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The free energy density of N ¼ 4 supersymmetric Yang-Mills theory in four space-time dimensions is
derived through second order in the ’t Hooft coupling λ at finite temperature using effective-field theory
methods. The contributions to the free energy density at this order come from the hard scale T and the soft

scale
ffiffiffi
λ

p
T. The effects of the scale T are encoded in the coefficients of an effective three-dimensional field

theory that is obtained by dimensional reduction at finite temperature. The effects of the electric scale
ffiffiffi
λ

p
T

are taken into account by perturbative calculations in the effective theory.
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I. INTRODUCTION

The thermodynamics of N ¼ 4 supersymmetric Yang-
Mills theory in four dimensions (SYM4;4) is of great interest
since, at finite-temperature, the weak-coupling limit of this
theory has many similarities with quantum chromodynamics
(QCD). Unlike QCD, however, in SYM4;4 it is possible to
make use of the AdS=CFT correspondence [1] between
gravity in anti–de Sitter space and the large-Nc limit of
conformal field theories on the boundary of anti–de Sitter
space to obtain results for SYM4;4 thermodynamics in the
strong coupling limit. In the large-Nc limit one has [2]

S
Sideal

¼ 3

4

�
1þ 15

8
ζð3Þλ−3=2 þOðλ−3Þ

�
; ð1Þ

where λ ¼ Ncg2 is the ‘t Hooft coupling, S is the entropy
density, and Sideal ¼ 2dAπ2T3=3 is the corresponding
noninteracting entropy density (Stefan-Boltzmann limit)
with dA ¼ N2

c − 1 being the dimension of the adjoint
representation.
In the opposite limit of weak-coupling, this ratio has

recently been computed through Oðλ2Þ [3]. In Ref. [3] the
authors used the Arnold and Zhai method [4,5] to perform

the soft resummations necessary, finding a finite result
which possessed nonanalytic terms proportional to λ3=2 and
λ2 log λ. In this paper we revisit this calculation making use
of effective field theory (EFT) techniques to perform the
soft resummations. Like Ref. [3] we will compute the
SYM4;4 thermodynamic functions toOðλ2Þ. This will serve
as a check on the calculation performed in Ref. [3].
An added benefit of using EFT methods is that one can

more easily extend the calculations of the thermodynamic
functions to higher order in the ‘t Hooft coupling. EFT
methods have been applied to the computation of the
resummed perturbative thermodynamics of a variety of
theories, including QCD through Oðλ5=2Þ [6] and SYM4;4

through Oðλ3=2Þ in [7]. Here we extend the SYM4;4 EFT
calculation toOðλ2Þ and present a systematic framework for
computing the hard and soft contributions to the thermo-
dynamic functions in supersymmetric Yang-Mills (SUSY).
Our final results agree with the results obtained in Ref. [3] up
to a small correction to one term contributing at Oðλ2Þ. The
difference is due to an incorrect assignment of the dimension
(4 − 2ϵ versus 4) in one of the soft contributions included in
Ref. [3]. We find that, taking into account this correction,
both results agree exactly and that the corrected result is
numerically very close to the result reported originally
in Ref. [3].1
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1An erratum to [3] has been submitted to account for this
correction.
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To perform the calculation we make use of two types of
dimensional reduction: (1) the equivalence between ten-
dimensional SYM1;10 and four-dimensional SYM4;4 upon
dimensional reduction, and (2) the additional dimensional
reduction of SYM4;4 to three dimensions that occurs at high
temperatures. We will refer to the first type of dimensional
reduction as SUSY dimensional reduction and the second
as high-temperature dimensional reduction. In the case of
the high-temperature dimensional reduction, one obtains a
three-dimensional EFT that can be written in terms of
dimensionally reduced fields. The construction of this high-
temperature EFT preserves supersymmetry [8]. However, it
is important to note that in supersymmetric theories, one
must take some care with the dimensionality of the vector
and spinor spaces describing the fields to ensure that
supersymmetry is preserved by the regularization scheme
used to evaluate Feynman diagrams. For this purpose, we
make use of the regularization by dimensional reduction
(RDR) scheme [9–14]. In this scheme, calculations proceed
as in canonical dimensional regularization, except that the
size of the representations of the bosonic and fermionic
degrees of freedom are constrained to be integer valued.
Our paper is organized as follows. In Sec. II we introduce

SUSYand dimensional reduction of SYM1;10 to SYM4;4. In
Sec. III, we briefly discuss high-temperature dimensional
reduction and the effective field theory approach to finite-
temperature field theory at weak coupling. In Sec. IV, the
parameters of the effective three-dimensional theory are
determined and in Sec. V, the calculation of the soft part of
free energy density is calculated using the effective theory.
In Sec. VI we summarize. The relevant sum-integrals in
four dimensions and integrals in three dimensions are listed
in Appendix A and B for completeness. The generalized
Padé approximant which interpolates between the known
weak- and strong-coupling limits for large Nc is listed in
Appendix C.
Notation: In the full theory, we use lower-case letters for

Minkowski space four-vectors, e.g., p, and upper-case
letters for Euclidean space four-vectors, e.g., P. In the
dimensionally reduced EFT one has p0 ¼ P0 ¼ 0 and p
coincides with jpj. We use the mostly minus convention for
the metric.

