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Abstract: The Daily Production Optimization (DPO) problem is the task of maximizing
production of hydrocarbons subject to operational constraints. Handling of uncertainty in model
structure and parameters is of high importance to the usefulness of the solution. Ignoring these
challenges will, most likely, render the solution either infeasible or the solution will not be an
optimum of the plant. We suggest to apply a data-driven methodology to use state- and output-
measurements from the plant to iteratively update the Optimal Control Problem (OCP) which
are used to control the plant. The goal of the method is to tune the OCP such that the solution
will go towards an optimum of the plant as the parameters are being updated. A Reinforcement
Learning updating technique is used to update the optimization formulation.

Keywords: nonlinear process control, reinforcement learning control, model predictive and
optimization-based control

1. INTRODUCTION

The oil and gas industry produce value by drilling wells
to extract hydrocarbons which are trapped in subsurface
reservoirs. The Daily Production Optimization (DPO)
activity within this industry aims at optimizing production
from these wells to maximize revenue, while obeying a
set of production constraints. There are many different
sources giving rise to constraints, the most typical being
limitations in how much gas and water, typically extracted
along with oil, that can be processed. If the downhole
pressure in the wells are not high enough to lift the fluids
to the topside at an acceptable flowrate, then artificial lift
can be used. One commonly used artificial lift method is
the injection of gas into the wellbore to lower the density
of the fluid mixture. Since a production facility typically
may have many wells, and a limited amount of available
gas, this also gives rise to a constrained optimization
problem, namely the allocation of available lifting gas.
The controllable elements in production optimization are
typically chokes (valves) to control flows, and the settings
of compressors and pumps.

Mathematical programming is well suited to tackle the
DPO problem (Foss et al., 2018). Kosmidis et al. (2004)
formulated the DPO problem as a mixed integer nonlinear
programming problem, where the integers were used to
piece wise linearize nonlinear functions. Kosmidis et al.
(2005) used integers to also decide the routing of the
streams. Other works looking at the DPO as a mixed
integer (non)linear programming problem are Misener
et al. (2009); Codas and Camponogara (2012); Silva and
Camponogara (2014); Grimstad et al. (2016).
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Modelling of the multiphase reservoir inflow, wells, risers
and topside facilities are a complex task, with limited
information available of subsurface conditions. Thus, the
models used in DPO are typically uncertain, which may
lead to poor prediction capabilities. This uncertainty is
a serious challenge for the DPO problem (Foss et al.,
2018). Nonetheless, most works in production optimiza-
tion simply ignores this issue altogether (Krishnamoorthy
et al., 2016). The quality and usefulness of the solution are
heavily affected by such negligence. The solution could be
infeasible for the real system, or it could be suboptimal.

Uncertainty in the DPO problem was first explicitly han-
dled by Bieker et al. (2007) according to Foss et al. (2018).

Dynamic scenario-based optimization was used to deal
with parametric uncertainty by Krishnamoorthy et al.
(2016) for production optimization of gas lifted wells. They
reduced the conservativeness of the solution compared
to the classical worst-case optimization, while still being
robustly feasible.

To avoid the need of steady-state measurements, Krish-
namoorthy et al. (2018) suggested to use transient mea-
surements to perform model updating, whilst only using
a steady-state model in the optimization. They demon-
strated the hybrid method on a gas lifted well network
simulation case study.

The modifier adaptation optimization method was applied
to a similar setup by Matias et al. (2018), also considering
parametric uncertainty. At convergence, the plant and
model optimum coincided. Modifier adaptation has the
advantage that both model structure and model parameter
mismatch can be handled. However, the applied method
needs a steady-state detection phase.



The contribution of this paper is the introduction of a
methodology into the field of DPO. The method is able
to compensate for both error in the model structure and
uncertainty in parameters. Steady-state detection is not
applicable as dynamic models are used. Similar to the
modifier adaptation method, the goal is to use the data
to optimally control the plant, and not necessarily to
correctly model the system dynamics. The data-driven
methodology was proposed by Gros and Zanon (2020). The
method combines Economic Nonlinear Model Predictive
Control (ENMPC) with Reinforcement Learning (RL).
The ENMPC is used to control the system, whereas the RL
is used to tune the ENMPC such that it more optimally
controls the system.

