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ABSTRACT

This paper proposes a neural network based system for multi-
channel speech enhancement and dereverberation. Speech
recorded indoors by a far field microphone, is invariably
degraded by noise and reflections. Recent single channel
enhancement systems have improved denoising performance,
but do not reduce reverberation, which also reduces speech
quality and intelligibility. To address this, we propose a deep
complex convolution recurrent network (DCCRN) based
multi-channel system, with integrated minimum power dis-
tortionless response (MPDR) beamformer and weighted pre-
diction error (WPE) preprocessing.

PESQ and STOI performance is evaluated on a test set of
room impulse responses and noise samples recorded by the
same setup. The proposed system shows a statistically signif-
icant improvement (p � 0.05) over competitive systems.

Index Terms— speech enhancement, microphone arrays,
deep neural networks, dereverberation, beamforming

1. INTRODUCTION

The field of speech enhancement (SE) has undoubtedly been
revolutionized by deep learning techniques. Now that the
whole world has been forced to adapt to online meetings at
an unseen rate, the topic is also more relevant than ever.

Rapid developments in the related field of automatic
speech recognition (ASR) have inspired many source separa-
tion and denoising systems. However, over the course of only
the past year, Microsoft has organized three SE challenges,
where the focus was on enhancing single channel signals
specifically for human listeners [1, 2, 3]. Additionally, the
challenge ConferencingSpeech 2021 targets multi-channel
speech enhancement for video conferencing [4].

Most results of these challenges are not yet available.
However, top performing systems of the first deep noise
suppression (DNS 2020) challenge, demonstrate remarkable
performance increases with respect to removing additive
noise from speech recordings.

Isik et al. proposed PoCoNet; a 2D UNet (with DenseNet
blocks and self-attention) with small kernels [5]. They also
utilized a semi-supervised method to increase the amount of

training data and investigated the effect of different augmen-
tation techniques. Their proposed system with approximately
50M parameters won first place in the non-real-time track.

Hu et al. proposed the deep complex convolution recur-
rent network (DCCRN) [6]. The DCCRN also follows the
UNet structure, but uses complex-valued convolutional en-
coders and decoders, and LSTMs to model the context de-
pendency. With only 3.7M parameters, the DCCRN models
ranked first for the real-time-track and second for the non-
real-time track. The lower complexity of this network, com-
bined with the fact that it was trained on less data, while ob-
taining such competitive performance, makes it an ideal can-
didate for further research.

However, speech quality and intelligibility is also nega-
tively affected by the presence of reverberance [7, 8]. The
DCCRN system does not attempt to remove reverberance at
all, and PoCoNet only attempted partial dereverberation.

From the field of multi-channel speech enhancement, we
know that there lies a huge potential in relying on multi-
channel signals as input, and in applying beamforming tech-
niques [9]. Heymann et al. proposed a system where a DNN
estimates an ideal binary mask (IBM) to deduce the cross-
power spectral densities of the target speech and noise. These
are then used for beamforming with a generalized eigenvec-
tor (GEV) beamformer [10]. Their system did really well on
the CHiMe-3 challenge for robust ASR, but as their network
estimates the IBM, and not the target signal, performance
is inherently capped. We also observe that, despite its def-
inite merits over earlier single-channel systems, the system
proposed by Heymann et al. struggles to outperform the
single channel DCCRN on our test set, even if we rely on
oracle IBM masks (see Table 2 in Section 5). Erdogan et
al. proposed a similar masked based MVDR system with a
spectrum magnitude based loss [11]. However, their final
system performance was lower.

In this paper, we therefore propose a far-field multi-
channel neural network for simultaneous speech dereverbera-
tion and enhancement that combines the recent advancements
in single channel speech enhancement for human listeners,
with mask based neural beamforming from the domain of
multi-channel speech enhancement. We integrated the DC-
CRN with a minimum power distortionless response (MPDR)
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Fig. 1: Overview of the proposed speech enhacement and dereverberation system. The highlighted WPE and GCC-Phat boxes are only
employed during inference. The red frame contains all blocks with trainable parameters, where each Encoder-Estimator-Decoder structure
represents a single channel DCCRN.

beamformer [12] and added weighted prediction error (WPE)
speech dereverberation [13] to the processing pipeline. As
such, our system crucially differs from the other mask based
beamformering approaches, by relying on a time domain
loss, and having complex spectral input features and complex
network layers. Furthermore, the usage of the MPDR sepa-
rates the steering vector estimation from the mask estimation
process. The proposed system only requires the corrupted
multi-channel speech signal during inference, and as such
does not need estimates of noise statistics, or information on
microphone layout.