II. SUPERSYMMETRIC YANG-MILLS THEORY

We start with the action ofN ¼ 1 supersymmetric Yang-
Mills in D dimensions in Minkowski space [9,15]

SSYM1;D
¼

Z
dDxTr

�
−
1

2
GμνGμν þ 2iψ̄ΓμDμψ

�
; ð2Þ

where μ; ν ¼ 0;…;D − 1, and the field strength tensor is
Gμν ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν�, and Dμ ¼ ∂μ − ig½Aμ; ·�
is the covariant derivative in the adjoint representation of
SUðNcÞ. One can obtain supersymmetric field theories

with different number of supercharges, nSC, by taking
values of D for which the number of supercharges is
maximal, resulting in

nSC ¼ 16 → Dmax ¼ 10;

nSC ¼ 8 → Dmax ¼ 6;

nSC ¼ 4 → Dmax ¼ 4: ð3Þ

To preserve supersymmetry, the number of bosonic and
fermionic degrees of freedom must be equal. One, there-
fore, needs to impose certain conditions on the fermions.
Thus, for Dmax ¼ 10 fermions are Majorana-Weyl type,
while for Dmax ¼ 6 and Dmax ¼ 4 they satisfy Weyl
conditions. These constraints ensure that the number of
bosonic and fermionic degrees of freedom are equal to
Dmax − 2. We are in general interested in supersymmetric
field theories with nSC supercharges in dimensions
D ≤ Dmax, with D being an integer. The evaluation of
Feynman diagrams for theories that are obtained by SUSY
dimensional reduction can be carried out in a simple way, in
which we take all fields in Eq. (2) to be D-dimensional
tensors or spinors and all momentum to be d ¼ D − 2ϵ
vectors [15].
The SYM4;4 theory can be obtained by dimensional

reduction of SYM1;D in D ¼ Dmax ¼ 10 with all fields
being in the adjoint representation of SUðNcÞ. The
Minkowski space Lagrangian for SYM4;4 can be expressed
as [16,17]

LSYM4;4
¼ Tr

�
−
1

2
GμνGμν þ ðDμΦAÞðDμΦAÞ

þ iψ̄ i=Dψ i −
1

2
g2ði½ΦA;ΦB�Þ2

− igψ̄ i½αpijXp þ iβqijγ5Yq;ψ j�
�

þ Lgf þ Lgh þ ΔLSYM4;4
; ð4Þ

where ψ i represents four Majorana spinors, Ga
μν ¼ ∂μAa

ν −
∂νAa

μ þ gfabcAb
μAc

ν is the nonAbelian field strength with
gauge coupling g, and μ, ν ¼ 0; 1; 2; 3. There are six scalar
fields withΦA ¼ ðX1; Y1; X2; Y2; X3; Y3Þ, where Xp and Yq

are Hermitian matrices, with p; q ¼ 1; 2; 3. Xp and Yq

represent scalar and pseudoscalar fields, respectively. The
4 × 4 matrices αp and βq satisfy

fαp;αqg ¼ −2δpq; fβp;βqg ¼ −2δpq; ½αp;βq� ¼ 0: ð5Þ

An explicit representation of these matrices can be found in
Sec. 3 of Ref. [3].
The ghost term Lgh depends on the choice of the gauge-

fixing term Lgf . Here we work in general covariant gauge,
giving
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LSYM4;4
gf ¼ −

1

ξ
Tr½ð∂μAμÞ2�; ð6Þ

LSYM4;4
gh ¼ −2Tr½η̄∂μDμη�; ð7Þ

with ξ being the gauge parameter. Finally, the last term in
Eq. (4), ΔLSYM4;4

, represents any counterterms necessary to
renormalize the theory.

III. DIMENSIONAL REDUCTION AT FINITE
TEMPERATURE

Dimensional reduction and the effective-field theory
approach to field theory at high temperature is now well
established [6,18–25]. The idea is as follows. In the
imaginary-time formalism, loop diagrams involve summa-
tions of Matsubara frequencies and integrals over three-
momenta. These frequencies are 2nπT for bosons and
ð2nþ 1ÞπT for fermions, where n is an integer. These
frequencies act as masses in the propagators and thermal
field theory in equilibrium can be considered a Euclidean
three-dimensional field theory with an infinite tower of
massive modes, except the zeroth (n ¼ 0) bosonic mode,
which is massless.
Screening effects in the medium generate a thermal mass

(static electric screening) of the order gT, where g is a
generic coupling. At weak coupling, the momentum scales
T and gT are well separated and one expects the nonzero
Matsubara modes to decouple at high temperature.2 The
static correlators of the full theory can be reproduced to any
desired accuracy at length scales R ≫ 1=T by matching an
effective three-dimensional theory for the zero modes to the
full theory by fixing the parameters in the EFT to be
functions of the temperature and the parameters of the full
theory. The couplings encode the physics on the scale T,
while contributions to physical quantities on the scale gT
are taken care of by calculations in the low-energy effective
theory. In non-Abelian gauge theories, there is a third,
supersoft scale on the order of g2T associated with screen-
ing of static (chromo)magnetic fields. It may therefore
prove useful to integrate out the masses of order gT to
construct a second effective field theory valid on the
momentum scale g2T. However, perturbation theory is
plagued with infrared divergences since static magnetic
fields are not screened and nonperturbative methods such
as lattice simulations must be used [26,27]. In the present
case, as in QCD [6], this construction is only necessary if
one is interested in the free energy density at order λ3.
The starting point is the partition function given as a path

integral in the full theory,

ZSYM4;4
¼

Z
Dη̄DηDψ̄ iDψ iDAa

μDΦa
Ae

−
R

β

0
dτ
R

d3xLSYM4;4 ;

ð8Þ

where η̄, η, ψ̄ i, ψ i, Aa
μ, and Φa

A are the fields in the
Lagrangian Eqs. (4)–(7).
The free energy is then given by

F ¼ −
1

βV
logZSYM4;4

; ð9Þ

where V is the volume of space. After having integrated out
the nonstatic modes, we can write the partition function as

Z ¼
Z

Dη̄DηDAa
0DAa

iDΦa
Ae

−fEV−
R

d3xLESYM ; ð10Þ

where η̄, η, Aa
0 , A

a
i , andΦa

A are fields in the effective theory.
Up to normalizations, the fields in the effective theory can
be identified with the fields in the original theory. fE is the
coefficient of the unit operator and can be interpreted as the
contribution to the free energy from the hard scale T.
LESYM is given by the most general Lagrangian that can be
constructed from the fields Aa

i , A
a
0 , and Φa

A. We find

LESYM ¼ 1

2
Tr½G2

ij� þ Tr½ðDiA0ÞðDiA0Þ�
þ Tr½ðDiΦAÞðDiΦAÞ� þm2

ETr½A2
0�

þm2
STr½Φ2

A� þ hETr½ði½A0;ΦA�Þ2�

þ 1

2
g23Tr½ði½ΦA;ΦB�Þ2� þ Lgf þ Lgh þ δLESYM;

