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ABSTRACT
This paper considers a multivariate quickest detection prob-
lem with false data injection (FDI) attacks in internet of things
(IoT) systems. We derive a sequential generalized likelihood
ratio test (GLRT) for zero-mean Gaussian FDI attacks. Ex-
ploiting the fact that covariance matrices are positive, we pro-
pose strategies to detect positive semi-definite matrix addi-
tions rather than arbitrary changes in the covariance matrix.
The distribution of the GLRT is only known asymptotically
whereas quickest detectors deal with short sequences, thereby
leading to loss of performance. Therefore, we use a finite-
sample correction to reduce the false alarm rate. Further, we
provide a numerical approach to estimate the threshold se-
quences, which are analytically intractable to compute. We
also compare the average detection delay of the proposed de-
tector for constant and varying threshold sequences. Simula-
tions showed that the proposed detector outperforms the stan-
dard sequential GLRT detector.

Index Terms— Sequential change detection, cybersecu-
rity, false data injection attacks.

1. INTRODUCTION

With the modernization of cities, internet of things (IoT) sys-
tems will emerge in many applications such as smart grids,
autonomous transportation, smart environments, and smart
homes [1]. IoT systems have numerous sensors that interact
with a central processor that governs decision-making pro-
cesses. False data injection (FDI) attackers try to influence
or disrupt such processes to cause adverse conditions such as
hazards in autonomous transportation systems. Hence, given
the importance of cybersecurity in IoT, there has been a grow-
ing interest in assessing the impact of FDI attacks in recent
years [2, 3].

A simple approach to counteract FDI attacks is to em-
ploy detectors to identify malicious change of the data, which
has received considerable attention in the literature [4–14]. In
IoT, the sensors sequentially transmit their observations to a
central processor. The central processor can analyze the se-
quential data stream from the sensors to detect FDI attacks
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by exploiting the fact that FDI attacks change the statistical
properties of the data received at the central processor at an
unknown time point. The goal is to detect attacks as soon as
possible while keeping the false alarm rates at a low level, a
problem known as quickest detection.

In [4,5], the authors propose to use a χ2 detector as an at-
tack detector that raises an alarm if the energy of the Kalman
filter innovation exceeds a certain threshold. Further, in [6],
the authors use a consensus+innovation approach, which re-
sults in a resilient algorithm that locally detects FDI attacks
and lets the system continue its operation. Last, in [7], the
idea is to send local decisions as redundant information to the
central processor, enhancing security at the cost of increased
communication.

Although there are many relevant approaches to detect
FDI attacks, most of the existing works on quickest detec-
tion use cumulative sum (CUSUM) algorithms or variations
of them [8–11]. The standard CUSUM algorithm [15] is
minimax optimal when the pre- and post-distributions are
known [16]. However, we rarely know the post-distribution
in real applications since the attackers can design their own
injection sequences, trying to maximize the damage. When
only the family of the distribution is known, we can use the
generalized likelihood ratio test (GLRT) by replacing the
distribution parameters with their maximum likelihood esti-
mates [17]. More recently, in [12–14], the authors propose
sequential GLRT algorithms for unknown, deterministic FDI
attacks. In contrast, we assume attack sequences to be zero-
mean Gaussian since it is proved to be the worst-case attack
strategy [3].

When the FDI attack sequence is zero-mean Gaussian,
the observation sequence admits a change in the covariance
rather than the mean as in [12–14]. The works in [17–19]
are considered state-of-art to detect changes in the variance
or covariance of unknown pre- and post-Gaussian distribu-
tions. The multivariate approach in [18] is designed to detect
arbitrary changes in the mean vector and the covariance ma-
trix. However, when dealing with zero-mean Gaussian FDI
attacks, the mean vector does not change, and the covariance
matrix can only have positive semi-definite matrix additions,
namely here as positive covariance-shifts. In light of this, we
propose strategies that consider this extra information to im-



prove the detection performance.
In summary, in this paper, we derive a quickest detector

for zero-mean multivariate Gaussian FDI attacks in IoT sys-
tems. First, we use the GLRT to estimate the unknown pa-
rameters of the system. Exploiting the fact that covariance
matrices are positive, we propose strategies to detect posi-
tive covariance-shifts, which has received little attention in
the literature. The distribution of the GLRT is only known
asymptotically, whereas quickest detectors deal with short se-
quences, thereby leading to loss of performance. Therefore,
we use a finite-sample correction to improve the detector per-
formance. Further, we encounter an analytically intractable
equation to compute the threshold sequences for the detector.
Therefore, we provide simulations to estimate the thresholds.
We also compare the average detection delay of the proposed
detector for constant and varying threshold sequences.

