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Abstract
Cancer is one the most prevalent human diseases. The scientific community has devoted

considerable efforts to understand the mechanisms behind this disease and search for treatments that
promise a better quality of life for patients. To accomplish this goal, Biology and Medicine have
joined forces with Computer Sciences, using the power of Computational modeling, Mathematics,
Machine Learning and Statistics. This interdisciplinary effort to address the cancer problem,
constitutes the basis upon which this thesis was formed. We present several contributions to this
effort, consisting of software, data analyses and mathematical investigations, which have enabled
the more efficient curation of biological knowledge, the use of computer models to prioritize drug
treatments for cancer and the derivation of molecular mechanistic insights from the simulation
results.

In order to build a computational model of a biological system such as a cancer cell, we
first need a way to describe the structure of such a system. A common network-based approach
provides an elegant representation of such a structure, where molecular entities such as proteins and
genes are connected to each other via causal interactions, which in turn determine cellular behavior
and the functional properties of the cell as an integrated system of individual components. These
interactions form the Prior Knowledge Network (PKN), which serves as the basic building block
for most computational biological models. Nonetheless, several challenges exist, even at this early
stage of the modeling process.

The first problem is that biological information by its very nature is largely complex, and
therefore its formalization to a structured, computable form for use in modeling applications,
demands extra attention. The translation of scientific knowledge from publications into such a
computable form is achieved with the use of specialized software tools and is the main responsibility
of biocurators. In order to help biocurators be more efficient in their annotation tasks, we proposed
the Visual Syntax Method (VSM) as an alternative approach for general-purpose knowledge formal-
ization. In particular, we implemented a user interface component (VSM-box) that enables curators
to annotate any type of information, no matter its complexity, and translate it into an intuitive, flexible
sentence-like format. This software was used to build a prototype curation interface (CausalBuilder)
for the annotation of molecular causal interactions, which constitute the cornerstone of a model’s
PKN.
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The second problem concerns the availability and ease of access of causal molecular interac-
tion data for modeling or other scientific endeavors. A standard format for the representation of such
signaling information was developed (CausalTAB), and we supported the export of the causality
statements from CausalBuilder’s interface to this format. But there exist several other molecular
interaction databases that could update their data to fit the new CausalTAB standard. PSICQUIC is a
web-service platform that was initially built so that users can conveniently fetch in a standard way
molecular interaction data from different sources. We extended PSICQUIC to incorporate the new
CausalTAB format, so that causality-enriched information generated by our curation prototype tool
or from other data providers could be shared through a common channel.

A third major problem arose during the design process of the VSM-box and its application,
CausalBuilder. Behind the scenes, the curator interface has to communicate with a large number
of diverse biological data resources, each with its own online API service that provides access to
the respective data. In order to present to the user the available terms that pertain to a specific
annotation of interest, a uniform way to query all these resources was needed. This prompted us to
build the Unified Biological Dictionaries (UBDs), a software suite that provides a unified gateway
for life science data, helping users retrieve the right query terms. In addition, curators sometimes
come across new knowledge that is not yet available through the standard authoritative resources.
To address this related problem, we connected UBDs with PubDictionaries, an online resource of
simple dictionaries, allowing curators to publicly create and share ad-hoc terms, and further use
them as annotations in VSM-based applications.

After the signaling information has been curated and the causal interactions assembled to
form the PKN, we then need to specify the mathematical equations of the cancer cell model. This
allows us to describe and analyze its dynamical behavior subject to external stimuli, such as drug
perturbations. The modeling approaches can in general range from qualitative to quantitative and in
this work we focused on Boolean modeling, where signaling components are assigned either an active
or inactive state. An automated computational pipeline was developed to produce an ensemble of
Boolean models from a PKN, calibrated to a specific cancer cell signaling phenotype. These models
are then analyzed to suggest possible synergistic drug combinations and the results are compared
with experimental findings, where all possible combinations are tested in a high-throughput screen
setup. We demonstrated that our pipeline could prioritize specific drug combinations, reducing
the number of drugs that need to be tested in experiments, before a viable treatment is found for
a patient. Moreover, several analyses indicated that our models can be used to derive mechanistic
insights about the diseased model and generate novel biological hypotheses. Lastly, we showed the
significance of the PKN quality, where even small modifications to the cancer signaling network
could severely affect our pipeline’s drug prediction performance.
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To exploit the range of parameterizations present in the Boolean models produced by our
pipeline, we devised several strategies to split and compare the different models in a dedicated
R package (emba). This supplementary effort allowed us to find potential biomarkers, which
are nodes whose state is decisive for the global behavior of the models and can indicate parts of
the PKN that are responsible for a drug combination to be synergistic. Additionally, we noticed
particular patterns in the way specific equations always correspond to specific signaling states in
our models, so we more deeply investigated the influence of the choice of parameterization on the
output behavior of these nodes. This led us to propose a list of Boolean function metrics that can
assist modelers in choosing more appropriate equations, meaning those that are consistent with the
regulatory information present in the PKN and whose expected output better matches experimental
observations. Finally, results from a study of diverse Boolean functions indicated that these also
exhibit diverse output behaviors, with some being highly biased towards specific Boolean outcomes
while others depending more on the ratio between positive and negative regulators, as these are
derived from the two distinct types of causal interactions present in the model’s PKN.

ix



x



Paper list

Primary

Papers that I am first author:

• Paper 1: UniBioDicts: Unified access to Biological Dictionaries
Zobolas, J., Touré, V., Kuiper, M., & Vercruysse, S. [1]

SV and VT identified the need for software to connect with the resources listed in MI2CAST
used in the CausalBuilder tool. JZ implemented the software and wrote the manuscript. All
co-authors revised and provided inputs to the manuscript.

• Paper 2: Linking PubDictionaries with UniBioDicts to support Community Curation
Zobolas, J., Kim, J.-D., Kuiper, M., & Vercruysse, S. [2]

MK and SV developed the original idea for this project. JZ wrote the application for a
BioHackathon project and invited JDK to collaborate. JZ implemented the client side, JDK
the server side. JZ wrote the manuscript. All co-authors revised and provided inputs to the
manuscript.

• Paper 3: Fine tuning a logical model of cancer cells to predict drug synergies: combining
manual curation and automated parameterization2

Flobak, Å., Zobolas J., Vazquez M., Steigedal T., Thommesen L., Grislingås A., Niederdorfer
B., Folkesson E., Kuiper M.

AF designed the project, developed initial software and executed experiments. JZ extended
the software, ran all simulations, produced and analyzed results. AF and MK added biological
interpretation and wrote the manuscript. JZ provided various inputs and text to the manuscript.
TS, LT and AG helped AF with experiments. MV developed prototype software. BN and EF
did curation work and performed experiments.

2(Manuscript) Shared first co-authorship, to be submitted to the Molecular Systems Biology Journal

xi



• Paper 4: emba: R package for analysis and visualization of biomarkers in Boolean model
ensembles
Zobolas, J., Kuiper, M., & Flobak, Å. [3]

AF developed the idea of this project. JZ wrote the software and the manuscript. All co-authors
revised and provided inputs to the manuscript.

• Paper 5: Boolean function metrics can assist modelers to check and choose logical rules3

Zobolas, J., Monteiro, P. T., Kuiper, M., & Flobak, Å. [4]

JZ designed this project and wrote the manuscript. PTM and AF provided feedback and ideas
to better shape the content of the manuscript. All co-authors revised and provided inputs to
the manuscript.

Additional

In the following papers I have contributed to the underlying software and manuscript text:

1. VSM-box: General-purpose Interface for Biocuration and Knowledge Representation
Vercruysse, S., Zobolas, J., Touré, V., Andersen, M. K., & Kuiper, M. [5]

2. CausalBuilder: Bringing the MI2CAST Causal Interaction Annotation Standard to the Curator
Touré, V., Zobolas, J., Kuiper, M., & Vercruysse, S. [6]

3. CausalTAB: the PSI-MITAB 2.8 updated format for signalling data representation and dis-
semination
Perfetto, L., Acencio, M. L., Bradley, G., Cesareni, G., Del Toro, N., Fazekas, D., Hermjakob,
H., Korcsmaros, T., Kuiper, M., Lægreid, A., Lo Surdo, P., Lovering, R. C., Orchard, S.,
Porras, P., Thomas, P. D., Touré, V., Zobolas, J., & Licata, L. [7]

3(Preprint) To be submitted to the Journal of Theoretical Biology

xii



Abbreviations

abmlog All possible Boolean Models Link Operator Generator
AGS Gastric Adenocarcinoma (cell line)
API Application Programming Interface
AUC Area Under the Curve
BioPax Biological Pathway Exchange

CASCADE CAncer Signaling CAusality DatabasE
CNA Copy Number Alterations
COVID-19 COrona VIrus Disease 2019
Drabme Drug Response Analysis to Boolean Model Ensembles
emba Ensemble (Boolean) Model Biomarker Analysis

Gitsbe Generic Interactions To Specific Boolean Equations
GO Gene Ontology
GREEKC Gene Regulation Ensemble Effort for the Knowledge Commons
HPC High Performance Computing
HUPO-PSI HUman Proteome Organization - Proteomics Standards Initiative

IMEx The International Molecular Exchange Consortium
MI2CAST Minimum Information about a Molecular Interaction CAusal STatement
MIQL Molecular Interactions Query Language
MITAB Molecular Interaction TABular format
ODE Ordinary Differential Equation

PDE Partial Differential Equation
PKN Prior Knowledge Network
PPI Protein-Protein Interaction
PRC Precision Recall Curve
PSICQUIC Proteomics Standard Initiative Common QUery InterfaCe

ROC Receiver Operating Characteristic
SBGN Systems Biology Graphical Notation

xiii



TAMs Tumor Associated Macrophages
TF-TG Transcription Factor - Target Gene
UBDs (UniBioDicts) Unified Biological Dictionaries

UMAP Uniform Manifold Approximation and Projection (for dimension reduction)
VSM Visual Syntax Method
WC Whole Cell (modeling)
XML Extensible Markup Language

xiv



Summary

One for all

Scientific and technological progress has been the foundation for some of the most astounding
achievements of humankind. In the last century in particular, discoveries were made that contributed
to the sustainable development of the economy and society, affecting our lives in an unprecedented
manner and making possible what was considered impossible. The invention of the digital computer
and the Internet for example, revolutionized the access, dissemination and analysis of information
[8,9]. We have been to the Moon, a breakthrough that has opened up the possibilities of space
exploration and interstellar travel. The industrial revolution of the latest century has enabled us to
design machines for every conceivable need. Human well-being has become significantly better:
compare a middle class household and the appliances within, with one from 60 years ago. With
a higher standard of living and the ongoing efforts to alleviate hunger, poverty and inequality on
a global scale, people have started caring more about the planet, paving the way for sustainable
economic and environmental growth [10]. Due to advancements in Biology and Medicine, the
application of public health interventions such as vaccinations and hygiene measures has become
common practice, causing a rapid increase in the global life expectancy during the last century
[11]. The genome-editing technology CRISPR [12] has enabled the discovery of new therapeutic
solutions for a variety of genetic diseases and has been beneficially used in several agriculture and
plant biotechnology applications [13]. The list of achievements is truly endless and all the data
points to the fact that the world is getting better [14].

There are three factors that have made technological progress possible. Firstly, every human
innovation is based on basic scientific research, without which the development of new technologies
would have been impossible. Secondly, society is developing new contracts with science [15],
where researchers can only be trusted to continue their work (and get funding for it), if they tackle
real-world problems and produce knowledge characterized by a fully transparent and participative
spirit. Practically, this means that better communication skills are a necessity for today’s scientists
and that their research should have translational potential to deliver on society’s expectations. But
solving these real-world problems is incredibly hard, and so, they cannot be addressed by applying
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knowledge from specific fields only, e.g. either from the Computer or the Biological Sciences
alone. This brings us to the third factor: in order for science to deliver on its promises to society,
collaboration across fields of science is the only way forward.

Medicine, from research to develop new therapies up to delivering the actual product or
services to the patients, constitutes the perfect example that encompasses all three reasons that have
enabled progress to transpire in its domain. It first starts with a real-life problem: people get sick.
The existence of diseases is a societal problem and a hard one at that, since people usually lack the
necessary knowledge or the means to deal with it on their own. They have in fact exchanged some of
their freedom to have a place in society, and ensure that they receive proper treatment when needed
(along with other forms of security, access to free education, etc.). To manage such a complex
problem, society provides healthcare services, which have significantly increased across the world
in recent years [16]. For most people, the single most applied healthcare interaction is the use of
drugs, prescribed by medical doctors. Drugs are the translational product of the pharmaceutical
industry, which is the result of basic interdisciplinary research. Medical doctors alone wouldn’t be
able to find the cause and understand the mechanisms behind many of the diseases that exist today.
This knowledge has been the culmination of years of scientific knowledge, built atop collaboration
across fields, from Medicine and Biology to Computer Science and Engineering.

So, only by using every possible method and knowledge at our disposal and by working
together, we can achieve the solution to complex problems such as human diseases. When these
conditions are met, societal challenges can be addressed and science stands as one unified body for
the good and progress of all mankind. The field of Systems Medicine has been the direct embodiment
of this notion, promising improved prevention, prognosis, diagnosis and treatment of patients via an
integrative, interdisciplinary approach [17].
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Dots and lines

One of the simplest ways to conceptualize complex systems, either man-made or existing
freely in nature, is using the notion of a network or graph. The idea is that any system is composed of
individual entities or components of interest (nodes) and these components interact with each other
in various, usually non-obvious ways (links). These two properties, namely having some objects to
study, and relationships between these objects, form the basis for the conceptualization of a network
(Figure 1). From a cognitive point of view, the conceptualization of a network manifests as a visual
representation in our brain, consisting of a bunch of dots (nodes) connected with numerous lines
(links) [18]. Such a projection is usually close to what people instinctively draw on paper when they
attempt to describe their knowledge about a system and its inner workings (thereby “connecting the
dots”). Simple schematics that are abstractly similar to dots and lines, along with further contextual
information (e.g. node labels, coloring, directed links, etc.), seem to be able to capture and render
information derived from our thought processes, in a unique and comprehensible way.

Figure 1: Two examples of networks, composed of dots and lines. The left network is a random graph based on the
Erdős–Rényi model [19] and the one on the right is created using the preferential attachment principle that characterizes
scale-free networks with hub nodes, such as the World Wide Web [20].

Since studying complex systems falls intro the domain of science’s responsibilities, and
graphs seem to be an intuitive way of representing such systems, the emergence of a new field
called network science was inevitable [21]. Its purpose is to establish a unified set of tools and
methods to study the properties of any type of network that emerges across disparate fields. A
variety of software tools for network visualization and analysis have been released throughout
the years, ranging from generic-purpose [22–25], to tools more suitable for studying biological
[26–29] or social networks [30,31]. The use of such tools enables the discovery of fundamental
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laws that characterize the function of systems represented by networks. In addition, it allows
us to study in detail the networks’ systemic structure and derive key principles that drive their
evolution and emergent behavior. Anthropological research for example uses network theory to
study people and their relationships, and explain emergent complex phenomena such as human
behavior. Neuroscience uses network analysis methods to detect anomalies in diseased human brains
[32]. The impact of online social networks is studied to understand and predict future personal and
profit-oriented communication (online marketing) [33]. Epidemiologists use graph-based methods
to model the spread of diseases like COVID-19, predict the future course of outbreaks and evaluate
strategies to control epidemics [34]. Molecular biologists study intra- and intercellular signaling
networks to understand the mechanisms behind biological processes and investigate the causes
of network dysregulation, often leading to the emergence of particular disease phenotypes. Such
network-based approaches have significant clinical applications since they have the potential to
assist in the discovery of new disease genes and modules, and the identification of drug targets and
biomarkers for complex diseases [35].

The work presented in this thesis is heavily based on this network medicine paradigm,
with causal molecular interaction networks as the main object of study. Our primary focus is on
protein-protein interaction (PPI) networks, with proteins as nodes and their physical contacts and
interactions as links, and gene regulatory networks, represented for example by directed regulatory
relationships between transcription factors and genes (TF-TG networks). These types of networks
demonstrate a system of signal transduction pathways connected by crosstalk and embedded in
feedback loops, forming what is known as the Prior Knowledge Network (PKN). The causality
property of the PKN stems from the fact that the network links are directed (i.e. protein X affects
protein Y) and signed (Y is inhibited or activated as a result). It is exactly this causality information
that allows the investigation of behaviors from a systems perspective. Such networks form the basis
for the study and computational modeling of cancer, which is another subject of investigation in
this thesis. In the subsequent chapters, we will discuss how we addressed problems related to the
formalization, access and public sharing of the knowledge encoded in the PKN.
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Knowledge from a stack of papers

Where does the information that is used to build knowledge networks originate from? One of
the most widely adopted ways to record and share knowledge, has been the publication of scientific
findings in specialized journals. This has resulted in a major challenge that researchers in the life
sciences face, which is to stay updated with the huge amount of information that is published on a
daily basis (Figure 2). It becomes impossible for the average scientist to find, read, extract and use
that information in an efficient manner without the use of databases. Even when using databases,
one is often confronted with both chronically incomplete knowledge, and also a lack of sufficient
contextual information to assess when exactly the knowledge is valid.

Figure 2: Human vs Life-Science Literature. How can humans stay up-to-date with increasing knowledge stored in PDF
files? [36]

A severe problem lies already at the data entry stage. Biocurators are people whose main
task is to read the scientific literature and translate knowledge into a precise, computable form,
ready to be inserted into databases [37,38]. The huge body of literature existing today is full of
inconsistencies and inaccuracies, so expert interpretation and annotation are essential. But current
databases are limited in what they can contain, because there exists no easy way to properly transfer
all kinds of complex knowledge or ideas into them, in the first place. Moreover, the annotation
tools that biocurators use are not intuitive nor flexible enough to be used by large crowds of people,
to convert vast amounts of relevant knowledge from the scientific literature into the respective
databases. The insufficient funding to curate scientific results into databases, and the cost of creating
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a new knowledge base for every new project, are some extra confounding factors. Because of this,
researchers all over the world have to spend considerable time performing ad-hoc manual curation
of publications that are relevant for their project, often with improvised approaches (Word, Excel).
At best they also spend time developing a specialized curation platform or computational methods to
extract knowledge, which can only capture a fraction of the “actual reported truth” [39]. Nonetheless,
all these efforts form a significant part of the scientific enterprise, assisting in the creation of digital
knowledge repositories, which are subsequently used to build PKNs for the computational modeling
of biological processes.

A list of tools have been created to assist biocurators in their annotation tasks. Notably,
the IntAct editor is an open-source desktop application software that enables IntAct curators and
members of the IMEx consortium to annotate molecular interactions [40]. Because of the lack of
installation instructions and documentation, coupled with a complex interface, specialized training
from senior IntAct curators is required to learn how to use this software. Nonetheless, it is one of
the most used and effective tools for the job, since it has been around for a lot of years and during
that time, there has always been a spirit of close collaboration between developers and curators to
implement features, solve bugs and in general improve the annotation capabilities of the software.
Canto is another tool that was built to support community curation in the PomBase fission yeast
database [41]. It has now expanded its original purpose to support curation of other model organism
databases and different molecular data types (e.g. annotation of a larger set of GO terms). Canto’s
respective website provides extensive documentation and step-by-step user guidance throughout
the annotation procedure [42]. A user management mechanism is incorporated in the software
so as to allow proper monitoring of curation tasks and efficient communication between curators
for work prioritization. In addition, two relatively new tools have been developed for the curation
and visualization of molecular interaction maps: NaviCell [43] and MINERVA [44]. These tools
facilitate knowledge exploration in addition to knowledge annotation, allowing for an interactive
user experience (e.g. feedback via comments), enabling content sharing, supporting well known
data standards (e.g. SBGN [45]) and thus allowing for data interoperability and re-use. All the
aforementioned annotation tools are limited by the fact that they are not generic enough to curate
any type of information, with most of them representing specialized solutions pertaining to specific
annotation purposes. Most tools require extra technical configurations and software to include
additional levels of contextualized details required for current and future curation efforts.

6



To obtain support from computational pipelines that will help us process vast amounts of
knowledge and advance our understanding of processes in nature, we must be able to efficiently
annotate and store information that is highly detailed and contextualized. Hereby, the knowledge’s
inherent complexity should be kept manageable and understandable by humans and machines alike.
In order to accommodate for a much more powerful, flexible, and reusable annotation process, an
intuitive curation and knowledge formalization method was developed, called VSM (Visual Syntax
Method) [46]. VSM enables scientists to capture any type of knowledge with any type of contextual
information, in a way that is understandable by both humans and computers.

Part of the work in this thesis has been to assist in the implementation of a software
module that implements VSM as a general-purpose, web-based user interface, named VSM-box
[5]. This software component was used to build CausalBuilder, a prototype curation interface for
the annotation of causal molecular interactions [6]. CausalBuilder uses VSM to generate concrete,
customizable templates that represent causal statements. It supports the export of the annotated
statements in standard signaling formats, such as CausalTAB [7], which can be stored in relevant
databases or used to build computational models of biological processes. To support the large
variety of contextual information related to causal molecular interactions between biological entities,
allowing for a finer disambiguation between seemingly similar or conflicting causality statements
(e.g. a transcription factor simultaneously up and down regulating a target gene in different cellular
contexts), CausalBuilder was designed to comply with a list of guidelines (MI2CAST) that were
developed exactly for this purpose [47]. All in all, CausalBuilder provides biologists and curators
with a simple user interface for the annotation of causal regulatory knowledge, translating highly
contextual information about molecular interactions from scientific publications to a computable
form.
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Biological Dictionaries aid in the curation of complex knowledge

During the design process of the VSM-box tool and its application, CausalBuilder, we came
across a critical technical issue that needed to be addressed, and whose resolution had ramifications
outside of the intended scope of our work. Due to the high degree of complexity within the domain
of biology, biocurators need to annotate diverse information, taken from a plethora of biological
resources and vocabularies. To enable a wider expressiveness in the annotation of causal statements,
the recommended list of ontologies and vocabularies of the MI2CAST standard had to be rather
extensive [48]. Since CausalBuilder conforms to the MI2CAST standard, a unified way to retrieve,
format and display vocabulary terms from different databases was needed. We illustrate this with an
example: in Figure 3, a simple VSM-template that a curator can use to annotate a causal statement
with CausalBuilder is shown. Following the MI2CAST guidelines, the source entity of the causal
statement (first box in Figure 3) must always be specified and a list of recommended resources
where the annotation could potentially originate from is provided [48]. We limit the number of these
resources to three in this example, making it so that the source biological entity can be annotated as
a protein (from UniProt [49]), a complex (from Complex Portal [50]), or an RNA transcript (from
RNAcentral [51]). The intended use case is that the curator will type in a string (e.g. “tp53”) and a
list of terms and descriptive metadata from the three respective standard databases will be returned.
This information can be displayed by VSM-box in an autocomplete drop-down menu to ease the
selection of the appropriate term by the curator.