ð11Þ

where A0 ¼ taAa
0 , ΦA ¼ taΦa

A, ðDiA0Þa ¼ ∂iAa
0þ

gEfabcAb
i A

c
0, and Ga

ij ¼ ∂iAa
j − ∂jAa

i þ gEfabcAb
i A

c
j is the

nonabelian field strength with gauge coupling gE and fabc

are the structure constants. We work in general covariant
gauge, where the gauge-fixing and ghost terms are given by

Lgf ¼ −
1

ξ
Tr½ð∂iAiÞ2�; ð12Þ

Lgh ¼ −2Tr½η̄∂iDiη�; ð13Þ

where η is the ghost field and ξ is the gauge parameter.
Finally, δLESYM represents all higher-order local operators
that can be constructed from Aa

i , A
a
0 , and Φa

A satisfying the
symmetries, such as gauge invariance and rotational invari-
ance. For example, there will be two quartic self-interaction
terms of A0, namely ðTr½A2

0�Þ2 and Tr½A4
0�, however, they

first contribute at order λ3 to the free energy density. The
Lagrangian (11) is the same as that of Ref. [7], except that
we have explicitly shown the quartic self-coupling of the

2High temperature means we can ignore any zero-temperature
masses in the theory.
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scalar fields Φa
A and their couplings to the adjoint field Aa

0

because these terms will generate contributions to the free
energy of order λ2.

IV. PARAMETERS OF THE EFFECTIVE THEORY

In this section, we determine the parameters of the effective
theory to the order in the coupling g2 which is needed to
calculate the free energy to order λ2. In the matching
calculations, we will be using so-called strict perturbation
theory [6,24]. In strict perturbation theory, we also treat the
quadratic mass terms in the effective Lagrangian as a
perturbation. We also do not add and subtract a thermal
mass term in the full theory to screen infrared divergences. In
other words, we are using massless propagators in both the
full and effective theory in the perturbative calculations. Such
calculations are plagued by infrared divergences, but they
appear in the same way on both sides of the matching
equations and hence they cancel. Although this is an incorrect
treatment of the infrared divergences, we can use dimensional
regularization to regulate them in this intermediate step of the
calculations. The point is that the coefficients of the effective
theory encode the physics on the scale T and that a correct
treatment of IR divergences is ensured by using massive
propagators when we do perturbative calculations in the
effective theory.

A. Coefficient of the unit operator

Equating Eqs. (9) and (10), and taking the logarithm, we
obtain

fEV − logZESYM ¼ − logZSYM4;4
: ð14Þ

The right-hand side of this equation is given in terms of the
vacuum diagrams of the full theory using massless (unre-
summed) propagators. These are listed below through three
loops. The left-hand side is given by the coefficient of the unit
operator and the vacuum diagrams in the effective theory.
Since we are using massless propagators in strict perturbation
theory, there is no scale in the momentum integrals and they
are therefore set to zero in dimensional regularization. This
implies fEV ≈ − logZSYM, where ≈ is a reminder that the
right-hand side is obtained in strict perturbation theory. We
can therefore interpret TfE as the unresummed or hard
contribution to the free energy density.

The diagrams in the full theory through three loops were
evaluated in Ref. [3]. For the one- and two-loop graphs, the
authors of Ref. [3] calculated directly in SYM4;4 because the
thermal mass contributions had to be computed and it was not
possible to use SUSY dimensional reduction from SYM1;10

for this purpose. In this paper, for the unresummed (hard)
contributions we do not need to consider the thermal masses
of the gluons, fermions, or scalars. As a result, using the EFT
method, we can calculate the hard contributions using SUSY
dimensional reduction from SYM1;10 to SYM4;4. This allows
us to compute a reduced number of SYM1;D diagrams for
generalD and d, fromwhich we can obtain the SYM4;4 result
by taking D ¼ 10, D ¼ 4, and the number of momentum-
space dimensions to be d ¼ 4 − 2ϵ [15].
We list all the three loop results here for completeness. The

one- and two-loop graphs in SYM1;D are shown in Fig. 1.
Summing the one-loop graphs F hard

0a , F hard
0b , and F hard

0c , one
obtains

F hard
0 ¼ 1

2
dAðD − 2Þðf00 − b00Þ ¼ −dA

π2

6
T4; ð15Þ

where b00 and f00 are defined in Eqs. (A5) and (A8).
Summing the two-loop graphs shown in Fig. 1, one

obtains

F hard
1 ¼ dAλ½F hard

1a þ F hard
1b þ F hard

1c þ F hard
1d �;

with the individual contributions being

F hard
1a ¼ DðD − 1Þ

4
b21; ð16Þ

F hard
1b ¼ −

3

4
ðD − 1Þb21; ð17Þ

F hard
1c ¼ 1

4
b21; ð18Þ

F hard
1d ¼ ðD − 2Þ

4
Tr1½f21 − 2f1b1�: ð19Þ

Above Tr1 is the dimension of the spinors in the maximal
SYM theory which equals Tr1 ¼ D − 2 for all cases listed
in Eq. (3). The integrals b1 and f1 are defined in Eqs. (A6)
and (A9). This yields

FIG. 1. One- and two-loop diagrams contributing to the SYM1;10 free energy density. Together with SUSY dimensional reduction
from 10 to 4 dimensions these can be used to compute the one- and two-loop hard contributions in SYM4;4. Spiral lines represent ten-
dimensional gluons, solid lines represent ten-dimensional Majorana-Weyl fermions, and dotted lines represent ten-dimensional ghost
fields.
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F hard
1 ¼ dAλ