2. PROBLEM FORMULATION

We consider a measurement model at discrete time t, given
by

x(t) = Hθ(t) + w(t) + a(t), (1)

where x(t) ∈ Rm is the observation vector, θ(t) ∈ Rn is
the unknown time-variant and deterministic parameter, H ∈
Rm×n defines the system matrix, w(t) ∈ Rm is white Gaus-
sian noise with an unknown covariance matrix Σw ∈ Rm×m,
with Σw � 0, and a(t) ∈ Rm is the unknown FDI attack
sequence which we consider independent of w(t).

When the system operates in its normal state, the attack
sequence a(t) is zero. Otherwise, when the system is under
attack, a(t) is a Gaussian sequence with zero mean and un-
known covariance matrix Σa ∈ Rm×m, with Σa � 0. In this
paper, we consider that an attack starts at time ta and contin-
ues indefinitely; thus, FDI attacks can be modelled as{

a(t) = 0, t < ta

a(t) ∼ N (0,Σa), t ≥ ta,
(2)

which further implies

x(t) ∼

{
N (Hθ(t),Σw), t < ta

N (Hθ(t),Σw + Σa), t ≥ ta.
(3)

This paper considers the problem of detecting FDI attacks
given observations x(t). This problem can be formulated as a
sequential hypothesis testing problem where the null hypoth-
esis represents no attack. The goal is to minimize the average
detection delay (ADD) subject to a constraint on the aver-
age run length to false alarm (ARLFA), known as a quick-
est detection problem. We define ARLFA = E∞[t̂a], and
ADD(ta) = Eta

[
t̂a − ta | t̂a ≥ ta ∧ x(t),∀t < ta

]
, where

t̂a is the stopping time, and Eta is the expectation assuming
that an attack starts at ta, making E∞ the expectation when
there is no attack.

3. POSITIVE COVARIANCE-SHIFT DETECTOR

In this section, we construct a quickest detector for zero-mean
multivariate Gaussian FDI attacks defined in (2). We use
the well-known generalized likelihood ratio test (GLRT) [18]
with the doubled-negative log-likelihood ratio computed as

Λk,l = −2 log
supθ,Σw

∏k
t=1 f(x(t) | ta > k)

supθ,Σw,Σa

∏k
t=1 f(x(t) | ta = l)

, (4)

where f(·) is a Gaussian density function. This test serves
as a comparison between the likelihoods of having an attack
starting at time l and not having an attack at all until the
current time k. In a standard GLRT, the detection statistic
is calculated as Λk = max1≤l≤k Λk,l, and then compared
with a given threshold δk. The stopping time is defined as
t̂a = min {k : max1≤l≤k Λk,l ≥ δk}.

3.1. Test statistic

From the system model (1), we can see that, for the detector
in (4), it is not possible to distinguish between the unknown
vector θ(t) and attack sequences that lie in the column space
of H. Therefore, the attack vector can be divided into two
parts as a(t) = Hā(t) + ã(t), where ã(t) is detectable and
Hā(t) is undetectable. The following lemma allows us to
simplify our model and use only the detectable information
from the observations.

Lemma 1. Consider H ∈ Rm×n with rank n, then the pro-
jection matrix P = Im−H(HTH)−1HT, where Im ∈ Rm×m

is the identity matrix, can be decomposed into P = UUT,
where U ∈ Rm×r, r = m− n, is full-column rank.

Proof. Since P is a projection matrix, we know that P is pos-
itive semi-definite with eigenvalues 0’s and 1’s and rank r.
From the eigen-value decomposition of P, we have

P =
[
U V

] [Ir 0
0 0

] [
UT

VT

]
= UUT (5)

which concludes the proof.