2. THEORY

In this Section, the relevant background theory will be
provided. It gives an introduction to the relevant parts
of Reinforcement Learning (RL). The newly suggested
function approximator(Gros and Zanon, 2020) is put into
perspective of the other parts, and an updating scheme
for the function is provided. For a deeper understanding
of RL, we refer to Sutton and Barto (2018).

2.1 Reinforcement Learning

Reinforcement Learning is a kind of machine learning,
where an agent is supposed to learn how to operate a
system to maximize a numerical reward signal. The agent
is not explicitly told what the reward will be for taking
an action, but it must instead try the action and learn
from it. In Reinforcement Learning, there are three main
components. The first component is the reward which is
used as a metric to evaluate the goodness of the immediate
return of the applied action in the current state. The
second component is the value function, which gives the
value of being in a state. It is the discounted sum of all
future rewards given that we follow the policy. Finally,
we have the policy which provides the next action to
apply given a state. There is also a component known as
the action-value function, which is the same as the value
function except that it provides the value of a state given
that we apply a specified action at the first step.

Given a state s, and an action a, we have the policy πθ(s),
value function Vθ(s) and action-value function Qθ(s, a),
parameterized by the parameter vector θ. The relationship
between them is given as follows:

Vθ(s) = min
a
Qθ(s, a), (1a)

πθ(s) = arg min
a
Qθ(s, a). (1b)

Let s′ denote the next state, and r(s, a) denote the reward,
then (1a) can be rewritten as the Bellman Equation:

Vθ(s) = min
a
r(s, a) + γVθ(s

′), (2)

where γ is a discount factor.

Finding the optimal action-value function for all possible
combinations of states and actions is in general not pos-
sible. However, a process is typically working in only a
small subset of such combinations. The aim is to create
an approximation of the (action-) value function in the
operating region.

2.2 Action-value approximation

In this paper, we will use a parametric Economic Nonlinear
Model Predictive Control (ENMPC) as the function ap-
proximator for the action-value function. This approxima-
tor was proposed by Gros and Zanon (2020), and extended
with system identification capabilities by Martinsen et al.
(2020). A parametric ENMPC is presented below.

Qθ(s, a) = min
x,u,σ

N−1∑
k=0

[
γk(Lθ(xk, uk) + ωᵀσk)

]
+ γNLfθ (xN ) + λ0(x0) (3a)

s.t. xk+1 = fθ(xk, uk) for k ∈ [0, . . . , N − 1] (3b)

hθ(xk, uk) ≤ σk for k ∈ [0, . . . , N − 1] (3c)

x0 = s (3d)

where Lθ(·) is an estimated reward function, ω is used to
penalize constraint violation given by the slack variable
σ, fθ(·) is the dynamic model, N is the control horizon,

and x0 is the initial state. Finally, Lfθ (·) is the terminal
cost that should capture all future rewards, and λ0(x0)
is an initial cost which does not impact the solution of
the optimization problem, but may help the RL. For the
rest of the article, we will use s, a to denote real states
and actions, whereas x, u will denote predicted states and
inputs.

This choice of function approximator is actually rather
intuitive. An MPC gives you the next action to apply
given current state, just like the policy. It also provides
the objective function value given current state, just like
the value-function. If we impose an additional constraint:
u0 = a, then we get the same behaviour as an action-value
function.

2.3 Goal of Reinforcement Learning

The overall goal in Reinforcement Learning (RL) is to find
a policy πθ(·) that minimizes the following expected value:

E
∞∑
i=0

γiL̄(si, πθ(si)), (4)

where L̄ is given as:

L̄(si, ai) = L(si, ai) + ω̂ᵀ max(0, h(si, ai)), (5)

where the first term is the experienced reward, and the
latter is the penalization of any unwanted behaviour
due to that experience. For example, in our case study
L(si, ai) is the negative value of the produced fluids,
whereas the latter term represents any gas that must
be flared due to excessive gas production. The weight ω̂
is used to tell the RL how critical it is to not violate
the constraints h(·). It should be noted that this does
not allow for hard constraints to be included since this
would indicate a value of +∞ in L̄(·), which most RL
methods cannot handle (Martinsen et al., 2020). Moreover,
having hard constraints in any MPC scheme may lead
to an infeasible optimization problem. One could also
argue that if one has state/output constraints that never
can be violated, then either one must control the system
extremely conservatively, or one would need a perfect
model of the system and its constraints. And if one has
the perfect model, then RL is superfluous either way.



