Do Not Predict — Recompute! How Value Recomputation Can
Truly Boost the Performance of Invisible Speculation

Christos Sakalis
Uppsala University
Uppsala, Sweden
christos.sakalis@it.uu.se

Zamshed I. Chowdhury
University of Minnesota
Minneapolis, MN, USA
chowh005@umn.edu

Alberto Ros
University of Murcia
Murcia, Spain
aros@ditec.um.es

Magnus Sjdlander

Trondheim, Norway
magnus.sjalander@ntnu.no

Abstract—Recent architectural approaches that address speculative
side-channel attacks aim to prevent software from exposing the microarchi-
tectural state changes of transient execution. The Delay-on-Miss technique
is one such approach, which simply delays loads that miss in the L1 cache
until they become non-speculative, resulting in no transient changes in
the memory hierarchy. However, this costs performance, prompting the
use of value prediction (VP) to regain some of the delay.

However, the problem cannot be solved by simply introducing a
new kind of speculation (value prediction). Value-predicted loads have
to be validated, which cannot be commenced until the load becomes
non-speculative. Thus, value-predicted loads occupy the same amount of
precious core resources (e.g., reorder buffer entries) as Delay-on-Miss. The
end result is that VP only yields marginal benefits over Delay-on-Miss.

In this paper, our insight is that we can achieve the same goal as
VP (increasing performance by providing the value of loads that miss)
without incurring its negative side-effect (delaying the release of precious
resources), if we can safely, non-speculatively, recompute a value in
isolation (without being seen from the outside), so that we do not expose
any information by transferring such a value via the memory hierarchy.
Value Recomputation, which trades computation for data transfer was
previously proposed in an entirely different context: to reduce energy-
expensive data transfers in the memory hierarchy. In this paper, we
demonstrate the potential of value recomputation in relation to the Delay-
on-Miss approach of hiding speculation, discuss the trade-offs, and show
that we can achieve the same level of security, reaching 93% of the
unsecured baseline performance (5% higher than Delay-on-miss), and
exceeding (by 3%) what even an oracular (100% accuracy and coverage)
value predictor could do.

I. INTRODUCTION

With the disclosure of Spectre [21] and Meltdown [26] in early
2018, speculation, one of the fundamental techniques for achieving
high performance, proved to be a significant security hole, leaving the
door wide open for side-channel attacks [6], [16], [27], [48] to “see”
protected data [21], [26]. As far as the instruction set architecture (ISA)
and the target program are concerned, this type of information leakage
through microarchitectural (u-architectural) state and structures is
not illegal because it does not violate the functional behavior of the
program. But speculative side-channel attacks reveal secret information
during misspeculations, i.e., discarded execution that is not a part of
the normal execution of a program. The stealthy nature of a speculative
side-channel attack is based on microarchitectural state being changed
by misspeculation even when the architectural state is not.

First response techniques: delay, hide&replay, or cleanup?
A number of techniques have already been proposed to prevent
microarchitectural state from leaking information during speculation,
either by delaying such effects [13], [35], [45], [50], hiding them and
making them re-appear for successful speculation (hide&replay) [34],
[46] or cleaning up the changes when speculation fails [32]. Because
these techniques were proposed for different threat models (i.e.,
responding to a different set of known or unknown threats), provide
different protection for parts of the system that can leak secrets (e.g.,
caches, DRAM, core), and make different assumptions for what other
parts of the system are protected (hence carry different costs), a direct

University of Wisconsin

swadle@cs.wisc.edu

Norwegian University of Science and Technology

Shayne Wadle Ismail Akturk
Ozyegin University
Istanbul, Turkey

ismail.akturk@ozyegin.edu.tr

Madison, WI, USA

Stefanos Kaxiras Ulya R. Karpuzcu
Uppsala University University of Minnesota
Uppsala, Sweden Minneapolis, MN, USA

stefanos.kaxiras@it.uu.se ukarpuzc@Qumn.edu

comparison of all of them is, as of yet, not feasible. In this paper,
without loss of generality, we focus on delay techniques and for
convenience we adopt the threat model of the work by Sakalis et al.
on Delay-on-Miss (DoM) [35].

What problem are we solving? Delay-on-Miss is the simple idea of
delaying any speculative load that misses in the L1 cache until the
earliest time when it becomes non-speculative. To recover some of the
lost performance from delaying critical instructions (loads that miss)
Sakalis et al. proposed to use value prediction (VP) for the delayed
misses in hope of performing useful work for the delayed loads and
their dependent instructions. In other words, the aim of VP is to
increase instruction-level-parallelism (ILP) by executing dependent
instructions using load-value prediction.

The conundrum of this approach is the following: VP, as another
form of speculation, forces predicted loads to be validated in-order in
the memory hierarchy, as each load remains speculative until all older
loads have been performed non-speculatively. This means that the
validation of these loads cannot have any memory-level-parallelism
(MLP). Thus, any possible gains in ILP from VP during speculation,
could be compromised by the hindrance of MLP at validation [33].
A new perspective: In this paper, we ask the question: Can we create
“secret” values, invisible to an attacker, for the delayed loads, without
having to compromise MLP to validate them afterwards? Our key
intuition is that the answer lies in value re-computation (VRC) also
known as Amnesic Computing [3]. The idea is that recomputing a
value on an L1 miss — a value that otherwise would have been loaded
from the memory hierarchy — can replace the need to access the
memory hierarchy. This requires having a backward slice of producer
instructions on a per (load) value basis, along with the necessary
input operands to perform recomputation. By construction, slices do
not contain any branch or memory references (be it a store or a
load). Most importantly, recomputation is also not speculative by
construction, hence prevents nested speculation (and negative side
effects thereof).

Our Contributions:

e We propose to apply an unconventional idea, value recomputation
(previously proposed as a means to evade the cost of moving data
in the memory hierarchy) to solve this problem. We devise a -
architectural framework for security-aware value recomputation,
well fitted to the threat model at hand and show the synergy with
Delay-on-Miss.

e We evaluate the potential of value recomputation in eliminating
speculative metadata, which makes classic processors vulnerable to
numerous threats, including but not limited to what is known so far.

A summary of our results: This is the first y-architectural proposal

that has the potential of outperforming the (unsecured) baseline in

terms of performance and energy-efficiency, reducing the performance
overhead of Delay-on-Miss by 42%. In this paper, we provide a quanti-

tative discussion on how to unlock this potential. Practically, we cover
(known or yet to come) threats posed by speculative memory reads.

II. BACKGROUND
A. Speculative Shadows

Sakalis et al. introduced the concept of Speculative Shadows to
reason about the earliest time an instruction becomes non-speculative
and is considered safe to execute regardless of its effects on u-
architectural state [34], [35]. Speculative shadows can be of the
following types: E-Shadows are cast by any instruction that can cause
an exception; C-Shadows are cast by control instructions, such as
branches and jumps, when either the branch condition or the target
address are unknown or have been predicted but not yet verified; D-
Shadows are cast by potential data dependencies through stores with
unresolved addresses (read-after-write dependencies); M-shadows are
cast by speculatively executed memory accesses that may be caught
violating the ordering rules of a memory model (e.g., total store order—
TSO) and therefore may need to be squashed; and VP-shadows are
cast by value-predicted loads [35]. To be more specific, shadows
demarcate regions of speculative instructions. So far, attacks have
been demonstrated under the E- [26], C- [21], and D-Shadows [10]
only, but we cannot exclude future attacks using the rest.

B. Delay-on-Miss

The goal of Delay-on-Miss (DoM) is to hide speculative changes
in the memory hierarchy (including main memory). To achieve
this, Delay-on-Miss delays speculative loads that miss in the L1
cache. Loads that hit in the L1 (and their dependent instructions)
are allowed to execute speculatively as their effects (i.e., on the L1
replacement state) can be deferred to when the loads are cleared from
any speculative shadow. The miss of a delayed load is allowed to
be resolved in the memory hierarchy at the earliest point the load
becomes non-speculative. An efficient mechanism to track shadows
is proposed by Sakalis et al. [35].

Under Delay-on-Miss, the vast majority of loads are executed
speculatively (more than 80% on average [35]), which causes a notable
fraction of the loads to be delayed. This takes up precious resources
(i.e., entries in the instruction queue, the reorder buffer, and the
load/store queue) and eventually stalls instructions from committing.
The significant amount of speculation that is performed in modern
out-of-order cores, results in each load being covered by several
speculative shadows (five on average according to our simulations).
This forces the majority of the loads to be executed serially, severely
limiting MLP [33], [44]. Furthermore, removing any individual shadow
(e.g., the C-Shadow) has a limited effect, as the load can be covered
by another overlapping shadow [44].

Speculative interference attacks [5] describe a situation where the
execution of younger speculative instructions can interfere with the
execution of an older bound-to-commit instruction, such that its
execution gets delayed [5]. Such delays of older bound-to-commit
instructions can cause a change in the order of executed loads that
are not protected by DoM, and thus can leak information. Speculative
interference attacks rely on non-pipelined instructions for causing
the interference and can be prevented simply by enforcing that non-
pipelined instructions (i.e., division, square root, etc.) are executed
strictly in order [36].