Multiplying both sides in (1) with UT defined in Lemma 1,
we obtain a simplified measurement model as

x̃(t) = w̃(t) + ã(t) (6)

which further implies

x̃(t) ∼

{
N (0,UTΣwU), t < ta

N (0,UT(Σw + Σa)U), t ≥ ta
. (7)

Note that, unlike before, the unknown parameter θ is not
present in (6) and (7), resulting in a case where the mean of
the transformed observation vector x̃(t) is time-invariant with



known value zero. Therefore, using the simplified observa-
tion model in (7), the test statistic in (4) can be written as

Λ̃k,l = log
|Σ̂1,k|k

|Σ̂1,l−1|l−1|Σ̂l,k|k−l+1
, (8)

where Σ̂i,j is the covariance matrix estimated for GLRT as

Σ̂i,j =
1

j − i+ 1

j∑
t=i

x̃(t)x̃T(t). (9)

Under the null hypothesis, i.e., no attack, the test statis-
tic (8) has an asymptotic chi-squared distribution [20] with
degrees of freedom d = r(r + 1), r = m − n, which is
also the number of parameters being estimated through the
generalized approach; see [21] for other examples. How-
ever, quickest detection problems require that the tests are
performed with short sequences. For this reason, it is com-
mon to use the so-called finite-sample correction to improve
the convergence rate to the chi-squared distribution. This cor-
rection uses the fact that if Λ is a statistic with an asymptotic
χ2
d distribution, then the new statistic Λc = dΛ/E[Λ] con-

verges at a faster rate [22]. Following similar steps as in [18],
the expected value of Λ̃k,l can be computed as

E[Λ̃k,l] = r[ log 2 + k log(k)− (l − 1) log(l − 1)

− (k − l + 1) log(k − l + 1)]

+

r−1∑
i=0

[
kψ

(
k − i

2

)
− (l − 1)ψ

(
(l − 1)− i

2

)
−(k − l + 1)ψ

(
(k − l + 1)− i

2

)]
, (10)

where ψ(·) is the digamma function. From (10), the corrected
test statistic is obtained as

Λ̃c
k,l = r(r + 1)

Λ̃k,l

E[Λ̃k,l]
. (11)

3.2. Unilateral detection statistics

The standard GLRT [18] considers any arbitrary change in
the covariance matrix as a change-point. Our interest here,
however, is to detect positive semi-definite matrix additions
to the covariance, namely here as positive covariance-shifts.
If a positive covariance-shift occurs, there is an increase in
the generalized variance, defined as the determinant of the co-
variance matrix. From this idea, we derive two strategies, here
called early-informed and late-informed strategies, depending
on when we use the extra information that, for Gaussian FDI
attacks, the covariance can only have positive shifts.

In the late-informed strategy, after calculating the stan-
dard detection statistic

Λ̃c,late
k = max

1≤l≤k
Λ̃c
k,l, (12)

the alarm raises only if an increase in the generalized variance
is signaled at l∗ = arg max1≤l≤k Λ̃k,l, that is,

t̂ late
a = min

{
k : Λ̃c,late

k ≥ δk ∧ |Σ̂l∗,k| > |Σ̂1,l∗−1|
}
.

In the early-informed strategy, the detection statistic is
calculated only over the cases where an increase in the gener-
alized variance happened, i.e.,

Λ̃c,early
k = max

1≤l≤k

{
Λ̃c
k,l : |Σ̂l,k| > |Σ̂1,l−1|

}
, (13)

and then the stopping time is directly

t̂ early
a = min

{
k : Λ̃c,early

k ≥ δk
}
. (14)

3.3. Threshold sequences

After calculating the detection statistic, a crucial part of
constructing a sequential detector is to determine the thresh-
old sequence δk, which can be constant [10–14] or time-
varying [17–19]. Although constant thresholds are easy to
compute in comparison to varying threshold sequences, they
may not provide the best trade-off between detection delay
and false alarm rate. One way of designing a varying thresh-
old sequence is to fix the probability of false alarm at each
observation to α, given that an alarm was not raised before
the current time, i.e., for a detection statistic Λk,

Pr [Λk > δk | Λt ≤ δt,∀t < k] = α. (15)

The average run length to false alarm is expected to be 1/α.
Because (15) is not known to be analytically tractable, we

estimate δk through simulations, that even though are com-
putationally expensive, must be performed only once. More-
over, the asymptotic distribution of Λ̃c

k,l in (11) is independent
of the unknown covariance matrices (more details in [18]).
Therefore, without loss of generality, we can estimate the
threshold sequences using the transformed noise covariance
as an identity matrix UTΣwU = Ir, and later on, use the
results for any other covariance matrix.

4. SIMULATIONS

In this section, we illustrate the performance of the described
detector, together with the effect of using constant or varying
thresholds, and early- and late-informed testing strategies.

