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Abstract—We develop a new algorithm for distributed learning
with non-smooth regularizers and feature partitioning. To this
end, we transform the underlying optimization problem into
a suitable dual form and solve it using the alternating direc-
tion method of multipliers. The proposed algorithm is fully-
distributed and does not require the conjugate function of any
non-smooth regularizer function, which may be unfeasible or
computationally inefficient to acquire. Numerical experiments
demonstrate the effectiveness of the proposed algorithm.

I. INTRODUCTION

An important issue associated with distributed learning is
how the data is distributed among the agents. Horizontal
partitioning of data refers to when subsets of data samples
with a common set of features are distributed over the
network. Examples of learning with horizontal partitioning
of data can be found in [1]–[4]. However, many regression
or classification problems encountered in machine learning
deal with heterogeneous data that do not contain common
features. These problems lead to the so-called feature (column)
partitioning of the data where subsets of features of all data
samples are distributed over the network agents. Distributed
learning problems with feature partitioning also arise in several
signal processing applications, e.g., bioinformatics, multi-view
learning, and dictionary learning, as mentioned in [5], [6].

There have been several attempts to solve learning problems
with feature partitioning of data, e.g., in [5]–[19]. However,
the algorithms in [8], [9] can only be used to solve the basis
pursuit and lasso problems, respectively, while the work in [10]
is based on assuming an appropriate coloring scheme of the
network and cannot be extended to a general graph labeling.
The algorithms developed in [6], [11], [12] are based on the
diffusion strategy. In contrast, the approaches in [5], [13] are
based on the consensus strategy. However, [5] is not fully dis-
tributed since the consensus constraints are imposed globally
across the entire network rather than being applied locally
within each agent’s neighborhood. Although the algorithm in
[13] is fully distributed, it assumes a specific structure for the
objective function and is only suitable for ridge regression.
The works of [14]–[17] consider distributed agent-specific
estimation. However, the objective functions considered in
these works are smooth. The authors of [18] propose a
coordinate-descent-based algorithm with an inexact update to
reduce communication costs for feature-partitioned distributed
learning. In [19], an asynchronous stochastic gradient-descent

algorithm was developed for distributed learning with feature
partitioning of data. However, none of the above-mentioned
algorithms consider distributed problems with general non-
smooth regularization and arbitrary graphs.

In this paper, we develop a new fully-distributed algorithm
for distributed learning with non-smooth regularizers and
feature partitioning of data. We consider a general regularized
learning problem whose cost function cannot be written as
the sum of the local agent-specific cost functions, i.e., it is
not separable. To achieve separability, we formulate the dual
problem associated with the underlying convex optimization
problem and exploit its favorable structure that, unlike the
original problem, allows us to solve it by utilizing the alternat-
ing direction method of multipliers (ADMM). By utilizing the
dual of the optimization problem associated with the ADMM
primal variable update step, we devise a new strategy that
does not require any conjugate function of the non-smooth
regularizers, which may be infeasible or hard to obtain in some
scenarios. The proposed algorithm is fully-distributed as every
agent communicates only with its neighboring agents and no
central coordinator is needed. Our simulation results show that
the proposed algorithm converges in various scenarios.

Notations: The operators (·)T and tr(·) denote transpose and
trace of a matrix, respectively. ‖·‖ represents the Euclidean
norm of its vector argument. In is an identity matrix of size
n, 0n is an n×1 vector with all zeros, 0n×p = 0n0

T
p , and | · |

denotes the cardinality if its argument is a set. For a function
f , f∗ denotes the conjugate function of f .

II. SYSTEM MODEL

We consider a network with N ∈ N agents and E ∈ N edges
that is modeled as an undirected graph G(V, E) with the set of
vertices V = {1, . . . , N} corresponding to the agents and the
set of edges E representing the bidirectional communication
links between the pairs of agents. Agent i ∈ V communicates
only with its neighbors specified by the set Vi.

Due to feature partitioning, the data of each agent i resides
in the matrix Ai ∈ RM×Pi and the response vector b ∈ RM×1

where M is the number of data samples and Pi the number of
features in each sample at agent i. The feature vector at agent
i that relates Ai and b is denoted by xi ∈ RPi×1.