ðD − 2Þ2
4

ðb1 − f1Þ2

¼ dA

�
π2T4

6

�
3

2

λ

π2
: ð20Þ

The three-loop graphs in SYM1;D are shown in Fig. 2
with

F hard
2 ¼ dAλ2½F hard

2a þ F hard
2b þ F hard

2c þ F hard
2d þ F hard

2e

þF hard
2f þ F hard

2g þ F hard
2h þ F hard

2i þ F hard
2j �: ð21Þ

The individual contributions were calculated in Ref. [3],

F hard
2a ¼

�
−
5D
8

þ 23

32

�
Ibbball; ð22Þ

F hard
2b ¼ 1

16
Ibbball; ð23Þ

F hard
2c ¼ 1

32
Ibbball; ð24Þ

F hard
2d ¼ −

3

16
DðD − 1ÞIbbball; ð25Þ

F hard
2e ¼ 27

16
ðD − 1ÞIbbball; ð26Þ

F hard
2f ¼ −

1

4
½IbbSYM1;D

þ IbfSYM1;D
þ IffSYM1;D

�; ð27Þ

F hard
2g ¼ 1

8
Ibbball; ð28Þ

F hard
2h ¼ D − 2

8
Tr1

�
D − 6

2
Iffball þ ð4 −DÞIbfball

�
; ð29Þ

F hard
2i ¼ ðD − 2Þ2

4
Tr1½Ibfball − 2H3 þ f2ðf1 − b1Þ2�; ð30Þ

F hard
2j ¼ −

D − 2

4
Tr1Ibfball: ð31Þ

Using the expressions for the sum-integrals listed in
Appendix A, the three-loop hard contribution becomes

F hard
2 ¼ −dA

�
π2T4

6

��
3

4ϵ
þ 9

2
log

Λ
4πT

þ 3

2
γE þ 3

ζ0ð−1Þ
ζð−1Þ þ

15

4
− log 2

��
λ

π2

�
2

: ð32Þ

We note that there is a remaining pole in ϵ proportional to
λ2. The pole is canceled by the counterterm δfE for the
coefficient of the unit operator fE, which can be found by
calculating the ultraviolet divergences in the effective
theory [6]. Using dimensional regularization and minimal
subtraction, the counterterm must be a polynomial in mE,
mS, gE, hE, g3, and the other parameters of the ESYM. The
counterterm that cancels this divergence is

δfE ¼ −
dANc

4ð4πÞ2ϵ g
2
E½m2

E þ 6m2
S�; ð33Þ

which is found by a two-loop calculation in the effective
theory (see Sec. V below). Since the mass parametersm2

E and
m2

S multiply the pole in ϵ, we must take into account the
order-ϵ contribution, when we express the counterterm in
terms of the parameters λ and T. Using the expressions for the
mass parameters, Eqs. (44) and (47) below, the result is then

δfE ¼ −
2dAλ2T
ð4πÞ2ϵ ðdþ 4Þðb1 − f1Þ

¼ −dA
�
π2T3

6

��
3

4ϵ
þ 3

2
log

Λ
4πT

þ 21

16
þ 3

2

ζ0ð−1Þ
ζð−1Þ

−
1

2
log 2

��
λ

π2

�
2

: ð34Þ

The final result for the renormalized unit operator fE is given
by the sum of Eqs. (15), (20), (32), and (34)

fEðΛÞT ¼ F hard
0 þ F hard

1 þ F hard
2 − TδfE

¼ −dA
π2T4

6

�
1 −

3

2

λ

π2
þ
�
3 log

Λ
4πT

þ 39

16

þ 3

2
γE þ 3

2

ζ0ð−1Þ
ζð−1Þ −

1

2
log 2

��
λ

π2

�
2
�
: ð35Þ

The coupling λ does not get renormalized and is therefore
independent of the scale Λ, which implies that fEðΛÞ is
running. Its running is given by the evolution equation

FIG. 2. Three-loop diagrams contributing to the SYM1;10 free energy. Notation is the same as Fig. 1. A circle withΠ in it represents the
one-loop gauge field self-energy in SYM1;10.
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Λ
d
dΛ

fEðΛÞ ¼ −
dANc

ð4πÞ2 g
2
E½m2

E þ 6m2
S�; ð36Þ

whose solution is

fEðΛÞ ¼ fEðΛ0Þ − dANc

ð4πÞ2 g
2
E½m2

E þ 6m2
S� log

Λ
Λ0 : ð37Þ

B. Mass parameters

We need the mass parameters squared m2
E and m2

S for
the adjoint field Aa

0 and the scalars Φa
A to one-loop order.

Their physical interpretation is that they give the con-
tribution to the static screening masses from the hard scale
T. In non-Abelian gauge theories and beyond leading
order, the electric screening (or Debye) mass m2

E is
plagued with infrared divergences associated with the
lack of magnetostatic screening. It therefore requires a
nonperturbative definition [28]. However, the hard con-
tribution to the Debye mass can be computed order by
order in strict perturbation theory.
In the full theory, the (chromo)electric screening mass

m2
el is given by the position of the pole of the propagator for

the timelike component of the gauge field, Aa
0ðτ;xÞ at

spacelike momentum P ¼ ð0;pÞ, i.e., it is the solution to
the equation

p2 þ Πðp2Þ ¼ 0; p2 ¼ −m2
el; ð38Þ

where p ¼ jpj,Πðp2Þ ¼ Π00ðp0 ¼ 0;pÞ andΠab
00ðp0;pÞ ¼

δabΠ00ðp0;pÞ is the self-energy of the gluon field. In
ESYM, the (chromo)electric screening mass m2

el is also
given by the position of the pole of the propagator for the
adjoint field Aa

0ðxÞ

p2 þm2
E þ Πeffðp2Þ ¼ 0; p2 ¼ −m2

el; ð39Þ

where Πeffðp2Þ is the self-energy of the adjoint scalar in
the effective theory. By equating the expressions for the
screening mass obtained by solving Eqs. (38) and (39), we
can determine the mass parameter m2