Figure 3: Querying multiple data resources using the VSM-box technology in CausalBuilder. The user enters a string
of interest and selects a list of resource types (not shown here) for the source entity, following the MI2CAST curation
guidelines. The UBDs stand as a hidden translator between the query launched from the curator interface and the
respective database data, returning a list of uniformly-structured matches, shown as a drop-down list to the user. The
matches consist of a curator-friendly main term (shown in blue) and metadata like identifier, name of species, textual
description, resource name etc., that a user can use to disambiguate between the different concepts.
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We can now clearly state the heart of the problem: the resources that offer protein, RNA
and multiprotein complex data, have different online APIs to serve their information, and it is
usually structured in diverse formats. Therefore, it was necessary to design a generic solution that
would translate all the necessary information from the recommended resources of the MI2CAST
standard into a unified representation schema. Then, we could implement modules that “talk” to
the databases and translate the provided information into this uniform data format. As a result
of having a standardized way to represent data from various disparate resources, VSM-box and
other curation tools could easily process the returned data load and create drop-down menus to
help users in their annotation tasks (as shown in Figure 3). The outcome of all this effort was
the implementation of UBDs (Unified Biological Dictionaries, see Paper 1). The reason for the
name dictionaries originates from the abstract data type called associative array (also known as
map or dictionary), which is a collection of (key, value) pairs, and is an integrated feature of many
programming languages. For our application, we reasoned that the minimum information that is
needed for the unique identification of concepts for curation tasks is a computer-friendly ID and a
human-friendly term, precisely matching the key and value of the associative array’s data structure.

An unforeseen consequence of the UBDs implementation was that by covering most of
the vocabularies and ontologies recommended by the MI2CAST standard, we ended up mapping
into a unified format a large amount of diverse terminologies across life sciences. This happened
because our solution encapsulated and extended other similar efforts, such as the BioPortal [52] and
EBI Search [53] web services. We therefore managed to bring even more biomedical ontologies
and biological data resources under one umbrella, and subsequently increase the accessibility,
interoperability and reusability of the provided data [54]. So, even though UBDs main user is
the software engineer building curation tools (as we were at the beginning of this effort with
CausalBuilder), several computational researchers can benefit from our implementation, if they need
to query disparate biological resources for lightweight information (i.e. terms, identifiers and some
metadata) using a single programmatic interface. In the end, the feedback we got from biocurators
who tested the CausalBuilder tool was very encouraging, pointing out that we had proceeded in the
right direction with our efforts to build UBDs, the hidden machinery enabling all the autocomplete
“magic” to happen in VSM-box’s user interface.

The implementation of UBDs put us in a position to confront problems that biocurators face
during their annotation tasks, which haven’t yet been properly addressed by any existing technology.
One of these challenges is that biocurators often need to annotate terms in a specific domain or novel
field, for which there is still no authoritative database or ontology nor a community consensus about
the respective terminology [55]. A similar challenge manifests when new knowledge is discovered
or similarly, further contextual information related to existing knowledge comes into light, as a
result of scientists’ constant drive for progress. This eventually leads to the constant refactoring of
ontologies and identifiers, subsequently making biocurators life even more difficult. To respond
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to these challenges, biocurators create project-specific, ad-hoc vocabularies that are not openly
accessible and usually become obsolete after some time passes. We reasoned that with the UBDs
infrastructure in place, we could do better.

In summary, the core of the problem is two-fold: first, biocurators need a simple way to
annotate new information that does not yet exist in any resource and second, this information
needs to be shared publicly for further review and management by expert communities. To tackle
this problem, we collaborated with experts from PubDictionaries, an online repository of publicly
accessible and editable dictionaries [56]. Using the online interface of PubDictionaries, curators can
create simple dictionaries, consisting of terms and identifiers of their own choice, solving the second
part of the problem. Additionally, by updating the PubDictionaries API and connecting all existing
and future public dictionaries with UBDs and their underlying unified format, we streamlined their
use in annotation tools and solved the first part of the problem. The technical work was carried out
during an intense hacking week at the ELIXIR Biohackathon 2021 event and the implementation
details are described in Paper 2 of this thesis. As a final result, we showcased a demo in which
curators could use their public, ad-hoc terminologies from PubDictionaries, to annotate a simple
sentence using the VSM-box interface.

10



Sharing causal interactions with PSICQUIC

Defining standards is a very important initiative across scientific disciplines, since it facilitates
the accessibility and sharing of information amongst data users as well as the interoperability of
software tools that produce or process the respective data, thereby increasing the quality of research
findings [54]. Following this logic, after the curation of causal molecular interactions from scientific
literature has been achieved, the next step is to store this information to a standard data format. One
of the most detailed, community-standard formats for representing molecular interaction data is
the PSI molecular interaction (MI) XML format, released by the Human Proteome Organization
Proteomics Standards Initiative (HUPO-PSI) [57]. The newest version of this standard is the PSI-MI
XML 3.0 [58]. A simplified format for interaction data was provided by the same organization, called
the Molecular Interaction Tabular format (PSI-MITAB). PSI-MITAB has become popular amongst
the scientific community since it is more user-friendly and Microsoft Excel-compatible, compared
to the respective XML-based format [59]. PSI-MITAB version 2.7 in particular, encapsulated many
details of interest regarding a molecular interaction in a total of 42 columns, but it did not include
information about its causality. This resulted in an effort to standardize the signaling information and
subsequent vocabulary terminology for causal molecular interactions, originally led by SIGNOR’s
database curators [60]. The new PSI-MITAB version 2.8 (also called CausalTAB), included four
new columns to incorporate additional details related to a molecular interaction’s directionality
(defining the biological roles of the regulator and target, one column each), regulatory mechanism
(e.g. indirect causal regulation or post-translational modification) and resulting effect (up or down
regulation of the target) [7].

After having a signaling data format for molecular interactions in place, the next challenge
was to find a way to share such information efficiently. The heart of the problem was the same even
without the addition of causality information: a large number of molecular interaction databases
exist, each one with different APIs to access the respective data. Since no single database can
incorporate the totality of molecular interactions pertaining to a specific biological system of interest,
users have to collect data from diverse databases by launching queries in different websites or by
directly downloading the respective files, which might not always be offered in standardized formats.
To ease the computational access and retrieval of molecular interaction data from various resources,
a web service with a common query interface (PSICQUIC) and language (MIQL) was developed
[61]. Using the PSICQUIC web service, users can now download all relevant data files from their
databases of interest in different PSI-MI compliant formats, suitable for further analysis (Figure 4).

11



Samples

Observation Variation

Publications

Interaction
Databases

PSICQUIC
Services

......

......
......
......

PSICQUIC PSICQUIC PSICQUIC

User

PSICQUIC
REGISTRY

PSICQUIC
View/Client

Figure 4: PSICQUIC architecture. Molecular interaction knowledge about a biological system, supported by different
experimental methods, is being reported in publications. Each of these publications reports part of the actual truth
about the studied system. This knowledge is curated from the respective publications and inserted to diverse molecular
interaction databases. The databases share their data in standard formats (e.g. PSI-MITAB) via the PSICQUIC web
service and are part of a registry list. Users launch queries via a PSICQUIC web client to retrieve the distributed
molecular interaction data and synthesize the complete observed knowledge of the studied system, suitable for further
analysis and visualization.

With a new signaling data format established by the relevant scientific community and the
PSICQUIC web service contributing to the accessibility of molecular interaction data, the next
step was to support the PSI-MITAB 2.8 format in PSICQUIC. A software project to extend the
PSICQUIC platform and include causality information of molecular interactions was thus formed.4

Our contribution to this effort was the development of the underlying PSICQUIC software (version
1.4) that indexes CausalTAB files provided by the respective data providers, enabling the query

4This project was funded by the GREEKC (Gene Regulation Ensemble Effort for the Knowledge Commons) COST
action (https://www.greekc.org/) and was realized as a Short Term Scientific Mission (STSM) in cooperation with
engineers from the IntAct team at the European Bioinformatics Institute (EBI).
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and subsequent download of causality-enriched interactions. The PSICQUIC View website source
code was updated to show the four new columns in the HTML table results. Additionally, several
clients that enable programmatic access to the distributed signaling data (written in Java, Python
and Perl programming languages), were refactored to comply with data fitting the new standard
format. Lastly, the relevant PSICQUIC documentation was improved and reformatted to enhance
user readability [62].

The aforementioned development effort spurred a series of actions that led to several im-
provements in the PSICQUIC platform. The Molecular Interactions Community, is an open source
community providing tools, standard formats, ontologies and modules for manipulating molecular
interaction data [63]. For example, some of these modules are used to read and write PSI-MITAB
files across different versions. Since these modules had not been updated for years (showing signs
of software rot [64]), we had to refactor the codebase and add tests to ensure its future reliability
and quality. In the end, even though we managed to complete the task and support CausalTAB in
PSICQUIC via updating these modules, the need to replace them with a newer library was imminent.
JAMI is such a library, integrating all standard molecular interaction data formats such as the PSI-MI
XML and PSI-MITAB, into a unified implementation, hiding the complex details of each format
from the developers and thereby making their work easier [65]. The implementation work was
initiated in a GREEKC workshop [66] and continued during the first ELIXIR BioHackathon in Paris
[67]. Upon finishing the support for CausalTAB in JAMI,5 we provided the first PSICQUIC service
indexing SIGNOR’s CausalTAB data at the time, made available through a development server [68].

During the ELIXIR BioHackathon, the architecture details of a new cloud-based, distributed
PSICQUIC service were discussed and documented for future development efforts. The goal is to
enable the data providers to upload their molecular interaction data in a fully automated process
and add support for data validation. This service will minimize the long-term commitment and
maintenance from the data providers, which they cannot always afford (e.g. deployment of the server
hosting PSICQUIC). Another outcome of the BioHackathon was the draft implementation of a new
PSICQUIC View interface, aiming to modernize and update the current web application used to
access PSICQUIC [69]. Further work needs to be done to import and use newer technologies in
the interface, which will result in better filtering and sorting of the HTML table results and more
interactive, graph-based visualizations of the PSICQUIC data. To broadly facilitate the sharing of
causal interaction data, additional development efforts are needed, in particular towards improving
existing PSICQUIC clients. One such example is the PSICQUIC Universal Client, a Cytoscape app
for querying multiple PSICQUIC-compliant interaction data services from a simple user interface
[70]. This client has been used in tutorials to guide novice users in the visualization and analysis of
molecular interaction networks [71]. Lastly, two more clients that need to be updated to support

5During the GREEKC Marseille Hackathon 2019 event, see more info on the project here: https://github.com/GRE
EKC/hackathon-marseille/tree/master/project_descriptions/causal_psicquic

13

https://github.com/GREEKC/hackathon-marseille/tree/master/project_descriptions/causal_psicquic
https://github.com/GREEKC/hackathon-marseille/tree/master/project_descriptions/causal_psicquic


the latest CausalTAB signaling format are the PSICQUIC [72] and PItools R packages [73]. These
packages enable the translation of molecular interaction data directly into formats suitable for
computational analysis with R, and therefore are crucial for relevant computational tasks.
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Biological modeling: a Prelude

In previous chapters we summarized our efforts related to the curation, access and sharing
of causal molecular interactions, the building block of PKNs. This is only the first step in the
process of creating computational models of biological systems [74]. To translate signaling networks
to a computational form for simulation purposes, the next step is to define the regulatory rules
(parameterization) of the underlying system: how do the different network entities influence each
other across time and potentially space, and how does the systemic behavior change when specific
rules or parameters of the model are modified? [75] The formulation of the rules in mathematical
terms (i.e. they are in most cases expressed as equations), defines the mechanistic details of the
studied models and thus enables the study of their dynamics. Practically, this means that models
can be used for various forms of analyses and simulations, and their outputs further investigated.
For example, models can be validated and tested for agreement with experimental observations,
can make predictions and generate new hypotheses leading to the design of new experiments, and
they can be subjected to various perturbations, with their subsequent effects on the studied systems
quantified and thoroughly analyzed. In addition to biological analysis, one of the more important
aspects of mathematical modeling is that it enables the investigation of the underlying mechanisms
that result in the manifestation of the described system’s behavior. In other words, computational
models are explainable and interpretable, enabling us to answer why things happen the way they do,
which is one of the driving forces behind science itself.

Several mathematical methodologies have been used to study biological systems, such as
stochastic modeling, ordinary and partial differential equations (ODE and PDE modeling), Petri
nets, logical modeling, Bayesian networks, cellular automata and agent-based modeling [76]. Each
modeling paradigm encapsulates a different way of formalizing the underlying rules and makes
different assumptions about the studied system. Such assumptions can for example include the
temporal and spatial properties of the modeled system (space and time can each be treated in
a continuous manner or with varying degrees of discretization), the molecular scale (focus on
modeling individual molecules or discrete amounts of each molecule or just considering their molar
concentrations) and the nature of interactions between the molecules (reaction processes can be
described as happening in a stochastic or deterministic manner). In general, there is a trade-off
between the complexity of the system that a model is constructed to simulate and the mechanistic
detail incorporated in the model itself [75]. Ideally we would like to have models which can simulate
highly complex systems in as much detail as possible. This poses a significant challenge, since a
more detailed representation of a biological system requires a higher level of granularity inherent in
a model’s formalization. This means that more parameters are required to specify and calibrate the
model for the simulation and accurate representation of reality, and larger amounts of experimental
data and computational resources are also necessary. On the other hand, by sacrificing the complexity
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of the studied system and making simpler models, we face overwhelming uncertainties that need
to be properly quantified and integrated in any interpretation of results from such a model [77]. In
the end, the modeling scope is a crucial factor for the choice of the appropriate methodology, and
thus sufficient knowledge of the advantages and disadvantages of each formalism can be beneficial
towards selecting the approach deemed most suitable for the realization of the modeling objectives.

In this thesis we focus on Boolean modeling, one of the simplest formalizations for the
modeling of complex biological systems [78]. In this type of qualitative approach, every individual
entity has a binary state denoting activity (1) or inactivity (0) and time is discretized [79]. Every
interaction that affects a target entity is assembled into a Boolean equation which defines that
particular target’s output activity in the next time step. To formulate such a Boolean equation, only
knowledge of the regulatory network topology is needed, along with the use of logical operators
that describe how the combined activity of the regulators affects the target. This inherent simplicity
in defining the rules is what makes the Boolean formalism attractive to modelers. Moreover, since
the PKN is one of the core elements that characterize the Boolean rules, this explains why we
spent a large amount of our efforts in this thesis to make sure modelers get the proper contextual
prior knowledge. Lastly, another advantage of Boolean modeling is that it does not require the
specification of parameters such as kinetic rate constants and initial concentrations that are a strong
prerequisite in other modeling formalisms (e.g. in ODE modeling), where there is always a need
for large and expensive amounts of data that might be either lacking or not enough to adequately
characterize the rules.

Continuing with the explanation of the modeling formalism, a logical model is a list of
mathematical equations expressed in Boolean algebra. The state of such a system is represented by a
series of 0’s and 1’s, each corresponding to the activity state of a signaling entity. Using the Boolean
rules, we can update the system’s state by deciding on the order that each of its equations are applied,
to derive the next entity states. Therefore, a synchronous update scheme can be defined as calculating
the output of all Boolean equations of the model at the same time. In contrast, randomly specifying
one or more equations to update can result in various forms of asynchronous dynamics, which enable
the inclusion of processes with different time scales in a logical model. By repeatedly applying
the Boolean rules, systemic states that either do not change (fixpoints) or ones that demonstrate
cycling patterns, can be reached. These are the attractors, which represent solutions to the system of
equations that constitute a Boolean model and their identification is synonymous to the study of the
long-term dynamical behavior of the modeled system. Attractors have been shown to be biologically
meaningful, either by representing specific phenotypic outputs [80] or transitions between system
states like in the cell cycle [81].
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Several computational tools have been developed to aid in the dynamical analysis of Boolean
models [82]. These tools enable users to easily create and edit logical models, identify differ-
ent types of attractors and their reachability properties, analyze model state evolution over time,
investigate phenotypic outputs subject to various types of perturbations, explore different model
parameterizations and calibrate models to fit experimental data, among others [83]. The existence of
such a plethora of tools has enabled the modeling of complex diseases, the discovery of potential
therapeutic solutions and the investigation of biomarkers that correlate with patients’ response to
specific pharmaceutical drugs. In particular, the derivation of mechanistic insights related to the
manifestation of diseases, is one of the main challenges that computational modeling efforts strive
to address towards achieving the goal of personalized medicine [84]. In light of this, several logical
modeling approaches have been used to stratify patients based on the integration of multi-omics
data [85], build patient-specific models that aid in the understanding of drug sensitivity and cancer
resistance mechanisms [86–88] and help identify novel therapeutic targets [89–91]. Part of the work
in this thesis has been to complement the aforementioned approaches by developing a software
pipeline that uses causal prior knowledge and tailors Boolean models to cell-specific cancer signaling
activities (Paper 3). These models can subsequently be used to predict combinatorial treatments
that aid in the prioritization of drugs in high-throughput screening technologies and will eventually
provide better clinical decision support for cancer patients, helping us find optimal drug-patient
matches.
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Clean Code

Our main goal is to use causal molecular knowledge and signaling activity data to build and
parameterize Boolean models to represent specific cancer cell systems, and study their behavior in
the presence of in-silico drug perturbations. As such, the importance of the underlying scientific
software that enables these computational tasks is unquestionable. Such software needs to satisfy
a list of requirements pertaining to its suitability for practical use [92]. Such practices ensure that
the software does what it is intended to do and its produced scientific simulations can be used to
inform decision-making for clinical applications. In other words, for the scientific results of the
simulations to be actionable and trustworthy [93], the following software requirements are not just
optional, but rather a necessity. At first, challenges related to automation, efficiency and optimization
in terms of the computational resources necessary to perform the simulations and analyses, need
to be properly addressed. To promote collaboration and allow others to study, use and further
develop the software, the respective codebase needs to be open sourced [94,95]. Standard formats
for input and output should be supported, as well as standard libraries for common programming
tasks, enabling the effortless integration with related software. Also, sufficient documentation needs
to be provided, containing installation guidelines and explanations for the various configurations
used in the simulations [96]. Simple examples of use and related tutorials should be part of such
documentation as well [97]. The usability of the software can also be increased by applying better
programming architecture and design principles (e.g. writing modular code), which also makes the
software easier to test, extend and verify. Making the results of the simulations verifiable (i.e. by
ensuring that the algorithmic procedures and the model equations are correctly coded),6 will increase
their reproducibility, further supporting the aforementioned goals [98]. All in all, there can only be
gains if the code is clean and properly taken care of [99].

In Figure 5 we present an overview diagram of the DrugLogics software pipeline. This
pipeline represents a computational software system aiming to assist in the identification of synergis-
tic drug combinations. The pipeline’s two main modules, Gitsbe (Generic Interactions To Specific
Boolean Equations) and Drabme (Drug Response Analysis to Boolean Model Ensembles), are both
written in Java. Gitsbe, using as input a PKN and a signaling activity profile for some of the key
entities in the input network, creates Boolean models based on a genetic algorithm approach and
calibrates them to best fit the training signaling activity data. Boolean models with higher fitness
have fixpoint attractors whose node states better match the binary signaling activities. Calibration
refers to changes in the Boolean equations to produce such high fitness models. These changes
can simply be variations in the parameterization such as mutations in the Boolean rules (e.g. a
logical OR becomes a logical AND and vice-versa) or topological changes, such as the addition or
removal of a regulator’s effect on a particular target. Thus the Boolean models in Gitsbe’s produced

6Read more on verification here
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ensemble are parameterized differently, but are all essentially approximate representations of the
same biological system. These variant Boolean models are then used as input to Drabme, to test the
effect of several perturbations from a given drug panel and quantify their combinatorial interaction
patterns using well-known synergy frameworks (namely HSA [100] and Bliss [101]). Leveraging
the wisdom of the crowds [102,103] using Gitsbe’s models, Drabme’s output predictions contribute
in reducing the exponentially large drug space that is associated with combinatorial treatments for
the targeted therapy of cancer, providing a list of candidate combinations to test in the lab, before a
viable solution is found for a patient.

Figure 5: The DrugLogics software pipeline. A series of connected modules that build a regulatory topology incorporat-
ing specific drug targets, parameterize Boolean models to a specific cancer signaling profile assembled from various
omics data and simulate drug combination perturbations. The output models and their predictions can be further analyzed
to explain the difference between phenotypes and thus identify biomarkers that make a particular drug combination
synergistic.

The development of Drabme and Gitsbe was part of the latest stages of a previous research
thesis and it was mostly exploratory work [104]. To lay the groundwork for the analyses and
investigations of the papers included in this thesis, additional software development needed to be
done. We started by refactoring the source code to increase its readability, maintainability and
extensibility. Java classes were restructured, variables and functions were renamed to reflect current
best programming practices, code written from scratch for common tasks such as string manipulation
was replaced with reusable Java components (e.g. using libraries from Apache Commons [105]) and
the Maven project management tool [106] was used to enable easier source compilation, installation
and packaging (all the Java code was bundled in a single compressed file for ease of use). To
increase interoperability of our software, we used the Java library BioLQM [107] to enable the
export of the produced Gitsbe models to standardized formats in the logical modeling community,
such as GINML (used in GINsim, a software tool enabling the definition, analysis and simulation
of regulatory graphs based on the logical formalism [108]), SBML-qual (a standard designed for
the representation of multivalued qualitative models of biological networks [109]) and BoolNet
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(file format of the models built with the BoolNet R package, used for the simulation and analysis
of Boolean networks [110]). For the calculation of fixpoint attractors, an external scripting-based
tool was used by default [111]. We added a built-in, integrated Java solution using BioLQM, which
apart from fixpoints can also identify minimal trapspaces, a generic type of attractor that allows for
a deeper exploration of dynamics.

A practical outcome of these efforts was that the code became more modular, enabling the
addition of software tests using the JUnit5 framework [112] and specialized libraries [113,114].
With more tests, hidden or otherwise impossible to pinpoint bugs were identified and fixed. Some
of these were critical for the validity of the output findings, since they related to how changes in
the parameterization or topology were encoded in the software equivalent of a Boolean model’s
equations. Moreover, it became much easier to add new features to the software, e.g. we supported the
execution of parallel simulations in Gitsbe (a significant performance optimization) and incorporated
a new synergy framework for the identification of synergistic drug combinations in Drabme (Bliss).
Gitsbe’s simulation is the core computational process that produces the “best-fit” models resulting
from the evolutionary approach of the genetic algorithms. Selecting a few of those best-fit models
at the end of each simulation and executing multiple simulations in parallel, each one associated
with a different random seed number, is what generates a reproducible list of Boolean models for
use in Drabme (or other software if models are exported to standard formats). Lastly, we shared
publicly the developed modules in GitHub7 and built an extensive online documentation using the R
package bookdown [115] to gather all related information in one place with regard to the software’s
configuration parameters, the mathematical calculations used, installation instructions and examples
of use.8 This online documentation became a central virtual hub, providing information on all the
software modules in the pipeline. One of these modules was druglogics-synergy, a Java
package used to serially execute Gitsbe and Drabme in one go, and which was employed for the
simulations of Paper 3.