C. Delay-on-Miss and Value Prediction

The concept behind using value prediction with Delay-on-Miss
is to speed up the delayed loads (and their dependent instructions)
and regain some of the lost performance. However, value prediction—
no mater how good we make it (even under 100% coverage and
accuracy)—gives only a limited benefit on top of Delay-on-Miss [33].
Value prediction clearly cannot regain the lost performance because
of the following:

Value prediction cannot help much as it simply provides values
early; however, the validation is still delayed until all shadows have

g @ level 2
‘+
m -
Fh ;’ \\
la' ‘\\i3 level 1
5 /\-’
Pil) root
O leaves (terminal)
"\ intermediate nodes

Fig. 1: Backward slice example.

been lifted. Thus, precious core resources are still occupied until the
same point in time as simply delaying the load. The only perceptible
difference is a faster commit of pre-executed dependent instructions
if the validation of a value-predicted load proves to be correct.

Furthermore, value prediction introduces a new speculative shadow,
which is referred to as the VP-Shadow. This new shadow is only lifted
from younger loads when the validation of the value prediction is
complete. Thus, preventing younger loads from validating in parallel
limits the MLP, which results in value prediction occupying precious
resources in the same manner as Delay-on-Miss.

D. Value Recomputation

Due to imbalances in technology scaling, the energy usage (and
latency) of data transfers in the memory hierarchy can easily exceed
the energy usage (and latency) of value recomputation [15]. Value
recomputation (VRC) is proposed as a way to trade off data movement
in the memory hierarchy for in-core computation to save energy [2],
[3]. The basic idea is to swap slow and energy-hungry loads for
recomputation of the respective data values. This is achieved by
identifying a slice of producer instructions of the respective data value
and executing them when the value is needed. Each such slice forms
a backward slice of execution, and strictly contains only arithmetic
and logic instructions.

As depicted in Figure 1, each slice represents a data-dependency

graph, where nodes correspond to producer instructions to be
(re)executed. Data flows from the leaf nodes to the root. The root
represents the producer of the store whose value will be recomputed
when its corresponding (consumer) load is encountered, i.e., a load
accessing the same memory location. Nodes at level 1 are immediate
producers of the (input operands of the) root, nodes at level 2 are
producers of nodes at level 1, and so on and so forth. The nodes
which do not have any producers are terminal instructions whose
input operands must be available at the time of recomputation. If
these input operands are read-only values to be loaded from memory
(such as program inputs) or register values that will be overwritten,
then buffering of these values are needed to enable recomputation of
the load [3].
Premise: VRC has the potential to render a more energy efficient
(and faster) execution than servicing a miss in the memory hierarchy.
At the same time, there is no need for MLP, since as opposed to value
prediction, VRC is not speculative by itself and does not require any
costly validation. A recomputed load can be committed as soon as
all the shadows are lifted—this is in stark contrast to Delay-on-Miss
with value prediction, which require a load/validation to be performed
before commit.

E. Threat Model

We target speculative side- or covert-channel attacks that utilize
the memory hierarchy (caches, directories, and the main memory)
as their side-channel. Non-speculative cache side-channel attacks, as
well as attacks that use other side-channels (such as port contention)
are not covered by Delay-on-Miss and, although still possible, are
outside the scope of this work. We make no assumptions as to where
the attacker is located in relation to the victim or if they share the
same virtual memory address space or not. As a matter of fact the
attacker and the victim can be the same process, as in the Spectre v1
attack [21]. We assume that the attacker can execute arbitrary code
or otherwise redirect the execution of running code arbitrarily. How
the attacker manages to execute or redirect such code is beyond the
scope of this work. Instead of focusing on preventing the attacker
from accessing data illegally, we focus on preventing the transmission
of such data through a cache or memory side- or covert-channel.

In this work, we use the concept of speculative shadows to determine
when a load is safe or not. Speculative shadows determine the
earliest point at which an instruction is guaranteed to be committed
and retired successfully. Other works, such as InvisiSpec [46] and
NDA [45], make different assumptions based on the threat model. For
example, InvisiSpec provides two different versions, one based on the
initial Spectre attacks where only the equivalent of C-Shadows are
considered as part of the threat model, and one based on protecting
against all possible future attacks, utilizing all the shadows. Similarly,
NDA provides different solutions if only C-Shadows are considered
(strict/permissive data propagation), if D-Shadows should also be
considered (bypass restriction), or if all shadows should be considered
(load restriction). In this work, we follow the strictest approach and
assume that all shadows have the potential of being abused, as we
cannot reasonably argue that any of them are not exploitable.

III. INVISIBLE SPECULATIVE EXECUTION THROUGH
RECOMPUTATION (ISER)

We will next detail the mechanics of our novel approach, Invisible
Speculative Execution through (Value) Recomputation (ISER). Due to
space limitations, we will focus on how value recomputation can help
eliminate the targeted threats (Section II-E). For a thorough discussion
of value recomputation we refer the reader to previous works [2], [3].

A. Execution Semantics

ISER only resorts to recomputation for regenerating values that
otherwise would be read by a speculative load from the memory
hierarchy, and only so, if the respective speculative load misses in the
L1 cache. Recomputation takes place as long as a slice exists and the
input operands to the slice instructions can be made readily available.

While ISER shares basic p-architectural structures with Amne-
siac [3] to facilitate VRC (such as dedicated buffers to prevent
corruption of p-architectural state during recomputation), its execution
semantics are quite different when it comes to slice identification and
triggering recomputation. These stem from the defining difference
in optimization targets: Amnesiac uses VRC to maximize energy
efficiency irrespective of security implications. ISER, on the other
hand, uses VRC to eliminate (already known or yet to be discovered)
threats induced by speculative loads. In a nutshell, differences between
Amnesiac and ISER expand along two axes:

o What to recompute (slice identification): As opposed to Amnesiac,
ISER does not impose any direct constraint to preserve energy
efficiency, as we are not after minimizing energy or latency per
load. As long as a slice exists, and its inputs can be made readily
available at the anticipated time of recomputation, ISER would
consider it for recomputation. The only practical limitation on
slice length may stem from storage overhead of p-architectural
buffers in this case (Section III-C).

o When to recompute: ISER swaps speculative loads that miss
in L1 for recomputation (i.e., with producer instructions of

the respective value along a slice). Amnesiac on the other
hand, triggers recomputation (irrespective of whether the load is
speculative or not) only if it is more energy-efficient to do so.

We continue with ISER design specifics, limitations, and side effects
including coherence and consistency implications.

B. Slice Formation & Annotation

Similar to Amnesiac, we rely on a compiler pass (backed by
profiling) to form and annotate slices, which mainly constitutes
dependency analysis to identify the producer instructions for each
load.! Slice creation is a best effort under strict validity guarantees.
Not being able to generate a recomputation slice for a load is not
a security weakness under a security technique such as Delay-on-
Miss, but simply a missed optimization opportunity. Although in
this paper the slice formation is conservative, as we will see later,
the requirement for strict guarantees of the recomputation validity
can be relaxed (potentially increasing the coverage of recomputation,
i.e., portion of load values that can be recomputed, and addressing
coherence issues) if the appropriate architectural support is available.
However, such extensions are outside the scope of this paper and will
be fully evaluated in future work.

The slice formation pass builds the slice as a data dependency graph,
where the immediate producer of the value to be loaded resides at
the root (Figure 1). As opposed to Amnesiac, the restriction to slice
length comes from slice inputs or storage requirements (rather than the
associated energy cost). If, during the traversal of data dependencies,
we encounter other load instructions, we replace them recursively
with the respective producer instructions. This recursive growth can
continue until a store to the same address is encountered. Loads and
stores cannot be present in any slice by definition.

Once construction is complete, each slice gets embedded into the
binary. Similar to Amnesiac, the special control flow instruction RCMP
indicates recomputation opportunities, which semantically corresponds
to an atomic bundle of a conditional branch + load (where no
prediction is involved for the “branch” portion). The branching
condition is resolved during execution of the RCMP instruction
as follows: if the respective load (while shadowed) misses in L1,
RCMP acts as a jump to the entry point (starting from the terminal
instructions) of the corresponding slice. Otherwise, (i.e., the load
is not shadowed, or the shadowed load hits in LL1), RCMP acts as
a conventional load. All operands of the respective load and the
starting address of its slice form the operands of the RCMP. An RTN
instruction (similar to a procedure return in nature) demarcates the end
of each slice and terminates the execution of the slice and returns the
control back to the point where the RCMP computation was initiated.
Before the return takes place, the recomputed value is provided to the
consumers of the respective load, in the same way as if the load was
actually performed (i.e., by passing the value in a physical register).

As explained by Akturk and Karpuzcu [3], recomputation is possible,
even if the compiler cannot prove that all input operands of terminal
instructions correspond to immediate or live register values at the
anticipated time of recomputation, by keeping such input operands
(e.g., overwritten register values) in a dedicated buffer. For any operand
of this sort, a REC instruction is inserted directly after the instruction
producing the value of the operand. REC takes as operands the
destination register of the previous instruction and an integer operand,
which uniquely identifies the saved value. REC practically checkpoints
the input operand to a dedicated buffer.