2.4 Q-learning

To minimize (4) we will apply the concept of Q-learning
(Watkins, 1989). The tuning of the action-value function,
Qθ(s, a), is driven by the minimization of what is known
as the temporal-difference error δt:

δt = yt −Qθ(st, at), (6)

where yt is the fixed target value given by yt = L̄(st, at) +
γVθ(st+1). In the parameter updating step, it is assumed
that yt is independent of θ. This assumption makes the
updating a bootstrapping strategy which means caution
should be used when selecting the step size.

A batch of samples will be used each time the parameters
are updated to help avoid overfitting. A Gauss-Newton
method will be used to minimize the sum of squares:

min
θ

nb∑
t=1

δ2t , (7)

where nb is the number of elements in the batch. The
update law with learning rate, or step size, α, is given
by:

θ ← θ + α(Jᵀ
QJQ)−1JTQδ, (8)

where

JQ =


∇θQθ(st,1, at,1)
∇θQθ(st,2, at,2)

...
∇θQθ(st,nb

, at,nb
)

 , δ =


δ1
δ2
...
δnb

 . (9)

Inverting the approximate Hessian H = Jᵀ
QJQ will lead to

problems if the matrix is singular, or badly conditioned. To
circumvent this issue, let H̃† denote the “pseudo-inverse”
of the symmetric H:

H̃† = F(FᵀHF)−1Fᵀ, (10)

where F is chosen as the “near” fullspace of H, with the
modification that the singular value of a direction has to be
strictly greater than σmin to be included in the fullspace.
The new update-law then becomes:

θ ← θ + αH̃†JTQδ. (11)

This updating law does not guarantee that a global opti-
mum of the parameters for the nonlinear Qθ function is
found. However, most applications of nonlinear function
approximators in RL will suffer from this limitation (Mar-
tinsen et al., 2020). Nonetheless, as long as the Qθ function
is fitted to the operating range of interest, a local optimum
is sufficient. If the operating area changes, then we could
apply online updating to try to fit the Qθ function to the
current operating range.

3. SIMULATION STUDY

In this study, we will apply the above theory on a hy-
drocarbon production system consisting of two gas lifted
wells, see Fig. 1, which produce to a common manifold
with a fixed pressure of 50 bar. The goal is to distribute
the available lift gas between the two wells such that the
oil production is maximized. The processing facility also
has a limitation on how much gas it can handle.

3.1 The model of a gas lifted well

The utilized gas lifted well model is explained in great
details in Binder (2012). All constants may be found in
that reference, we used well 2 and 4.

This model is based on mass balance of the different phases
in the annulus and the tubing. This kind of model has
been developed and studied in several papers, e.g., see
Jahanshahi (2013), and Imsland (2002). The version used
in this paper takes into account oil, water and gas phases,
but flow friction is neglected.

The states of the model are the mass of gas in the annulus
mga, mass of gas in the tubing mgt, and mass of liquid in
the tubing mlt. The ordinary differential equations, which
are based upon mass balance, for well j is given below:

ṁga,j = wgl,j(ugl,j)− wgi,j(·), (12a)

ṁgt,j = wgr,j(·) + wgi,j(·)− wgp,j(upc,j), (12b)

ṁlt,j = wlr,j(·)− wlp,j(upc,j), (12c)

where wgl,j is the injected gas into the annulus, wgi,j is
the gas going from the annulus into the tubing, wgr,j and
wlr,j are the gas and liquid coming from the reservoir
into the tubing, finally, wgp,j and wlp,j is the gas and
liquid produced by the well. For each well, there are
two manipulated variables: ugl,j and upc,j . The first is
ugl,j = wgl,j which is the amount of gas in kg/s injected
into the annulus, and the second is upc,j ∈ [0, 1] which
is the production choke opening (cf. Fig. 1). In (12)
we have indicated which flows directly depend upon the
manipulated variables.

The model contains two one-way chokes to make sure that
fluids from the tubing may not enter the annulus and to
make sure that the well does not drain fluids from the
manifold. E.g., the flow through the gas injection valve is
modelled as:

wgi,j = Civ,j

√
ρgi,j max(0, pai,j − pti,j), (13)

where Civ,j is the valve specific constant for the injection
valve, ρgi,j is the density of the gas in the annulus at the
injection valve, and pai,j and pti,j are the pressures at each
side of the valve. The Optimal Control Problem (OCP) is
implemented using CasAdi (Andersson et al., 2019), which
allows to use max-functions in the formulation. To avoid
the issue with an unbounded gradient of the square root
in (13) when the argument is close to zero, we used a
smooth approximation when pai,j − pti,j becomes small.