With all the main code in proper order, we could start investigating the outputs of our
software and assess the quality of the produced drug synergy predictions. The results of these
efforts, along with biologically-relevant mechanistic insights derived from further analyzing the
simulation data and performing various investigations, are analytically presented in Paper 3, and
in even more detail at the ags-paper repository,9 which also includes reproducibility guidelines.
In the following paragraphs we are going to briefly explain the input data and software that either
needed to be in place before we started the experimentation with the in-silico simulations or was built
to help further analyze the output Boolean models from Gitsbe and Drabme’s synergy predictions.

7See respective repositories here
8See documentation repositories here
9See ags-paper repository here
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To begin with, we had to choose a reference drug combination dataset to compare our
predictions against. The argument here is to use a dataset that you know very well so that you can
first experiment with the software and its configurations, and only later test your predictions on other
published (and potentially larger) datasets. Therefore, we chose the Flobak et al. (2019) dataset, with
a total of 153 combinations of 18 targeted drugs, involving measurements across 8 cancer cell lines
[116]. Next, we needed to assess in a computational manner which of the drug combinations in the
reference dataset (per cell line) are synergistic and which are not. Our first attempt was to manually
check the output growth curves and derive a majority-assessed gold standard (so it was more of a
curative group effort). We continued by performing a thorough analysis using the CImbinator tool
[117] and established a methodology which computed the synergy classification of the reference
dataset that best matched our internal curation efforts to call synergy.10 All in all, we had a reference
dataset and a list of drug combinations designated as synergistic from it, ready to be used to evaluate
Drabme’s predictions on the same dataset.

On another front, we also needed a PKN suitable for our analysis. In particular, the targets
of the drugs used in the reference dataset should be entities in the network, so as to enable the
simulation of drug perturbations in Gitsbe’s derived Boolean models. Moreover, several of the most
important pathways in cancer cell biology (e.g. PI3K, ERK and TGFB signaling [118]) would have
to be included as well. A PKN that fits all the above characteristics was curated within our research
group and refined throughout many years, resulting in the topology that was used for the simulations
of Paper 3 (CASCADE).11 In addition, proper signaling data was needed to train the Gitsbe models
to a cancer proliferating phenotype. For that purpose, we used the literature curated activity profile
for a set of nodes in CASCADE, which was the result of a previous research effort [90]. This activity
profile concerns only one of the cell lines in the reference dataset, namely the gastric adenocarcinoma
cell line (AGS). In summation, by employing a curated topology and training data from only one cell
line, we could focus more on the model parameterization aspects of our software, the performance
assessment of the synergy predictions and the rest of the investigations of Paper 3.

While exploring various configuration options for the Gitsbe and Drabme simulations,12 we
needed a tool to quickly assess their effect on the pipeline’s performance and see which were the most
important to tune. The pipeline’s performance here refers to Drabme’s output synergy predictions
(continuous scores, each one for a different drug combination, ranging from negative and more
synergistic values, to positive and more antagonistic values), validated against the computationally
derived set of synergistic drug combinations for the AGS cell line (gold standard). This is a typical
binary classification problem, where an imaginary threshold scans the range of Drabme’s predicted
synergy scores to derive various performance scores. Specifically, each threshold demarcates the

10See sintef-obs-synergies repository here
11See CASCADE repository here
12See DrugLogics software documentation here
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Figure 6: Performance assessment of Drabme’s drug synergy predictions. Predicted synergy scores are sorted from
synergistic to antagonistic and compared to a gold standard synergy set for several possible thresholds. Each synergy
threshold can be used to construct a confusion matrix, from which standard metrics are calculated, such as the number
of True Positive (TP) and False Positive (FP) predictions, precision and recall, etc. Visualizing several of these metrics
across all thresholds in the Receiver Operating Characteristic (ROC) and Precision Recall (PR) curves, enables the
calculation of the Area Under the Curve (AUC), which is a performance score indicating how good the synergy
classification method is.

synergistic drug combinations from the antagonistic ones, based on the output prediction scores.
By comparing these assessments with what we consider as the actual truth, i.e. the gold standard
synergy set, a confusion matrix can be constructed and several threshold-specific measures calculated
(Figure 6). By accounting for every such threshold, ranging from a very strict (every prediction
is declared as antagonistic) to a very relaxed one (every prediction is declared as synergistic), we
can visualize Drabme’s classifier performance with the Receiver Operating Characteristic (ROC)
[119] and Precision Recall (PR) [120] curves, which are both well-known diagnostic tools for binary
classification problems. In particular, they allow for a more broad, threshold-agnostic performance
measurement, which is the Area Under the Curve (AUC). An AUC score of 1 is considered as the
perfect classification, which in our case would happen if the top most negative synergy scores were
exactly the ones corresponding to the drug combinations that represent the gold standard set for
the AGS cell line. The aforementioned diagnostic curves also enable the calculation of “optimal”
cutpoints, e.g. thresholds that maximize or minimize certain criteria, an example of the latter being
the distance from the point of perfect classification [121]. Based on this theoretical framework,
we developed the R shiny app [122] druglogics-roc to automatically parse Drabme’s output
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files and produce a table [123] with the confusion matrix values per synergy threshold, along with
interactive plots of the ROC (using the R package plotly [124]) and PR curves (using the R
package PRROC [125]) and their respective AUC scores. This app is now part of the DrugLogics
software suite,13 facilitating the visualization of the pipeline’s performance.

The Boolean model ensembles produced by Gitsbe were a unique source for further data
analyses. Since such an ensemble contains a large variety of models, all representing the same
biological system, we investigated how these models differ in terms of each network node’s activity
(in the respective attractor) and parameterization. Moreover, we were interested in how these types
of model differences translate to variations in prediction performance, i.e. make some models predict
specific drug combinations as synergistic or not. By assigning Gitsbe models into different classes
based on their individual prediction performance, we could identify nodes that were relatively more
active (or inhibited) in the upper tier models compared to the lower tier models of the performance
hierarchy. For example, we verified across many analyses14 that the ERK node of the CASCADE
signaling network was particularly overexpressed in the models that predicted most of the gold
standard synergies in the AGS cell line from the reference drug combination dataset. This was
an interesting finding, since knowledge gathered from the scientific literature indicates conflicting
measurements of ERK activity in AGS cells [90] and so our modeling results, upon further analysis,
have the potential of providing useful information related to the studied biological system (this
particular result is also shown using a different methodology in Paper 3). In addition to the activity-
based analyses, we also explored differences with respect to the Boolean model parameterization,
i.e. if higher performance models tend to have specific logical operators (or not) in some equations.
This also motivated us to study how the diversity in particular Boolean rule assignments in the
different model classes translates to the respective target nodes’ activity (the link between node
parameterization and activity was further investigated in Paper 5). To enable all the aforementioned
investigations, we began writing functions in several scripts while getting familiar with the world of
professional software development in R [126]. In the end, we spent considerable effort to organize
all these functions into a single, clean, modularized and tested codebase, with the purpose to fill in a
niche for data analysis-oriented software that performs auxiliary automated analyses on Boolean
model datasets. The result was the creation of the emba R package and its addition to the DrugLogics
software suite (Paper 4).

13See druglogics-roc repository here
14See gitsbe-model-analysis repository here
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Get the right rules

In the previous chapter we described in detail all the different requirements that a software
needs to satisfy so as to deliver on its promise to do what it was made to do. In other words, it
is entirely the software developer’s responsibility to make sure that the underlying algorithms are
programmed correctly, the model equations and their solutions are correct and that in general, the
software works as expected. In the case of our modeling pipeline, this translates for example to the
precise and error-free implementation of the genetic algorithm as well as taking the extra effort to test
and ensure that the Boolean models are assigned the desired parameterization and their attractors are
correctly calculated. The aforementioned procedure is semantically synonymous to verification: the
software works in a manner that directly reflects the underlying theories and modeling assumptions.
This is part of what makes the simulation results trustworthy and actionable, in the sense that they
can be used to provide solutions to real-world problems, making the respective models valuable for
diverse applications, both in industrial and clinical contexts.

It is a totally different matter if the solutions that the software was made to produce, (e.g. the
simulation results in the case of modeling software), are pragmatic. What good are models if their
outputs do not agree with real observations, no matter how skillfully the developer translated the
theoretical ideas in software code? All models are wrong since they are approximate representations
of reality, but they should at least have some use and therefore it is important to be able to pinpoint
exactly where this wrongness originates and what it pertains to. If a biological model for example
cannot reproduce basic observations about the phenotype of the system it simulates (via its respective
software), then that model is not useful and it probably needs further refinement. That leads to the
question of what makes a model able to better match experimental data and become a more faithful
approximation of reality. In other words, what aspect of the model needs refinement? The first step
towards answering this question is understanding that a model is more than just the code. A model,
as explained in a previous chapter, is a set of mathematical rules applied to a list of biological entities
(also referred to as model parameterization). So, extra care should be given to make sure we have
the right equations in our models. This crucial next step is known as the validation of the modeling
software and its basic assumption is that more “right” equations result in better fit to observations,
which lead to better models (their behavior corresponds more accurately to reality) and subsequently,
better simulation results (predictions about the studied system).

So for every modeling application and subsequent software, not only do we need to have
the rules right (verification), but it is of equal or maybe even more significance to have the right
rules (validation) [127]. In that aspect, the parameterization of the Boolean models in our software,
i.e. the choice of logical equations that define the regulatory activity of every target in the underlying
cancer signaling network, stands as one of the most important parts of the ensuing modeling process.
Since parameterization is so important, how can we find which are the “right” rules or similarly,
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how can we distinguish between those that are right versus those that are not (or are less so), so
that we can choose the former for our models? Practically, the way that researchers in the logical
modeling community have dealt with this problem is by establishing standard logical equation forms
to represent regulatory interactions upon a signaling target [128]. Based on such a foundation for the
initial construction of the logical rules, the next step is to tweak them properly, by changing logical
operators and removing/adding variables (regulators), so that a better match with experimental
observations can be achieved. This process of calibrating the rules to fit the respective data can be
either the result of manual curation [90,129,130], or the outcome of automated computational search
for optimal logical equations [131,132] (for similar efforts in this thesis see Paper 3). In addition,
several other methods are used to convert various input sources to the appropriate Boolean rules,
e.g. by translating molecular interaction maps directly to Boolean models [133] or user-provided
text to suitable logical equations via web-based tools [134].

Be it the modelers or the computers that refine and produce the final Boolean equations in
the respective models, we reasoned that a proper framework to characterize the Boolean functions
that constitute the rules in these models, is currently missing. The main idea is that, since the
mathematical rules are the heart of modeling and we need to have the right rules (or as best as
possible) for validating and further refining our models, a proper toolkit is needed to differentiate
and choose between the possible parameterization options. The plethora of potential equations that
can be just “right” are a direct consequence of the fact that the number of possible parameterizations
increases dramatically with the number of regulators [135]. In addition, a large number of Boolean
equations may fit equally well the experimental observations or it might even be the case that the
data are not enough to uniquely define the model equations [136]. Either way, fitting the model to
match the expected outputs is just one side of the validation process. We need to go deeper than
that though if we are to reach our goal of finding biologically reasonable and functionally useful
rules for our models. To establish a practical framework assisting in the choice of a particular
logical model parameterization, we need to search for ways to expand our knowledge of the rules
and gain insights into these from different perspectives. Following this logic, there are function
properties that Boolean mathematics research has thoroughly studied and which, when brought to
the context of modeling, can be beneficial for both modelers and software applications that specify
or calibrate the rules of a logical model [135,137,138]. For example, such properties could be used
to investigate if the equations contradict the structure of the underlying regulatory topology (PKN)
or that biologically important regulators manifest in the equations as proportionally influential to the
respective Boolean output. Our efforts constitute a first attempt to compile such a list of Boolean
function metrics in a unified framework that could be used to refine the search for the optimal rules
to use (Paper 5). The analyses in that paper also show the differences between varying Boolean
parameterizations in terms of expected output behavior and how this information, when known a
priori (based on precise mathematical formalization and subsequent calculation), can assist in the
choice of better rules for the considered models.
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While establishing a framework to help in the identification of the right rules for a Boolean
model, we leveraged the benefits of variation in model parameterization (Figure 7). Exploring the
effects of variation in the values of model parameters, enables the identification of variables which
have the largest influence in the behavior of the studied systems and can provide mechanistic insights
to explain several phenomena [75]. For example, in Eduati et al. (2017) [86], the authors study
how logical model parameters are related with cellular sensitivity to anti-cancer drugs. Simply put,
by tweaking a biologically meaningful parameter in their model (the responsiveness of the GSK3
signaling node), you could explain why a drug combination involving a MEK and a GSK3 inhibitor is
sensitive in some cancer cell lines and resistant in others. This computational finding was supported
by experimental evidence, thereby providing a proof-of-concept in how the investigation of model
parameterization can suggest new mechanisms for the manifestation of particular drug synergies.
On a more theoretical front, in Abou-Jaoudé et al. (2019) [139], the authors formally describe the
concept of logical bifurcation diagrams, a framework to assess how changes in the logical parameters
result in the change of the dynamics of logical models. This methodology was used to display
the attractors of the simple p53-Mdm2 signaling network as a function of the degradation rate of
ubiquitin ligase Mdm2 in the nucleus, allowing for a more concise characterization of its main
dynamical properties [140].

...
A activates B
A activates C
 C inhibits   B 
 D inhibits   C 

 ... 

PKN

...
B = A AND NOT C
C = A AND NOT D
...

...
B = A AND NOT C
C = A OR   NOT D
...

...
B = A OR   NOT C
C = A AND NOT D
...

...
B = A OR NOT C
C = A OR NOT D
...

Boolean Models

Figure 7: Exploring Boolean model parameterization with the abmlog software. Using as input causal regulatory
knowledge, all possible Boolean models that conform to a standardized logical equation form [128] and its most basic
variation are produced. Target nodes B and C have two regulators each, and their respective Boolean equations can be
formalized in two ways, producing a total of four possible models for further analysis.
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Such approaches inspired us to explore the space of Boolean model parameterization,
pertaining to the equations used to construct and mutate the models in the genetic algorithm of
Gitsbe (Paper 3). We made a Java software package that can produce either a random sample
or all possible Boolean models, based on a standardized equation form [128] and its most basic
variation (Figure 7). The abmlog package is now also part of the DrugLogics software suite
and was used in the analyses of Paper 5 to show how the output behavior of the two alternative
parameterization options of the Gitsbe models varies based on the number of regulators in the
respective equations and the ratio of positive to negative regulators (as these were defined in the
original PKN). Moreover, a large number of CASCADE-based Boolean models were produced using
the abmlog package to explore parameterization variation. Exploiting the dimension reduction and
visualization method UMAP [141], we constructed several Boolean model maps and were able to
visualize model differences such as fitness to training data and prediction performance.15 Further
analysis identified important nodes which drive the change of dynamics (number of attractors in the
CASCADE Boolean models) and whose parameterization could be used to visually separate the
UMAP embedded models in distinct clusters.

15See bool-param-maps repository here
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Discussion & Future Perspectives

In most of the papers included in this thesis there is a separate section discussing potential
future tasks, the fulfillment of which will advance the efforts towards achieving the goals of each
respective research work. We also discussed in a previous chapter16 additional implementation work
that is crucial for establishing a robust infrastructure for the sharing of causal molecular interactions
to a wider community of users with PSICQUIC. Here, we will discuss further implementations
and research that needs to be done related to modeling efforts for combating cancer. First, we will
focus on clarifying several aspects in our own computational work and suggest future directions.
Secondly, we will reflect on the more broad problem of understanding cancer and briefly describe the
challenges that the computational biology community as a whole needs to overcome to drive future
modeling efforts towards enabling more proactive, predictive and personalized Systems Medicine
approaches [84].

In Paper 3, we outline four key prerequisites that a software pipeline designed to construct
patient specific logical models should satisfy, in order to facilitate the identification of potential
therapeutic solutions for cancer. These were expressed as (1) assembling a network topology from
prior knowledge databases, (2) translating baseline cancer cell line biomarker data into signaling
activities, (3) calibrating logical models, created from PKNs, by modifying logical equations to
match the observed signaling activities, and (4) predicting phenotypic consequences of combinatorial
interventions to the simulated model behavior. These four generic requirements were embodied in
the respective software modules of Figure 5. Gitsbe and Drabme were our proposed solutions for (3)
and (4) and the resulting simulations and analyses was the main scope of Paper 3. Atopo aims to
fulfill objective (1) while Aomics is the module that encapsulates the work needed for objective (2).
In the following text, we are going to discuss the reasons why these solutions were not included in
Paper 3 and our future objectives for improvements on the Atopo and Aomics modules.

Starting with the assembly of the PKN, we previously set a list of requirements that such an
output network should satisfy to be suitable for our analyses. These were the inclusion of the drug
targets so that they can be perturbed using subsequent pipeline software and the incorporation of
major cancer pathways in the PKN. Atopo is a software module (Figure 5) precisely implemented
with these specifications in mind, using SIGNOR’s causal molecular interaction data to construct
self-contained topologies that include specific signaling entities [104]. The self-contained topology
solves a practical issue, since it allows for smaller logical models with fewer fixpoint attractors,
increasing computational efficiency. It is also tightly related to the hypothesis that cancer is a disease
system in itself, not dictated by external factors. Put in other words, whatever makes a cancer cell
keep proliferating, comes from within the cell itself. Moreover, the signaling entities used in Atopo,
refer in our case not only to the drug targets, but also to nodes that define the phenotypic output of

16See Sharing causal interactions with PSICQUIC.
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the computational models later in the pipeline. In the end, due to the methodology used to prune the
network in Atopo and the molecular interaction content included in SIGNOR’s database (dated April
2018), the Atopo-generated PKN was hard to make sense of, especially when trying to interpret the
simulation results in terms of mechanistic insights. For example, some analyses using the emba R
package from Paper 4 produced confusing results with regard to the nodes designated as important
for the manifestation of particular synergies.17 Since we had curated the CASCADE family of
topologies from literature to incorporate cancer signaling pathways and associated key regulatory
targets, it presented itself as a trustable and already refined solution that perfectly fitted our needs.
Our future goal is to combine molecular interaction data from different causal knowledge databases,
using software like PSICQUIC [61] or OmniPath [142], to build larger and more comprehensive
PKNs, suitable for our logical modeling applications in the context of cancer signaling.

To derive an accurate activity profile for the signaling entities in CASCADE, we used
multiple omics datasets such as copy number alterations (CNA) and expression data (transcriptomics
or proteomics) pertaining to each of the cell lines of interest in the reference drug combination dataset
chosen for our simulations [116]. These datasets were given as input to appropriate software tools to
predict the signaling activity information [143]. Extensive effort was spent in subsequent software,
which resulted in the Aomics family of internal tools (Figure 5). Sadly, we failed to produce reliable
signaling activities for the 8 cell lines of the reference drug combination dataset. For example, model
output nodes that are known to be inactivated in cancer cells (e.g. the family of Caspases), were
computed as being active, contradicting basic biological knowledge. The conversion of various
omics datasets to binary signaling information and their efficient integration for modeling purposes
is an emerging area of research [85,144–146]. We acknowledge the fact that such discretization
methodologies might be a bit coarse and ill-suited given the continuous nature of some omics
datasets, but they are nonetheless a prerequisite for qualitative modeling methodologies such as ours.
We hope that in the future more standardized methods will be available to handle such datasets and
make them better suited for our needs.

Overall, the Aomics endeavor represents a practical example where validation of the various
input data sources of a scientific software fails and so, as researchers, we have to use every means
available at our disposal to further progress our goals (i.e. in our case this meant to use a curated
PKN and literature-derived signaling observations). Nonetheless, we can exploit the information
presented in such input data sources to further investigate their quality, which can reveal the varying
degrees of importance with which such inputs affect the simulation results of the software. For
example, in Paper 3 we investigated how severely the pipeline’s synergy prediction performance
was affected by either changes to the input training activity data or the input topology (PKN). In
the end, the results indicated that the topology is far more important, demonstrating the need for
high quality prior knowledge and the significance of related curation efforts that translate scientific

17See gitsbe-model-analysis repository here
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literature to structured knowledge infrastructures.

The work described in this thesis focuses on the qualitative modeling of a single cancer cell,
aiming at predicting its phenotypic behavior subject to various drug perturbations. Our work, along
with similar efforts from the Computational Biology community, has only been the first step in the
mechanistic modeling of biological systems. To help scientists better understand cancer cell biology,
we need to achieve a better understanding of the processes occurring inside the cell and pave the way
for the systematic analysis of cells on a broader scale than what is currently possible. Up to now,
researchers have been constructing, simulating and analyzing models to answer specific questions
pertaining to context-specific modeling scenarios. Such concentrated modeling efforts are usually
restrictive, because of their limited scope and the choice of a single mathematical framework to
formalize the respective models (e.g. Boolean mathematics or ODEs). Thus the resulting biological
models are inadequate and can not provide the necessary temporal and spatial resolution of the
modeled systems that is required to holistically describe and interpret complex cellular behavior.

There is a gradual shift to replace focused models with larger, multiscale hybrid models.
These types of fine-grained models can incorporate multiple levels of granularity in their associ-
ated mathematical representation and simulated molecular scale, and their aim is to provide an
accurate description of the cellular phenotype from its respective genotype [147]. Such in-silico
whole-cell (WC) models are powerful scientific tools that will allow us to identify gaps in our
understanding of cell biology and unify our fragmented knowledge of disease development. Their
main advantage is that they can be used to address multiple scientific questions, and conduct complex
in-silico experiments that would otherwise be impractical to perform in the laboratory with current
technologies. Such approaches to modeling complex biological systems are foreseen to have a
significant impact in a number of applications, both in research and industry (e.g. biotechnology),
serving as a platform to facilitate model-driven discovery [148]. In parallel, research on multicellular
modeling aims to improve our understanding of the interactions between the different cells that
send and receive signals to communicate and perform tissue- and organism-level functions. Such
models can help us describe in more detail the processes that drive tumor pathogenesis and favor the
development and progression of cancer [149]. For example, multicellular models could elucidate
the mechanisms by which tumor associated macrophages (TAMs) interact with cancer cells in the
inflammatory microenvironment of solid tumors [150,151], provide comprehensive explanations
of how multicellular cancer resistance manifests [152], and propose novel therapeutic targets that
damage the communication of tumor cells with their microenvironment [153].