E. The self-energy
function in the full theory can be expanded in loops and
also in a powers series around p2 ¼ 0. To leading order in
the loop expansion, it suffices to evaluate the self-energy
function at p2 ¼ 0. In the full theory, the solution to
Eq. (38) is m2

el ¼ Π1ð0Þ, where Πnðp2Þ is of nth order in
the loop expansion of Πðp2Þ. In the effective theory, the
self-energy function evaluated at zero external momentum
vanishes in strict perturbation theory and dimensional
regularization since we are using massless propagators
and there is no scale in the loop integrals. These diagrams
are shown in Fig. 3 for completeness.
Equation (39) then leads to m2

el ¼ m2
E and therefore the

mass parameter satisfies

m2
E ¼ Π1ð0Þ: ð40Þ

The SYM4;4 graphs contributing to the one-loop self-
energy of the zeroth component of the gauge field are
shown in Fig. 4. It contains two parts [3]

Πab
00ðPÞ ¼ Πb;ab

00 ðPÞ þ Πf;ab
00 ðPÞ; ð41Þ

where

Πb;ab
00 ðPÞ ¼ λδab

�
4
XZ

Q

�
2

Q2
−
ð2Q0 þ P0Þ2
Q2ðPþQÞ2

�

− 2p2
XZ

Q

1

Q2ðPþQÞ2
�
; ð42Þ

Πf;ab
00 ðPÞ ¼ −4λδab

�XZ
fQg

�
2

Q2
−
ð2Q0 þ P0Þ2
Q2ðPþQÞ2

�

− p2
XZ

fQg

1

Q2ðPþQÞ2
�
: ð43Þ

After integration by parts, this yields

m2
E ¼ Π1ð0Þ ¼ 8λðd − 2Þðb1 − f1Þ: ð44Þ

The mass parameter squared m2
S can be determined along

the same lines. We define Σðp2Þ, where the self-energy of
the scalar field is Σab

ABðp0 ¼ 0;pÞ ¼ δabδABΣðp2Þ. To
leading order in the loop expansion, we find

m2
S ¼ Σ1ð0Þ; ð45Þ

FIG. 3. One-loop A0 self-energy graphs in the SYM4;4 dimen-
sionally-reduced EFT. Spiral lines represent three-dimensional
gluons, sinusoidal lines represent the adjoint scalar A0, dashed
lines represent scalars, and dotted lines (not appearing in this
particular figure) represent the three-dimensional ghost field.

FIG. 4. One-loop gluon self-energy graphs in the full SYM4;4
theory. Spiral lines represent four-dimensional gluon fields, solid
lines represent four-dimensional Majorana fermions, dashed lines
represent scalars, and dotted lines represent four-dimensional
ghost fields.
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where Σnðp2Þ is of nth order in the loop expansion
of Σðp2Þ.
The one-loop scalar self-energy graphs in the full theory

are shown in Fig. 5 and their expression is [3]

Σab
ABðPÞ ¼ λδabδAB

�
2
XZ

Q

�
4

Q2
−

P2

Q2ðPþQÞ2
�

−4
XZ

fQg

�
2

Q2
−

P2

Q2ðPþQÞ2
��

: ð46Þ

For completeness, we also show the corresponding graphs
in the effective theory in Fig. 6, although the diagrams
vanish identically in strict perturbation when evaluated at
zero external momentum. The matching then yields

m2
S ¼ 8λðb1 − f1Þ: ð47Þ

The mass parameters mE and mS are independent of the
renormalization scale Λ to this order in strict perturbation
theory.

C. Coupling constants

In order to calculate the free energy through order λ2, the
couplings gE, g3, and hE are needed at tree level only.
The matching is fairly straightforward since we can read
off the couplings from the full theory. We simply make
the substitution Aa

0ðx; τÞ →
ffiffiffiffi
T

p
Aa
0ðxÞ in the full theory and

compare
R β
0 dτ LSUSY with the effective theory, LESYM. Tree-

level matching for the gauge coupling then yields

g2E ¼ g2T: ð48Þ

Proceeding in the same way, making the substitution
Φa

Aðx; τÞ →
ffiffiffiffi
T

p
Φa

AðxÞ and comparing the full and effective
theory, we find

g23 ¼ g2T: ð49Þ

Finally, we obtain

hE ¼ g2T: ð50Þ

The couplings gE, g3, and hE are all independent of the
renormalization scale Λ to this order in strict perturbation
theory.

V. CALCULATIONS IN THE EFFECTIVE THEORY

We have now calculated the parameters in the effective
theory to the necessary order to calculate the free energy
density to order λ2. The hard part is given above, TfE, while
the soft part is given by a two-loop calculation in the
effective theory. Denoting the contribution from the soft
scale

ffiffiffi
λ

p
T by fM, we have fM ¼ − logZESYM

V . We have
explicitly checked that the one- and two-loop contributions
are independent of the parameter ξ in the class of covariant
gauges.
The one-loop graphs contributing to the free energy are

shown in Fig. 7. Evaluating the diagrams, we obtain

fM;1 ¼ −
1

2
dA½I00ðm2

EÞ þ 6I00ðm2
SÞ�

¼ −
dA
12π

½m3
E þ 6m3

S�; ð51Þ

where the integral I00 is defined in Appendix B and the
index after the subscript M indicates the order in the loop
expansion. We note that the ghost and gauge fields
are massless, which leads to a vanishing soft contribution,
I00ð0Þ ¼ 0.
The two-loop graphs contributing to the free energy are

shown in Fig. 8. Evaluating the diagrams and using the
expressions for the integrals in Appendix B, we obtain

FIG. 5. One-loop scalar self-energy graphs in the full SYM4;4
theory. The notation is the same as in Fig. 4.

FIG. 6. One-loop scalar self-energy graphs in the SYM4;4
dimensionally-reduced EFT. The notation is the same as in Fig. 3.