C. ISER Architecture

ISER implements the shadow tracking technique proposed by
Sakalis et al. [35]. The shadow tracking consists of a shadow buffer

'Instead of a compiler, the same job can be performed by dynamic binary
instrumentation at run time (albeit with probably inferior alias analysis but more
dynamic information), rendering recompilation unnecessary in deployments
where it is not an option.

Dynamic, Instruction Flow

RegisterFile[No] _ Inputs & Outputs
-> Hist o
- - RFile
Slice Instructions
]
Arithmetic/
Perform IBuff v Logic Units
load -
Leaf Non-const/live
Delay on Recompute Address Inputs
Miss
, '
| Wake-up dependents |

v

Proceed to next instruction

Hist

(a) Execution semantics

(b) p-architecture

Fig. 2: ISER overview: All p-architectural buffers have an invalid field per entry to manage space (de)allocation.

(SB) that acts as a circular buffer similar to the reorder buffer (ROB).
When a shadow casting instruction enters the ROB a new entry is
allocated at the tail of the SB. Every load that enters the ROB checks
the SB and if not empty, an entry is allocated in a release queue that
associates the load with the youngest entry in the SB (i.e., its tail).
The load remains speculative as long as the head of the SB is marked
as unresolved and not equal to the SB entry associated with the load.
This mechanism performs a simple comparison between the head of
the release queue and the head of the shadow buffer to identify when
loads exit all their shadows, thus, avoiding the need for costly content
addressable memory (CAM) searches.

On top of this, as depicted in Figure 2, ISER uses a few small
buffers that serve two main purposes: (1) Keeping p-architectural
state intact during recomputation; (2) Making slice instructions and
operands available at the time of recomputation.

The Instruction Buffer (IBuff) caches slice instructions in order
to avoid unnecessary pressure on the instruction cache. Fetch logic
fills IBuff while IBuff feeds the decode stage. Each recomputation
slice that depends on live data indicates this via its RCMP instruction,
which causes the rename stage to create a snapshot of the rename
tables, similar to any other branch instruction, at the time when the
RCMP is renamed. If the recomputation is later triggered (i.e., the
RCMP is speculative and misses in the L1 cache) then the snapshot is
restored and used to read live registers and rename any registers written
by the instructions in the recomputation slice to new free physical
registers. For slices with no live registers the existing rename tables
are used as is. This is possible since the already mapped registers are
never read by the slice and the rename tables are simply used to write
intermediate results during the recomputation to free physical registers.
The rename tables are restored to the state before the initiation of the
recomputation once all instructions in the slice have been renamed,
which is demarcated by RTN. RTN is not renamed to a new physical
register and instead writes the result of the recomputation to the
register allocated by the RCMP of the slice. All physical registers
allocated for slice instructions are freed as soon as RTN writes the
result to the allocated physical register.

The History Table (Hist) keeps the input operands (such as over-
written register values) for each terminal instruction. REC instructions
inserted into the orignal program store values to the Hist and read
instructions in the slices read these values back from the Hist (see
Figure 3 for an example).

For ISER, an RCMP always translates into branch on L1 miss
for speculative loads. As shown in Figure 2, for each encountered
RCMP instruction, ISER first checks whether the corresponding load

addr : instruction addr : instruction addr : instruction

0 : int sumArr[3] S : intrecArr[3] 0 : int sumArr[3]

1: inti=0 S+1: inti=0 1: inti=0

2 S+2: read (j, S+1) 2 load (j)

3 load (k) S+3: recArrli] =i +j 3: |REC (j, S+1)

4. k+=i/j S+4: incri 4 : load (k)

5: (while (i<3)]I S+5: j=i*] 5. k+=i/j

6: S+6: recArli] = i +j 6: while (i<3)

7: S+7 ¢ incri 7 SumArril =i +j

8: j S+8: j=i*j 8: incri

9: if(k>]j) S+9: recArrlil =i +j 9: j=i*j

10: incr k S+10 : RTN (recArr) 10 if(k>])

11: 11 incr k

. . 12 : store (sumArr)

N if(cond ==true) M : if.(cond == true)
N+1: load (sumArr) M+1 :

(@) (b) (c)

Fig. 3: Illustration of (a) slice identification; (b) slice generation; and
(c) VRC-enabled code.

is speculative, and if so, whether it misses in L1. ISER triggers
recomputation for any shadowed load that misses in L1. An RCMP
instruction will always produce a value (either loaded or recomputed)
so for each RCMP a physical register is allocated by the conventional
renaming mechanism.

On a speculative L1 miss, ISER jumps to the entry point of the
corresponding slice and starts fetching instructions. Inputs to a slice
instruction can either come from (i) live register inputs, (ii) live values
stored in Hist, or (iii) temporary values written to a free physical
register. Live registers are read directly from the physical register
file using the restored renaming tables. Architectural registers written
by slice instructions are mapped to free physical registers using the
conventional rename logic. Values stored in Hist are read by specific
read instructions that use the slice with an offest to identify the value.
Instructions are fetched until hitting RTN, which stores the produced
value to the physical destination register and wakes-up consumers
of the recomputed value, and restores the rename tables to the state
before the recomputation was initiated. The RCMP instruction is then
committed as any other instruction without further delays.

Figure 3 provides an illustrative example. Figure 3(a) shows a
pseudo-code excerpt, where we want to create a backward slice for
the stored data sumArr, which will later be (speculatively) loaded (line

N + 1). The instructions within boxes in Figure 3(a) are involved in
the calculation of sumArr, which are identified by the compiler (notice
that the store instruction for sumArr is not part of the slice but informs
us about the memory address of the corresponding value). Figure 3(b)
shows the resulting backward slice (i.e., only the instructions involved
in generating the value of sumArr). In this illustration, we assume that
input j to the slice is stored in Hist by a REC instruction, as shown
in Figure 3(c). Notice that the slice does not contain any control flow
instruction, thus the while loop used in Figure 3(a) to generate values
of sumArr is unrolled in Figure 3(b). Following the semantic explained
earlier, RCMP instruction at address M + 1 in Figure 3(c) replaces
the ordinary load instruction. Recall that RCMP works as an ordinary
load instruction if it hits in L1. However, if it misses L1, RCMP jumps
to entry point of the corresponding slice (which is at address S in
Figure 3(b)), and thereby avoids any access to the lower levels of the
memory hierarchy. After jumping to the slice entry point, inputs to the
slice that were recorded earlier can be read from Hist (by the read
instruction Figure 3(b)), and the desired output can be recalculated
by fetching and executing instructions in the slice. Notice that recArr
is used as a temporary placeholder for recomputed value, to keep the
content of memory address of sumArr intact (i.e., recomputation has
no side effect/change in existing architectural state of the ongoing
computation). Finally, the intended value of sumArr is recomputed
and returned by the RTN instruction (by copying the recArr to the
destination of the RCMP instruction). Then, the control flow jumps
back to the next instruction following RCMP in Figure 3(c). The
instructions contained in boxes in Figure 3(c) are extra instructions
to be added into the binary to facilitate VRC.

D. Limitations & Side Effects

Overhead: Latency or energy per recomputing instruction in a slice is
not any different than the non-recomputing, conventional counterparts.
The only difference is that ISER executes these instructions using a
dedicated instruction supply rather than the instruction cache.
Coverage: We cannot guarantee that all speculative loads missing
in L1 have a corresponding slice. This may be due to complex
producer-consumer chains, which cannot be expressed by a chain of
arithmetic/logic instructions only, and/or slice inputs that cannot be
guaranteed to be available during recomputation. Furthermore, some
values are not produced by the application and are impossible to
recompute, such as I/O.

Locality: Any speculative load that misses in L1 and gets replaced
with recomputation would never reach the memory hierarchy. As a
result, subsequent memory requests to the same cache block become
more likely to miss in the cache hierarchy, as well. This adverse effect
can easily degrade performance, but recomputation targeting such
new misses may be able to recover some of the lost performance. We
will discuss this effect further in the evaluation (Section V).
Exception Handling (during Recomputation): Exception handling
during recomputation should be rare as it simply re-executes a
previously seen slice of instructions with equivalent inputs. However,
in case an exception would be raised we revert back to the Delay-
on-Miss alternative and simply wait until all the shadows have been
lifted (no longer speculative) and execute the load as normal.
Pipeline Integration: The only negative impact may be due to potential
increase in the pressure on execution units, as execution units are
shared with the rest of the instructions. However, recomputing
instructions along a slice (which form a dependency chain) are
executed sequentially, one at a time. The impact would, therefore, be
one additional instruction competing for the respective functional unit
at a time. This can also be regarded as an opportunity to utilize the
cycles (and functional units) that could be wasted otherwise due to
stalled instructions waiting on delayed loads.

E. Architectural Support for Slice Coherence

ISER is based on the premise that we do not have to validate
recomputed values: VRC is not a speculation (i.e., it is not a prediction).

This is certainly the case for immutable values that we can safely
recompute instead of fetching them from the memory hierarchy. As
long as the compiler guarantees via alias analysis that recomputed
loads access immutable values (from the time they were written by
the corresponding producer), the approach is compatible with any
consistency model and coherence protocol, simply because neither is
needed to ensure correctness. We evaluate this case which, however,
restricts VRC coverage and limits the potential gains.