We consider a regularized learning problem of form

min
{xi}

f
(∑N

i=1Aixi − b
)

+

N∑
i=1

ri(xi) (1)

where f(·) is the global cost function and ri(·), i = 1, . . . , N ,
are the agent-specific regularizer functions. The learning prob-
lem (1) pertains to several applications in machine learning,
e.g., regression over distributed features [5], clustering in
graphs [20], smart grid control [21], dictionary learning [22],
and network utility maximization [23]. In this work, we con-
sider learning problems where functions ri(·), i = 1, . . . , N ,
are convex, proper, and lower semi-continuous but not neces-
sarily smooth and f(·) = ‖·‖2. In the next section, we solve
(1) in a distributed manner, where each agent communicates
only with its neighbors.

III. DISTRIBUTED ALGORITHM FOR LEARNING WITH
FEATURE PARTITIONING

First, we present the reformulation of the considered non-
separable problem into a dual form that is separable and can be
solved in a fully-distributed fashion via the ADMM. Then, we
describe the new strategy that allows us to employ the ADMM
without computing any conjugate function of the non-smooth
regularizers explicitly.

A. Distributed ADMM for the Dual Problem

To develop a distributed solution, we introduce the auxiliary
variables {zi}Ni=1 and recast (1) as

min
{xi,zi}

f
(∑N

i=1zi − b
)

+

N∑
i=1

ri(xi)

s. t. Aixi = zi, i = 1, . . . , N.

(2)

The objective function in (2) is not separable among the
agents. Therefore, we consider the dual problem of (2). For
this purpose, we associate the Lagrange multipliers {µi}Ni=1

with the equality constraints in (2) and form the Lagrangian
function L({xi}, {zi}, {µi}). The dual function for problem
(2) is given by

d({µi}) = inf
{xi,zi}

L({xi}, {zi}, {µi})

=−
N∑
i=1

r∗i (−AT
i µi) + inf

zi

{
f(

N∑
i=1

zi − b)−
N∑
i=1

µT
i zi

} (3)

where r∗i is the conjugate function of r defined as

r∗i (y) = sup
x

yTx− ri(x).

Next, for the second infimum in (3), introducing

z =

N∑
i=1

zi

and its corresponding dual variable λ, and using the duality
theory, an alternate form of the dual function (3) is obtained
as

d̃({µi},λ) =

−f̃
∗(λ)−

N∑
i=1

r∗i (−AT
i µi), λ = µi,∀i ∈ V

−∞, otherwise
(4)

where
f̃∗(λ) = f∗(λ) + λTb.

Eliminating the redundant variable λ, the dual problem for
(2) can be expressed as

max
{µi}

− 1

N

N∑
i=1

f̃∗(µi)−
N∑
i=1

r∗i (−AT
i µi)

s. t. µ1 = µ2 = · · · = µN .

(5)

To solve (5) in a distributed fashion, we employ the ADMM
[24]. First, we recast (5) as a constrained minimization prob-
lem by imposing consensus constraints across each agent’s
neighborhood Vi as follows

min
{µi},{uj

i}

1

N

N∑
i=1

f̃∗(µi) +

N∑
i=1

r∗i (−AT
i µi)

s. t. µi = uj
i , µj = uj

i , j ∈ Vi, i = 1, . . . , N.

(6)

To facilitate a fully-distributed solution, we decouple the
constraints in (5) by introducing the auxiliary variables
{uj

i}j∈Vi . Then, we generate the relevant augmented La-
grangian function by associating the Lagrange multipliers
{v̄j

i }j∈Vi , {ṽ
j
i }j∈Vi with the consensus constraints. In [24],

it is shown that, by setting

v
(k)
i = 2

∑
j∈Vi

(v̄j
i )(k),

the Lagrange multipliers {ṽj
i }j∈Vi and the auxiliary variables

{uj
i}j∈Vi are eliminated and the ADMM reduces to an itera-

tive procedure with two steps at each iteration as

µ
(k)
i = arg min

µi

{ 1

N
f∗(µi) +

1

N
µT

i b + r∗i (−AT
i µi)