There exist several challenges in building accurate and comprehensive WC models [154].
To fully characterize the function of every gene product and predict the dynamics of all molecular
species of a cell over its entire life cycle, WC models need to be able to synthesize information that
is subject to different molecular as well as spatiotemporal scales, and perform multi-algorithmic
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simulations. Despite the fact that several software tools have been built to enable the construction
and simulation of WC models [155,156], a complete integration of all the different algorithmic
methodologies representing molecular detail at every possible scale, is currently lacking. Moreover,
a proper theoretical foundation that specifies how the different modeling formalisms can work
under a hybrid mathematical framework for WC modeling is also missing [157]. On another
front, the heterogeneous data needed for the scalable design, construction, calibration, simulation
and validation of WC models, are incomplete, imprecise and noisy, calling for the development
of new experimental methods and tools to more properly characterize cells at multiple levels of
molecular granularity and expression (e.g. different omics data) [158]. Literature curation tools, used
to annotate and extract knowledge from scientific publications, complement the aforementioned
efforts by providing a systematic way to assemble the comprehensive prior knowledge that is
required for WC modeling. Therefore, software implementations allowing for new approaches
towards the annotation and sharing of causal molecular interactions (as were presented in this thesis),
significantly contribute to such efforts. In addition, we anticipate that the use of machine learning
and text mining automated tools are going to be detrimental for future curation efforts, leveraging
the vast amounts of biological knowledge for the creation of more accurate WC models.

There are major computational bottlenecks that we need to overcome to enable the compre-
hensive modeling of complex cells. Due to the high computational costs required for the calibration
and simulation of WC models (e.g. parameter estimation is particularly resource intensive), high-
performance modeling algorithms need to be implemented, along with better parallel processing
simulators [159]. Additionally, technological advancements such as cloud and high performance
computing (HPC) services [160] will allow us to take advantage of modern computational resources
and harness their scalability and processing power, surpassing the limitations of conventional single
machines that are unsuitable for such large-scale modeling efforts. On another front, WC models and
their subcomponents (e.g. signaling pathway models corresponding to distinct cellular processes)
need to be interoperable to allow for proper model integration, extension and reuse, as well as enable
reproducible simulation results. During the 2015 WC Modeling Summer School event, efforts
directed towards translating a WC model to community formats such as SBML [161] (for model
encoding) and SBGN [45] (for model visualization), indicated the need for additional standards,
databases and software to accelerate WC modeling [162].

Current approaches to build comprehensive WC models of simple organisms such as the
pathogen Mycoplasma genitalium [147,163], and the bacterium Escherichia Coli [164] constitute
significant achievements towards addressing all the aforementioned challenges. Moreover, they pave
the way for the construction of mammalian WC models and eventually whole-organism models
[165,166] (the pinnacle of which should be a complete human model), where the communication
and coordination between different WC models (representing different cell types), at different
hierarchical levels, is going to be one of the most difficult issues to tackle. Despite the difficulty
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inherent in such aspiring projects, many recent research efforts have been focused on studying
multicellular systems with potential applications in cancer immunology and therapeutics. Notably,
several tools have been developed using agent-based or similar modeling approaches, providing
ways to intuitively represent multicellular biological systems [167–171]. Such methodologies
facilitate the integration of multiple scales for the study of cell population dynamics, and some also
incorporate various spatial aspects of the modeled systems. The respective software simulators
make use of coarse-grained characterizations of the interacting cells (i.e. the agents), significantly
reducing the computational simulation costs. Even though current multicellular models do not
encapsulate a realistic picture of the intracellular signaling (since it is impractical to incorporate full
WC models) nor of the cell communication mechanics, they have been successfully used to validate
several experimental findings and study interacting cells in dynamic tissue microenvironments such
as heterogeneous cell tumors. Moreover, multicellular models have the potential to assist in the
exploration of the effects that the genetic alteration of individual cells has to the population level
(e.g. how knocking out genes in specific cells can limit tumor growth), the investigation of response
to various anti-cancer treatments, as well as the study of the cellular mechanisms and dynamics of
carcinogenesis. We can only expect that in the future, biological and medical applications will push
the boundaries of what is achievable by such software modeling solutions and that multicellular and
WC models will drive progress in the cancer-related research areas and beyond.

Lastly, we stress the necessity of interdisciplinarity and collaboration across the research and
industrial spectrum, to solve all the grand challenges involved in the modeling of complex biological
systems and the efforts to combat diseases such as cancer. Building a cohesive Computational
Biology community also plays an important role, as it promotes a common vision and a collaborative
spirit amongst the members of the community. The success story of the COMBINE initiative’s
standardization efforts in computational biological modeling, has been empowered by the promotion
of its standards via tutorials, workshops and dedicated sessions at international conferences [172].
As scientists, we are called to take risks, not only to explore the unknown and yet uncharted territory
of our world but also to face the social and communication challenges between ourselves. Only
together, as one community, can we set the world in order, tackle the problems of today, and create a
better tomorrow for all humankind.
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Links to software, documentation and data
analyses

GitHub organizations

• UniBioDicts: https://github.com/UniBioDicts/
• VSM: https://github.com/vsm
• DrugLogics: https://github.com/druglogics
• PSICQUIC: https://github.com/PSICQUIC

Documentation

• DrugLogics software: https://druglogics.github.io/druglogics-doc/
• VSM technology and related projects: https://vsm.github.io/
• PSICQUIC: https://psicquic.github.io/

DrugLogics software modules

• gitsbe: A Java module that defines Boolean models compliant with observed behavior
(e.g. steady state or perturbation data) using an automated, model parameterization genetic
algorithm

• drabme: A Java module that performs a drug perturbation response analysis to the Boolean
model ensembles generated by Gitsbe

• druglogics-synergy: A Java module to execute serially Gitsbe and then Drabme
• abmlog: A Java-based generator of all possible logical models with AND/OR-NOT link

operators in their respective Boolean equations (Figure 7)
• druglogics-roc: R Shiny web app to visualize the ROC and PR prediction performance

of Drabme’s ensemble-wise predictions (Figure 6)
• emba: R package for analysis and visualization of biomarkers in Boolean model ensembles

[3]
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R community packages

• usefun: various useful R functions
• rtemps: templates for reproducible data analyses with R [173]

Miscellaneous data analyses and repositories

All the following repositories have been authored exclusively by myself. Each repository has a
README.md file with a brief description of the analysis and a link to online documentation and
results (in the form of R Markdown documents or R GitBooks).

• cascade: repository of the different versions of the CAncer Signaling CAusality DatabasE
developed by the DrugLogics group

• ags-paper: simulation results and data analyses related to Paper 3
• sintef-obs-synergies: synergy assessment of the Flobak et al. (2019) [116] drug

combination dataset using rbbt [174] and the CImbinator tool [117]
• brf-bias: data analyses related to the study of truth density bias in standardized Boolean

regulatory functions for Paper 5
• gitsbe-model-analysis: several analyses using Boolean model ensemble datasets

generated via Gitsbe and the emba R package to analyze them
• bool-param-maps: visualization of model parameterization and node importance using

UMAP and random forests on the CASCADE 1.0 Boolean model dataset generated by
abmlog
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John Zobolas *, Vasundra Touré , Martin Kuiper and Steven Vercruysse

Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway

*To whom correspondence should be addressed.

Associate Editor: Peter Robinson

Received on August 1, 2020; revised on November 20, 2020; editorial decision on December 9, 2020; accepted on December 11, 2020

Abstract

Summary: We present a set of software packages that provide uniform access to diverse biological vocabulary resour-
ces that are instrumental for current biocuration efforts and tools. The Unified Biological Dictionaries (UniBioDicts or
UBDs) provide a single query-interface for accessing the online API services of leading biological data providers. Given
a search string, UBDs return a list of matching term, identifier and metadata units from databases (e.g. UniProt), con-
trolled vocabularies (e.g. PSI-MI) and ontologies (e.g. GO, via BioPortal). This functionality can be connected to input
fields (user-interface components) that offer autocomplete lookup for these dictionaries. UBDs create a unified gateway
for accessing life science concepts, helping curators find annotation terms across resources (based on descriptive
metadata and unambiguous identifiers), and helping data users search and retrieve the right query terms.

Availability and implementation: The UBDs are available through npm and the code is available in the GitHub or-
ganisation UniBioDicts (https://github.com/UniBioDicts) under the Affero GPL license.

Contact: john.zobolas@ntnu.no

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Motivation

The plethora of ontology terms and biological entity identifiers
(IDs) provides a vast resource for use in annotations (by curators)
and in database queries (by life scientists and computers), but speci-
fying and finding them requires extensive navigation through an
intimidating number of web resources and look-up forms. A univer-
sal way to perform a comprehensive search of life science databases,
ontologies and vocabularies, supported by an autocomplete function
that allows users to choose from a list of candidate terms with defin-
ing metadata, will greatly streamline this process. In addition, it will
help to eliminate errors that stem from typing these terms manually
without autocomplete support or options for semantic input check-
ing. Furthermore, a unified lookup utility makes terms from diverse
vocabularies easy to place together into context-rich annotations.
The Visual Syntax Method (VSM) for example (Vercruysse and
Kuiper, 2020), a technology that allows the flexible annotation of
virtually any type of contextual information, can take advantage of
unified access to such a large diversity of terms, e.g. in applications
like causalBuilder (Touré et al., 2020). For these reasons, we set out
to create a software suite that maps many of the diverse resources to
a single data access and representation form.

2 Implementation

Each UBD module is an interface to an online server that provides
ontology or controlled vocabulary data. A single dictionary module
may provide access to one or several apparent ‘sub-dictionaries’; e.g.

the BioPortal UBD presents each of its many combined biological-
domain ontologies as a distinct sub-dictionary. When a UBD
receives a request for data, it makes a custom request to the associ-
ated server’s API, and translates received data back into the format
specified by the generic dictionary interface.

2.1 Main methods and data-types
Each UBD module offers the following methods to access a resource’s
data, along with options for filtering, sorting and paging of results:

1. getDictInfos: returns a list of dictInfo objects which

each hold information about one sub-dictionary of the data

resource.

2. getEntries: returns entry objects. Each entry represents

all relevant information about a specific biological concept. It is

the combination of a computer-processable ID, at least one

human-friendly term (a word or word sequence), and various

metadata. The combined metadata makes it possible to inform

curators of what a concept represents and how its meaning dif-

fers from others. For example, the UniProt UBD returns the

‘tp53’ concept via the standard properties: id (a URI, Uniform

Resource ID: ‘https://www.uniprot.org/uniprot/P04637’), terms

(a list: ‘P53_HUMAN’, ‘Cellular tumor antigen p53’, etc., with

recommended name first and synonyms next), descr (text de-

scription of the protein), dictID (URI for the resource: ‘https://

www.uniprot.org’); and an extra set of z sub-properties for data
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specific to UniProt: z.species (‘Homo Sapiens’), z.genes (‘TP53’,

‘P53’), etc.

3. getEntryMatchesForString: returns match objects. Each

match combines one term-string (which may be a synonym, for

one or several entries) with a specific entry that it represents.

For example, querying the UniProt dictionary for ‘tumor antigen

p53’ returns among others the above entry object for ‘tp53’,

augmented with the property str (‘P53_HUMAN’).

For each UBD, these ‘get-’ methods have been harmonized with
the associated resource’s available search and returned data. This is
detailed in each UBD’s Readme on GitHub.

2.2 Additional features

1. Several UBDs are optimized for curator use: a match object’s

descr and str are tweaked so that an autocomplete list can pre-

sent available concepts in a way that is helpful in biocuration

tasks. For example, when the Ensembl UBD queries its server for

‘tp53’, it receives several gene concepts with the same name and

description, but different species and gene-synonyms. So to pro-

vide a more informative description, the last three are combined

into an optimized descr.

2. Identifiers (id, dictID) are formed as unambiguous, browsable

URIs. This supports giving users clickable access to details about

a returned concept to verify if it conveys the desired semantics

for their annotation (McMurry et al., 2017).

3. UBDs entry objects are extensible. Any extra information

offered by a resource’s API can be added in the entry.z object,

where it can later be used to customize or augment what an

autocomplete shows to the user.

For further discussion on implementation and the expected impact
of UBDs in the biocuration world, see Supplementary File S1.

3 Results

3.1 Implemented UBDs
Current UBDs map and unify the following biological resources and
their respective APIs:

• BioPortal (Whetzel et al., 2011), the largest repository of bio-

medical ontologies, using the BioPortal REST API
• PubMed MEDLINE database of biomedical literature, using the

Entrez programming utilities (Sayers, 2010)
• Noctua Entity Ontology, using their Solr Web service
• UniProt (The UniProt Consortium, 2019), using their REST API
• Ensembl (Zerbino et al., 2018)
• Ensembl Genomes (Howe et al., 2020)
• RNAcentral (The RNAcentral Consortium, 2018)
• Complex Portal (Meldal et al., 2019)

The last four UBDs each process a different data domain from
the EBI Search API (Madeira et al., 2019). In addition, we provide a
package that can combine several UBDs into one virtual dictionary,
enabling the querying of multiple UBDs through one access point
(see demo example where a vsm-box tool’s autocomplete is linked
to UBDs).

3.2 Potential users

1. Research software engineers who use UBDs as a meta-API. They

can programmatically access multiple resources in a uniform

way and avoid dealing with disparate APIs that all have different

documentation, specifications and data formats.

2. Software developers who build a project-specific curation tool.

They can create input fields that offer autocomplete lookup in

any set of UBDs and present matching terms and IDs in a selec-

tion panel. This is easily achieved by linking any dictionary to

our reusable autocomplete web-component. UBDs can also be

linked to a vsm-box (Vercruysse et al., 2020) to build curation

applications, like causalBuilder.

3. Biocurators who use the above curation tools to find the terms

they need. Autocomplete-based annotation allows biocurators to

curate papers more quickly, conveniently and precisely, without

having to copy text and IDs from elsewhere (Ward et al., 2012).
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Author's comment: In this supplementary file, we discuss what UBDs can offer to the
biocuration and systems biology world, and the problems that we faced and had to overcome
towards this goal.

Discussion

Although many of the leading resources provide individual support for finding
appropriate identifiers, terms and definitions for biological entities and concepts, an overarching
function that spans all resources is not yet available. Such a utility, providing real-time access to
terminology from diverse biological subdomains through a unified interface, enables the
development of tools that build upon the collective information residing in these disparate
domains. A unified access to the wealth of descriptive information forms an essential enabling
part of computational, semantic systems biology. Continuing in this spirit, we have recently
started building another UBD that connects with PubDictionaries (Kim et al. 2019), and we
invite future collaborators to join our UniBioDicts GitHub organisation and help build a growing
collection of client APIs serving biological dictionaries. The currently developed packages cover
a diverse range of web-services, API-technologies and associated data-types, providing concrete
examples that facilitate the development of additional UBDs, or for that matter, any other
domain dictionaries that may need to access online databases or ontologies for curation.

In the process of building the UBDs, we had to consult with at least one developer from
each data or API resource, in order to clarify, refine, and simplify both their and our
documentation and specification details, which subsequently led to a better design of the
software. For example, individual APIs return error objects in different ways, which prompted us
to harmonize our error handling specification across all UBDs. In order to deliver robust
software that will benefit its users and optimize software development efforts in the future,
face-to-face discussions coupled with extensive Q&A email correspondence proved to be
essential (Prlić and Procter 2012). Finally, we wish to emphasize the importance that proper
documentation has in a healthy software development practice (Karimzadeh and Hoffman 2018),
and its vital role in achieving our aforementioned goal.
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Abstract
One of the many challenges that biocurators face, is the continuous evolution of ontologies and
controlled vocabularies and their lack of coverage of biological concepts. To help biocurators
annotate new information that cannot yet be covered with terms from authoritative resources,
we produced an update of PubDictionaries: a resource of publicly editable, simple-structured
dictionaries, accessible through a dedicated REST API. PubDictionaries was equipped with
both an enhanced API and a new software client that connects it to the Unified Biological
Dictionaries (UBDs) uniform data exchange format. This client enables efficient search and
retrieval of ad hoc created terms, and easy integration with tools that further support the
curator’s specific annotation tasks. A demo that combines the Visual Syntax Method (VSM)
interface for general-purpose knowledge formalization, with this new PubDictionaries-powered
UBD client, shows it is now easy to incorporate the user-created PubDictionaries terminologies
into biocuration tools.

Introduction
The curation of biological information is met with several challenges today. The constant
refactoring of ontologies, nomenclature and identifiers, as well as the discovery of new types of
information and new uses thereof, makes the life of knowledge curators difficult, especially in
the highly diverse domain of biology. For example, expert curators who rely on specialized
software tools in the annotation process might come across a new concept or feature that
does not exist within an ontology or vocabulary that their annotation tool connects to. Similar
difficulties are faced by non-expert curators. Some biologists want to create a project-specific
knowledge resource in a biological niche that is only minimally or not yet covered by existing
controlled vocabularies. Under time pressure of project milestones, these biologists may not
immediately have the resources to organize a multilateral effort to standardize the terminology
in their field. Instead they typically resort to creating ‘private’ vocabularies within their projects,
that may later serve as a first step toward larger-scale coordination (Hartmann et al., 2019).
In cases where there is an abundance of resources for controlled vocabularies, ontologies and
identifiers, it may still be challenging to coordinate access to these many necessary resources for
dedicated annotation endeavours. Alternatively, in cases where no proper controlled vocabulary
would exist, the results from all the work that goes into creating new vocabularies will remain
largely isolated from general use, if no term sharing mechanism is available. Existing tools
would then also be unable to access these newly created terms and for example serve them to
curators in an autocomplete panel, to make their task easier and less error-prone.
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These problems are addressed by two complementary initiatives. On the one hand, Unified
Biological Dictionaries (UniBioDicts or UBDs) (Zobolas, Touré, Kuiper, & Vercruysse,
2020) is a set of software packages that offers a unified, single access point to biological
terminology resources, and is available to be plugged into any curation platform currently in
operation (for example the general-purpose curation interface ‘vsm-box’ (Vercruysse et al.,
2020), based on VSM (Vercruysse & Kuiper, 2020), is out-of-the-box compatible with UBDs).
On the other hand, PubDictionaries (Kim et al., 2019) is a public repository of dictionaries
where users can create and immediately share their own dictionaries based on a simple data
format consisting of a term and an identifier.
During the ELIXIR BioHackathon 2020, we updated and improved the PubDictionaries API
as well as developed a new UBD client that directly communicates with that API. These
implementation efforts constitute a significant step towards the unification of some of the
most important data resources across all biological domains. The addition of PubDictionaries
to the list of UniBioDicts-interoperable resources now provides a uniform way to search and
autocomplete terms from all these community-created dictionaries as well. Such functionality
enables the easier integration of PubDictionaries in any curation tool that may have a need for
their terms and for such a term suggestion feature.

Results
In the following two subsections, we briefly summarize the results of the hackathon efforts,
grouped into two categories:

• Updating the PubDictionaries REST API
• Creating a new UBD client library to access the above API

PubDictionaries REST API
PubDictionaries is a public repository of dictionaries, where each dictionary is a collection of
labels (human-friendly terms) and identifiers (unambiguous IDs, used by computers). Each
label + ID pair is called an entry. Multiple entries can have the same ID (for synonymous
labels) and the same label can occur in multiple entries (for ambiguous ones). Users can create
their own dictionaries and add entries to them via the web-interface. The dictionaries can be
used to annotate any piece of text via the PubAnnotation ecosystem (Kim et al., 2019) or to
simply lookup terms, and both these services are supported by a RESTful API (Kim, 2020).
All the API responses are structured as JSON objects. Prior to the BioHackathon event, the
REST service provided the following main endpoints:

1. find_ids: given some specific terms and dictionary names, this endpoint returns the
corresponding IDs that approximately match the terms in these dictionaries. Example:
https://pubdictionaries.org/find_ids.json?labels=TP53&dictionaries=human-UniProt

2. prefix_completion/substring_completion: given a term (or partial term string),
these endpoints search for prefix (respectively substring) matches in a specified dictionary
and return the corresponding entries. Note that only a first page of results was returned
with at most 15 entries, prior to the hackathon efforts. Example: https://pubdictionaries.
org/dictionaries/human-UniProt/prefix_completion?term=p53

3. text_annotation: given a piece of text and dictionary names, this endpoint
returns the result of annotation to the text using the dictionaries. The annotation is
performed based on computation of string similarity between dictionary entries and
expressions in the text. Example: https://pubdictionaries.org/text_annotation.json?
dictionary=human-UniProt&text=The%20tumor%20suppressor%20p53%20(TP53)
%20is%20the%20most%20frequently%20mutated%20human%20gene
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The following REST Service endpoints were added during the BioHackathon:
1. dictionaries endpoint: returns information about a specific dictionary, such as

its id, name, a text description, the number of entries it has, etc. Example: https:
//pubdictionaries.org/dictionaries/human-UniProt.json, where human-UniProt can be
any existing dictionary name.

2. entries endpoint: returns all entries of a specific dictionary, paginated and sorted by
label. Example: https://pubdictionaries.org/dictionaries/human-UniProt/entries.json?
page=1&per_page=15 Note that the users (software developers) can explicitly configure
how the result should be paginated, i.e. how many entries of a dictionary should be
included in one ‘result-page’, and what page they want to get results back from.

3. find_terms endpoint: this is the complement of the find_ids endpoint in the sense that
it returns a list of terms and dictionary names that match the given IDs. The result is first
sorted by ID and then by dictionary name. If no dictionary name is given to this endpoint,
then it searches for the given IDs in all dictionaries. Example: https://pubdictionaries.
org/find_terms.json?dictionaries=&ids=https://www.uniprot.org/uniprot/P04637

4. mixed_completion endpoint: a combined and updated version of the prefix_comple
tion and substring_completion endpoints. For a given term (or partial term string)
and a specified dictionary it returns a list of entries, putting the prefix completions
in the top half and the substring completions in the bottom half, while pruning any
possible common entries. In addition, this endpoint supports pagination which is a direct
result of extending the prefix and substring endpoints to support this feature as well.
Example: https://pubdictionaries.org/dictionaries/human-UniProt/mixed_completion?
term=p53&page=2&per_page=3

Additional work on the PubDictionaries server-side included the support of create (via the
HTTP POST method) and delete operations of a specific dictionary, given certified user
credentials.
Lastly, the error handling was harmonized across all REST URL endpoints. In particular,
when a user searches for a non-existent dictionary name, the PubDictionaries server returns
a proper HTTP response status code, 400 (Bad Request), together with a JSON-formatted
description as follows: { "message": "Unknown dictionary: <name>." }. For example,
all the following URL links return such a response object:

• https://pubdictionaries.org/dictionaries/non-existent-dictionary-name.json
• https://pubdictionaries.org/find_terms.json?dictionaries=non-existent-dictionary-name&

ids=id1,id2
• https://pubdictionaries.org/dictionaries/non-existent-dictionary-name/entries.json

UBD Client for PubDictionaries
UBDs are a set of software packages that provide a unified query-interface for accessing the
online API services of key biological vocabulary-data providers (Zobolas et al., 2020). The main
feature of UBDs is their string-search functionality, which returns for a given label (or partial
label) a list of matching term, identifier and metadata units from databases (e.g. UniProt (The
UniProt Consortium, 2019)), controlled vocabularies (e.g. PSI-MI), and ontologies (e.g. Gene
Ontology, via BioPortal (Whetzel et al., 2011)). This feature makes UBDs ideal for enabling
autocomplete support in user-interface components that serve terms to curators from disparate
resources, thus allowing the more efficient annotation of information.
Our work in the ELIXIR BioHackathon 2020 included the creation of a new UBD client
(vsm-pubdictionaries) that utilizes the updated PubDictionaries API in order to solve a long-
standing problem in the biocurator community: how can ad hoc, project-specific terms and
new information be effectively annotated with, and served via a curation platform, without
the need to first negotiate the storage, update and reconciliation of that information with a
third party, e.g. a database or ontology provider? Our client software addresses this problem
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by presenting a mediator solution that can easily be plugged into current curation applications
and serve ad hoc terms from PubDictionaries’ public curator-created dictionaries.
Regarding the software client code, we wrote extensive documentation to delineate the mapping
between the terms and IDs from PubDictionaries and the unified UBD format and how this
is achieved via the updated PubDictionaries REST API endpoints, all in accordance with
the UBDs’ shared dictionary interface specification. We also enabled continuous integration
support via GitHub Actions and wrote extensive tests (code coverage is at 95%), so as to
deliver more reliable, fault-tolerant and easy-to-extend software. Moreover, the documentation
includes two examples; one showcasing the search term functionality via Node.js and one
indicating how to use the client library in a web-based environment, with an HTML file. Finally,
the demo example (see Figure 1) that was presented during the last report session of the
BioHackathon, demonstrates a simple use-case where a few public dictionaries were created
and their terms served in a vsm-box curation interface (Vercruysse et al., 2020). Thus we show
how straightforward the annotation of new information can be by means of the autocomplete
functionality of the provided curation tool, and how this new knowledge can be connected with
semantically aware annotations.