Here, we sketch one approach on how to increase coverage by
relaxing the restrictions on slice formation but the actual mechanisms
are beyond the scope of this paper. Our aim is to show that there is sig-
nificant untapped potential in this direction. In the evaluation we show
the upper bound for such a potential approach with an oracle model.

The central question is what happens if it is not possible to statically
ascertain the immutability of a load’s value. In other words, what
happens for recomputed values that are considered as immutable but
there is a possibility, however small, that they can change by some
unknown store. We refer to such values as mostly-immutable.?

For mostly-immutable values, we still want to maintain the essential
property for our purposes, that VRC is not a prediction that needs to
be validated. Instead, what we want is to be able to make a simple
binary decision: to recompute (if the value has not changed) or not (if
the value has changed). In other words, we never validate VRC, but we
expect that a store would prevent future recomputation of loads that
access the same address. This implies that we must track any possible
change of the data that could be accessed by recomputed loads.

For single-threaded applications, handling the recomputation of
mostly-immutable values, implies a mechanism to match the thread’s
own stores to the recomputed loads and invalidate the corresponding
VRC slices when such matches are found.> To enable such a
mechanism, the target address of the producer instruction is saved
as a tag for the corresponding slice in the ISER structures. This tag
can be matched by future stores on the same address, to invalidate
the slice (and cancel recomputation) by invalidating, selectively or in
bulk, ISER structures. Since we expect this to be a rare occurrence
(for what we choose to recompute), we can optimize for the case
when it does not happen: Producer tags (store target addresses) can
be encoded in signatures (Bloom filters) and if a future store hits in a
signature, ISER structures and signatures are reset in bulk and need
to be repopulated anew.

For multithreaded-applications, this matching and invalidation of
recomputation slices should be expanded to include stores from other
threads besides the thread’s own stores. This requires an additional
“coherence” mechanism to detect remote writes even when there is no
copy of the relevant cacheline in the local cache. A solution can be
based on an approach that serves a similar purpose: detecting remote
writes in the absence of cached copies.

Specifically, the Callback concept, introduced by Ros and Kaxi-
ras [30] can serve as the substrate on which to build a solution. A
callback simply says “notify me if someone writes on this address”
and it does not need cached copies that invite invalidations. Callback
was introduced for synchronization, as an explicit request for an
invalidation in the absence of coherence invalidations (or more broadly
absence of sharing). Callback can be generalized to perform a similar
role in our situation with regards to detecting changes on what we
would otherwise consider immutable values. Similarly to the single-
threaded case, tracked addresses can be encoded in signatures for
efficient matching. Security implications of using callbacks (such as
perhaps new side-channels enabled by the callback directories [31])
must also be addressed in the same way as in the work of Yan et
al., SecDir [47].

Naturally, we are not targeting mutable values as successful VRC would
likely be much [less prevalent.

3We assume, for the single-threaded case, that we would not recompute
loads that touch I/O space that can be changed by a device without seeing
any of our own stores modifying that space.

To conclude, we argue that VRC slices can be made coherent by
explicitly detecting changes to what we would consider immutable
values. Techniques for explicitly detecting writes without invalidations
have been proposed in prior work [30], [31] and their adaptation to
our purposes is feasible.

E Impact on Consistency

While the coherence approaches sketched above enable us to
explicitly detect changes in mostly-immutable values and invalidate the
corresponding VRC slice, here, we discuss the order that this would
need to happen in relation to the consistency model of the baseline
architecture. We use total store order (TSO) and release consistency
(RC) as our prime examples but our reasoning can be generalized to
other consistency models. We use the term callback invalidation to
distinguish from the normal coherence invalidation, which may not
be available when we have no cached copy of the corresponding data.
The question here is, once a change is detected to a value that we
are capable of recomputing, when exactly is VRC canceled?

If VRC occurs well in advance of the callback invalidation it is safe
in any consistency model such as TSO or RC. By “well in advance”
we mean that the recomputed load is retired from the reorder buffer. In
this case, it is as if the corresponding load has seen the old value, well
in advance of the change in the value. Once the callback invalidation
reaches the core, there will be no further VRC of that load. Thus, we
only need to clarify what happens when a callback invalidation and
the corresponding VRC occur in a critical window when consistency
rules could be violated.

In RC, VRC is safe between memory fences. (RC, allows both
loads and stores to be reordered, unless otherwise enforced by memory
fences.) Callback invalidations received before an acquire memory
fence must take hold and cancel VRC before crossing the fence.

In TSO, load-load reordering is not allowed to be observed. A
recomputed load is considered performed as we consider it equivalent
to accessing the actual data. In a speculative implementation of TSO,
a recomputed load would be speculative with respect to an older load
that is not performed. In other words, a recomputed load can be in
the M-Shadow of one or more older loads. A callback invalidation
reaching the core while a recomputed load is still under an M-Shadow
(e.g., one or more older loads are still not-performed) should squash
the recomputed load (and its dependents) and cancel further VRC.

To conclude, we argue that VRC is compatible with both TSO and
RC by observing a correct ordering between callback invalidations
and VRC.

G. Recomputation Security

ISER is based on slice formation, replacement of corresponding
loads with RCMP instructions, and checkpointing of input operands
with REC instructions. The question here is what happens if any
part or all of the ISER infrastructure can be abused by an adversary.
This is of course equivalent to hijacking the compiler, or dynamic
instrumentation (or even the binary of an application where the same
security risks would apply). However, even under such assumptions,
ISER still cannot leak information speculatively, which is the main
goal of our work.

To see this, assume that the compilers are compromised. Attackers
can make them do anything they want. We are still safe with respect
to leaking information via speculative side-channel attacks because
of the following reasons:

1) VRC itself cannot be used to construct a speculative side-
channel in the memory hierarchy because it does not perform
any memory accesses at all.

2) VRC is only used if the load is already under a speculative
shadow. Even if VRC recomputes a secret value, all future loads
will be restricted under Delay-on-Miss.

To expand on (2), VRC only starts if the RCMP is under a speculative

shadow. While VRC has access to input operands that may hold secrets,
the recomputation slice cannot perform any memory accesses to leak

TABLE I: The simulated system parameters.

Parameter Value

Technology node 22 nm

Processor type out-of-order x86 CPU
Processor frequency 3.4 GHz

Issue / Execute / Commit width | 8

Cache line size 64 bytes

L1 private cache size 32 KiB, 8-way

L1 access latency 2 cycles

L2 shared cache size 1 MiB, 16-way

L2 access latency 20 cycles

Value predictor VTAGE

Value predictor size 13 comp.s x 128 entries

those secrets and the only way would be to pass the secret value to
another (younger) load, which will also be speculative. Speculative
interference attacks [5] that use older bound-to-commit instructions
to leak information are prevented in our system by enforcing that
non-piplined instructions are executed strictly in order [36]. Delay-
on-Miss guarantees that the younger load cannot have any visible
side-effects, preventing any information leakage. Essentially, VRC
maintains the Delay-on-Miss invariant that only non-speculative loads
are allowed to cause side-effects in the memory hierarchy. Therefore,
we conclude that VRC is safe from cache and memory speculative side-
channel attacks, no matter how compromised the compiler, dynamic
instrumentation, or the binary is.

In addition, the VRC structures are local to the core and cannot be
observed by another core. While under speculation, the only changes
allowed are ones that cannot be observed from the outside, such as
writes to free physical registers that can only be read by instructions
belonging to the recompuation slice. Any other changes (e.g., to the
IBuff and Hist) are buffered or squashed, i.e., they are only updated
once the instruction causing the change is no longer speculative.
Furthermore, if SMT is present, the VRC structures can be partitioned
where necessary, to avoid contention attacks between SMT threads. It
should be mentioned that if SMT is present, since the slices use the
functional units (FUs) of the core, it is possible to perform an FU-
contention attack, such as SmotherSpectre [7]. Such attacks are outside
the scope of Delay-on-Miss and this work but, more importantly, they
are only possible under VRC if they are already possible without
it, as VRC’s slices only consist of instructions already found in the
application. Thus, VRC does not open up any new attack opportunities
under our current threat model. Note also that, disabling SMT has
been recommended by vendors (e.g., Microsoft [42]) as a measure
against several attacks.

IV. EVALUATION SETUP

We use a Pin-based tool [28] to identify and annotate recomputation
slices. For practical reasons, we limit the maximum slice size during
construction to 100 instructions (which represents a loose upper bound
in practice). The annotated slices, together with the original binary, are
fed to the gem5 [8] simulator where the shadows, Delay-on-Miss, and
VP have been implemented as described in the Delay-on-Miss work
by Sakalis et al. [35]. In gemS5, we begin with fast-forwarding through
the first one billion instructions of the application and then simulate
in detail for another billion. We use McPAT [24] with CACTI [25],
as well as the dynamic DRAM energy provided by gems5, to calculate
the energy breakdown of the system. The configuration used for
simulations are shown in Table I. We evaluate the following versions:

Baseline: An unsecured out-of-order CPU.