+ µT
i v

(k−1)
i + ρ

∑
j∈Vi

∥∥∥µi −
µ

(k−1)
i + µ

(k−1)
j

2

∥∥∥2},
(7)

v
(k)
i =v

(k−1)
i + ρ

∑
j∈Vi

(µ
(k)
i − µ(k)

j ). (8)

where ρ > 0 is the penalty parameter.
Since ri(·), i = 1, . . . , N , are non-smooth, the minimization

problem in (7) can be solved by employing appropriate subgra-
dients or proximal operators [25], [26]. However, computing
the conjugate function of the regularizers in (7) may be
hard. To overcome this challenge, in the next subsection, we
describe a new procedure that does not require the explicit
calculation of any conjugate function.



B. ADMM with no Conjugate Function

In order to solve the problem in (7), we need to calculate
the conjugate function of r∗i . This can be difficult, especially
for non-smooth functions. We exploit the Fenchel-Moreau
theorem to eliminate the computation of conjugate function.

To that end, the problem in (7) can be restated as

min
{µi,νi}

f∗(µi) + µT
i b

N
+ r∗i (νi) + µT

i c
(k−1)
i + ρ̄i ‖µi‖22

s. t. AT
i µi + νi = 0

(9)
where

c
(k−1)
i = v

(k−1)
i − ρ|Vi|µ(k−1)

i − ρ
∑
j∈Vi

µ
(k−1)
j

and ρ̄i = ρ|Vi|. The Lagrangian function for (9) is

L(µi,νi,θi) =
f∗(µi) + µT

i b

N
+ r∗i (νi) + µT

i c
(k−1)
i

+ ρ̄i ‖µi‖22 + θTi (AT
i µi + νi)

(10)

where θi is the Lagrange multiplier vector associated with the
constraint in (9). Hence, the dual function for the objective in
(9) can be expressed as

δ(θi) = inf
{µi,νi}

L(µi,νi,θi)

= inf
νi

{r∗i (νi) + θTi νi}

+ inf
µi

{f∗(µi) + µT
i b

N
+ (c

(k−1)
i + Aiθi)

Tµi + ρ̄i ‖µi‖2
}

=− r∗∗i (−θi)

+ inf
µi

{f∗(µi)

N
+

(
c
(k−1)
i + Aiθi +

b

N

)T

µi + ρ̄i ‖µi‖2
}

(11)
where the last equality follows from the definition of conjugate
function.

For f(·) = ‖·‖2, the conjugate function is given by
f∗(µi) = ‖µi‖2 /4. Thus, the optimal value of second
infimum of the dual function in (11) is

−1

4ρ|Vi|+ 1
N

∥∥∥∥Aiθi + c
(k−1)
i +

b

N

∥∥∥∥2
and the infimum is attained at the optimal point

µo
i =

−2

4ρ|Vi|+ 1
N

(
Aiθ

o
i + c

(k−1)
i +

b

N

)
(12)

where θoi = arg maxθi
δ(θi). Since ri(·) is convex, proper,

and lower semi-continuous, we have r∗∗i = ri due to the
Fenchel-Moreau theorem [27]. Therefore, the dual function
is given by

δ(θi) = −ri(−θi)−
1

4ρ|Vi|+ 1
N

∥∥∥∥Aiθi + c
(k−1)
i +

b

N

∥∥∥∥2 .
(13)

Algorithm 1 Proposed algorithm for feature-partitioned dis-
tributed learning

At all agents i ∈ V , initialize µ(0)
i = 0, v

(0)
i = 0, and

locally run:
for k = 1, 2, . . . ,K do

Update θ(k)i via (14).
Update the dual variables µ(k)

i via (15).
Share µ(k)

i with the neighbors in Vi.
Update the Lagrange multipliers v

(k)
i via (16).