Figure 1: Demo example that uses a ‘vsm-box’ curation interface component, pre-filled with a
VSM-template. An autocomplete panel appears while the user enters terms linked to identifiers.
These term+ID pairs come from demo-dictionaries that we created at PubDictionaries, and are
fetched through the new REST API-client described in this paper. Placeholders like ‘food’ and ‘tool’
indicate the kinds of dictionaries that specific fields of the template are connected with. On top,
VSM-connectors formalize the structure and meaning of this knowledge unit.

Discussion
The advantages of a software package that connects with and queries any dictionary created in
the PubDictionaries web-interface are multiple. This novel software enables annotation tools
to use a common language and interface to link to information that is not yet available in
standard databases. Note that the process of integrating new terms into standard resources can
be time-consuming, so supporting communities of curators to create and utilize new terms that
are at least publicly shared, in PubDictionaries, is a helpful first measure to tackle the problem
of missing terms during ongoing curation work. Our software is a step towards achieving that
goal, since it positions the community-manageable PubDictionaries into the mainstream of
controlled vocabularies (CVs) and ontology resources. It fills the niche of new and ad hoc CVs
that in turn may prompt new dedicated efforts to mature these CVs for consensus and expert
maintenance.
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Propelled by an ELIXIR BioHackathon event, our work underpins the goals of several of
ELIXIR’s activities, or so-called ‘Platforms’. In the ELIXIR Data Platform, the drive to use,
re-use and value life science data takes precedence. Our efforts exemplify how to achieve this
by providing a scalable solution for curation platforms, especially ones that include support
for annotation efforts that involve new information types. Furthermore, our main objective
matches the goals of the ELIXIR Interoperability Platform: we offer a way to publicly-access
and integrate new curated knowledge in a unified form, which enables new knowledge to
be used by humans and machines alike, and to build knowledge systems that will aid future
endeavors in understanding biological processes.

Future Work
Our future work includes updates on the PubDictionaries API to support the addition, update
and deletion of dictionary entries, which is a functionality currently only available in the
web-interface of PubDictionaries. Consequently, a further update on the UBD client will
provide the necessary backbone to help build user interfaces, where curators would not even
need to log in to the PubDictionaries website to create new dictionaries, and add, update or
delete entries, but rather would be able to do that from within their own in-house curation
tool. This functionality is currently not offered by any other biological data provider. Lastly,
we expect that these updates, coupled with the search-string functionality provided by the
PubDictionaries UBD client, will contribute in efforts to significantly increase the autonomy of
biocurators and their potential for creating shareable annotations.

Links to software and documentation
• PubDictionaries API documentation: https://docs.pubdictionaries.org
• PubDictionaries source code: https://github.com/pubannotation/pubdictionaries
• UBD Client for PubDictionaries: https://github.com/UniBioDicts/vsm-pubdictionaries
• Demo example with vsm-box curation interface: https://github.com/UniBioDicts/

vsm-pubdictionaries/blob/master/test/test_vsm_box_pubdictionaries.html
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Abstract
Treatment with combinations of drugs carries great promise for personalized therapy for a
variety of diseases. We have previously shown that synergistic combinations of cancer signaling
inhibitors can be identified based on a logical framework by manual model definition. We now
demonstrate how automated adjustments of model topology and logic equations both can
greatly reduce the workload traditionally associated with logical model optimization. Our
methodology allows the exploration of larger model ensembles that all obey a set of
observations, while being less restrained for parts of the model where parameterization is not
guided by biological data. We benchmark the synergy prediction performance of our logical
models in a dataset of 153 targeted drug combinations. We show that well-performing manual
models faithfully represent measured biomarker data and that their performance can be
outmatched by automated parameterization using a genetic algorithm. Whereas the predictive
performance of a curated model is strongly affected by simulated curation errors, data-guided
deletion of a small subset of regulatory model edges can significantly improve prediction quality.
With correct topology we find evidence of some tolerance to simulated errors in the biomarker
calibration data, yet performance decreases with reduced data quality. Moreover, we show that
predictive logical models are valuable for proposing mechanisms underpinning observed
synergies. With our framework we predict the synergy of joint inhibition of PI3K and TAK1, and
further substantiate this prediction with observation in cancer cell cultures and in xenograft
experiments.

Introduction

Combining specific and targeted drugs in one therapy to fight disease increases chances of
treatment success1. Drug combinations that together act in synergy are especially attractive
because they allow for pushing treatment effects beyond those obtainable by each drug alone2,
with drug dosages that can be well below levels where individual drugs begin to cause adverse
effects. In addition, synergistic drug combinations may have reduced side-effects by improved
selectivity in a specific biological context, for instance by allowing targeting of only certain cell
types in an organism3. Lastly, searching for new combination therapies has the additional benefit
that already approved drugs can act beneficially in novel combinations, and thus even allow
bypassing initial drug development phases.

While the development of rational drug combination treatment has become a major priority due
to hopes of increased treatment potency, a grand challenge remains in dealing with their
identification in the vast potential drug combination space. Currently, more than two hundred

3 Lehár, J. et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat.
Biotechnol. 27, 659–66 (2009)

2 Al-Lazikani, B., Banerji, U. & Workman, P. Combinatorial drug therapy for cancer in the post-genomic
era. Nat. Biotechnol. 30, 679–92 (2012)

1 Hanahan, D. & Weinberg, R. a. Hallmarks of cancer: the next generation. Cell 144, 646–74 (2011).
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drugs have been approved by the FDA to treat cancer
(https://www.cancer.gov/about-cancer/treatment/drugs). The testing of drugs in all combinations
with other drugs in a panel needs assays in numbers that increase exponentially with increasing
drug numbers. Even a modestly sized drug panel of 150 drugs corresponds to over 10.000
pairwise drug combinations. Testing high numbers of drug combinations in high throughput
screens on cell lines or other patient-specific model systems is costly and at some point
prohibitively expensive and cumbersome. Therefore, help is needed from in silico drug effect
simulations to produce high quality predictions that can guide drug combination screens or
therapy choices for testing in cell lines or patients. In silico simulations may help identify those
combinations that are unlikely to produce synergies, which can be of significant help to reduce
the large experimental search space that otherwise would need to be covered in exhaustive
screens. As many drug synergies can be seen as emergent properties arising from molecular
causality networks, analytical frameworks from computational systems biology seem to be well
suited to the task.

Several mathematical frameworks have already been tested to mechanistically model drug
combination effects, including continuous, discrete, and hybrid modeling approaches. Published
approaches generally depend on molecular causalities downloaded from prior knowledge
databases, extracted from large-scale data, or obtained by a combination of the two. Based on
a dataset capturing proteomic responses of 14 targeted drugs, Miller et al. used ordinary
differential equations to study mechanisms of synergy between inhibitors of CDK4 and IGF1R,
revealing that the mechanisms rely on the activity of AKT4. Nelander et al. explored ODE
models derived from observations on phospho-proteins and cell cycle markers following 21
pairwise applications of targeted drugs, with the aim to use best-performing pairs for design of
new combination therapies5. In a semi-qualitative modeling approach, Klinger et al. used a
perturbation dataset for MAPK, PI3K and NF-κB signaling to inform a model showing that
combined inactivation of MEK and EGFR could inactivate endpoints of RAS, ERK and AKT
signaling6. Jin et al. explored enhanced Petri nets to describe molecular processes for the
synergy of an EGFR inhibitor (gefitinib) with chemotherapy (docetaxel) and identified KRT8 as a
candidate gene to explain the synergy7. However, all of these approaches rely on extensive and
costly combinatorial drug perturbation data, be it transcriptomic, proteomic, viability etc., for
describing mechanisms of synergy, and therefore they require vast investments in data
production and do not provide a feasible solution for the testing of the large drug combination
space.

In order to reduce dependence on a priori perturbation experiments, attempts have been made
to predict drug synergies from data obtained in a marginal experimental search space, rather

7 Jin, G., Zhao, H., Zhou, X. & Wong, S. T. C. An enhanced Petri-net model to predict synergistic effects
of pairwise drug combinations from gene microarray data. Bioinformatics 27, i310–6 (2011)

6 Klinger, B. et al. Network quantification of EGFR signaling unveils potential for targeted combination
therapy. Mol. Syst. Biol. 9, 673 (2013)

5 Nelander, S. et al. Models from experiments: combinatorial drug perturbations of cancer cells. Mol. Syst.
Biol. 4, 216 (2008)

4 Miller, M. L. et al. Drug Synergy Screen and Network Modeling in Dedifferentiated Liposarcoma
Identifies CDK4 and IGF1R as Synergistic Drug Targets. Sci. Signal. 6, ra85 (2013)
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than the full combinatorial space. Fröhlich et al. used ODE models informed by transcriptomic
and viability data to predict drug combination responses, finding that highly accurate predictions
could be produced for those drugs for which they had viability response data8. In the DREAM7 -
NCI-DREAM, Drug Sensitivity and Drug Synergy Challenges9,10,11 (NCI-DREAM), pairwise drug
responses were predicted from response data obtained for each drug alone. The best
performing teams in the NCI-DREAM challenge obtained a probabilistic concordance (PC) index
of 0.61, on a scale ranging from 0.9 (perfect prediction) to 0.1 (perfect opposite prediction).
Although this is better than random (PC index of 0.5), it clearly illustrates that obtaining accurate
synergy predictions is far from trivial, due to a variety of reasons that will be discussed in this
paper. In the more recent AstraZeneca-Sanger Drug Combination Prediction DREAM
Challenge12 (AZS-DREAM), one of the aims was to develop and demonstrate drug combination
response predictability independent of extensive perturbation data. The development of such
powerful prediction approaches has the advantage of being relevant not only to preclinical drug
screens, but also to bed-side applications. Drug perturbation data clearly will not be trivial to
obtain for individual patients, unless patient-derived experimental assays that mimic patient
responses can be developed (e.g. xenografts, explants etc.). Sobering results from the
AZS-DREAM challenge showed that most teams had balanced accuracies of 0.5-0.6, with the
best performing team obtaining a balanced accuracy of only 0.69.

With the availability of training data, machine learning algorithms have also been explored to
predict drug synergies13,14,15. However, major limitations of such approaches are the lack of
mechanistic insight16, and dependence on high quantities of training data. Despite some
increase in their availability, large scale datasets on drug responses for machine learning to
predict combination effects are still largely missing, in part due to great experimental complexity

16 Yu, M. K., Ma, J., Fisher, J., Kreisberg, J. F., Raphael, B. J., & Ideker, T. (2018). Visible Machine
Learning for Biomedicine. Cell, 173(7), 1562–1565. http://doi.org/10.1016/j.cell.2018.05.056

15 Tang, J., Gautam, P., Gupta, A., He, L., Timonen, S., Akimov, Y., … Aittokallio, T. (2019). Network
pharmacology modeling identifies synergistic Aurora B and ZAK interaction in triple-negative breast
cancer. Npj Systems Biology and Applications, 5(1). http://doi.org/10.1038/s41540-019-0098-z

14 Gayvert, K. M., Aly, O., Platt, J., Bosenberg, M. W., Stern, D. F., & Elemento, O. (2017). A
Computational Approach for Identifying Synergistic Drug Combinations. PLoS Computational Biology,
13(1), 1–11. doi:10.1371/journal.pcbi.1005308

13 Preuer, K., Lewis, R. P. I., Hochreiter, S., Bender, A., Bulusu, K. C., & Klambauer, G. (2017).
DeepSynergy: Predicting anti-cancer drug synergy with Deep Learning. Bioinformatics (Oxford, England),
(December). doi:10.1093/bioinformatics/btx806

12 Menden, M. P., Wang, D., Mason, M. J., Szalai, B., Bulusu, K. C., Guan, Y., … Saez-Rodriguez, J.
(2019). Community assessment to advance computational prediction of cancer drug combinations in a
pharmacogenomic screen. Nature Communications, 10(1), 2674.
http://doi.org/10.1038/s41467-019-09799-2

11 Goswami, C. P., Cheng, L., Alexander, P. S., Singal, a & Li, L. A New Drug Combinatory Effect
Prediction Algorithm on the Cancer Cell Based on Gene Expression and Dose-Response Curve. CPT
pharmacometrics Syst. Pharmacol. 4, e9 (2015).

10 Sun, Y. et al. Combining genomic and network characteristics for extended capability in predicting
synergistic drugs for cancer. Nat. Commun. 6, 8481 (2015).

9 Bansal, M. et al. A community computational challenge to predict the activity of pairs of compounds. Nat.
Biotechnol. (2014). doi:10.1038/nbt.3052

8 Fröhlich, F., Kessler, T., Weindl, D., Shadrin, A., Schmiester, L., Hache, H., … Hasenauer, J. (2018).
Efficient Parameter Estimation Enables the Prediction of Drug Response Using a Mechanistic
Pan-Cancer Pathway Model. Cell Systems, 7, 1–13. http://doi.org/10.1016/j.cels.2018.10.013
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and high economic cost. Whereas efficient in silico therapy based on patient-specific models
ultimately should be integrated into the clinical decision process, here we further investigate the
performance of logical modeling of drug response of cancer cell lines. In order to reduce the
dependency on large training datasets, we explore the use of cell lines measurements of
biomolecules obtained at a single time point at steady state proliferation. To reduce data
dependency and to improve mechanistic insights, these measurements are combined with prior
knowledge to construct logical model ensembles to simulate drug combination effects. Logical
model building is known to require meticulous involvement of curators and bioinformaticians,
with substantial commitment to manual tinkering of models before the behavior of one model
matches that of its experimental counterpart. We have previously published logical models of
cancer cell lines, named CASCADE 1.0, CASCADE 2.0 and CASCADE 3.0, which demonstrate
the potential of logical modeling for the prediction of drug synergies17,18,19. However, the curation
effort required to assemble a cancer signaling network and the dedicated interactive efforts
needed to optimally modify logical rule definitions becomes a clear obstacle when constructing
larger models.

If patient specific logical models are to be used routinely, such logical models should be trivial to
construct for any cell line or patient-derived cell culture, and for any repertoire of targeted drugs.
We therefore set out to automate processes required to calibrate a logical model from a set of
molecular causative statements, i.e. a prior knowledge network. A software pipeline developed
to that end would have to 1) assemble a network topology from structured data obtained from
prior knowledge databases, 2) interpret baseline cancer cell line biomarker data into a signaling
entity activity score, 3) calibrate generic logical models, created from prior knowledge data, by
modifying logic equations to match the observed activity scores, and 4) predict phenotypic
consequences of combinatorial interventions to the simulated model behavior. Our software
solution for realizing points 3 and 4 is available at https://github.com/druglogics. We use a
genetic algorithm to automatically parameterize a set of logic equations representing cancer
growth-promoting signaling in the AGS gastric adenocarcinoma cell line. We demonstrate our
approach by reproducing results from a previous manual effort and next test its utility with a
larger model that was benchmarked against a dataset from a drug effect screen of 153 drug
combinations. Experiments that simulate different levels of curation quality and biomarker data
quality indicate the need for a reliable PKN, while still allowing for model improvement by
network link pruning and parameter optimization.

19 Tsirvouli, E., Touré, V., Niederdorfer, B., Vázquez, M., Flobak, Å., & Kuiper, M. (2020). A Middle-Out
Modeling Strategy to Extend a Colon Cancer Logical Model Improves Drug Synergy Predictions in
Epithelial-Derived Cancer Cell Lines. Frontiers in Molecular Biosciences, 7, 502573.
http://doi.org/10.3389/fmolb.2020.502573

18 Niederdorfer, B., Touré, V., Vazquez, M., Thommesen, L., Kuiper, M., Lægreid, A., & Flobak, Å. (2020).
Strategies to Enhance logical modeling-Based Cell Line-Specific Drug Synergy Prediction. Frontiers in
Physiology, 11(July), 862. http://doi.org/10.3389/fphys.2020.00862

17 Flobak, Å., Baudot, A., Remy, E., Thommesen, L., Thieffry, D., Kuiper, M., & Lægreid, A. (2015).
Discovery of Drug Synergies in Gastric Cancer Cells Predicted by Logical Modeling. PLoS Computational
Biology, 11(8), e1004426. https://doi.org/10.1371/journal.pcbi.1004426
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Methods

Logical modeling
Logical models rely on the formalism initially proposed by Stuart Kauffman20 and René
Thomas21. Their approach first defines a regulatory graph consisting of nodes representing
signaling entities (model components), and signed and directed edges representing regulatory
interactions that connect signaling entities. The activities of all model components are then
associated with the Boolean values ‘True’ and ‘False’, represented by 1 and 0, corresponding to
activity and inactivity, respectively. This dichotomy of activity levels can be interpreted as activity
being above or below a “threshold”: a component is “active” when its activity level is sufficiently
high to influence a target component’s activity levels. In model simulations, specific model
components can be defined as ‘output nodes’, whose activity values serve as a proxy for a
phenotype of interest. This allows us to compute an overall ‘growth’ value in our simulations, by
integrating all activity values of model output nodes, and scaling this sum to [0..1]. For example,
if the anti-survival model output nodes CASP8, CASP9 and FOXO3 are inactive and the
pro-survival model output nodes MYC, CCND1 and TCF7 are active, the global output ‘growth’
is 1.0. Inhibitory effects of a drug are simulated by fixing the drug target to an activity level of 0,
i.e. simulating a block in signaling activity of the drug target node.

Model attractors were determined using the software bioLQM, which provides a fast algorithm
for finding stable state(s) and complex attractors22. For some of the simulations that were too
computationally taxing, we used a modified version of the algorithm BNReduction23, which
allows the identification of single stable state phenotypes that are most prevalent with our
self-contained CASCADE topologies.

Model calibration by parameterization optimization

A genetic algorithm is applied to automate model parameterization, as follows:

The input for model calibration consists of:

23 Veliz-Cuba, A., Aguilar, B., Hinkelmann, F., & Laubenbacher, R. (2014). Steady state analysis of
Boolean molecular network models via model reduction and computational algebra. BMC Bioinformatics,
15, 221. http://doi.org/10.1186/1471-2105-15-221

22 Naldi, A. (2018). BioLQM: A Java toolkit for the manipulation and conversion of logical qualitative
models of biological networks. Frontiers in Physiology, 9(NOV), 1–10.
http://doi.org/10.3389/fphys.2018.01605

21 Thomas, R. (1973). Boolean formalization of genetic control circuits. Journal of Theoretical Biology,
42(3), 563–585. http://doi.org/10.1016/0022-5193(74)90172-6

20 Kauffman, S. a. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets.
Journal of Theoretical Biology, 22(3), 437–467. http://doi.org/10.1016/0022-5193(69)90015-0
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● Interactions: binary signed and directed interactions (SIF format24).
● Steady state: Boolean vector containing states of nodes in input interactions, where

nodes that should be active are assigned the value 1, and nodes that should be inactive
are assigned the value 0. For nodes whose state cannot be determined a dash (-) can
optionally be used to explicitly declare that the node state is undetermined. This steady
state vector will be used for evaluating the correctness of a model’s stable state.

The output from an automated model calibration is an ensemble of models with a stable state
optimized to match the input steady state.

To run the parameter configuration, interactions are first assembled to logic equations, based on
a default equation25 relating a node with its regulators, for instance:

Target *= (A or B or C) and not (D or E or F),

where activating regulators A, B and C of a target are combined with logical ‘or’ operators, and
inhibitory regulators D, E and F are combined with ‘and not’ operators to determine the state of
the target node in the next time step. The operator ‘and not’, which directs the integration of
activating and inactivating regulators, is referred to as the link operator in this manuscript. The
topology is ‘self-contained’, meaning that any regulator is itself regulated by one or more
components from within the network topology, effectively meaning there are no ‘user-controlled’
inputs to the network through e.g. hormone receptors.

Next, a genetic algorithm is used to iteratively refine the parameterization to produce a logical
model with a stable state matching the specified input steady state. First, an initial generation of
models is formulated, where a large number of mutations to the parameterization is introduced:
randomly selected equations are mutated from “and not” to “or not”, or vice versa. For each
model a fitness score is computed: each matching Boolean value between the vector of a stable
state and the steady state improves the fitness score. Models without a stable state have a
fitness of zero. Models with n stable states obtain a final fitness after integrating all Boolean
values in a stable state vector and dividing the resulting overall fitness by n, thus penalizing
models with multiple stable states.

For each generation, a user-defined number of models were selected for populating the next
generation of models. For our simulations three models were selected, specifically the ones that
achieved the highest fitness scores in each generation, to populate a next generation of 20
models. First, crossover was performed, where each selected model would exchange logic
equations with other selected models (including itself, thus also enabling asexual reproduction).
Then a number of mutations were introduced as described above. For our simulations up to

25 Mendoza, L., & Xenarios, I. (2006). A method for the generation of standardized qualitative dynamical
systems of regulatory networks. Theoretical Biology and Medical Modelling, 3, 1–18.
http://doi.org/10.1186/1742-4682-3-13

24 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., … Ideker, T. (2003).
Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome
Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
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three mutations were introduced. Before a stable state was obtained, the number of mutations
introduced per generation was increased by a user-defined factor. The large number of
mutations in the initial phase ensured that a large variation in parameterization could be
explored. For our simulations we chose the factor to be 1000, effectively ensuring that the initial
generations were randomly sampled from all possible model configurations. Evolution was
halted when a user-specified threshold fitness was reached. In case this fitness could not be
reached, evolution was halted when a user-defined maximum number of generations had been
spanned. For our simulations we allowed for a maximum of 20 generations.

