on synthetic
datasets compared to the FF, MF, and SGMC. The MGCNN, to-
gether with LSTM helped to predict the risk of cancer development,
efficiently. Since the graphs learned from low-density datasets
were poor in encoding the relations among screening histories, the
graph-based approaches exhibited very poor performance on the
low-density synthetic datasets.

3.2. Results for Screening Data

From the NCCSP population-level data, we randomly selected
10000 female patients with more than one exam. This dataset con-
tains a median of 8 and at most 37 screening exams per patient; this
yields a density of about 2.3% observed entries. Each history was
aligned over a time grid spanning from youngest to oldest screened
patient with a temporal resolution of three months. If multiple

screenings were conducted within a three-month interval, we used
the last observation to reflect the data available to clinicians when
a prediction must be made. The MCCk scores for predicting the
future risk one to three years ahead in time from the NCCSP data
are given in Table 1.

Table 1. Performance of various approaches given as the K-
category Matthews correlation coefficient (MCCk) on the NCCSP
data

Forecast
(years) FF MF sRMGCNN

using (9)
SGMC

using (9)
1 0.1505 0.1250 0.1649 0.1646
2 0.0804 0.0728 0.1407 0.1473
3 0.0834 0.0429 0.1215 0.1458

From Table 1, it can be observed that the graph-based ap-
proaches perform slightly better than the FF and MF approaches.
Furthermore, the graph-based approaches perform consistently over
longer forecasts compared to FF and MF approaches. However, all
these methods struggle with predicting the risk of cervical cancer de-
velopment in a real-life scenario. The highly skewed data, i.e., very
few cases with high-risk and cancer, is limiting the performance.

4. CONCLUSIONS

In this paper, we considered the problem of predicting the future risk
of cervical cancer development in an individual. To this end, we
have taken recourse to the geometric matrix completion concepts to
reconstruct the continuous screening profiles of female patients from
the partially observed screening histories. Then, the completed can-
cer screening data matrix has been used to forecast the cancer risk
of a new patient. By leveraging the graph structure that encodes the
similarities among the patients’ screening histories, the matrix com-
pletion has been carried out through GDL and SGMC frameworks.
Numerical experiments have been conducted both on synthetic and
real-life screening datasets to demonstrate the potential of the pro-
posed approach, and they revealed that the proposed approach could
predict the short-term (12–36 months) individual risk of being diag-
nosed with cervical cancer, focusing on patients who would benefit
from more frequent screening to reduce under-treatment.
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