DoM: Delay-on-Miss without any value prediction or recompu-
tation. This is considered as the secure baseline.

VP: DoM with an added VTAGE value predictor.

VRC: DoM with the added value recomputation. This is the
solution we are proposing. This does not include callbacks, only
immutable values are recomputed.

Coverage

o
@Q@ & VQ@
¢(§0 & ©

Q’b

xé%g \\é’ z"e@ @
A V\S N

Fig. 4: The coverage of VP and VRC, i.e., the ratio of shadowed L1
misses that can be predicted or recomputed instead of being delayed
(bars). Also depicted on the same plot is the L1 miss ratio for both
versions (circles/crosses).

VRC (2 cycles): Same as the VRC version but we have artifi-
cially limited the latency of every slice to at most two cycles.
We have also limited the number of instructions needed for
the recomputation accordingly. As all VP versions take at most
2-cycles per prediction in our implementation, this VRC version
enables iso-performance comparison with VP variants.

Oracle VP: Same as the VP version but with an oracle predictor
capable of predicting correctly 100% of all speculative L1
misses. Even though the predictor is perfect, its results are still
being validated once the loads have been unshadowed.

Oracle VRC: Same as the VRC (2 cycles) version but with an
oracle compiler capable of recomputing 100% of all speculative
L1 misses. Note that this is the Oracle in regards to VRC
coverage, not performance. We discuss the implications of re-
computing all speculative L1 misses in the evaluation, section V.

For the sake of brevity, the last three versions are only shown in the
performance (IPC) results and are excluded from the rest of the figures.

We evaluate all these versions using the SPEC2006 benchmark
suite [41], with the reference inputs, as in previous work [35]. For
one of the benchmarks, GemsFDTD, none of the techniques we tried
produced any improvement. GemsFDTD is a floating point benchmark
that is dominated by overlapping C-Shadows. It achieves only about
20% of the baseline performance with DoM (also corroborated by
Sakalis et al. [35]). In our work, we were unable to achieve any
improvement with either VP or VRC because of near-zero coverage.
In contrast, it shows an impressive 3.5x (350%) improvement with
an oracle VRC (100% coverage)—however, this may be impractical
to attain. Energy results follow the same pattern, either showing high
energy consumption (3x of the baseline) with all the techniques
we tried or 56% lower than the baseline with the VRC oracle. We
surmise that GemsFDTD performs badly, in general, under any “delay”
technique (including NDA [45] and STT [50], but it is unfortunately
not included in these works to allow for comparisons). Because
GemsFDTD represents such a special case for delay techniques
we believe that further work is required to specifically address its
shortcomings. For these reasons, we point out its idiosyncrasy here,
instead of discussing it with the rest of the benchmarks.

V. EVALUATION
A. Recomputation Coverage

The coverage for the VRC can be seen in Figure 4, together with
the value prediction (VP) coverage. We can immediately observe
that, on average, VRC has higher coverage than VP, at 43% of all
speculative L1 misses vs. 26% with the VP. A notable example is
mcf, which is one of the worst performing benchmarks with DoM
(Section V-B). On the other hand, 1bm is a counter-example, where
we have almost zero VRC coverage. This, however, does not affect the

VRC Latency

. ef’é?c Qé’@b ‘*‘re%@zé‘m\
&\Q %Q\“Q,&“ N é\é‘ S RN ‘X\Q
A & &\ &% N 0\?% e
& Ny

Fig. 5: The mean latency for recomputing a shadowed L1 miss.

performance negatively, as 1bm does not suffer from any performance
penalties even with the plain DoM.

In the same figure, we have also superimposed the cache miss
ratio for both versions. We only predict or recompute L1 misses, so
the miss ratio is needed in conjunction with the coverage to infer
the percentage of loads in the application that are being predicted or
recomputed. More detailed L1D miss data can be found in Figure 6.
Note how, as discussed in Section III-D, VRC increases the miss ratio.

With VP, all loads that can be predicted are predicted in the same
amount of time (two cycles in our setup), but the same is not true
for the VRC, where the latency depends on the slice length and the
instructions it contains. In Figure 5 we can see the mean recomputation
latency for each benchmark, as well as the overall mean. In all cases,
VRC requires more cycles than VP to recompute a value, with a mean
of seven cycles per slice. However, as we will see in Section V-B,
this does not impact the performance significantly.

B. Performance

Figure 7 contains the number of committed instructions per cycle,
normalized to the unsecured baseline processor. Delay-on-Miss without
VP or VRC, which is our secure baseline, performs at 88% of the
unsecured baseline, similar to the results reported by Sakalis et al. [35].
The benchmarks that incur the biggest hit in performance are mc £
(at 44% of the baseline), followed by milc (68%), cactusADM
(74%) and libguantum (76%). Out of these benchmarks, three
(mcf, milc, and libguantum) have high LLC MPKI, but that in
itself is not the only factor, as other benchmarks (e.g., 1bm) also have
a high MPKI. Instead, the cost of Delay-on-Miss also depends on the
amount of MLP that the benchmarks exhibit; the more MLP that is
taken advantage of in the baseline, the higher the performance loss.

If VP is introduced, then the performance is similar, at 89% of the
unsecured baseline. This result contradicts the results given by Sakalis
et al. [35], where the VP gives a significant performance advantage®.
The reason that VP does not offer a significant advantage is because
VP itself is speculative: When a value is predicted it still needs to be
validated at a later point. By predicting the value, a small amount of
parallelism (ILP) can be exploited during execution, but the slow L1
misses still need to be satisfied for the validation. Due to the high
number of speculative shadows, validations become serialized and are
not able to take advantage of any MLP that might be found in the
application. In essence, the VP pushes the cost of delaying speculative
loads from the execution stage to the validation stage, but it does not
eliminate it. This can be seen in the Oracle VP results, where even
100% prediction rate (i.e., all shadowed L1 misses are successfully
predicted) only leads to a marginal performance improvement of one
percentage point.

The same is not true for VRC, as once a value has been recomputed,
it does not need to be validated, meaning that the cost for delaying a
long latency miss is eliminated and no serialization is enforced. While
VRC does not increase the amount of MLP that can be taken advantage
of, it does eliminate some of the need for it. Overall, VRC performs

4We contacted the authors and verified that our results are indeed valid.

. vpP s VRC

L1D Miss Ratio

yp— d‘—_.—l—_.-# o m_ __m__ e —m
& o & 5 @ RN K & N\ S S N e & & & & N > &g N
N ¢ 3 NS N O @ SV SN S W 5 < S &
© o @ & @06\ & & ® Qg)o EENN > 0\\@& \@‘/o ? S 0@
L &
& A
Fig. 6: L1D miss ratio for Delay-on-Miss with VR and VRC
N DoM . vP s VRC VRC (2 cycles) [OracleVvP T Oracle VRC

Normalized IPC
P

0.5~
0.0 -
RS
~o/\>Q $ ’b 0((\ v (}\ \\'b
BN &2 4& & & &
(f"b
[}
&
= BN baseline W DoM g FEE VP EEE VRC
%1.5
5
G 1.0-
el
X 05~
©
£0.0-
= \Q(‘V <5’
o7 @ s & '\\
o @ ,‘g? 630)&(X &
(,'Z’b

IIIIIIIH.III]IIIIIIIII"]T

m‘ & ,bo
‘0 Q '\ \4\’ ,b‘:)& O (4
S 3 N

IS ~é° & \@/ K 0@

R

Fig. 8: Energy usage, where each bar consists of four parts (from bottom up): The bottom, light colored part is the dynamic energy of
the CPU, the middle, dark colored one is the static energy of the CPU, the middle light part is the DRAM energy, including refresh and
power-down energy, and the top dark part is the overhead of VP and VRC, both static and dynamic.

at 93% of the unsecured baseline, decreasing the performance cost
of Delay-on-Miss by more than one third (specifically, by 42%). The
benchmark with the most dramatic performance increase is mc £, which
is the worst performing benchmark for Delay-on-Miss. VRC improves
the performance from 44% to 90%, reducing the performance cost
to one fifth of that of Delay-on-Miss.

We have also evaluated an artificial version of VRC where we keep
the same slice coverage but reduce the cost of the slices to at most two
cycles. This version exhibits almost identical performance to the real
VRC, with a mean performance difference of half a percentage point.
This strongly indicates that instead of trying to keep the cost of the
slices low, it is more important to increase the coverage, even if large
slices are required. This is further corroborated by the results from
the Oracle version, discussed below. However, large slices increase
the energy usage, as we will see in Section V-C, so a balance still
needs to be kept.

If we introduce an Oracle VRC that can recompute all shadowed
L1 misses, the difference between the VP and the VRC approaches
becomes even more apparent. Both Oracle versions have 100%
coverage and the same latency, the only difference is that with VP
the loads need to be validated when they are unshadowed, while with
VRC they are completed as soon as the value has been recomputed.
While, as we have seen, the VP Oracle can only achieve marginal
improvements over the non-Oracle version, the VRC Oracle is able
to outperform even the baseline, including benchmarks such as mcf,
cactusADM, and libquantum. Of course, such an Oracle is
unrealistic, but it does support our argument that the limiting factor
for VP is the cost of validation.