Model calibration by topology optimization
In order to introduce variations to the topology, the genetic algorithm modified a whitelist and a
blacklist of regulators of the prior knowledge network, while always preserving at least one
regulator for each target, so as to not break the self-contained property of the network. Based
on the same formula as shown above,

Target *= (A or B or C) and not (D or E or F),

this means that the genetic algorithm takes out some subset of the regulators A, B, C, D, E or F
(blacklisting). After a regulator has been eliminated, the genetic algorithm is also allowed to
bring back regulators originally defined in the PKN (whitelisting). For our simulations, during the
initialization phase we introduced 50 such topology mutations and when models with stable
states were found, we reduced this number to 10, so as to not severely reduce the PKN edges.

Model simulation and synergy prediction
After repeating evolution a specified number of times, model ensembles were analyzed in a
third step of the software pipeline, as follows:

The input to model simulation and synergy prediction consists of:
● An ensemble of logical models
● A drug panel: List of drugs and their target node(s) in the model
● Perturbations: the perturbations to be analyzed.
● Model output nodes with weighted score to evaluate global output (i.e. ‘growth’)

Output from model simulation and synergy prediction:
● Drug synergy predictions from ensembles of models

For each model, all perturbations specified were simulated. For each perturbation, the drug
panel was consulted to fix the state of the specified node(s) to the value 0 (node state could in
principle also be fixed to the value 1 for a drug that activates a signaling entity, but this feature
was not used here as all drugs inhibit nodes in the model, thereby representing inhibition of their
target in a cell). After simulating a perturbation, the global output parameter ‘growth’ was
computed by integrating the weighted score depending on the states of model output nodes. For
example, if two output nodes A (weight 1) and B (weight -1) were found to have the states A=1,
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B=1 for a perturbation, the global output would evaluate to Astate×Aweight + Bstate×Bweight = 1×1 +
1×(-1) = 0. This value was then scaled from 0 to 1 based on the theoretical minimum and
theoretical maximum ‘growth’, for this example, the range [-1,1], the global output would be 0.5.
The scaled global output (‘growth’) was then used to compute synergies (see below).

All steps of the software pipeline were implemented in the OpenJDK Java v1.8 language and
run on Linux 4.15.0-122-generic/Ubuntu 18.04.4 LTS. The pipeline can be accessed at
https://github.com/druglogics. For an extensive documentation of the methods used in this work,
see https://github.com/druglogics/ags-paper.

In silico definition of synergy
Synergy is defined as an additional response beyond what is expected from a reference model
of drug combination responses. Both for in silico simulations and in vitro experiments an
observed combination effect can be formally defined as the effect E observed for two drugs a
and b, where E(a,b) is the observed effect in a combination experiment, A(a,b) is the drug
combination effect expected from each individual drug’s properties as based on a reference
model for combination responses, and S(a,b) is any difference between the observed and the
expected drug combination effect, such that E(a,b) = A(a,b) + S(a,b)26. In the case of excess
effects observed for a combination, S(a,b) is positive and synergy is called, and conversely for
attenuated effects, S(a,b) is negative and antagonism is called. Finally, for drug combinations
where E(a,b) equals A(a,b), the drug combination effect can fully be anticipated by each drug
response independently, and neither synergy nor antagonism is called.

In model simulations the expected drug combination response is defined as the product of the
two global output ‘growth’ values for each single drug, similarly to the Bliss independence27

synergy metric used in lab experiments: when a combinatorial perturbation in simulations is
found to predict a lower growth than expected, i.e. growth(a,b) < growth(a) * growth(b), the
combinatorial perturbation response is declared synergistic.

Gold standard synergies
Our previously published dataset of targeted drug combinations[17] was used to benchmark the
algorithms. The drugs included comprised the inhibitors 5Z-7-oxozeaenol (5Z), AKTi-1,2 (AK),
BIRB0796 (BI), CT99021 (CT), PD0325901 (PD), PI103 (PI), PKF118-310 (PK), JNK Inhibitor
XVI (JN), BI-D1870 (D1), BI605906 (BIX02514) (60), Ruxolitinib (INCB18424) (SB), SB-505124
(RU), D4476 (D4), KU-55933 (KU), 10058-F4 (F4), Stattic (ST), GSK2334470 (G2),
GSK-429286 (G4), P 505-15 (P5). For the drug synergy calling in the 153 combinations drug

27 Bliss, C. I. (1939). The Toxicity of Poisons Applied Jointly. Annals of Applied Biology, 26(3), 585–615.
http://doi.org/10.1111/j.1744-7348.1939.tb06990.x

26 Li, H., Li, T., Quang, D., & Guan, Y. (2018). Network propagation predicts drug synergy in cancers.
Cancer Research, 78(18), 5446–5457. https://doi.org/10.1158/0008-5472.CAN-18-0740
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screen, three curators were asked to evaluate growth curves and decide on which showed
interesting combination effects that could have warranted further investigations. A consensus list
was then used to identify a threshold for drug synergy assessment using the software
CImbinator28 and configured to compute synergies per the Bliss metric. The analysis identified
six drug synergies (AK-BI, PI-D1, BI-D1, PI-G2, PD-PI, 5Z-PI). Note that two drug synergies in
the drug screen performed in 2015 were not captured by this analysis, probably relating to the
different readouts used in the drug screen performed in 2019 (xCELLigence and CellTiter Glo,
respectively).

Normalization
Normalization of synergy predictions was performed by computing the exponential fold change
for the ratio of output from models calibrated to steady state biomarker data (x) to output from
models calibrated to a random yet proliferative phenotype (y):

synergy = exp((growthx(a,b) - growthx(a)*growthx(b))-(growthy(a,b) - growthy(a)*growthy(b)))

Our random proliferative phenotype corresponds to a cell with all anti-apoptotic signals
inactivated, and at least one prosurvival signal active.

Mouse xenograft experiments
40 female Balb/c mice 4-5 weeks old (Taconic) were inoculated with two million AGS cells
subcutaneously in the right dorsal flank. Cells were mixed with Matrigel to improve probability of
successfully establishing a xenograft model: in a small pilot (n=3) we observed that none of
three mice injected with cells in medium (DMEM) developed tumors, while two of three mice
injected with cells in medium and Matrigel developed tumors. 100 µl of cell suspension in
HAM’S F12 medium (Invitrogen, Carlsbad, CA) with 10% fetal calf serum (FCS; Euroclone,
Devon, UK), and 10 U/ml penicillin-streptomycin (Invitrogen) was mixed with 100 µl of ECM Gel
from Engelbreth-Holm-Swarm murine sarcoma (Sigma-Aldrich). After four weeks, minuscule but
palpable tumors had formed in 30 mice, which were randomized to four groups and subjected to
treatment: 1) 5Z-7-oxozeaenol (3 mg/kg/d), 2) PI103 (5 mg/kg/d), 3) 5Z-7-oxozeaenol (3
mg/kg/d) + PI103 (5 mg/kg/d), 4) vehicle. Randomization ensured that average tumor volume
was similar in the four groups. Weights of mice ranged from 14.9 to 20.0 grams at onset of
treatment, with average weight 17.66 g and standard deviation of 1.06 g. All mice received the
same dose of drugs, and the dose was adjusted for a body weight one standard deviation below
average, i.e. 16.6 g. Drugs were diluted in medium with 40% DMSO for a total injection volume
of 250 µl and injected intraperitoneally three times per week for a total of seven injections.
Maximum (a) and minimum (b) tumor diameters were measured twice weekly with a caliper, and
the volume V of the tumor was estimated from the formula V = 0.5 a × b2.

28 Flobak, Å., Vazquez, M., Lægreid, A., & Valencia, A. (2017). CImbinator: A web-based tool for drug
synergy analysis in small- and large-scale datasets. Bioinformatics (Oxford, England), (March), 1–3.
https://doi.org/10.1093/bioinformatics/btx161
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Results
For reliable simulation of drug responses of cancer cell lines, computational models must
adequately represent the regulatory network (topology) underlying cell fate decisions, meaning
that high quality molecular causal relationship data must exist and be converted to regulatory
graphs. In addition, the activity states of molecular regulatory components must be measured,
demanding high quality biomarker data. From the regulatory graph the response of components
to upstream source nodes and influence on downstream target nodes needs to be specified in
the form of logical rules and calibrated so as to accurately represent the biological decision
mechanisms of these cells in a Boolean framework. Finally, good benchmarking data must exist
to evaluate the performance of the model, e.g. for our purposes in the form of drug synergy
data, see figure 1A.

Design of an automated model parameterization module
Previously we have shown the feasibility of logical model predictions of drug synergies17 using
the cancer cell line AGS, chosen due to known deregulations of several core cell survival
signaling pathways. A Prior Knowledge Network (PKN) was curated to represent these signaling
pathways, and converted to a set of mathematical rules formulated in Boolean logic. This model,
available from https://github.com/druglogics/cascade as CASCADE 1.0 (Fig. 2A), consists of 75
nodes representing cancer signaling entities and 149 edges representing regulatory
interactions, and it could predict five synergies of which four were experimentally confirmed17.
Since our model is based on prior knowledge, amenable to interpretation by molecular
biologists, the model also can be used for inspection as to which signaling pathways are
important for particular drug response observations, e.g. we have suggested that FOXO
signaling was crucial to the drug synergy effect of joint PI3K and MEK inhibition17. Whereas for
many of the logical rules the definition of the logical operators (AND, OR, NOT) was more or
less evident from literature and database knowledge, analysis of Boolean model attractors
indicated that some logical rules needed further manual optimization in a stepwise manner so
that ultimately the model stable state behavior matched the observed pattern of signaling
entities at steady state in proliferating AGS cells. We now report on how we automated and
generalized these steps required to parameterize an in silico model of a cancer cell line, by
employing a genetic algorithm for deriving logical rules from prior knowledge and steady state
signaling observations, see figure 1B. From a curated network topology a set of standardized
logic equations are obtained by defining one logic equation for each model target node, with
model source nodes as operands25. For example, if protein T is activated by proteins A and B,
while protein C inhibits protein T, the equation could read as T = (A OR B) AND NOT C.
Subsequently, the parameterization (choices of logical operators) is optimized by a genetic
algorithm, specifically modifying the AND NOT/OR NOT parameter. The genetic algorithm
iteratively modifies the parameterization of a small subset of the equations, and selects best
performing models for defining a new generation of candidate models. Best performing models
are chosen based on their compliance with reproducing known baseline cell signaling states, as
far as the available cell line data allows it. Evaluating fitness from a match with baseline
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observations also means that our models are defined independently of perturbation data. Our
software solution for automatic parameterization is available at http://github.com/druglogics/.

Figure 1A: Overview of the drug synergy prediction platform. Cancer cells are analyzed for
biomarkers used to define logical models that can be used to predict drug synergies. Model
predictions are tested by benchmarking against high throughput drug screens.

Figure 1B: A genetic algorithm optimizes logical models to cancer cells. A prior knowledge
signaling topology representing molecular causal interactions is taken as input to define logical
models with predefined rules as initial logic equations. A genetic algorithm will iteratively
randomly choose logical rules by mutating the AND/OR configuration, thereby re-parameterizing
a logical model until a model shows a maximum compliance with steady state signaling
observations (biomarkers). This procedure is performed in parallel for hundreds of models until
an optimized ensemble of models is available for drug synergy prediction.
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Automated logical rule definitions perform on par with manually
curated rules

To compare results from our manually constructed logical rules with automated rule definitions,
our software translates the graph, as encoded in a SIF file format, to a set of 75 logic equations
in a standardized format25. Logic equations are then optimized using a genetic algorithm in a
process where the fitness of each model is calculated by comparing the matches of its stable
state nodes with observed activities of signaling entities for proliferating cancer cells. For the
AGS cells, this process comprised 20 generations, in which each generation received mutations
to a small subset of logic equations iteratively, with 20 models per generation tested for fitness.
In order to adequately cover the space of local optima, the evolutionary process was repeated
50 times and the three best performing models from each evolution were retained, which
resulted in an ensemble of 150 models. A theoretical maximal fitness of one would be reached if
all nodes have a state matching the observed activity state of the corresponding protein. As can
be seen in figure 2B, the population average fitness of each generation increases exponentially
before plateauing at a fitness close to the theoretical maximal fitness, per Holland’s Schema
Theorem29, indicating that the theoretical models can be parameterized so as to be compliant
with experimentally observed signaling states. While a genetic algorithm cannot guarantee a
global optimum, our results clearly indicate that we quickly achieve convergence to a local
optimum.

Whereas these model ensembles provide the testing ground for the in silico drug effect
simulations, it is to be expected that certain motifs of the network topology itself will create ‘blind
spots’ resulting in some synergies to be impossible to predict. For example, if two directly
sequential signaling nodes are targeted by two different drugs, while no other influences from
other signaling entities are allowed by the topology, then these two drugs cannot be predicted to
act synergistically in our logical modeling framework. To remedy such situations extensions to
the prior knowledge network are necessary, or conversion to non-discrete modeling. On the
other hand, if two drug targets are active and are the only (activating) source nodes of a joint
downstream target node, with their joint effect on the target governed by an OR logical operator,
this may constitute a synergy that is highly likely to stand out in an analysis, since the OR
operator would cause either drug alone to not affect a joint downstream node. Between these
two extremes, the topology will be more or less likely to produce a particular synergy prediction
for a given combination perturbation. In order to correct for topology-intrinsic propensities for
predicting some synergies we next employed a normalization strategy where synergy
predictions for an automatically parameterized model ensemble are normalized to a randomly
parameterized model, meaning a model ensemble that covers many different selections of OR
and AND operators, irrespective of any particular stable state. This means that in our further
analyses we used the fold change of the predicted synergy score of a test model against a
randomly yet proliferative parameterized model (see Methods).

29 Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. Adaptation in Natural and Artificial
Systems (Reprint). Cambridge, Massachusetts: The MIT Press.
http://doi.org/10.7551/mitpress/1090.001.0001
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We first tested our software pipeline by considering predictions from model ensembles for
simulating the 21 drug combinations that were analyzed previously17. Synergies were defined as
a predicted ‘growth’ output for two drugs together being lower than the product of each
individual drug’s ‘growth’, analogous to the Bliss synergy metric30 used in cell culture lab
experiments (see Methods). Among 21 drug pairs, 15 were predicted to act synergistically by
this definition, exhibiting a range of synergy strengths, and quantified performance of these
models was surprisingly high: by selecting different thresholds for synergy predictions a
receiver-operating characteristic (ROC) curve (sensitivity vs 1-specificity) shows a ROC
area-under-curve (AUC) of 0.97 and a precision-recall (PR) AUC of 0.91, see figure 2C. The
analysis shows that the top six predictions comprise all four experimentally validated synergies.
Notably, the automatically parameterized models produced no false negatives. This effectively
means we could in principle have reduced our full drug screen to only test 29% percent of the
combinations (6 out of 21), had we guided our experiments by model simulations, which is
comparable to the performance in our manually parameterized model17.

Figure 2A: The CASCADE 1.0 prior knowledge network. 75 signaling nodes with signed and
directed regulatory influences annotated (activating interactions in green, inhibiting interactions
in red). All signaling components receive input from other signaling components from within the
network, and ultimately influence the two phenotypic output nodes Antisurvival and Prosurvival.

30 Bliss, C. I. (1939). The Toxicity of Poisons Applied Jointly. Annals of Applied Biology, 26(3), 585–615.
https://doi.org/10.1111/j.1744-7348.1939.tb06990.x
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Figure 2B: Evolution of fitness of calibrated models. Overall fitness is plotted as a function of
generation, with average fitness and standard deviation indicated. The data for this figure was
produced by running the genetic algorithm for 1000 simulations, with 20 generations per
simulation and 20 models per generation. We observe that the average fitness and standard
deviation follow a sigmoidal increase and stabilize after 10-15 generations. The persistence of
the standard deviation across generations including those late in the evolution shows that new
models still explore variations to the model parametrization while selection keeps the fitness
score of the trained models at a constant plateau.
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Figure 2C: Predictive performance of ensembles of logical models. ROC curves are in the left
panel, and PR curves are in the right panel. Random model predictions were generated by
collecting predictions from ensembles of models trained to a random yet proliferative phenotype.
Calibrated predictions were generated by model ensembles, trained to steady state data, and
normalized to the random model predictions (see Methods for more details). The genetic
algorithm modified the balance of influence between positive and negative regulators of a target
node, while topology features (edges, nodes) were not modified. Both ROC and PR curves
show very good performance across all model sets for the calibrated models, similar to results
from Flobak et al (2015).

Automated model optimization as a solution for larger model
topologies

The benefits of automatic parameterization become more apparent in calibration of models with
larger topologies. We demonstrate this with the CASCADE 2.0 model, which is a manually
curated cancer signaling topology comprising 144 nodes and 367 edges. CASCADE 2.0
includes pathways with TGF-beta, JAK-STAT, and Rho GTPases, as well as extensions of
pathways already present in CASCADE 1.0, to enable simulation of a larger set of drug
combinations18. Starting with this large curated model, we analysed in more detail the effects of
automated model training while randomly mutating logical rule configurations and network
connectivity, and assessed the results against the biological regulatory mechanisms that were
affected. We varied several aspects in the training protocol, each time assessing the effect on
the performance of the models for correct synergy prediction:
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- Optimising logical rules against partially incorrect calibration data
- Optimising the regulatory network by stepwise, random removal/inclusion of edges
- Checking the effect of random rewiring of the regulatory network

For each of these model alteration strategies, we not only looked for overall fitness but also in
more detail at the represented biological mechanisms that were affected, to judge whether
improved or reduced simulation performance could be reconciled with involvement of proteins of
regulatory interactions in the context of cancer. The hypothesis was that, while taking the overall
value of curated prior knowledge as a given, the relevance of individual regulatory interactions
and the precise mathematical representation of their regulatory effects in specific cancer
environments might be difficult to infer from papers and therefore could be algorithmically
improved. The effects of the network connectivity and rule mutations were judged in model
ensembles and compared with observed synergies. For each model able to reach a stable
state, mutations also allowed to assess mutual dependencies between edges or subsets of
edges and corresponding rules, possibly indicating context dependence. This allowed us to
identify parameters and edges that appeared to be essentially fixed and thereby of fundamental
importance for model performance.

We compared simulation results from automatically trained ensembles of 450 models to drug
synergies in a new drug screen of the AGS cancer cell line comprising 153 combinations of 18
targeted drugs31. We found that, in contrast to the CASCADE 1.0 predictions, normalization of
topology-intrinsic prediction propensities was critical to the predictive performance (see
Supplementary Figures 1 and 2). We find that models obtained by automated optimization, as
described above, could predict drug synergies with a ROC AUC of 0.69 and a PR AUC of 0.18,
clearly outperforming random model predictions (see Figure 3). This means that our drug screen
could have been reduced from blindly testing all 153 combinations to only the screening of 36
combinations, which would increase the synergy prevalence of tested combinations from 4% (6
of 153) to 11% (4 of 36). We would dismiss 117 drug combinations but at the expense of
missing two observed synergies.

31 Flobak, Å., Niederdorfer, B., Nakstad, V. T., Thommesen, L., Klinkenberg, G., & Lægreid, A. (2019). A
high-throughput drug combination screen of targeted small molecule inhibitors in cancer cell lines.
Scientific Data, 6(1), 237. https://doi.org/10.1038/s41597-019-0255-7
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Figure 3: Model performance. Predictive performance of calibrated and random models based
on the CASCADE 2.0 model was tested against data from a corresponding drug screen31.
Models have logical rule mutations only and Bliss Independence was used to assess the model
performance. We observe that correctly calibrated models perform substantially better than
random models.

Topology and calibration data needs to be correct
From here on we focus on the CASCADE 2.0 topology, for additional analyses see
Supplementary Material, which has similar experiments with the CASCADE 1.0 topology,
underpinning conclusions analogous to those drawn here.

Impact of data quality on model performance
Since our models are derived from prior knowledge and calibrated based on sample-specific
measurements (calibration data), modifications to both the prior knowledge and data must be
expected to affect the predictive performance of the models. We first checked how the quality of
the calibration data affected model predictions. The performance of models trained to partially
incorrect calibration data was expressed as PR AUC and, when plotted against the fitness of
these models compared to the fully correct calibration data, we observe that higher PR AUC
correlates with higher fitness of models, indicating that calibration of models indeed improved
synergy predictions for our dataset (see figure 4). However, even models trained to highly
incorrect data, with roughly 50% of calibration data flipped (meaning a true fitness around 0.5),
perform better than a random classifier (PR AUC 0.04), indicating that model topology alone
already carries information that can be leveraged to predict drug synergies. Note that due to the
stochasticity of model calibration, the model ensemble average fitness never reached the
extreme fitnesses below ~0.3.
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Figure 4: PR AUC performance dependence on fitness. Each model ensemble, displayed as
one dot in the scatterplot, was trained to a partially incorrect steady state signaling profile
derived from the biological phenotype of the AGS cell line17. A total of 205 training profiles were
created, each one used to generate one model ensemble consisting of 60 models. The x-axis
reports the average fitness of each model ensemble as evaluated to the curated steady state.
Because of the non-normality of the data, the Kendall rank-based correlation32 test is used to
derive the proposed association.

Randomizing regulatory edges of the curated model reduces
predictiveness

As the quality of the calibration data does impact model performance, but not obliviate it even if
these data are highly incorrect, we next explored the value of the quality of the curated
regulatory graph topology. We generated a series of models with various degrees of ‘scrambled’
topologies with modified causal interactions in the regulatory graph (of the type: source - effect -
target), by randomly exchanging a particular ‘source’ in a causal interaction with the source of
another interaction and investigated the performance of models with these incorrect regulatory
interactions. Similarly, we investigated the impact of randomly reassigning target nodes, as well
as the impact of inverting signed effects, i.e. from inhibition to activation, and vice versa. Note
that we will later explore the effect of missing prior knowledge (simple deletions), while here we
present results for incorrect prior knowledge. The results (Figure 5) show that even low levels of
randomization in the curated knowledge significantly reduce the predictive power of the models,
quickly approaching random performance. Overall, we conclude that both calibration data and

32 Kendall, M.G. (1948). Rank correlation methods. Griffin
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prior knowledge quality are important to correctly predict drug synergies, and that errors can be
detrimental.