FIG. 7. One-loop soft contributions to the SYM4;4 free energy
density in the dimensionally-reduced EFT. The notation is the
same as in Fig. 3.
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fM;2 ¼ dAg2ENc

�
1

4
I21ðm2

EÞ þm2
EJ1ðm2

EÞ
�

þ 6dAg2ENc

�
1

4
I21ðm2

SÞ þm2
SJ1ðm2

SÞ
�

þ 3dAhENcI1ðm2
EÞI1ðm2

SÞ þ
15

2
dAg23NcI21ðm2

SÞ

¼ dANc

4ð4πÞ2
�
1

ϵ
þ 3þ 4 log

Λ
2mE

�
g2Em

2
E

þ 3dANc

2ð4πÞ2
�
1

ϵ
þ 3þ 4 log

Λ
2mS

�
g2Em

2
S

þ 3dANc

ð4πÞ2 hEmEmS þ
15dANc

2ð4πÞ2 g23m
2
S; ð52Þ

Note that the setting-sun diagram with two ghost lines and
one gluon line or three gluon lines vanishes in dimensional
regularization since all the propagators are massless (dia-
grams F soft

1c and F soft
1d ). The same remark applies to the

double bubble graphs with one or two gluon lines (diagrams
F soft

1g , F
soft
1h , and F soft

1i ). The integral J1ðm2Þ is logarithmi-
cally ultraviolet divergent and has a pole in ϵ. The term fM;2

therefore requires renormalization, cf. renormalization of fE.
The divergence is cancelled by the counterterm

δfE ¼ −
dANc

4ð4πÞ2ϵ g
2
E½m2

E þ 6m2
S�: ð53Þ

Comparing minimal subtraction in the full theory, Eq. (34),
with minimal subtraction in the effective theory, Eq. (53), we
see that they are not equivalent as the former contains
logarithms of the factorization scale Λ in addition to the pole
in ϵ. We note in passing that the first term in Eq. (53) is the
same as in QCD [6]. Adding Eqs. (52) and (53) yields

fM;2 þ δfE ¼ dANc

ð4πÞ2
�
3

4
þ log

Λ
2mE

�
g2Em

2
E

þ dANc

ð4πÞ2
�
9

2
þ 6 log

Λ
2mS

�
g2Em

2
S

þ 3dANc

ð4πÞ2 hEmEmS þ
15dANc

2ð4πÞ2 g23m
2
S: ð54Þ

The final result for the soft part is the sum of Eqs. (51) and
(54). After using g2E ¼ g2T, hE ¼ g2T, g23 ¼ g2T, λ ¼ g2Nc,
m2

E ¼ 2λT2, and m2
S ¼ λT2, we find

fM ¼ −dA
π2T3

6

�
ð3þ

ffiffiffi
2

p
Þ
�
λ

π2

�3
2 þ

�
−3 log

Λ
4πT

−
81

16
−
9

ffiffiffi
2

p

8
−
21

8
log 2þ 3

2
log

λ

π2

��
λ

π2

�
2
�
: ð55Þ

We note that the soft part Eq. (55) explicitly depends on the
factorization scale Λ. Adding Eqs. (35) and (55), we obtain
our final result

F 0þ1þ2 ¼ ðfE þ fMÞT

¼ −dA
π2T4

6

�
1 −

3

2

λ

π2
þ ð3þ

ffiffiffi
2

p
Þ
�
λ

π2

�3
2

þ
�
−
21

8
−
9

ffiffiffi
2

p

8
þ 3

2
γE þ 3

2

ζ0ð−1Þ
ζð−1Þ

−
25

8
log 2þ 3

2
log

λ

π2

��
λ

π2

�
2
�
: ð56Þ

This is the complete result for the free energy through order
λ2 for general Nc. It is in agreement with that of Ref. [3],
except for the finite term − 21

8
that appears at Oðλ2Þ. The

reason for the difference is that one must take d ¼ 4 − 2ϵ in
the expression for δfE in Eq. (34) and not d ¼ 4, which
gives − 45

16
, as obtained in Ref. [3]. The logarithms of the

scale Λ from the hard part cancel against those coming from
the soft part. The absence of these logarithms in the final
result reflects that no renormalization of the coupling is
needed in SUSY. Note also the presence of the nonanalytic
terms λ

3
2 and λ2 log λ in Eq. (56). These terms correspond to

the resummation of a class of diagrams from all orders of
perturbation theory. The free energy density is given by
Eq. (56). All other thermodynamic quantities can be derived
from the partition function Z. For example, the entropy
density is S ¼ −dF=dT. Since the coupling λ does not run
due to conformality of SUSY, this implies that the thermo-
dynamic functions are of the same form when normalized to
their Stefan-Boltzmann values, e.g. F=F ideal ¼ S=Sideal.
In Fig. 9, we show the scaled entropy density as a function

of λ ¼ g2Nc for different truncations of the weak-coupling
expansion. The green dotted, brown dashed, and blue long-
dashed curves correspond to expansions through OðλÞ,

FIG. 8. Two-loop soft contributions to the SYM4;4 free energy
using the dimensionally-reduced EFT. The notation is the same as
in Fig. 3.
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Oðλ3
2Þ, and Oðλ2Þ, respectively. The purple dot-dashed line

corresponds to the large-Nc strong-coupling expansion
through Oðλ−3=2Þ and the solid grey line corresponds to a
generalized [5,5] Padé approximant which interpolates
between the weak and strong coupling limits. The analytic
expression for this Padé approximant is presented in
Appendix C.
In terms of convergence, our conclusions are similar to

those of Ref. [3], namely that the resummed perturbative
expansion seems to be converging quickly as one adds
additional perturbative orders. One can take the value of the
’t Hooft coupling at which the truncated perturbative
solutions cease to be close to the Padé approximant as
an estimate of the range of validity of each perturbative
truncation. We find that the expansions truncated at OðλÞ,
Oðλ3=2Þ, and Oðλ2Þ agree well with the generalized Padé
for λ≲ f0.02; 0.2; 2g, respectively. This suggests that the
resummed perturbative expansion for SYM4;4 thermody-
namics has a finite and perhaps large radius of convergence.