Update the auxiliary variables c
(k)
i via (17).

end for

Using (12) and (13), the ADMM steps in (7) and (8) can
be equivalently expressed as

θ
(k)
i = arg min

θi

{
ri(−θi)

+
1

4ρ|Vi|+ 1
N

∥∥∥∥Aiθi + c
(k−1)
i +

b

N

∥∥∥∥2} (14)

µ
(k)
i =

−2

4ρ|Vi|+ 1
N

(
Aiθ

(k)
i + c

(k−1)
i +

b

N

)
(15)

v
(k)
i = v

(k−1)
i + ρ

∑
j∈Vi

(µ
(k)
i − µ(k)

j ) (16)

c
(k)
i = v

(k)
i − ρ|Vi|µ(k)

i − ρ
∑
j∈Vi

µ
(k)
j . (17)

The proposed algorithm is summarized in Algorithm 1. Note
that the minimization problem in (14) can be solved using
standard optimization techniques, or alternatively, subgradient-
based algorithms [28]. Regardless of the technique used to
solve (14), the proposed algorithm converges according to [28,
Section 3.6.2]. Convergence of Algorithm 1 follows from [1,
Proposition 2] and [29]. Moreover, due to the strong duality
theorem, we have θoi = xo

i , i.e., the optimal dual variable θoi
at agent i is the optimal estimate xo

i [30].

IV. SIMULATIONS

To illustrate the performance of the proposed algorithm, we
consider the elastic-net regression problem [31] and bench-
mark the proposed algorithm against a broadcast-based al-
gorithm for learning with distributed features [5]. The only
existing work considering non-smooth distributed learning
with feature partitioning over general graphs is [5]. Therefore,
we compared our algorithm only with this algorithm to provide
a comparison that is as fair as possible. In a centralized setting,
the optimal solution xc is obtained as

xc = arg min
x
‖Ax− b‖22 + η1 ‖x‖1 + η2 ‖x‖22 (18)

where
A = [A1,A2, . . . ,AN ]

x =
[
xT
1 , x

T
2 , . . . ,x

T
N

]T
,
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Fig. 1. Normalized error of the proposed algorithm and the broadcast-based
algorithm of [5] with N = 20 agents and different values of Pi.
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Fig. 2. Normalized error of the proposed algorithm and the broadcast-based
algorithm of [5] with Pi = 10 and different values of N .

and η1 ∈ R+ and η2 ∈ R+ are the regularization parameters.
In the distributed setting, we solve the problem (1) with

f(xi) =

∥∥∥∥∥
N∑
i=1

Aixi − b

∥∥∥∥∥
2

,

ri(xi) = η1 ‖xi‖1 + η2 ‖xi‖2 .

We test the proposed algorithm on a multi-agent network
with a random topology, where each agent links to three other
agents on average. For each agent i ∈ V , we create a 2Pi×Pi

local observation matrix Ai whose entries are independent
identically distributed Gaussian random variables with zero

mean and unit variance. The response vector b is obtained as

b = Aω +ψ

where ω ∈ RP , P =
∑N

i=1 Pi, and ψ ∈ RM are drawn from
the distributions N (0, IP ) and N (0, 0.1IM ), respectively. The
regularization parameters are set to η1 = η2 = 1 and
penalty parameter to ρ = 1. The performance of the proposed
algorithm is evaluated using the normalized error ε(k) between
the centralized solution xc as per (18) and the solution from
Algorithm 1 at iteration k denoted by

xd(k)=
[
(x

(k)
1 )T, . . . , (x

(k)
N )T

]T
.

The normalized error is defined as

ε(k) =

∥∥xd(k)− xc
∥∥2

‖xc‖2
.

The centralized solution xc is computed using the optimization
toolbox CVX [32]. Results are obtained by averaging over 100
independent trials.

Fig. 1 shows that, for N = 20 agents, the proposed
algorithm converges when the number of parameters at the
ith agent is Pi = 10 and Pi = 40, ∀i ∈ V . Fig. 2 shows
that the proposed algorithm converges when Pi = 10 and the
network consists of 20 or 50 agents. The faster convergence of
the broadcast-based algorithm of [5] is due to its centralized
processing.

V. CONCLUSION

We developed a fully-distributed algorithm for learning with
non-smooth regularization functions under distributed features.
We reformulated the underlying problem into an equivalent
dual form and used the ADMM to solve it in a distributed
fashion without using any conjugate function. To the best of
our knowledge, the proposed algorithm is the first of its kind
that solves the feature-distributed learning problems with non-
smooth regularizer functions over arbitrary graphs while not
relying on any conjugate function. We verified the convergence
of the proposed algorithm at all agents via simulation results.
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