We evaluate the system on two highly realistic test sets.
These sets were obtained by combining our own recorded
multi-channel room impulse responses (RIRs) with clean
speech from an open database, and our own multi-channel
noise recordings. The latter were recorded by the same array
placed at the same location in the same room as where the
RIRs were obtained. This setup allows for objective testing
with a clean reference signal, while simultaneously avoiding
the need for synthetic RIRs that would reduce the realism of
the test sets. Furthermore, with this setup we can differentiate
between results for speakers looking directly at the array, and
the more challenging situation where speakers face the array
at a 90◦ angle.

We compare the system to three state-of-the art baseline
systems; i) single channel DCCRN, ii) multi-channel base-
line system of the ConferencingSpeech 2021 Challenge, and
iii) mask based GEV beamformer with blind analytic normal-
ization postprocessing by Heymann et al.

2. THE SYSTEM

2.1. Overview

Figure 1 shows an overview of the proposed system. A multi-
channel noisy and reverberant speech signal x is transferred

to the frequency domain by a short time Fourier transform
(STFT) operation. The resultant signals are fed into the
weighted prediction error (WPE) block for deverberation. A
DCCRN neural net estimates masks for each channel, where
neural network weights are shared across channels (but input
is not). All resultant masks are then combined into a single
mask using the median operator, because of its resilience to
outliers. This mask is then applied to a beamformed result
of the dereverberated signal. Lastly, the enhanced signal is
taken back to the time domain by an inverse STFT (iSTFT).

The beamformer requires time difference of arrival (TDOA)
estimates to obtain an appropriate steering vector. During
training, this information is obtained from the known true
speaker direction. During the prediction stage, this infor-
mation is estimated directly from the WPE’s output, using
generalized cross correlation with phase transform (GCC-
PHAT). As such, the final system only requires the corrupted
signal as input.

The next subsections provide further processing details.

2.2. Short Time Fourier Transform

Adhering to the original DCCRN paper, we use a Hann win-
dow, a FFT length of 512 samples, a window length of 25 ms
(400 samples at 16000 Hz) and a hop size of 6.25 ms (100
samples at 16000 Hz) to obtain a complex-valued STFT [6].

2.3. WPE dereverberation

The idea of WPE is to estimate the reverberation tail of the
signal and subtract it from the observation with a maximum
likelihood approach [13]. We have tested our system with one
iteration (using the Nara-WPE implementation [14]), as this
has been shown to already provide significant benefit, while
multiple iterations quickly become highly time consuming.



2.4. Beamforming

Beamforming is a signal processing technique, where the
channels of a multi-channel signal are delayed, weighted,
and then combined into a single signal that is steered towards
a specific source/direction. Depending on the chosen algo-
rithm, a beamformer can both denoise and dereverberate a
multi-channel signal.

One popular beamformer, is the minimum variance distor-
tionless response (MVDR) beamformer. It requires statistical
noise characteristics, which are particularly difficult to obtain
when the noise is non-stationary as well as mixed with the
signal of interest.

One implementation of the MVDR-related algorithm
avoids this problem, by deriving the distortionless filter for a
specified steering direction that minimizes the mean square
output power, and as such only requires the corrupted input
signal. Although this implementation is often referred to as
an MVDR in the literature, we comply with Van Trees’ prac-
tice of referring to it as the minimum power distortionless
response (MPDR) beamformer for unambiguity [12].

The weights of the MPDR beamformer are obtained as
follows:

wH
mpdr =

vHX−1

vHX−1v
(1)

where X is the spectral matrix of the entire input, and v the
steering vector.

When the steering direction is equal to the desired sig-
nal direction, the MPDR beamformer reduces to the standard
MVDR beamformer [12]. As the target direction is known
during training, we effectively train the algorithm with an
MVDR beamformer. During inference, the target direction
has to be estimated as discussed in Section 2.5.