If one would like to apply a constraint on, or penalize,
how fast the control inputs may change, then one could
augment the state space with two more states for each
well:

u̇gl,j = vgl,j , (14a)

u̇pc,j = vpc,j , (14b)

where the v’s represent the rate of change of the controls
and will be the new manipulated variables in the Model
Predictive Control (MPC). The state vector x contains five
elements:

[mga,j ,mgt,j ,mlt,j , ugl,j , upc,j ],

and the control vector has two elements, [vgl,j , vpc,j ], for
each well at each time step.
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Fig. 1. Schematic of the gas lifted well model.

3.2 The RL function approximator

Based on the theory outlined in the previous section, we
use the function approximator Qθ(a, s) implicitly defined
by the solution of:

min
x,v,σ

λ0 +

N−1∑
k=0

[
γk(wθ,op(xk, vk) + ωσk+1)

]
+ γN

γ

1− γ
wθ,op(xN−1, vN−1) (15a)

s.t. xk+1 = fθ(xk, vk), for k ∈ [0, . . . , N − 1] (15b)

wθ,gp(xk) + λ1 ≤ Γ + σk, for k ∈ [1, . . . , N ] (15c)

x ≤ xk ≤ x̄, for k ∈ [1, . . . , N ] (15d)

v ≤ vk ≤ v̄, for k ∈ [1, . . . , N ] (15e)

xN is a steady-state (15f)

x0 = s (15g)

where wθ,op(xk, vk) is the integrated oil production from
both wells from step k to k + 1, wθ,gp(xk) is the instanta-
neous gas production at step k, and fθ(xk, vk) is defined
by (12). The gas handling constraint is enforced by (15c),
where Γ = 3.8kg/s is the maximum gas that should be
produced at a time instant, and λ0 and λ1 are two tunable
bias parameters. The control horizon was set to N = 100
steps, over a simulation time T = 3600s (1 hour), giving
a time step of 36s. The penalty factor was set ω = 1000,
and the discount factor was set to γ = 0.98.

We impose (15f) to make sure the system reaches a steady-
state. We do this in the example by requiring xN =
xN−j , for j ∈ [1, . . . , 5]. The steady-state allows us to use
the property of a geometric series to efficiently express the
discounted terminal cost:

∞∑
k=N

γk = γN
γ

1− γ
, for |γ| < 1, (16)

multiplied by the oil produced at the last interval. Note
that constraint (15f) could lead to infeasibility issues, if
that was encountered the simulation time T and control
horizon N could be extended.

The lower bounds, x, for the masses and production chokes
were set to zero, and for the gas injection it was set
to 1.2 and 0.1 kg/s for well 2 and 4, respectively. The
upper bounds, x̄ for all states were set to ∞ except for
the production chokes that had an upper bound of 1.
The upper and lower bounds for all the v’s were set to
±0.25/(T/N) to limit aggressive behaviour.

For this case study, we chose four tunable parameters in
the function approximator (15). Two of them are directly
related to the optimization formulation: λ0 and λ1. For
each well, the valve specific constant for the injection valve,
see Fig. 1, is selected as a parameter that the RL can tune.
This means that the parameter vector θ has the elements
Civ,2, Civ,4, λ0, and λ1. This selection of parameters is
not unique and other choices could give better, or worse,
performance.

3.3 Implementation details

The optimal control problem (OCP) was implemented
using CasADi (Andersson et al., 2019) version 3.5.0 with
IPOPT version 3.12.3 (Wächter and Biegler, 2006) as
the nonlinear program (NLP) solver. IPOPT was ran
with default parameters except that maximum iterations
was increased to 5000. Direct Collocation, with Legendre
collocation points and a polynomial order of degree of 2,
was used as a direct transcription method, see e.g., Biegler
(2010) for more information on the method.

For testing, a plant replacement model was implemented
using the same model, but with somewhat different param-
eters, as can be seen in Table 1. The plant was integrated
with the explicit Runge-Kutta 4 method. Two integration
steps were used for each control step. The penalty factor
in (5) was set to ω̂ = 20000, the h was taken as the
instantaneous excessive gas production at t+ 1, and the L
was set to the accumulated oil production from t to t+ 1.