First step of the simulations is to estimate the threshold
sequences. For this task, we created 1 million observation
sequences with dimensions m = 4, n = 2, r = 2 and length
220 each. In order to get non-singular covariance estimations
in (9), we should have at least 2(r + 1) samples to perform
a test. Based on the results in [18, 19], we use the initial 20
samples as learning observations and start the testing phase at
sample 21.



21 4549 100
Time

0

10

20
De

te
ct
io
n 
st
at
ist

ic
statistic
threshold
start testing
attack start
detection

Fig. 1. Attack profile using varying threshold sequence, early-
informed testing strategy, α = 0.02.
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Fig. 2. ADD versus ARLFA using varying threshold se-
quence and early-informed testing strategy, with ta = 120.

Figure 1 shows an example of the detector operation. The
threshold sequence is decreasing, which is expected since the
statistic has higher variations when the number of observa-
tions available is small. In Figure 1, when the attack starts,
the statistic takes a few observations to change visually, and
once it surpasses the threshold value, the attack is detected.

In this paper, for simplicity, we study the case where the
transformed attack covariance is UTΣaU = ρI2, ρ ∈ R+.
For each set of parameters, we created 10,000 observation
sequences with dimension 2 and length 1,000 each. Fig. 2
shows that the greater the increase ρ, the faster the attacks
are detected, as expected. We also see that there is a clear
compromise between ADD and ARLFA. The lower we set
the probability of false alarm, the more difficult it becomes to
detect attacks, especially for small increases.

Table 1 compares the performance of the two types of test-
ing strategies. The early-informed strategy performed better
than the late one for all the scenarios considered, as expected
since the late-informed strategy does not consider all the cases
of generalized variance increase that the early one does.

Table 2 shows the detection delay for the two types of
threshold sequences, constant and varying. Since the varying
threshold is estimated by modeling the detection statistic dis-
tribution, we expect that it provides better performance than
the constant one, which is verified through the results. The
varying threshold performed better for all scenarios consid-
ered, especially for ta = 120. When the sequences are still
short, the variability of the detection statistic is higher. While
the varying threshold can be higher at the beginning of the
testing phase and then reduced later, the constant threshold,
on the other hand, can not adapt to these scenarios. In order
to avoid false alarms initially, the constant threshold must be
higher than the desired value for longer sequences. Therefore,

Table 1. ADD for early- and late-informed testing strategies,
and the relative difference in performance, with α = 0.005.

ta = 45 ta = 120
ρ late early diff% late early diff%

0.5 142.8 133.7 6.4% 85.5 68.9 19.4%
1.0 101.6 89.2 12.2% 32.9 23.3 29.2%
1.5 40.9 32.5 20.5% 14.2 11.1 21.8%

Table 2. ADD for constant and varying threshold sequences,
with α = 0.005 and early-informed testing strategy.

ta = 45 ta = 120
ρ constant varying constant varying

0.5 162.4 133.7 192.3 68.9
1.0 113.3 89.2 134.2 23.3
1.5 52.1 32.5 74.3 11.1
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Fig. 3. ADD versus ρ using varying threshold, and bilateral
or early-informed unilateral testing strategy, with ta = 120.

it results in a worse compromise between ADD and ARLFA
when compared with the varying threshold.

Last, to visualize the performance of the proposed detec-
tor, we extend the simulations to higher values of ρ, and com-
pare it to a standard, bilateral GLRT detector, which raises
an alarm for any arbitrary change detected in the covariance.
Figure 3 shows that the proposed unilateral detector outper-
formed the standard bilateral detector. Furthermore, the ADD
of the proposed detector exponentially decreases at a faster
rate compared to the bilateral detector, showing its advantage
for Gaussian FDI attacks.

5. CONCLUSION

This paper considered a quickest detection problem with zero-
mean multivariate Gaussian FDI attacks in IoT systems. Ex-
ploiting the fact that covariance matrices are positive, we pro-
posed testing strategies to detect positive covariance-shifts.
The proposed detector outperformed the standard GLRT de-
tector, which raises an alarm for any arbitrary change detected
in the covariance. We also compared the performance of con-
stant and varying false alarm threshold sequences. Although
the varying threshold sequences are computationally expen-
sive to estimate, it has to be done only once, and the simula-
tions showed a considerable performance improvement.
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