2.5. GCC-Phat

During inference, one cannot expect the true azimuth of
speakers to be available and once the steering vector starts to
deviate from the signal vector, the performance between an
MPDR and MVDR may differ significantly.

There are many DOA estimation techniques available,
both traditional [15, 16], and neural network based [17]. We
leave the problem of estimating the azimuth largely outside
the scope of this study, but present the results for the final sys-
tem, both for the ideal situation where the speaker azimuth
is known, and for an estimated azimuth using generalized
cross correlation with phase transform (GCC-PHAT) [15].
This method allows us to estimate the steering vector without
needing to provide the microphone layout.

2.6. DCCRN single channel speech enhancement

The DCCRN single channel SE system was first proposed in
[6]. Its goal is to estimate a complex ratio mask (CRM) for the
complex-valued STFT. The DCCRN therefore receives both

real and imaginary information. This in contrast with SE sys-
tems that try to enhance the magnitude of a signal, but rely on
the noisy phase.

The DCCRN network can be structured into three parts:
the encoder, the estimator and the decoder.

The encoder and decoder contain 6 encoder/decoder
blocks each. Each of these blocks consist of a 2D com-
plex convolutional (or deconvolutional) layer, followed by
real-valued 2D batch normalization (BN) and leaky ReLU
activation. Encoder and decoder blocks (with output chan-
nels [32, 64, 128, 128, 256, 256]) are furthermore connected
through skip connections.

The encoder extracts high-level features from the input,
while the symmetric encoder-decoder architecture ensures
that the decoder takes these features (after the estimator
stage) back to the same shape as the input. Skip connections
between encoder and decoder blocks, make that the noisy
input (translated into the corresponding feature spaces), are
available during decoding.

At the estimator stage, the network needs to identify the
desired signal from the noise, to construct a mask like struc-
ture in the encoded feature space. For this, it is important
to leverage long-term contexts, which the DCCRN does with
LSTM layers. The estimator therefore consist of two real val-
ued LSTM layers (not bidirectional, and each with 256 nodes)
followed by a linear layer (1024 nodes). We relied on the po-
lar coordinate masking approach (DCCRN-E).

3. TRAINING

3.1. Setup

We first trained a single channel DCCRN SE model as a pre-
training step. This model also functions as one of the ref-
erence systems. We then initialize the multi-channel system
with the obtained weights.

Both single channel and multi-channel systems were
trained with the SI-SNR loss function [6] and the Adam
optimizer. While the DCCRN model itself has been kept
equal to the original, we made changes to the data synthesis
process, updated to the newer 2021 dataset for training, and
changed the learning rate; all for improved performance. We
used a learning rate of .002, and .0005 during single channel
pretraining and multi-channel fine-tuning, respectively.

3.2. Training Data

3.2.1. Single channel pretraining dataset

The DNS Challenge 2021 speech and noise data was used
during the pretraining stage, but we relied on the ISM-dir
dataset described in [17] for the RIRs. RIRs in this set are
simulated with the image source method (ISM) where speaker
sources are modelled as directive sources with an average
speaker pattern directivity.



For 80% of the time, reverberant speech was obtained
from combining clean speech with a random single-channel
RIR. For the remaining 20%, speech was left non-reverberant.
Noise (always non-reverberant) was then added to obtain the
noisy input of SNR within the -5 to 20 dB range. We trained
the single channel model using reverberant speech as the tar-
get, as training to a clean reference did not improve perfor-
mance.

3.2.2. Multi-channel fine-tuning dataset

For the multi-channel system, also the noise was made
multi-channel and reverberant using synthetic RIRs, but here
sources were modelled as omnidirectional during simulation.
Speech and noise sources were simulated as if from the same
room, but at different random locations. The multi-channel
system was trained to a clean (non-reverberant) target, by
combining above RIRs with the DNS Challenge 2021 speech
and noise.

4. EVALUATION

4.1. Testing setup

We test the performance of our system with PESQ, an ob-
jective measure of speech quality, and STOI, an objective
measure of speech intelligibility. When calulating these
objective measures, it is important to compare to the right ref-
erence signal. A dereverberating system will appear to have
worse performance when a reverberant reference is used, as
it is ‘punished’ for dereverberating the input, bringing the
enhanced output away from the reference it is tested against.
However, the single channel systems from the literature were
tested against the reverberant speech signal. Therefore we
switch from using a reverberant reference signal for the
single-channel system (allowing for fair comparison), to the
clean non-reverberant target for the multi-channel system (to
take the dereverberation into account).