For the RL, we used a moving window of 50 elements.
The batch was chosen to always include the newest point,
in addition to 7 uniformly randomly selected from the
window. The step size, or learning rate, was set to α =
0.01. The treshold for counting a singular value as zero
was set to σmin = 0.1.

Scaling was applied to the state vector, the control vector,
the objective function and the constraints in the NLP to
obtain the same order of magnitudes. When performing
the update law (11), we only performed scaling on the
tunable parameters such that the gradients of the La-
grangian of the NLP with respect to the parameters were
approximately of the same magnitude.

Sometimes when performing the Gauss-Newton step, we
experienced that the evaluation of the Qθ function was
unsuccessful. When this happened, we ignored that sample
in the batch update and continued. There were 59, 7 and
1 batches where 1, 2 and 3 evaluations failed, respectively.

Table 1. Real and guessed values of the param-
eters.

Parameter Real value Guessed value

rgor well 1 0.07 0.06
rwc well 1 0.7 0.8
rgor well 2 0.09 0.1
rwc well 2 0.5 0.6
C both wells 0.8 0.7
Cpc both wells 0.0016 0.00176
Civ both wells 0.00016 0.000144

4. RESULTS AND DISCUSSION

In this Section, we present the results obtained in the simu-
lation study. The method is compared to the “perfect” case
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Fig. 2. The states, including the controls, for the different strategies.

where we have full knowledge of the model parameters, and
also to a “naive” approach where an ENMPC was applied
with wrong parameters, see Table 1, and nothing was done
to improve the control model.

In Fig. 2, we see that as the RL keeps updating the
parameter vector θ, the MPC keeps suggesting another
input. The data-driven ENMPC slowly goes towards the
trajectories obtained by the perfect ENMPC.

In this specific application, two fully open production
chokes and an active gas processing constraint are neces-
sary for optimal operation. In Fig. 2, we can see that the
chokes are fully open for both the ideal and data-driven
approaches, but not for the naive one. In Fig. 3, we can
see that the gas processing constraint is reached at the
beginning by the ideal approach, and it is never reached by
the naive approach. Further, we see that the constraint will
eventually be reached also by the data-driven ENMPC.
However, it does take some time for the RL to tune the
parameters to some values that give a close to optimal
control. It takes approximately 550 iterations before the
constraint is active. The slow convergence is due to a small
learning rate, or step size.

If we increased the step size, then the constraint might be
violated by a greater amount, leading to a large penalty-
term. With a too small constraint violation penalty, ω̂,
then the calculated optimal control input could be one
that keeps violating the constraints. On the other hand, if
it is too big, combined with a large step size, it could lead
to an updating step where the parameters are moved far
away from the optimal values.

In Fig. 3, we can see that data-driven ENMPC does
slightly violate the constraint. However, the amount is in
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the range of 6 grams of gas a second which most likely
is unnoticeable due to non-perfect sensors. Further, it is
reasonable to assume that operators would use a Γ that
is lower than the actual limitation of the plant. Increasing
the ω̂ slightly and decreasing the step size would, most
likely, decrease the gap between the produced gas and the
limit Γ.

The integrated produced oil at each time interval is shown
in Fig. 3. The figure shows that the data-driven ENMPC
converges towards the same production as is achieved by
the ENMPC with full knowledge of the system.

The evolution of the four tunable paramers can be seen in
Fig. 4. The final values of the two valve specific constants
are not the same as those in the “Real” column of Tab. 1.
This is as expected, because the goal is to tune the
Qθ function such that we optimally control the system,



and not to do system identification. If we set the two
bias parameters to zero, and let the RL tune all the
parameters in Tab. 1, then one may expect the parameters
to converge to the real values. This could potentially also
remove the small constraint violation in the gas processing
capabilities.
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5. CONCLUSION

We have studied a data-driven ENMPC method proposed
by Gros and Zanon (2020), and applied it to a simulation
study of two gas lifted oil wells. The results were promising
in the sense that the data-driven ENMPC was able to
tune the parameters to a set of values that gave a near-
optimal operation of the process even though there were
more incorrectly guessed parameters than tunable ones.
It should be noted that the approach is a state-feedback
approach, and relies on measurements of states that are
not commonly available. In practice, this method must
therefore be accompanied by a state estimation scheme.
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