However, it is worth noting here that a 100%-coverage VRC does
not necessarily guarantee that the performance will exceed that of the
baseline. In fact, there are four benchmarks where the Oracle VRC is
slower than the baseline: bwaves, milc, leslie3d, and 1bm. Out
of these, the bwaves and 1bm VRC Oracle is also slower than DoM.
There are various factors that contribute to this result: In bwaves and
leslie3d, the L1 and the L2 miss ratio (not shown) are increased
significantly with the Oracle; in mi1c the Oracle increases the number
of write misses in the L1 (not shown), as well as the average write miss
latency (not shown); finally, in 1bm a combination of many factors
contribute to worse cache performance. The problem is that, even
with 100% coverage, not every single memory access is recomputed:
Stores, non-speculative loads, and speculative L1 misses that hit in the
MSHRSs, are still served by the memory hierarchy. By recomputing
the rest of the loads, which account for the majority of the L1 misses,
the Oracle VRC disrupts the normal operation of the cache and the
prefetcher, resulting in performance losses. Essentially, there is a trade-
off between the benefits of eliminating long-latency L1 misses and the
cost of disrupting the normal cache operation. For the majority of the
benchmarks, this trade-off leans towards the benefits, but this is not true
for all of the benchmarks. Future work aiming to increase VRC cov-
erage must account for these factors to achieve optimal performance.

C. Energy

Energy, in our case, is affected by three main factors: The execution
time/performance, the number of accesses in the memory hierarchy
(especially the DRAM), and the cost of predicting (VP) or recomputing
(VRC) a value. Figure 8 shows, starting from the bottom, the dynamic

(bottom, light color) and static (middle, dark color) energy of the CPU,
the total DRAM energy (middle, light color), and, finally, the overhead
(if any) for VP and VRC (top, dark color). Overall Delay-on-Miss and
VP increase the mean energy usage over the unsecured baseline by
6%, while VRC increases it by 5%. The dynamic energy of the CPU
(excluding the overheads) remains mostly the same across all versions,
instead it is the static, DRAM, and overhead energy that changes.

Static energy is affected because the execution time is affected.
This is most obvious in mcf, the application with the worst DoM
performance, followed by milc. None of the evaluated solutions
affect the LLC MPKI significantly (not shown), so the increase in the
DRAM energy is not due to an increase in the number of accesses but
due to other operations such as refresh and power-down states. These
operations do depend on the access patterns, but they also depend on
the execution time, similar to the static energy usage of the system.

On the other hand, the overheads introduced by the VP and the
VRC are affected both by the execution time (static energy) and by
the operations performed. This is particularly visible in the case of the
VRC, where the majority of the overhead is due to the instructions
of the slices. As we have discussed in Section V-B, smaller slices
do not lead to better performance, but the same is not true for the
energy costs. Instead, a balance between coverage (which increases
the performance) and slice length (which increases the energy usage)
needs to be achieved.

Out of all the benchmarks, the ones with the highest (relative to
the baseline) energy usage are milc (at 37% over the baseline),
gromacs (13%) and 1libquantum (12%). The rest of the bench-
marks have energy overheads of less than 10% over the baseline.
milc is the benchmark with the worse performance, so part of the
energy increase is due to static and DRAM energy. It also has a high
VRC coverage and also some of the third most expensive (in cycles,
on average) slices among all the benchmarks, which increases the
VRC overhead energy. On the other hand, gromacs’s performance
comes very close to the baseline, but it has the second most expensive
slices, while also having high coverage. Finally, 1ibquantum also
sees an increase in execution time and by extension, energy usage.
The next benchmark with the higher energy increase over the baseline
is mcf (9%), but this is far better than DoM, with or without VP,
which are at 63% and 84% respectively.

D. Hardware/Software Overhead

Thus far, related security proposals exert a toll on performance
and/or increase cost/complexity. In ISER, as well, microarchitectural
support for VRC increases hardware complexity, but only slightly:
Slices differ in length, but here we conservatively assume that all
would be as long as the maximum-length slice we observe across all
benchmarks. In this case, 22 KiB suffices to accommodate all “live”
slices for the complete execution of the largest benchmark. In practice,
Hist would only have to store a fraction of this as the slices would be
much shorter on average and all values for a program do not have to
be stored at the same time. Furthermore, static loads that need to be
recomputed at runtime are few, so the overhead in the binary is small;
<3% across all applications. Finally, as we pointed out throughout
the evaluation, since our conservative VRC implementation leaves
many optimization opportunities untapped, it still has potential for
even further improvement.

VI. RELATED WORK

The architecture community promptly proposed a number of
techniques (starting with InvisiSpec [46]) to prevent disclosure gadgets
from revealing secrets. The techniques fall in one of the following
three broad categories shown below, but each individual proposal
has different assumptions as to the threat model (type of speculative
shadows covered) and prevention of information leakage (disclosure
gadgets). It is obvious that at this point no direct comparison is
possible, but we make an effort to compare the solutions qualitatively.

Hide&Replay: Perform speculative memory accesses in a manner
that does not perturb any p—architectural state in the memory system;
subsequently, perform a replay of the access (when it becomes non-
speculative) to affect the correct changes in the p-architectural state [1],
[18], [23], [34], [46]. Invisispec (Yan et al.) [46] and Ghost loads
(Sakalis et al.) [34] were the first such proposals. Hide&Replay
techniques, as the first to be proposed, showed a significant cost
in performance (and a moderate implementation cost). They only
protect against information leaks via the memory hierarchy (and not
even all of it, as DRAM leaks are possible [29]). On the other hand,
both of these techniques were designed to protect against attacks
on any possible speculation primitive, i.e., cover all the speculative
shadows mentioned above. A recent work, InvarSpec [51] relies
on compile time analysis to identify instructions that may become
non-speculative during execution (i.e., speculation invariant). The
protection scheme used for these speculative instructions can be
lifted at runtime, thus, reducing the performance overhead associated
with speculation-related protection mechanisms in hardware. Reported
performance improvement from such HW-SW co-design, however,
cannot reach the negative overhead of ISER. Instead, as it takes an
orthogonal approach, InvarSpec can be used in conjunction with ISER
to further improve the performance while also reducing the size of
the structures needed for recomputation, by reducing the number of
loads that trigger recomputation.

Delay: Delaying speculative changes in p-architectural state until
execution is non-speculative. Sakalis et al. proposed to delay loads that
miss in the L1 (Delay-on-Miss) until they are non-speculative [33],
[35]. This delays any p-state change in the memory hierarchy. A
different form of delay (such as NDA, proposed by Weisse et al. [45]),
is to prevent speculative data propagation by delaying dependent
instructions from executing with speculative inputs [4], [13], [37], [43],
[45], [50]. Delay-on-Miss protects against all speculative shadows (i.e.,
any possible “Speculation Primitive”) but delays only changes in the
memory hierarchy (including DRAM). Subsequent work, that delays
speculative propagation of data [45], achieves good performance by
protecting against any p-state changes (i.e., a much larger gamut of
“disclosure gadgets” than just the memory hierarchy) but responding
only to C-Shadows, i.e., control speculation primitives. Another similar
alternative, STT [50], also protects against other shadows (referred
to as the “Futuristic” model) but at a higher performance cost. In a
recent publication, STT has been extended to utilize speculation as
well, referred to as “speculative data-oblivious speculation-SDO” [49],
in order to replace the potentially leaky speculative paths with secure,
data-independent paths. This approach is similar to the approach
that ISER takes, only ISER is non-speculative and does not require
any verification or squashing, further reducing the runtime overhead.
Tran et al., propose a SW-HW extension that can reduce the time in
which loads are shadowed (i.e., loads are speculative) and thereby can
increase the MLP [44]. Their proposal includes instruction reordering
to prioritize calculations that minimize the speculation window, such
as target address computation of memory accesses, and resolution of
branch conditions. Much like InvarSpec, their approach may reduce the
performance overhead of delay-based security solutions by reducing
the number of speculative loads or time spent in speculations, and
it is orthogonal to our proposal. Both approaches can be combined
together to offer better security coverage with minimum performance
overhead. SPECCFI [22] uses the Control-Flow Integrity (CFI) to
prevent Spectre-type attacks that abuse illegal control flow during
speculative execution. Not all possible speculative side-channel attacks
are covered by this technique but, much like the other compiler-based
techniques we have discussed, it can be used in conjunction with our
technique to limit the cases where recomputation is needed.

Cleanup: Perform a speculative change in p-architectural state
but then undo if speculation is squashed. In the first such proposal,
CleanupSpec, by Saileshwar et al. [32], the undo is expensive so its
application is restricted to the L1 cache. The rest of the memory
hierarchy (L2, LLC, and coherence directory) is assumed to be

protected in other ways, including randomization and delaying of
coherence state changes, but DRAM row buffers still remain a
security hole. Cleanup techniques only protect the L1, assuming—at
a cost—that the rest of the hierarchy (excluding DRAM) is protected
otherwise [32].