A B

C D

Figure 5: Effects of variations introduced in the CASCADE 2.0 prior knowledge graph. Panel A
shows the effect of reassigning source nodes in causal interactions, panel B shows the effect of
randomly reassigning target nodes in causal interactions, panel C shows the effect of randomly
inverting activation/inhibition annotation, and panel D shows the result for all types of
modifications introduced simultaneously. Each box plot shows a graded response for the
predictive performance from complete modifications (left) to less substantial modifications
(right). Each dot represents a different model ensemble generated from the associated topology,
calibrated to the AGS steady state, and normalized to a random yet proliferative profile. The
“Curated” group refers to model ensembles bootstrapped from a pool of models generated
using our optimization algorithm from the original CASCADE 2.0 topology. See Supplementary
Material Figure S4 for a similar analysis with precision-recall as performance metric, and
Figures S5 and S6 for the same analysis done on the CASCADE 1.0 topology.
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Model ensemble heterogeneity and mechanistic insight
To appreciate the heterogeneity amongst models in model ensembles obtained through the
parameter optimization, we studied both attractor and parameterization heterogeneity against
model fitness, in subsets of these ensembles selected for specific features (model
sub-ensembles). In the heatmap grouped by K-means clustering (Figure 6), calibrated models
to a relatively large extent obey the calibration data, with states of steady state nodes mostly
identical to the data to which they were trained (the subset of nodes (24 of 144) that were
specified in the calibration data). Model stable state vectors (rows in Figure 6) have notable
areas of homogeneity, as judged by large stretches of nodes (indicated on the X-axis) that are
either all activated (green) or inhibited (red) in all models, but in other areas (e.g. the
upper-middle panel of the heatmap) the heterogeneity and discrepancies with calibration data is
quite substantial. This heterogeneity was much more widespread in the parameterization space.
For some nodes there is high correlation between their parameterization (link operator
AND-NOT vs OR-NOT) and stable state (Inactive or Active, respectively), but for many the
correlation is surprisingly low (see Agreement panel in Figure 6). These observations indicate
that a) a limited set of training nodes was sufficient to provide homogeneity in parts of the
attractor space, and b) large heterogeneity in the parameterization space still can be compliant
with homogeneity in the attractor space (see in particular the large green (active) area of the
stable-state heatmap). In other words: there are many logical rule configurations that yield
models properly representing biological observations compliant with calibration data. This
underpins the decision to use model ensembles rather than single models, since these
ensembles cover a larger set of parameterizations (behavior) that are all compliant with the
input data.

The analysis of node states and parameterization allows us to investigate mechanisms
underlying observed behavior and to look for biological explanations for some of the
observations. As shown in Figure 6, indicated by panel ‘COSMIC’, the models allow the
prediction of activity of several proteins implicated in cancer. Figure 7 shows the analysis of their
activity state, and it appears that proteins from genes annotated as oncogenes in COSMIC tend
to be active, while proteins from genes annotated as tumor suppressor genes (TSG) tend to be
inactive in overall steady states. This is biologically plausible and attests to the capability of our
mechanistic model to generate hypotheses about the underlying molecular biology.

The training of the models to biomarker data never results in the absolute maximum fitness (1),
and the stable state analysis (Figure 6) shows that three data points are most often violated:
JNK signaling (JNK_f), ERK signaling (ERK_f) and p38 signaling (MAPK14), all member of the
MAPK pathway (see Figure 6, stable state panel, black rectangles). These network nodes are
all clustered in the highly heterogeneous section in the steady state heatmap. In the manual
curation of the CASCADE 1.0 topology17 it was noted that reports on the activity of ERK in AGS
cells varied frequently, with only slightly more than half of the publications reporting ERK to be
active. We found that the predictive performance of model versions with ERK being active was
significantly higher than the sub-ensemble where ERK is inactive (see Figure 8), suggesting that
from a functional point of view ERK should be considered active in AGS cells.
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Figure 6: Combined stable states and parameterization heatmaps. A total of 4500 Boolean
models were used for this analysis. Only the CASCADE 2.0 nodes that have a link-operator in
their respective Boolean equation are shown. The 52 link-operator nodes have been assigned
to 3 clusters with K-means using the stable states matrix data. The link-operator data heatmap
has the same row order as the stable states heatmap. Steady state data (Calibration), COSMIC
classification of tumor suppressor genes (TSG) and oncogenes, pathway association
(Pathway), drug target characteristic (Drug Targets), in-degree connectivity (Target connectivity),
out-degree connectivity (Source connectivity) and percent agreement between parameterization
and stable state annotations (Agreement) are indicated below the heatmaps.
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Figure 7: Box-plot of stable state protein activities. The stable state models yield activity values
for all proteins and these activities are displayed for oncogene and tumour suppressor gene
proteins. Proteins from oncogenes (left) tend to be designated as active, while proteins from
tumor suppressor genes (TSG, right) tend to be designated inactive.

Figure 8: Comparison of predictive performance of model sub-ensembles. The model set with
ERK active scores better than the models with ERK inactive, both for ROC (left panel) and PR
(right panel).
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Rule and edge optimization identifies key regulatory mechanisms

Traditionally, logical model definitions start out with a prior knowledge graph, after which a most
optimal parameterization is sought based on experimental evidence and model behavior. We
asked which was most influential to accurately predict synergies: alterations to the topology or
to the parameterization, in the evolution to maximum fitness. We configured the genetic
algorithm to modify edges in the topology, by either removing or subsequently restoring edges
from the initial prior knowledge network (as long as no signaling component lost all its source
inputs), or to modify the parameterization of logical rules. We found that modifications of the
edges and the parameterization both resulted in substantially improved prediction performance,
significantly better than a random classifier. In particular, the performance (as evaluated by
precision-recall) was very high for topology-mutated models, even outperforming models trained
by parameterization optimization. While ROC AUC was consistently high around 0.8, the PR
curve benefited by displaying very high positive predictive values at very conservative sensitivity
thresholds, meaning that a predicted drug synergy is highly likely to represent an actual synergy,
see Figure 9. Note that there is a major difference between missing data and incorrect data: as
was previously demonstrated (Figure 5), model predictive performance suffered severely from
included and incorrect prior knowledge, while model predictive performance can improve by
omitting putatively correct prior knowledge.

Figure 9: Model performance after parameter and topology modifications. Mutating
parameterization (left) and topology (right) both tend to improve synergy prediction
performance, as evaluated by precision-recall AUC. Models with topology modifications perform
better than models with parameterization modifications.
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Looking at the topology modifications, we hypothesized that deletion of certain edges could be
favored by the genetic algorithm, to obtain maximum fitness. Every node in CASCADE 2.0 is
annotated to a specific pathway18, allowing us to assign all edges to a specific pathway, if both
source and target node belong to the same pathway, or to crosstalk for edges that link nodes
from different pathways, see figure 10. We observed that certain edge groups are always
preserved (the left-most cluster), while other edges are very likely to be removed (cluster on the
right). Interestingly, a majority of these removed edges belong to the TGF-beta pathway, in
particular representing inhibitory effects of the protein SKI and other inhibitors of SMADs. In the
model, SKI itself is inhibited by active AKT signaling, and thus removal of inhibitory edges from
SKI allows restricting the activity of some of the SMAD proteins in the model, in particular to
SMAD1, SMAD3 and SMAD4, which tend to be inactivated in the topology mutated models. It is
evident from figure 10 that crosstalk is largely preserved during model optimization, potentially
relating not only to sparse knowledge of crosstalk in the prior knowledge network, but also to the
biological importance of signaling that is not confined to what was more or less arbitrarily viewed
as pathways.

Figure 10: Heatmap of steady state models with topology mutations. Each column represents
an interaction, each row represents one model, all rows jointly represent the ensemble. Five
clusters, guided by K-means clustering, stand out: the first cluster from the left represents edges
that cannot be removed because nodes would lose regulations. The second cluster from left
represents nodes that are likely to be preserved, the middle cluster represents edges that are
often preserved, the fourth cluster from left represents edges that are often discarded, and the
last cluster, right, represents edges that are almost always discarded in the evolution to
maximum fitness.
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Validation of synergy predictions in vivo

In order to test the translational relevance of our drug synergy prediction platform we performed
in vivo validation for one of the proposed novel drug synergies. The synergies of TAK1 inhibition
combined with PI3K inhibition, already identified in our previous logical modeling work, had not
been reported earlier and thus represent novel synergies of potential interest in future cancer
therapy. We rediscover the same synergy of combined TAK1 and PI3K inhibition in our
framework for automated model parameterization.

Figure 11: Synergy of the drugs targeting TAK1 (5Z) and PI3K (PI) confirmed in viability (left)
and confluency (right) screens.

In order to test reproducibility across different high throughput drug screen readouts we
subjected AGS cancer cells to combined TAK1 and PI3K inhibition and monitored the response
both by ATP content measurement (viability) and by microscopy (confluence), see Figure 11.
For both readouts there is a region of synergistic response to drugs applied at medium doses as
indicated by the drug concentration gradients. We subcutaneously injected AGS gastric
adenocarcinoma xenograft tumors in Balb/c mice to test the synergy of combined inhibition of
TAK1 (5Z-7-oxozeaenol) and PI3K (PI103) in vivo. The xenograft tumors (n=30) were
randomized to four groups: control, PI103, (5Z)-7-oxozeaenol and a combination group which
received both PI103 and (5Z)-7- oxozeaenol, see figure 12A. At the end of the experiment the
combination group displayed significant changes (t-test) in relative tumor size compared to
either single-treatment group (Figure 12B and 12C). We observed a similar reduced proliferative
capacity for tumours in mice treated jointly with TAK1 and PI3K inhibitors, as indicated by
tumour proliferation marker Ki67 (Figure 12D and 12E). The clear difference between the
significant tumor growth inhibitory effect of the combination and the non-significant activity of
individual agents strongly indicates a synergistic anti-tumor effect of the two agents. A concern
for drug synergies is that possible side-effects might also be expressed in synergistic ways. We
therefore chose doses to be at the lower end of effective concentrations, compared to previously
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published in vivo use of the inhibitors33,34,35,36. Despite low dosage the inhibitors together
reduced tumor growth, without signs of pain or weight loss.

Figure 12A: Xenograft experimental design. Cancer cells were injected subcutaneously in mice
and allowed to grow until a visible tumour could be identified, after which the mice were
randomized into four groups. Mice were then treated with single drugs and the combination for
19 days after which the experiment was stopped and tumor sizes evaluated.

36 Singh, A., Sweeney, M. F., Yu, M., Burger, A., Greninger, P., Benes, C., … Settleman, J. (2012). TAK1
inhibition promotes apoptosis in KRAS-dependent colon cancers. Cell, 148(4), 639–650.
https://doi.org/10.1016/j.cell.2011.12.033

35 Fan, Y., Cheng, J., Vasudevan, S. a, Patel, R. H., Liang, L., Xu, X., … Yang, J. (2013). TAK1 inhibitor
5Z-7-oxozeaenol sensitizes neuroblastoma to chemotherapy. Apoptosis : An International Journal on
Programmed Cell Death, 18(10), 1224–1234. https://doi.org/10.1007/s10495-013-0864-0

34 Donev, I. S., Wang, W., Yamada, T., Li, Q., Takeuchi, S., Matsumoto, K., … Yano, S. (2011). Transient
PI3K inhibition induces apoptosis and overcomes HGF-mediated resistance to EGFR-TKIs in EGFR
mutant lung cancer. Clinical Cancer Research : An Official Journal of the American Association for
Cancer Research, 17(8), 2260–2269. https://doi.org/10.1158/1078-0432.CCR-10-1993

33 Bhattacharya, B., Akram, M., Balasubramanian, I., Tam, K. K. Y., Koh, K. X., Yee, M. Q., & Soong, R.
(2012). Pharmacologic synergy between dual phosphoinositide-3-kinase and mammalian target of
rapamycin inhibition and 5-fluorouracil in PIK3CA mutant gastric cancer cells. Cancer Biology & Therapy,
13(1), 34–42. https://doi.org/10.4161/cbt.13.1.18437
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Figure 12B: Testing of drug synergy in a mouse xenograft model. Tumor volumes determined at
the end of the study were compared with tumor volumes at treatment onset. Tumors in mice
receiving both inhibitors 5Z-7-oxozeaenol 3 mg/kg/d (5Z) and PI103 5 mg/kg/d (PI) show a
smaller increase in size compared to either of the groups receiving only single inhibitors, and
the control group. The combination effect was statistically significantly different from either
single drug therapy as evaluated by Mann-Whitney U tests with corresponding p-values shown
above the boxplots. Similar results were obtained using t-tests with a chosen significance level
of p=0.05.
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Figure 12C: Average tumor volume for the four groups of mice with standard error of the mean
(SEM) indicated by the error bars. The group receiving both inhibitors (5Z + PI) displays a more
inhibited tumor growth than either of the groups receiving each single inhibitor and the control
group.

Figure 12D: Ki67 proliferation index (count of Ki67 positive cells) reduced upon joint
combination of TAK1 and PI3K inhibition.
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Discussion
Our results show that a curated prior knowledge network with an initial set of logical rules can
be automatically parameterized by a genetic algorithm, using a fitness score reflecting how well
the global stable state of a model matches the experimentally determined local states of
signaling components of a cell line in its native growing state. We showed that the predictive
performance from an automatically parameterized ensemble of models was on par with our
original, curated CASCADE 1.0 model. We next used our parameterization software to calibrate
the larger CASCADE 2.0 network topology. With larger topologies, benefits of automation
become more apparent, and can be used to enable simulation for larger numbers of drugs and
numbers of cell lines.

Finding drug synergies among the vast set of possible combinations of drugs calls for new
approaches. To rationally reduce the prohibitively large experimental search space, we found
that our approach can be highly useful to identify sets of drugs that are unlikely to display
synergy and that should not be prioritized for testing. Even tackling the combinatorial complexity
for standardized cancer models is already challenging, as exemplified by the AZS-DREAM
Challenge37, where pairwise combinations of 118 drugs (6903 possible drug-drug combinations)
are tested against a panel of 85 cell lines. If all combinations are screened in 6x6 matrices this
corresponds to over 200.000 384-well plates for four technical replicates, clearly indicating that
a trial-and-error approach is not economic for drug synergy discovery. Whereas most
approaches for drug synergy predictions rely on perturbation data for training a
classifier38,39,40,41, our approach works well with calibration data based only on data from an
unperturbed system, which greatly reduces the cost of data acquisition and opens possibilities
for clinical applications.

Assessing the performance of drug synergy predictions is met with several challenges. First,
targeted drugs, as those employed here (‘small molecule’ inhibitors), can affect a number of
other targets in addition to their intended target, known as ‘off-target’ effects42. Since our

42 Klaeger, S., Heinzlmeir, S., Wilhelm, M., Polzer, H., Vick, B., Koenig, P.-A., … Kuster, B. (2017). The
target landscape of clinical kinase drugs. Science (New York, N.Y.), 358(6367), eaan4368.
https://doi.org/10.1126/science.aan4368

41 Fröhlich, F., Kessler, T., Weindl, D., Shadrin, A., Schmiester, L., Hache, H., … Hasenauer, J. (2018).
Efficient Parameter Estimation Enables the Prediction of Drug Response Using a Mechanistic
Pan-Cancer Pathway Model. Cell Systems, 7, 1–13. http://doi.org/10.1016/j.cels.2018.10.013

40 Ianevski, A., Giri, A. K., Gautam, P., Kononov, A., Potdar, S., Saarela, J., … Aittokallio, T. (2019).
Prediction of drug combination effects with a minimal set of experiments. Nature Machine Intelligence,
1(12), 568–577. http://doi.org/10.1038/s42256-019-0122-4

39 Yang, J., Tang, H., Li, Y., Zhong, R., Wang, T., Wong, S. T. C., … Xie, Y. (2015). DIGRE: Drug-induced
genomic residual effect model for successful prediction of multidrug effects. CPT: Pharmacometrics and
Systems Pharmacology, 4(2), 91–97. http://doi.org/10.1002/psp4.1

38 Preuer, K., Lewis, R. P. I., Hochreiter, S., Bender, A., Bulusu, K. C., & Klambauer, G. (2017).
DeepSynergy: Predicting anti-cancer drug synergy with Deep Learning. Bioinformatics (Oxford, England),
(December), 1–9. http://doi.org/10.1093/bioinformatics/btx806

37 Menden, M. P., Wang, D., Guan, Y., Mason, M., Bulusu, K. C., Yu, T., … Saez-rodriguez, J. (2017).
Community assessment of cancer drug combination screens identifies strategies for synergy prediction.
http://doi.org/10.1101/200451
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simulation is based on canonical drug targets annotated for each drug, any information missing
about off-target effects must be expected to impact simulations. In addition, drug synergy is an
elusive concept itself, with different mathematical reference models producing different synergy
scores43. Finally, high throughput drug screens, as employed here, typically reports drug
responses based on measured residual ATP content after drug exposure, which is known not to
capture all growth-reducing drug responses44,45,46. Despite these limitations, which must be
expected to reduce the performance of any drug synergy prediction approach, our logical
simulation-based in-silico pre-selection approach performs immensely better than a blinded
screen that would assay the same numbers of candidates: at a sensitivity of 50%, roughly
35-40% of a pre-selected set of predicted synergies will be observed in follow up drug synergy
experiments in drug screen where only 4% of drug combinations acted synergistically overall.

Our choice of a logical framework for computational simulations comes both with some benefits
and limitations. Logic equations are very quick to evaluate, with high simulation speed enabling
extensive simulations even on regular desktop computers. However, logic equations as
employed here only allow two activity states for model components: active and inactive.
Moreover, only two interaction strengths between components are allowed: full interaction or no
interaction. These limitations, however, still to a large extent meet the demands and possibilities
offered by experiments with present day laboratory techniques. Data from these experiments
often lack finer-grained observations that would be needed for continuous modeling approaches
and therefore logical modeling represents a valid compromise between molecular data richness
and computation speed. Our implementation of logical model simulations only computes stable
states, thereby discarding any potential complex attractor of models. This choice was based on
computational efficiency, as computation of complex attractor in addition to stable states would
severely tax our simulations. One possible avenue for future research will be to account for also
complex attractors, either by approximations as offered by e.g. trap space analysis, or by a full
characterization of model behaviour.

We find that our approach is somewhat sensitive to errors in the calibration data, and even more
sensitive to errors in the prior knowledge, indicating that curation quality is paramount to our
modeling approach. This demands for adequate causal statement curation protocols and

46 Folkesson, E., Niederdorfer, B., Nakstad, V. T., Thommesen, L., Klinkenberg, G., Lægreid, A., & Flobak,
Å. (2020). High-throughput screening reveals higher synergistic effect of MEK inhibitor combinations in
colon cancer spheroids. Scientific Reports, 10(1), 11574. https://doi.org/10.1038/s41598-020-68441-0

45 Gautam, P., Karhinen, L., Szwajda, A., Jha, S. K., Yadav, B., Aittokallio, T., & Wennerberg, K. (2016).
Identification of selective cytotoxic and synthetic lethal drug responses in triple negative breast cancer
cells. Molecular Cancer, 15(1), 1–16. https://doi.org/10.1186/s12943-016-0517-3

44 Bae, S. Y., Guan, N., Yan, R., Warner, K., Taylor, S. D., & Meyer, A. S. (2020). Measurement and
models accounting for cell death capture hidden variation in compound response. Cell Death and
Disease, 11(4). https://doi.org/10.1038/s41419-020-2462-8

43 Vlot, A. H. C., Aniceto, N., Menden, M. P., Ulrich-Merzenich, G., & Bender, A. (2019). Applying drug
synergy metrics to oncology combination screening data: agreements, disagreements and pitfalls. Drug
Discovery Today, 00(00). https://doi.org/10.1016/j.drudis.2019.09.002
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standards that feed into high quality general and cancer signaling databases, a demand that is
materializing47,48,49,50,51.

Interestingly, we found that deleting a small fraction of the regulatory links from the prior
knowledge network can be very powerful in optimizing models for drug synergy predictions,
whereas randomly rearranging regulatory links is very detrimental to model performance.
Logical model construction can be performed by curating data resources or the literature, or by
relying on high quality curated databases like Signor, SignaLink or IntAct. If quality of these
resources, or the ad hoc curation of literature, would not be of high standard, this would
significantly limit the performance of the resulting model. On the other hand, calling a prior
knowledge network complete is essentially a judgement call, as all models are limited. This
demonstrates that, while lacking in completeness, high quality curation can produce models that
can predict drug synergies. Furthermore, whereas the inclusion of a regulatory link ideally needs
evidence from observations about the functional relevance of such a link in the cell that is
modeled, our observations about ERK activity highlight the variability of experimental data
concerning such observations. It is therefore not unreasonable to accept that an optimization
algorithm can choose to dismiss regulatory links for the benefit of improved model performance.
The increasing availability of high quality curated molecular causal interaction data opens a
perspective to fully automated model building, where algorithmic topology optimization can fine
tune a model to perform adequately, for any target node requirements and cell type for which
baseline biomarker data is available. A welcome feature of automatically parameterized logical
models is their innate ability to suggest mechanisms underpinning a particular observation.
Such model-driven hypotheses can lay foundations for targeted follow-up experiments that
provide observations for directed model revisions, resulting in a model with higher validity.

51 Cristobal Monraz Gomez, L., Kondratova, M., Ravel, J. M., Barillot, E., Zinovyev, A., & Kuperstein, I.
(2019). Application of Atlas of Cancer Signalling Network in preclinical studies. Briefings in Bioinformatics,
20(2), 701–716. https://doi.org/10.1093/bib/bby031

50 Touré, V., Zobolas, J., Kuiper, M., & Vercruysse, S. (2021). CausalBuilder: bringing the MI2CAST
causal interaction annotation standard to the curator. Database : The Journal of Biological Databases and
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It has been suggested that network topology alone already explains drug synergy52,53, and that
parameterization to a lesser extent defines or refines synergy predictions54. Experimentally it
has been observed that drug synergies tend to vary between cell lines, with the most frequently
observed synergistic drug pair only effective in about half of the cell lines analyzed55,56. In our
analysis we observed that drug synergy predictions depend both on the specific
parameterization of a given topology and on the topology itself. When we put our manually
defined topology to the test, drug synergy predictions are more accurate for models optimized to
represent cell-specific baseline biomarkers in their local states, compared to unconstrained local
states. One may speculate that the interactions relevant to describe drug combination effects
represent a subset of all potential (general) interactions, and that this subset varies from cell line
to cell line. From a completeness perspective, given the limited knowledge of molecular biology
today, any model representation will be a major simplification of reality, yet some of these
models work.

56 Amzallag, A., Ramaswamy, S. & Benes, C.H. Statistical assessment and visualization of synergies for
large-scale sparse drug combination datasets. BMC Bioinformatics 20, 83 (2019).
https://doi.org/10.1186/s12859-019-2642-7

55 Axelrod, M., Gordon, V. L., Conaway, M., Tarcsafalvi, A., Neitzke, D. J., Gioeli, D., & Weber, M. J.
(2013). Combinatorial drug screening identifies compensatory pathway interactions and adaptive
resistance mechanisms. Oncotarget, 4(4), 622–35. http://doi.org/10.18632/oncotarget.938

54 Yin, N., Ma, W., Pei, J., Ouyang, Q., Tang, C., & Lai, L. (2014). Synergistic and Antagonistic Drug
Combinations Depend on Network Topology. PLoS ONE, 9(4), e93960.
http://doi.org/10.1371/journal.pone.0093960

53 Jaeger, S., Igea, A., Arroyo, R., Alcalde, V., Canovas, B., Orozco, M., … Aloy, P. (2017). Quantification
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Supplementary Figures

Figure S1: Predictive performance for random (proliferative) models, calibrated models
(non-normalized) and calibrated normalized to random models (CASCADE 1.0 topology).