VI. SUMMARY AND OUTLOOK

In conclusion, we have rederived the free energy density
for N ¼ 4 supersymmetric Yang-Mills theory through
order λ2 using dimensional reduction and effective field
theory, correcting a small mistake in the literature in the
process. The weak-coupling expansion seems to have good
convergence properties.
Dimensional reduction and effective field methods were

used to streamline the calculations by explicitly separating
the scales T and

ffiffiffi
λ

p
T. It also explains the appearance of

logarithms of the coupling λ in the expression for the free
energy Eq. (56). It is associated with the renormalization of

the parameter fE in the effective theory. The solution to the
renormalization group equation for these parameters can
generally be used to sum leading logarithms of the form
gmþ2n lognðgÞ, where g again is a generic coupling [24].
The fact that the solution to the evolution equation for fE is
trivial suggests, as in QCD, that there are no higher order
logs of the form λnþ1 logn λ with n > 1 associated with the
terms λ2 log λ [6].
The next term in the weak-coupling expansion will be of

order λ
5
2 and is the highest order that we can obtain in purely

perturbative calculations due to the magnetic mass problem
of non-Abelian gauge theories at finite temperature [26,27].
The order-λ

5
2 contribution to the free energy density is

coming entirely from the soft scale
ffiffiffi
λ

p
T and requires the

evaluation of the three-loop vacuum diagrams in ESYM. It
also requires the determination of the mass parameters
squared m2

E and m2
S to two-loop order, in analogy with the

calculations in QCD [6]. This work in is progress [29].
Once this is complete, it would also be interesting to extend
the two-loop hard-thermal-loop perturbation theory calcu-
lation of SYM4;4 thermodynamics [30] to three-loop order.
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APPENDIX A: SUM-INTEGRALS

Loop integrals in the full theory involve sums over
Matsubara frequencies and integrals over spatial momenta.
We use momentum-space dimensional regularization to
regulate both infrared and ultraviolet divergences. The
sum-integrals are defined as

XZ
P
¼

�
eγEΛ2

4π

�
ϵ

T
X

p0¼2nπT

Z
p
; ðA1Þ

XZ
fPg

¼
�
eγEΛ2

4π

�
ϵ

T
X

p0¼ð2nþ1ÞπT

Z
p
; ðA2Þ

where the sum is over Matsubara frequencies, p0 ¼ 2nπT
for bosons and p0 ¼ ð2nþ 1ÞπT for fermions. The inte-
grals over momenta are denoted by

Z
p
¼

�
eγEΛ2

4π

�
ϵ Z dd−1p

ð2πÞd−1 ; ðA3Þ

where d ¼ 4 − 2ϵ and Λ is an arbitrary momentum scale
that coincides with the renormalization scale in the MS
scheme.

Generalized Padé

( ) weak coupling

( 3/2) weak coupling

( 2) weak coupling

( –3/2) strong coupling

0.001 0.010 0.100 1 10 100 1000
0.75

0.80

0.85

0.90

0.95

1.00
S

/S
id

ea
l

FIG. 9. The entropy density S normalized by the Sideal in
SYM4;4 as a function of the ’t Hooft coupling λ. The green dotted,
brown dashed, and blue long-dashed curves are the perturbative
result through order λ, λ

3
2, and λ2, respectively. The solid gray line

is the generalized Padé approximant (C1) and the purple dot-
dashed curve is the strong coupling result through order λ−

3
2.
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The simple one-loop sum-integrals are of the form

bn ¼
XZ

P

1

P2n ; fn ¼
XZ

fPg

1

P2n ; n ≥ 0: ðA4Þ

We specifically need the following one-loop sum-integrals

b00 ¼
π2

45
T4½1þOðϵÞ�; ðA5Þ

b1¼
T2

12

�
Λ
4πT

�
2ϵ
�
1þ

�
2þ2

ζ0ð−1Þ
ζð−1Þ

�
ϵþOðϵ2Þ

�
; ðA6Þ

b2 ¼
1

ð4πÞ2
�

Λ
4πT

�
2ϵ
�
1

ϵ
þ 2γ þOðϵÞ

�
; ðA7Þ

f00 ¼ −
7π2

360
T4½1þOðϵÞ�; ðA8Þ

f1¼−
T2

24

�
Λ
4πT

�
2ϵ
�
1þ

�
2−2log2þ2

ζ0ð−1Þ
ζð−1Þ

�
ϵþOðϵ2Þ

�
;

ðA9Þ

f2 ¼
1

ð4πÞ2
�

Λ
4πT

�
2ϵ
�
1

ϵ
þ 4 log 2þ 2γ þOðϵÞ

�
; ðA10Þ

where the prime indicates a derivative with respect to the
exponent n in Eq. (A4).
The following two-loop sum-integrals arise in the

simplification of certain three-loop diagrams in the full
theory and vanish [4]

XZ
PQ

1

P2Q2ðPþQÞ2 ¼ 0; ðA11Þ

XZ
fPgQ

1

P2Q2ðPþQÞ2 ¼ 0; ðA12Þ

XZ
fPQg

1

P2Q2ðPþQÞ2 ¼ 0: ðA13Þ

The three-loop sum-integrals needed are defined in
Ref. [3] and their expressions are