(Generic) Recomputation: Amnesiac [3] introduces a u-
architecture for recomputation that differs from ISER in the way
slices are generated and their usage. The goal of Amnesiac is to
replace as many energy-hungry loads as possible with recomputations
of the respective data value. In contrast, ISER recomputes slices
selectively, such that recomputation is triggered only for shadowed
loads that miss in L1.

Kandemir et al. proposed a recomputation-based approach to reduce
off-chip memory space in embedded processors [17]. Koc et al.
investigated how recomputation of data residing in memory banks
in low-power states can reduce the energy consumption [20], and
devised compiler optimizations for scratchpads [19] that are limited
to array variables. The dual of recomputation, memoization [14],
[39] replaces computation with table look-ups for pre-computed
values (for the ones that are frequent and expensive to recompute).
Memoization can mitigate the communication overhead — as long as
table look-ups are cheaper than long-distance data retrieval, but is
only effective if the respective computations exhibit significant value
locality. Therefore, memoization and recomputation can complement
each other in boosting energy efficiency. Idempotent Processors [11]
execute programs as a sequence of compiler-constructed idempotent
(i.e., re-executable without any side effects) code regions. As the name
suggests, idempotent regions regenerate the same output regardless
of how many times they are executed with the given program state.
Generally, idempotent regions are larger, and therefore tend to incur
higher overhead for recomputation, while slices for VRC employ
fine-grain data recomputation, where each slice contains only the
necessary instructions to generate a value. Accordingly, slices for
VRC may provide more flexibility than idempotent regions.

Elnawawy et al. demonstrated the applicability of recomputation
to loop-based code [12] to reduce checkpointing overheads. In their
proposal, a whole loop is (re)executed during recovery, where only
the initial state of the loop is required to be checkpointed. The
loops may contain extra computations that are not relevant to the
production of the value to be recovered. Compared to such a coarse-
grain recomputation, slice-based recomputation does not contain any
irrelevant instructions. Also, slices used for VRC do not contain load
instructions, as opposed to [12]; and recomputation applies outside of
loops, providing wider applicability. To summarize, although value
recomputation has been explored in different contexts before, to
the best of our knowledge, none of the prior works has evaluated
recomputation in the context of security.

Slice Generation: Automatic creation of VRC slices in hardware
is complicated because we are not after the slice of the load to be
replaced (which could be created by existing techniques like IBDA [9])
but the slice of the corresponding store creating the value. This would
require tracking of all stores and their slices, and somehow matching
these with a (speculative) load missing in the L1 cache. Srinivasan et
al. [40] generate “forward” slices for loads that miss in LLC. This
is easier in hardware since the dependency tracking starts with the
producer (i.e., load that misses in LLC) and the consumers (following
use-def chains) are executed after the producer. However, in our
case, we have to identify “backward” slices — i.e., the producers, not
consumers, of a value that will be loaded — where all the producers
were executed before the load itself. Such backward dependency
tracking would likely require expensive bookkeeping in hardware.

VII. CONCLUSION

Delay techniques aim to hide the effects of transient execution
by simply delaying instructions until they become non-speculative.
Whether delaying loads that miss in the L1, as Delay-on-Miss does, or
delaying the propagation of speculative data to dependent instructions,

10

as NDA and STT do, delay techniques extract a heavy toll in
performance, in direct relation to the set of speculative shadows they
protect against. Delay techniques would be at an impasse with respect
to improvement if we could not regain some of this lost performance
in some other way. To this end, value prediction, invisible from the
outside, was initially proposed as a solution.

However, value prediction (VP) is not the right abstraction for
recovering lost performance in Delay-on-miss. This is not because
of coverage or accuracy but because value prediction is just another
form of speculation that needs to be validated. Validation limits
the potential benefits to the point where even an oracle VP (100%
coverage and accuracy) does not do any better than a practical VP.
In our evaluation we found that, no matter how good, VP is limited
to just one percentage point improvement over Delay-on-miss.

Instead, we propose another, non-speculative, abstraction to regain
performance for delay techniques, and in particular for Delay-on-miss.
We propose to use recomputation that yields correct values—not
predictions—as the key to overcome Delay-on-miss performance
limitations. We describe the architecture, we evaluate it using a
practical approach to generate recomputation slices albeit with modest
coverage, and we exceed the performance of Oracle VP (90% vs.
93%) with lower energy usage. Finally, we discuss the potential for
increasing the coverage of recomputation with future architectural
support. Because, as we show, oracle recomputation easily exceeds
even the performance of the unmodified (unsecured) baseline, this
direction provides tangible motivation for researching techniques for
a future secure processor.

To regain the performance cost of securing the memory hierarchy,
we need to identify methods that improve the MLP. This paper
demonstrates, for the first time, value recomputation’s unique ability
in overcoming the MLP restriction that is inherent in VP when applied
on the Delay-on-Miss technique. To the best of our knowledge, no
previous study on recomputation considered any security impact.
Finally, these findings should be considered in the context of our
representative threat model (Section II-E). In the end, no threat model
can cover all possible security vulnerabilities. But, as explained in
Section III-G, ISER does not introduce any new attack opportunities
under the provided threat model.

That said, as any technique that affects the control flow timing —
including value prediction or even Delay-on-Miss to name a few —
recomputation may give rise to timing channels, where information
to be leaked gets encoded in timing differences between various
microarchitectural events. Even if a given value is recomputed multiple
times throughout execution, as resource contention and speculation can
easily change timing of microarchitectural events non-deterministically,
there is also a very good chance that recomputation rather obfuscates
control flow timing. Specifically, provided that a slice is executed only
upon an associated L1 miss, which by itself constitutes a variable
latency depending on where in the memory hierarchy the data resides.
This time may cover part of or the whole recomputation time, making
it indistinguishable with the timing of the memory operation.

To conclude, potential timing channels, if at all, would not
necessarily be straight-forward to exploit. In fact, recomputation
is more likely to result in control flow obfuscation. We leave the
exploration of such effects to future work, confining the analysis in
this paper to only memory side-channels because they are easier to
exploit and can be exploited across cores. This does not imply that
side-channels such as functional unit contention based ones are not
possible, they are just outside the scope of our threat model.

ACKNOWLEDGMENTS

This project was funded by the Swedish Research Council grants
2015-05159 and 2018-05254, by the Spanish MCIU and AEI, as well
as European Commission FEDER funds, under grant RTI2018-098156-
B-C53, and by MRL grant 2021-020, and by NSF CAREER CCF-
1553042. The simulations were performed on the IDUN cluster [38],
provided by NTNU.

REFERENCES [24] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and

. « . . N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
(1] S. Ainsworth and T. M. Jones, “MuonTrap: Preventing cross-domain framework for multicore and manycore architectures,” in International
spectre-like attacks by capturing speculative state,” in International Symposium on Microarchitecture (MICRO), Dec. 2009, pp. 469-480.

Symposium on Computer Architecture (ISCA), 2020. o [25] S.Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “CACTI-P:
L Akturk and U. R. Karpuzcu, “Trading computation for communication: Architecture-level modeling for SRAM-based structures with advanced
A taxonomy of data recomputation techniques,” [EEE Transactions on leakage reduction techniques,” in International Conference On Computer
Emerging Topics in Computing, 2018.) _ Aided Design (ICCAD), 2011, pp. 694-701.

I. Akturk and U. R. Karpuzcu, “AMNESIAC: Amnesic Automatic Com- [26] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard
puter - Trading Computation for Communication for Energy Efficiency,” P. Kocher. D. Genkin. Y. Yarom. and M. Harilburg “Meltdown.” Jan.
in International Conference on Architectural Support for Programming 2018. [On’line]. Avajla’blez http: //e{rxiv‘org/abs/ISO 1‘0’1207 ’
Languages and Operating Systems (ASPLOS), 2017. [27] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache

[2

—

[3

=

[4] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu, “SpecShield: side-channel attacks are practical,” in IEEE Symposium on Security and
Shielding speculative data from microarchitectural covert channels,” in Privacy (SP), May 2015, pp. 605622
Conference on Parallel Architectures and Compilation Techniques (PACT), [28] C.-K.Luk R., Cohn. R. Niuth. H. Patil A Klauser, G. Lowney, S. Wallace
Sep. 2019, pp. 151-164. . V. J. Reddi, and K. Hazelwood, “Pin: Building Customized Program
[5]1 M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. Zhao, X. Zou, T. Un- Analysis Tools with Dynamic Instrumentation,” in ACM SIGPLAN

terluggauer, J. Torrellas, C. Rozas, A. Morrison et al., “Speculative C P ine L Desi d Impl tati
interference attacks: Breaking invisible speculation schemes,” in Interna- (PoLngeI;elécoeoson rogramming Language Lesign and fmptementaion
tional Conference on Architectural Support for Programming Languages [29] P. Pessf D. druss C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
and Operating Systems (ASPLOS), 2021. . Exploiting DRAM addressing for cross-CPU attacks,” in USENIX Security
[6] D.J. Bernstein, “Cache-timing attacks on AES,” 2005. o Symposium, 2016, pp. 565-581.
[71 A. Bhattacharyya, A. Sandulescu, M;‘Neugschwandtper, A. Sorniotti, 30} A. Ros and S. Kaxiras, “Callback: Efficient synchronization without
B. Falsafi, M. Payer, and A. Kurmus, “Smotherspectre: Exploiting spec- invalidation with a directory just for spin-waiting,” in International
ulative execution through port contention,” in ACM SIGSAC Conference Symposium on Computer Architecture (ISCA), 2015, pp. 427-438.
on Computer and Communications Security (CCS), 2019, p. 785-800. [31] A. Ros and S. Kaxiras, “Racer: TSO consistency via race detection,” in
N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, The 49th Annual IEEE/ACM International Symposium on Microarchitec-
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, ture, 2016, p. 33.