4.2. Testing Data

4.2.1. Single channel test set

To anchor the performance of the single channel SE system
to a known test set, we test it with the DNS Challenge 2020
test set.

4.2.2. Multi-channel test sets

To create realistic multi-channel test data, RIRs were mea-
sured manually with a 9-channel circular array (planar) with
4 cm radius, positioned on a table approximately in the mid-
dle of a typical meeting room. See [17] for further details.
Two types of RIRs were measured: i) speaker facing towards
the array (the ‘Easy’ set), and ii) the speaker rotated at 90◦

away from the microphone (the ‘Challenging’ set).

Obtained RIRs were combined with random speech sam-
ples from ‘NB Tale’, an open Norwegian speech database.
None of the training sets contained Norwegian speech.

Additionally, we recorded typical meeting room like
noises (see Figure 2) in the same room, using the same ar-
ray at the same location, as where the RIRs were measured.
This means that all recordings also contained more general
background noise, like the room’s ventilation system.
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Fig. 2: Sample spectograms of recorded test noises (only the first
channel is shown)

The true DOAs were measured with an uncertainty of ±1◦

at random angles uniformly distributed around the array. As
such, it was also possible to test using the oracle steering di-
rection for the beamformer, which normally isn’t available
during inference.

4.3. Reference systems

We compare results to the performance of three reference sys-
tems from the literature, and an alternative to our proposed
system:

1. ConferencingSpeech 2021 baseline: The multi-channel
SE system described in [4], trained with our own multi-
channel training set.

2. Single channel DCCRN: The pretrained single chan-
nel DCCRN model, where we ignore all but the first
channel of our test data.

3. GEV (oracle IBM mask) with BAN: Mask based
GEV beamformer, where the IBM mask is not esti-
mated by a DNN, but obtained directly from the known
target/noise signals.



4. MPDR (oracle TDOAs) + Single channel DCCRN:
Here the MPDR beamformer (suplied with oracle
TDOAs) is added as a standalone preprocessing step
for the single channel DCCRN.

All of these systems are applied to the noisy signal di-
rectly, or to a signal that has first been preprocessed by a stan-
dalone WPE block.

5. RESULTS AND DISCUSSION

Table 1 shows the PESQ results for the pretrained DCCRN
system. Our single channel system performs on par with
the two winning systems, when looking at PESQ scores for
the non-reverberant test set. Furthermore, the changes to the
training setup give it superior performance on the reverb set,
when compared to the original DCCRN-E, and also possibly
when compared to PoCoNet, depending on the standard devi-
ation of their test scores (not published). From these results
we are confident that our DCCRN acts as a competitive base-
line system for our multi-channel results.

Table 1: Narrowband and wideband PESQ results for the DNS Chal-
lenge 2020 channel dataset. Reverberant signal used as reference.

PESQ nb PESQ wb
No reverb Reverb No reverb Reverb

Noisy 2.16 2.52 1.58 1.82
PoCoNet [5] - - 2.75 2.83a

DCCRN-E [6] 3.27 3.08 - -
Our DCCRN 3.28 3.44 2.76 2.94

aResult without partial dereverberation, for unbiased comparison

Table 2 shows the PESQ and STOI results for the multi-
channel testsets. Generally speaking, we obtain much lower
PESQ scores than those observed in Table 1, despite similar
SNRs in both test sets. This is because we are now calculating
PESQ with respect to the clean (instead of the reverberant)
speech signal.

Independent of the test set used, we see that all enhance-
ment systems benefit from the WPE preprocessing step, even
if for STOI scores the difference isn’t always significant. This
shows that although all systems are trained with reverberant
data, they do not learn to deal with it as effectively as WPE.

The independent two-sample t-test shows that all our three
systems have statistically significant higher performance than
the three reference systems (p � 0.05). This is true, both
when measuring performance in PESQ, or in STOI.