Ibbball ¼
1

ð4πÞ2
�
T2

12

�
2
�
6

ϵ
þ 36 log

μ

4πT
− 12

ζ0ð−3Þ
ζð−3Þ þ 48

ζ0ð−1Þ
ζð−1Þ þ

182

5
þOðϵÞ

�
; ðA14Þ

Iffball ¼
1

ð4πÞ2
�
T2

12

�
2
�
3

2ϵ
þ 9 log

μ

4πT
− 3

ζ0ð−3Þ
ζð−3Þ þ 12

ζ0ð−1Þ
ζð−1Þ þ

173

20
−
63

5
log 2þOðϵÞ

�
; ðA15Þ

Ibfball ¼ −
1

6
ð1 − 211−3dÞIbbball −

1

6
Iffball; ðA16Þ

H3 ¼
1

ð4πÞ2
�
T2

12

�
2
�
3

8ϵ
þ 9

4
log

μ

4πT
þ 3

2

ζ0ð−3Þ
ζð−3Þ −

3

2

ζ0ð−1Þ
ζð−1Þ þ

9

4
γE þ 361

160
þ 57

10
log 2þOðϵÞ

�
; ðA17Þ

H4 ¼
1

ð4πÞ2
�
T2

12

�
2
�
5

24ϵ
þ 5

4
log

μ

4πT
−
1

6

ζ0ð−3Þ
ζð−3Þ þ

7

6

ζ0ð−1Þ
ζð−1Þ þ

1

4
γE þ 23

24
−
8

5
log 2þOðϵÞ

�
; ðA18Þ

H5 ¼
1

ð4πÞ2
�
T2

12

�
2
�
4

3ϵ
þ 8 log

μ

4πT
−
5

3

ζ0ð−3Þ
ζð−3Þ þ

26

3

ζ0ð−1Þ
ζð−1Þ þ γE þ 49

12
þOðϵÞ

�
; ðA19Þ

H6 ¼
1

ð4πÞ2
�
T2

12

�
2
�
−

17

48ϵ
−
17

8
log

μ

4πT
þ 5

24

ζ0ð−3Þ
ζð−3Þ −

11

6

ζ0ð−1Þ
ζð−1Þ −

1

2
γE −

41

48
þ 11

8
log 2þOðϵÞ

�
; ðA20Þ

and

IbbSYM1;D
¼ ðD − 2Þ2

4
ĪbbSYM1;D

þ 2DIbbball; ðA21Þ

IffSYM1;D
¼ ðTr1Þ2

4
½ĪffSYM1;D

þ ðD − 3ÞIffball�; ðA22Þ

IbfSYM1;D
¼ −Tr1

�
D − 2

2
ĪbfSYM1;D

þ 3

2
ðD − 2ÞIbfball

�
; ðA23Þ

with

ĪbbSYM1;D
¼ 4ðD − 4Þb2b21 þ 16H5 − Ibbball; ðA24Þ
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ĪffSYM1;D
¼ 4ðD − 4Þb2f21 þ 16H4 − Iffball; ðA25Þ

ĪbfSYM1;D
¼ 4ðD − 4Þb2b1f1 þ 16H6 − Ibfball: ðA26Þ

The three-loop sum-integrals in Eqs. (A14)–(A17) were
calculated in Refs. [4,5]. The remaining three-loop sum-
integrals were calculated in Ref. [3].

APPENDIX B: INTEGRALS IN THE EFFECTIVE
THEORY

Loop diagrams in the effective three-dimensional theory
involve integrals over three-momenta. We use dimensional
regularization to regulate both infrared and ultraviolet
divergences. The integrals are denoted by

Z
p
¼

�
eγEΛ2

4π

�
ϵ Z dd−1p

ð2πÞd−1; ðB1Þ

where d ¼ 4 − 2ϵ and Λ is the renormalization scale in the
MS scheme. We define the one-loop integrals

Inðm2Þ ¼
Z
p

1

½p2 þm2�n : ðB2Þ

The specific one-loop integrals we need are

I00ðm2Þ ¼ m3

4π

�
Λ
2m

�
2ϵ
�
2

3
þ 16

9
ϵþOðϵ2Þ

�
; ðB3Þ

I1ðm2Þ ¼ m
4π

�
Λ
2m

�
2ϵ

½−1 − 2ϵþOðϵ2Þ�; ðB4Þ

where the prime again indicates the derivative with respect
to the exponent n in Eq. (B2).
Some of the two-loop diagrams are simple products of

the one-loop integrals defined in Eq. (B2). The two-loop
integrals that are not simple products are of the form [6]

Jnðm2Þ ¼
Z
pq

1

ðp2 þm2Þ½q2 þm2�nðp − qÞ2 : ðB5Þ

Specifically, we need the two-loop diagram

J1ðm2Þ ¼ 1

ð4πÞ2
�

Λ
2m

�
4ϵ
�
1

4ϵ
þ 1

2
þOðϵÞ

�
: ðB6Þ

APPENDIX C: GENERALIZED PADÉ

Following Ref. [3] one can construct a generalized Padé
approximant that interpolates between the known weak- and
strong-coupling limits. We find that in the large Nc-limit the
following form

S
Sideal

¼ 1þ aλ1=2 þ bλþ cλ3=2 þ dλ2 þ eλ5=2

1þ aλ1=2 þ b̄λþ 4
3
cλ3=2 þ 4

3
dλ2 þ 4

3
eλ5=2

; ðC1Þ

with

a ¼ 4π2

135ζð3Þ þ
2ð3þ ffiffiffi

2
p Þ

3π
;

b ¼ 1

π2
log

�
λ

π2

�
þ 16π½45ð3þ ffiffiffi

2
p Þζð3Þ þ π3�

18225ζ2ð3Þ

þ
36½ζ0ð−1Þζð−1Þ þ γ� þ 69

ffiffiffi
2

p þ 59 − 75 log 2

36π2
;

b̄ ¼ bþ 3

2π2
;

c ¼ 2

15ζð3Þ ;

d ¼ 180ð3þ ffiffiffi
2

p Þζð3Þ þ 8π3

2025πζ2ð3Þ ;

e ¼ 2b
15ζð3Þ −

3

5π2ζð3Þ ; ðC2Þ

reproduces Eqs. (1) and (56) in the strong- and weak-
coupling limits, respectively, and that all coefficients are
uniquely constrained. For details concerning the method of
construction see Ref. [3]. Note that this is different than the
result originally reported in Ref. [3] in the last term
contributing to the coefficient b. This has been corrected
in an erratum to Ref. [3].
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