M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,” [32] G. Saileshwar and M. K. Qureshi, “Cleanupspec: An undo approach

[8

=

[t

ACM SIGARCH Computer Architecture News, vol. 39, no. 2, pp. 1-7,
Aug. 2011.

T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras, and L. Eeckhout, “The
load slice core microarchitecture,” in ACM/IEEE Annual International
Symposium on Computer Architecture (ISCA), 2015.

N. V. Database, “CVE-2018-3693.” Available from MITRE, CVE-
ID CVE-2018-3693., Dec. 28 2017. [Online]. Available: http:
/lcve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3693

M. de Kruijf and K. Sankaralingam, “Idempotent Processor Architecture,”
in International Symposium on Microarchitecture (MICRO), December
2011.

H. Elnawawy, M. Alshboul, J. Tuck, and Y. Solihin, “Efficient checkpoint-
ing of loop-based codes for non-volatile main memory,” in Conference on
Parallel Architectures and Compilation Techniques (PACT), Sept 2017.
J. Fustos, F. Farshchi, and H. Yun, “SpectreGuard: An Efficient Data-
centric Defense Mechanism against Spectre Attacks,” in The Design
Automation Conference (DAC), 2019, pp. 1-6.

X. Guo, E. Ipek, and T. Soyata, “Resistive Computation: Avoiding
the Power Wall with Low-leakage, STT-MRAM Based Computing,” in
International Symposium on Computer Architecture (ISCA), 2010.

M. Horowitz, “Computing’s Energy Problem (and what we can do about
it),” Keynote at International Conference on Solid State Circuits (ISSCC),
April 2014.

G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross processor cache
attacks,” in ASIA Conference on Computer and Communications Security
(ASIACCS), 2016, pp. 353-364.

M. Kandemir, F. Li, G. Chen, G. Chen, and O. Ozturk, “Studying Storage-
Recomputation Tradeoffs in Memory-Constrained Embedded Processing,”
in Design, Automation and Test in Europe (DATE), 2005.

K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Ponomarev,
and N. Abu-Ghazaleh, “SafeSpec: Banishing the Spectre of a Meltdown
with Leakage-Free Speculation,” in ACM/IEEE Design Automation
Conference (DAC), Jun. 2019, pp. 1-6.

H. Koc, M. Kandemir, E. Ercanli, and O. Ozturk, “Reducing Off-Chip
Memory Access Costs Using Data Recomputation in Embedded Chip
Multi-processors,” in The Design Automation Conference (DAC), 2007.
H. Koc, O. Ozturk, M. Kandemir, and E. Ercanli, “Minimizing Energy
Consumption of Banked Memories Using Data Recomputation,” in Inter-
national Symposium on Low Power Electronics and Design (ISLPED),
2006.

P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” in /IEEE Symposium on Security and
Privacy (SP), May 2019.

E. M. Koruyeh, S. Haji Amin Shirazi, K. N. Khasawneh, C. Song,
and N. Abu-Ghazaleh, “SpecCFI: Mitigating spectre attacks using CFI
informed speculation,” in IEEE Symposium on Security and Privacy
(SSP), 2020, pp. 39-53.

P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional Spec-
ulation: An Effective Approach to Safeguard Out-of-Order Execution
Against Spectre Attacks,” in International Symposium High-Performance
Computer Architecture (HPCA), Feb. 2019, pp. 264-276.

—_

N

to safe speculation,” in International Symposium on Microarchitecture
(MICRO), 2019, pp. 73-86.

C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Sjilander,
“Understanding selective delay as a method for efficient secure speculative
execution,” IEEE Trans. Comput., vol. 69, no. 11, pp. 1584-1595, 2020.
C. Sakalis, M. Alipour, A. Ros, A. Jimborean, S. Kaxiras, and
M. Sjilander, “Ghost loads: what is the cost of invisible speculation?”
in ACM International Conference on Computing Frontiers, 2019, pp.
153-163.

C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Sjilander,
“Efficient invisible speculative execution through selective delay and
value prediction,” in International Symposium on Computer Architecture
(ISCA), 2019, pp. 723-735.

C. Sakalis, M. Sjélander, and S. Kaxiras, “Preventing priority inversion
in instruction scheduling to disrupt speculative interference,” in /EEE
International Symposium on Secure and Private Execution Environment
Design (SEED), 2021.

M. Schwarz, R. Schilling, F. Kargl, M. Lipp, C. Canella, and D. Gruss,
“ConTEXT: Leakage-Free Transient Execution,” arXiv:1905.09100
[cs], May 2019, arXiv: 1905.09100. [Online]. Available: http:
/farxiv.org/abs/1905.09100

M. Sjilander, M. Jahre, G. Tufte, and N. Reissmann, “EPIC:
An energy-efficient, high-performance GPGPU computing research
infrastructure,” arXiv:1912.05848 [cs.DC], 2020. [Online]. Available:
https://arxiv.org/abs/1912.05848

A. Sodani and G. S. Sohi, “Dynamic Instruction Reuse,” in International
Symposium on Computer Architecture (ISCA), 1997.

S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton,
“Continual flow pipelines: achieving resource-efficient latency tolerance,”
IEEE Micro, vol. 24, no. 6, 2004.

Standard Performance Evaluation Corporation, “SPEC CPU benchmark
suite,” http://www.specbench.org/osg/cpu2006/, 2006.

M. Support, “Windows guidance to protect against speculative
execution side-channel vulnerabilities,” Nov.12 2019. [Online].
Available: https://support.microsoft.com/en-us/help/4457951/
windows- guidance-to-protect-against-speculative-execution-side-channel
M. Taram, A. Venkat, and D. Tullsen, “Context-Sensitive Fencing:
Securing Speculative Execution via Microcode Customization,” in
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019, pp. 395-410.
K.-A. Tran, C. Sakalis, M. Sjdlander, A. Ros, S. Kaxiras, and A. Jim-
borean, “Clearing the shadows: Recovering lost performance for invisible
speculative execution through hw/sw co-design,” in Conference on
Farallel Architectures and Compilation Techniques (PACT), 2020, p.
241-254.

O. Weisse, 1. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci, “NDA:
Preventing speculative execution attacks at their source,” in International
Symposium on Microarchitecture (MICRO), 2019, pp. 572-586.

M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “InvisiSpec: Making speculative execution invisible in
the cache hierarchy,” in International Symposium on Microarchitecture
(MICRO), Oct. 2018, pp. 428-441.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3693
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3693
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1905.09100
http://arxiv.org/abs/1905.09100
https://arxiv.org/abs/1912.05848
http://www.specbench.org/osg/cpu2006/
https://support.microsoft.com/en-us/help/4457951/windows-guidance-to-protect-against-speculative-execution-side-channel
https://support.microsoft.com/en-us/help/4457951/windows-guidance-to-protect-against-speculative-execution-side-channel

[47] M. Yan, J.-Y. Wen, C. W. Fletcher, and J. Torrellas, “Secdir: a secure
directory to defeat directory side-channel attacks,” in International
Symposium on Computer Architecture (ISCA), 2019, pp. 332-345.

[48] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A high resolution, low
noise, 13 cache side-channel attack,” in USENIX Security Symposium.
USENIX Association, 2014, pp. 719-732.

[49] J. Yu, N. Mantri, J. Torrellas, A. Morrison, and C. W. Fletcher,
“Speculative data-oblivious execution: Mobilizing safe prediction for
safe and efficient speculative execution,” in International Symposium on

[50]

[51]

12

Computer Architecture (ISCA), 2020.

J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative Taint Tracking (STT): A Comprehensive Protection
for Speculatively Accessed Data,” in International Symposium on
Microarchitecture (MICRO), 2019, pp. 954-968.

Z. N. Zhao, H. Ji, M. Yan, J. Yu, C. W. Fletcher, A. Morrison,
D. Marinov, and J. Torrellas, “Speculation invariance (invarspec): Faster
safe execution through program analysis,” in International Symposium
on Microarchitecture (MICRO), 2020, pp. 1138-1152.

	Introduction
	Background
	Speculative Shadows
	Delay-on-Miss
	Delay-on-Miss and Value Prediction
	Value Recomputation
	Threat Model

	Invisible Speculative Execution through Recomputation (ISER)
	Execution Semantics
	Slice Formation & Annotation
	ISER Architecture
	Limitations & Side Effects
	Architectural Support for Slice Coherence
	Impact on Consistency
	Recomputation Security

	Evaluation Setup
	Evaluation
	Recomputation Coverage
	Performance
	Energy
	 Hardware/Software Overhead

	Related Work
	Conclusion
	References