Table 2 furthermore shows that when the speaker is look-
ing at the array (‘Easy’ set), there is no statistically significant
difference in performance, between integrating the MPDR
in the training loop, or simply adding it as a preprocessing
step to the single channel DCCRN. The same comparison
does however find a significant performance difference for
the challenging dataset for the SNRs of 5 and 10 dB. Here
the alternative to the proposed system (where the MPDR is
added as a standalone preprocessing step before the pretrained
DCCRN) performs statistically significant worse (p < 0.05).
This suggest that integrating the MPDR into the training loop,
actually allows the enhancement system to learn information
that makes it better equipped to deal with a speaker looking in
the wrong direction, than the MPDR is capable of on its own,
unless there is too much noise.

The performance decrease from moving from oracle
TDOAs to estimated TDOAs is statistically significant for
lower SNRs, as expected. At low SNRs, the estimated

Table 2: Wideband PESQ and STOI results for the different multi-channel datasets. Clean signal used as reference. Best scores per SNR are
shown in bold, where multiple highlighted values indicate that the difference was not statistically significant.

Easy (looking towards array) Challenging (looking away at a 90◦ angle)
WPE PESQ wb STOI PESQ wb STOI

SNR [dB] 0 5 10 0 5 10 0 5 10 0 5 10

No enhancement No 1.25 1.33 1.39 0.69 0.72 0.74 1.22 1.29 1.35 0.60 0.62 0.63
Yes 1.33 1.44 1.56 0.72 0.76 0.78 1.27 1.36 1.46 0.18 0.66 0.68

ConferencingSpeech No 1.33 1.36 1.48 0.68 0.72 0.73 1.27 1.31 1.41 0.59 0.61 0.62
2021 baseline [4] Yes 1.40 1.46 1.63 0.71 0.75 0.77 1.33 1.39 1.52 0.63 0.66 0.67
Single channel DCCRN, No 1.46 1.49 1.51 0.73 0.75 0.75 1.41 1.44 1.46 0.64 0.64 0.65
by Hu et al. [6] Yes 1.64 1.71 1.76 0.77 0.78 0.79 1.55 1.61 1.66 0.68 0.69 0.70
GEV (oracle IBM mask) with No 1.48 1.59 1.60 0.77 0.78 0.79 1.41 1.46 1.52 0.61 0.66 0.67
BAN, by Heymann et al. [10] Yes 1.58 1.75 1.80 0.78 0.80 0.81 1.49 1.58 1.67 0.68 0.69 0.71
MPDR (oracle TDOAs) No 1.68 1.73 1.76 0.80 0.81 0.81 1.54 1.59 1.62 0.71 0.72 0.73
+ Single channel DCCRN Yes 1.89 1.98 2.04 0.81 0.82 0.83 1.71 1.79 1.85 0.74 0.74 0.75
Proposed system No 1.68 1.86 1.88 0.80 0.82 0.83 1.61 1.73 1.78 0.75 0.76 0.77
(oracle TDOA) Yes 1.80 2.02 2.06 0.80 0.83 0.83 1.74 1.89 1.94 0.76 0.77 0.78
Proposed system No 1.60 1.80 1.85 0.78 0.81 0.82 1.50 1.62 1.69 0.72 0.73 0.75
(estimated TDOAs) Yes 1.74 1.95 2.04 0.79 0.82 0.83 1.63 1.79 1.88 0.73 0.75 0.77



TDOAs are more likely to cause the MPDR to point to-
wards the noise, and this even more likely to happen when
the speaker is not looking at the array, weakening the direct
signal. However, the TDOA estimation method used, leaves a
lot of room for improvement to bring the performance closer.
As such, it is very promising that the effect size of the perfor-
mance degradation is this limited. It establishes the MPDR
beamformer as a valid candidate for speech enhancement, es-
pecially for challenging noise types where the noise statistics
are difficult to estimate.

6. CONCLUSION

We proposed a neural network-based system for multi-
channel speech enhancement and dereverberation, based
on WPE dereverberation, the MPDR beamformer and the
DCCRN denoiser. The proposed model outperforms state
of the art reference systems with respect to speech quality
as measured with PESQ and speech intelligibility measured
with STOI.

Future work will include improving the estimation of
TDOAs by investigating other methods, and exploring oppor-
tunities within the system. Furthermore, we plan to evaluate
the systems subjectively.
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