35



Figure S2: Predictive performance for random (proliferative) models, calibrated models
(non-normalized) and calibrated normalized to random models (CASCADE 2.0 topology).

Figure S3: PR AUC performance dependence on fitness (CASCADE 1.0 topology).
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Figure S4: Effects of variations introduced in the CASCADE 2.0 prior knowledge graph (PR
AUC performance metric).
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Figure S5: Effects of variations introduced in the CASCADE 1.0 prior knowledge graph (ROC
AUC performance metric).

Figure S6: Effects of variations introduced in the CASCADE 1.0 prior knowledge graph (PR
AUC performance metric).
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Introduction

Computational modeling of cellular systems has been one of the most powerful tools used to
build interpretable knowledge of biological processes and help identify molecular mechanisms
that drive diseases such as cancer (Aldridge, Burke, Lauffenburger, & Sorger, 2006). In
particular, the use of logical modeling has proven to be a substantially useful approach, since it
allows the easy construction, simulation and analysis of predictive models, capable of providing
a qualitative and insightful view on the extremely complex landscape of biological systems
(Abou-Jaoudé et al., 2016; Morris, Saez-Rodriguez, Sorger, & Lauffenburger, 2010; Wang,
Saadatpour, & Albert, 2012). Such mechanistic models, with the systematic integration
of prior knowledge and experimental data, have been extensively used to better understand
what drives deregulation of signal transduction, the outcome of which is the manifestation of
diseases (Traynard, Tobalina, Eduati, Calzone, & Saez-Rodriguez, 2017). Furthermore, their
explanatory power has been used to provide insights into a drug’s mode of action, investigate
the mechanisms of resistance to drugs (Eduati et al., 2017) and suggest new therapeutic
combination candidates, among others (Flobak et al., 2015).
One of the major challenges in systems medicine, has been the identification of scientifically
validated, predictive biomarkers that correlate with patient response to given therapies. The
analysis of biological predictive markers of pharmacologic response can not only further our un-
derstanding of the systemic processes involved in diseases but can also help to classify patients
into groups with similar responses to specific therapeutic interventions, advancing personal-
ized medicine (Senft, Leiserson, Ruppin, & Ronai, 2017). In addition, the identification of
biomarkers in tumor cells (e.g. mutations) has enabled the discovery of drug targets which
are utilized in combinatorial molecular-targeted therapies - a strategy which aims to treat
specific patient subgroups and has shown larger overall survival rates and reduced side-effects
than monotherapy (Al-Lazikani, Banerji, & Workman, 2012). Despite the huge advancements
towards drug combination therapy, genetic heterogeneity, drug resistance and drug combina-
tion synergy mechanisms still pose fundamental challenges to clinicians, modelers and lab
researchers.
To help bridge the model simulation results with the (clinical) laboratory observations, several
optimization methods have been used, such as model calibration, parameter estimation and
sensitivity analysis. These methods also allow us to determine which model parameters have
the biggest influence in the overall behaviour of the system (Aldridge et al., 2006). For
example, in Fröhlich et al. (2018), a computational framework that allowed for the efficient
parameterization and contextualization of a large-scale cancer signaling network, was used to
predict combination treatment outcome from single drug data. This model was calibrated to
fit and accurately describe specific cell-line experimental data, while enabling the identification
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of biomarkers of drug sensitivity as well as molecular mechanisms that affect drug resistance.
Furthermore, in Dorier et al. (2016), a network optimization approach which topologically
parameterized boolean models according to a genetic algorithm was used, in order to best
match the experimentally observed behaviour. This method resulted in an ensemble of boolean
models which can be used to simulate response under drug perturbations in order to assess
the underlying mechanisms and to generate new testable hypotheses. Such an aggregation of
best-fit models (wisdom of the crowds) has been shown to be quite robust and effective for
model prediction performance (Marbach et al., 2012).

Statement of need

There is a plethora of software tools devoted to the qualitative modeling and analysis of biolog-
ical networks. The Consortium for the development of Logical Models and Tools (CoLoMoTo)
is a community effort which aims to standardize the representation of logical networks and
provide a common repository of methods and tools to analyze these networks (Naldi et al.,
2015). Furthermore, to facilitate the access to several software logical modeling tools and
enable reproducible computational workflows, the CoLoMoTo Interactive Notebook was intro-
duced as a unified computational framework (Aurélien Naldi, Hernandez, Levy, et al., 2018).
The incorporated tools are accessed via a common programming interface (though originally
implemented in different programming languages e.g. Java, Python, C++ and R) and offer
a collection of features like accessing online model repositories (Helikar et al., 2012), model
editing (Aurélien Naldi, Hernandez, Abou-Jaoudé, et al., 2018), dynamical analysis (finding at-
tractors, stochastic simulations, reachability properties, model-checking techniques) (Klarner,
Streck, Siebert, & Sahinalp, 2016; Müssel, Hopfensitz, & Kestler, 2010; Aurélien Naldi, 2018;
Paulevé, 2017; Stoll et al., 2017) and model parameterization/optimization to fit perturbation
signaling data (Gjerga et al., 2020; Terfve et al., 2012). Despite the diverse and multi-purpose
logical modeling tools that exist, there is still a lack of data analysis-oriented software that
assists with the discovery of predictive biomarkers in ensembles of parameterized boolean
networks that have been subject to drug combination perturbations.
The emba R package aims to fill that gap and provide a first implementation of such a novel
software. Initially, it was designed as a complementary software tool, to help the analysis
of the parameterized boolean model ensembles which were produced by modules from the
DrugLogics NTNU software pipeline (see respective documentation (Zobolas, 2020a)). Later,
we generalized most of the functions in the package and modularized them to package-essential
(that form the core of the emba package) and various general-purpose yet useful functions
(that are now part of the dependency package usefun (Zobolas, 2020b)).

Summary

The main functionality of the emba R package is to find performance and synergy biomarkers.
Performance biomarkers are nodes in the input boolean networks whose activity state and/or
model parameterization affects the predictive performance of those models. The prediction
performance can be assessed via the number of true positive predictions or the Matthews
correlation coefficient score which is more robust to class imbalances (Chicco & Jurman, 2020).
On the other hand, synergy biomarkers are nodes which provide hints for the mechanisms
behind the complex process of synergy manifestation in drug combination datasets.
For more information, see our “Get started guide” and the reference manual in the package
website (Zobolas, 2020c). Several analyses using the emba R package are available in a
separate repository (Zobolas, 2020d). Future developments will include the implementation
of a method for the identification of topology biomarkers, where we will be able to assess
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which interactions in the network are important for the manifestation of synergies in specific
cell-contexts.
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Abstract

Computational models of biological processes provide one of the most powerful methods for a
detailed analysis of the mechanisms that drive the behavior of complex systems. Logic-based
modeling has enhanced our understanding and interpretation of those systems. Defining rules
that determine how the output activity of biological entities is regulated by their respective
inputs has proven to be challenging. Partly this is because of the inherent noise in data that
allows multiple model parameterizations to fit the experimental observations, but some of it
is also due to the fact that models become increasingly larger, making the use of automated
tools to assemble the underlying rules indispensable.

We present several Boolean function metrics that provide modelers with the appropriate
framework to analyze the impact of a particular model parameterization. We demonstrate
the link between a semantic characterization of a Boolean function and its consistency with
the model’s underlying regulatory structure. We further define the properties that outline
such consistency and show that several of the Boolean functions under study violate them,
questioning their biological plausibility and subsequent use. We also illustrate that regulatory
functions can have major differences with regard to their asymptotic output behavior, with
some of them being biased towards specific Boolean outcomes when others are dependent on
the ratio between activating and inhibitory regulators.

Application results show that in a specific signaling cancer network, the function bias can
be used to guide the choice of logical operators for a model that matches data observations.
Moreover, graph analysis indicates that the standardized Boolean function bias becomes more
prominent with increasing numbers of regulators, confirming the fact that rule specification
can effectively determine regulatory outcome despite the complex dynamics of biological
networks.

Keywords Boolean regulatory networks · Boolean functions · Truth Density · Bias · Complexity
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1 Introduction

The understanding of biological processes has been greatly stimulated by systems biology approaches [1, 2, 3].
The integration of mathematical models with the underlying biological knowledge and empirical observations
can help us observe emergent systems properties, test new hypotheses, enhance the interpretability of the
studied systems and guide innovations in areas such as medicine and drug discovery [4]. While multiple
mathematical modeling frameworks exist, the scarcity of experimental data and the challenges posed by the
development of quantitative large-scale biological networks, has favoured the simplicity and intuitiveness of
more qualitative approaches, such as logic-based modeling [5].

At the heart of the mathematical representation of molecular biological networks lies the concept of regulation.
Regulation of activity, typically by changing the modification state, location or concentration of a biological
entity, is a process which can be expressed by a mathematical function that combines the various regulatory
inputs that affect the target, with a logic that describes how these regulators are integrated. In Boolean
logic-based modeling, the regulatory inputs are entities which can be expressed in two states: active (1) or
inactive (0). These entities are combined with logical rules to derive the Boolean regulatory function (BRF)
of the target entity. For every possible regulatory input (combination of 0 and 1’s) the BRF will produce the
end regulatory product, which is the activity of the target (0 or 1).

The construction of a Boolean computational model starts with the assembly of information from literature
and experimental observations, in the form of a Prior Knowledge Network (PKN), i.e. a list of network entities
and their causal interactions (positive or negative) [6, 7]. The use of a PKN for accurate representation of
biological reality and subsequent analysis and simulation requires the definition of the model formalism. This
is one of the most important steps in dynamical modeling since it directly translates to the choice of BRFs,
i.e. the logical rules that together with the regulators define the activity state of each network target [8].
There have been several approaches related to the choice of BRFs, from using a standardized format [9], to
automatically generating all possible BRFs compatible with the PKN and calibrating the rules in order to fit
perturbation data [10, 11, 12]. State-of-the-art approaches involve the automated construction of large-scale
logical networks by inferring the logical rules from the topology and semantics of molecular interaction maps
[13].

Regardless of how a logical model is constructed, it has been shown in practice that expert curation, i.e. the
manual fine-tuning of the logical rules to fit experimental data, can result in highly predictive models [14, 15],
yet this is not trivially obtained with automatically constructed networks [16]. Because of the large function
space complemented with a sparsity of observations and inherent noise in existing data, there is a wide range
of plausible BRFs. Thus, it is crucial to properly define function characteristics that can guide the modeler
to a more informed function choice. Our work is focused on explicating some of these metrics and using
them to show for example which BRFs can be discarded due to biological inconsistencies with the underlying
regulatory topology and which are biased towards specific Boolean outcomes.

The paper is structured as follows: Section 2 provides a list of notations and definitions to be used later in the
text. In Section 3, we discuss the benefits of using the equivalent disjunctive normal form of a Boolean function
to delineate its biological interpretability. In Section 4, we provide a set of properties that characterize the
Boolean functions that are consistent with a given regulatory topology and show that several functions under
study violate them. In Section 5, we present the truth density metric as a means to evaluate if a Boolean
function is biased or balanced with increasing number of regulators. We also discuss the asymptotic properties
of different functions relating to the ratio between activators and inhibitors. Lastly, in Section 6, we present
evidence that the standardized Boolean functions are indeed biased and show how modelers can exploit such
information for their own benefit. The results are demonstrated in Boolean models derived from a cancer
signaling network as well as from scale-free topologies that are applicable to most biological networks. We
close the paper with some discussion points in Section 7 and directions for future research in Section 8.
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2 Background

2.1 Boolean regulatory functions

Boolean regulatory functions (BRFs) are Boolean functions used in the context of biological networks and
modeling. A mathematical description of such a function associates the activity output of a target biological
entity with the Boolean input values of n variables (the regulators), such that fBRF : {0, 1}n → {0, 1}. Thus,
the target’s output state is binary, i.e. either 0 (False, denoting an inactive or inhibited state) or 1 (True,
indicating an active state).

One intuitive representation of a Boolean function is its truth table, which is a list of all possible Boolean
input configurations of the n regulators along with their associated function output. Since every regulator
can be assigned two possible values (0 and 1), the total number of input configurations (i.e. rows) in a truth
table is 2n. For example, a Boolean function f(x1, x2, x3) with 3 regulators has a total of 23 = 8 rows in its
corresponding truth table, starting from the input configuration (0, 0, 0) and ending with (1, 1, 1) (Table 1).

The total number of BRFs with n regulators is 22n since for each of the 2n input configurations (i.e. rows of
the truth table) there can be two possible function outcomes (0 or 1). For example, with 3 regulators and a
total of 8 rows in the truth table, that would be a total of 28 = 256 functions, three of which are shown in
Table 1.

2.2 Disjunctive normal form

The most frequently used form of a Boolean function is its analytical expression, where variables are connected
with logical operators such as AND (∧), OR (∨), NOT (¬), XOR (⊕), etc. and the output of the function
is calculated using basic Boolean algebra. In Table 1 for example, we provide the analytical forms for the
functions f1 and f2. Note that there can be multiple analytical forms that essentially compute the same
function, e.g. another form of the f1 function is f ′

1 = (¬x1 ∧ x2 ∧ ¬x3) ∨ (x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x2 ∧ ¬x3).

Truth Table Boolean functions

x1 x2 x3 f1 = (x1 ∧ ¬x3) ∨ (x2 ∧ ¬x3) f2 = x1 ∨ (¬x2 ∧ ¬x3) f3 = 1

0 0 0 0 1 1
0 0 1 0 0 1
0 1 0 1 0 1
0 1 1 0 0 1
1 0 0 1 1 1
1 0 1 0 1 1
1 1 0 1 1 1
1 1 1 0 1 1

Table 1: Truth table of three Boolean functions with three input variables x1, x2 and x3. Functions f1 and
f2 are expressed in disjunctive normal form (DNF) with the minimum possible number of terms. f3 is a
tautology.

This brings us to the notion of a general form which could be used to define useful metrics common to all
Boolean functions (e.g. complexity), as well as the need to provide minimal forms based on specific criteria.
For example, a more compact function form enhances readability, which can be seen by comparing f1 with f ′

1.
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Every Boolean function can be represented in a disjunctive normal form (DNF), requiring only AND (∧),
OR (∨) and NOT (¬) operators as building blocks. In such a representation, literals, which are variables (e.g.
positive literal x) or their logical negations (e.g. negative literal NOT x), are connected by AND’s, producing
terms, which are then in turn connected by OR’s [17]. For example, every function in Table 1 is expressed in
DNF, while the Boolean expressions ¬(x1 ∨ x2) and ¬(x1 ∧ x2) ∨ x3 are not. Note that a Boolean function
can have multiple DNF formulations.

2.3 Link operator functions

We consider the class of BRFs that partitions the input regulators to two sets: the set of positive regulators
(activators) and the set of negative regulators (inhibitors). Let f be such a Boolean function fBRF (x, y) :
{0, 1}n → {0, 1}, with m ≥ 1 activators x = {xi}mi=1 and k ≥ 1 inhibitors y = {yj}kj=1, that is a total of
n = m+ k regulators. The link operator BRFs have an analytical formula which places the two distinct types
of regulators in two separate expressions, while connecting them with a special logical operator that we call a
link operator. An example of such a function that has been used extensively in the logical modeling literature
is the standardized BRF formula with the “AND-NOT” link operator [9]:

fAND−NOT (x, y) =

(
m∨
i=1

xi

)
∧ ¬

 k∨
j=1

yj

 (1)

A variation of the above function is the “OR-NOT” link operator function:

fOR−NOT (x, y) =

(
m∨
i=1

xi

)
∨ ¬

 k∨
j=1

yj

 (2)

Note that the presence of the link operator is what forces the condition m, k ≥ 1 (at least one regulator in
each category). For the rest of this work, we will not consider BRFs with only one type of regulator, since
these can be represented by simple logical functions without loss of biological consistency. Following the
notation introduced in Mendoza et al. [9], in the case of only positive regulators, the presence of at least one
activator makes the target active, i.e. f(x) =

∨m
i=1 xi. In the case of only inhibitory regulators, the presence

of at least one inhibitor is sufficient to make the target inactive, i.e. f(y) = ¬
∨k
j=1 yj =

∧k
j=1 ¬yj .

Borrowing notation from circuit theory, we will also use other link operators like the “NAND”, “NOR”,
“XNOR” gates, with or without the “NOT” symbol in front. Note that the logical operator used to connect
the same type of regulators (e.g. the activators) is usually OR, but other operators could be used as well.

Another link operator function that we will consider in this work is the “Pairs” function:

fPairs(x, y) =

m,k∨
∀(i,j)

(xi ∧ ¬yj) (3)

The intuition behind the name is derived from the fact that the function will return True if there is at least
one pair of regulators consisting of a present activator and an absent inhibitor. For a formulation of the
“Pairs” function that is consistent with the link operator terminology as defined above, see (Eq. 9).
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2.4 Threshold functions

Threshold functions are a special type of Boolean functions, the output of which depends on the condition
that the sum of (possibly weighted) activities of the input regulators surpasses a given threshold value [18, 19].

In this work we will consider two simple threshold functions, which both output True when the number of
present activators is larger than the number of present inhibitors. As such, the activities of the positive and
negative regulators are combined in an additive manner, with their respective assigned weights set to ±1
and the threshold parameter to 0, formulating thus a majority rule which defines the value of the function
[20, 21]. These functions differ with regards to their output when there is balance between the activities of
the positive and negative regulators: the first outputs 1 (the activators “win”) while the second outputs 0
(the inhibitors “win”):

fAct−win(x, y) =

{
1,

∑m
i=1 xi ≥

∑k
j=1 yj

0, otherwise
(4)

fInh−win(x, y) =

{
1,

∑m
i=1 xi >

∑k
j=1 yj

0, otherwise
(5)

3 Disjunctive Normal Form unmasks biological interpretation

3.1 Interpretability issues in Boolean modeling

Two main features make Boolean modeling attractive to users. First, transforming conditions for the
activation or inhibition of a target biological entity to Boolean equations is a relatively easy task using a
qualitative, logic-based modeling formalism. Second, the reverse is also true, i.e. Boolean equations can
be more interpretable and closer to a simplified description of biological reality that “makes sense” than
the use of other kinds of formalisms (e.g. kinetic modeling). For example, consider the simple case of a
target entity, which is regulated by one positive regulator x1 and one negative regulator y1. The use of the
“AND-NOT” link operator function in this case (Eq. 1) is very easy to understand and interpret since the
formula directly connects to the underlying biology. Thus, the mathematical formulation is simply written as
fAND−NOT = x1 AND NOT y1, while the modeler reads “the target becomes active when x1 (the activator)
is present and y1 (the inhibitor) absent”.

Issues start arising when considering the interpretability of such Boolean expressions in cases where
a larger number of regulators act on a target, e.g. in a more complex scenario with three positive
(x1, x2, x3) and three negative (y1, y2, y3) regulators, the mathematical formulation expressing the tar-
get’s activity output can be easily written using the link operator function form, as fAND−NOT =

(x1 OR x2 OR x3) AND NOT (y1 OR y2 OR y3). A modeler could read this as “the target becomes ac-
tive when at least one activator is present, and all of its inhibitory regulators are absent”, but a precise
semantic description that explicates the conditions under which the target gets activated, can in general
be difficult to assess. A similar issue arises when reflecting on the use of a different link operator instead
of the standard “AND-NOT” or even of an entirely different regulatory function, for which the biological
interpretation might be difficult to derive from the expression itself.
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BRF (standard form) BRF (CDNF) Biological Interpretation Consistent Complexity

(x1 OR x2) NOR (y1 OR y2)
NOT x1 AND NOT x2 AND
NOT y1 AND NOT y2

Absence of all regulators NO 1 (always)

(x1 OR x2) NAND (y1 OR y2)
(NOT x1 AND NOT x2) OR
(NOT y1 AND NOT y2)

Absence of all activators or
absence of all inhibitors NO 2 (always)

(x1 OR x2) AND NOT (y1 OR y2)

“AND-NOT” (Eq. 1)

(x1 AND NOT y1 AND NOT y2) OR
(x2 AND NOT y1 AND NOT y2)

Presence of at least one
activator and absence of

all inhibitors
YES 2 (m)

(x1 OR x2) NOR NOT (y1 OR y2)
(y1 AND NOT x1 AND NOT x2) OR
(y2 AND NOT x1 AND NOT x2)

Presence of at least one
inhibitor and absence of all

activators
NO 2 (k)

(x1 OR x2) OR NOT (y1 OR y2)

“OR-NOT” (Eq. 2)

x1 OR x2 OR
(NOT y1 AND NOT y2)

Presence of any activator
or absence of all inhibitors YES 3 (m+ 1)

(x1 OR x2) NAND NOT (y1 OR y2)
y1 OR y2 OR

(NOT x1 AND NOT x2)

Presence of any inhibitor
or absence of all activators NO 3 (k + 1)

(x1 OR x2) XOR (y1 OR y2)

(x1 AND NOT y1 AND NOT y2) OR
(x2 AND NOT y1 AND NOT y2) OR
(NOT x1 AND NOT x2 AND y1) OR
(NOT x1 AND NOT x2 AND y2)

Presence of at least one
activator and absence of all
inhibitors or presence of at

least one inhibitor and
absence of all activators

NO 4 (m+ k)

(x1 OR x2) AND (NOT y1 OR NOT y2)

“Pairs” (Eq. 3)

(x1 AND NOT y1) OR
(x1 AND NOT y2) OR
(x2 AND NOT y1) OR
(x2 AND NOT y2)

Presence of at least one
activator and absence of at

least one inhibitor
YES 4 (m× k)

(x1 OR x2) XNOR (y1 OR y2)

(x1 AND y1) OR
(x1 AND y2) OR
(x2 AND y1) OR
(x2 AND y2) OR
(NOT x1 AND NOT x2 AND
NOT y1 AND NOT y2)

Presence of at least one
activator and inhibitor pair
or absence of all regulators

NO 5 (m× k + 1)

True when x1 + x2 > y1 + y2

“Inh-win” (Eq. 5)

(x1 AND x2 AND NOT y1) OR
(x1 AND x2 AND NOT y2) OR
(x1 AND NOT y1 AND NOT y2) OR
(x2 AND NOT y1 AND NOT y2)

Number of present
activators is larger than
the number of present

inhibitors

YES 4

True when x1 + x2 ≥ y1 + y2

“Act-win” (Eq. 4)

(x1 AND x2) OR
(x1 AND NOT y1) OR
(x1 AND NOT y2) OR
(x2 AND NOT y1) OR
(x2 AND NOT y2)

Number of present
activators is larger than or
equal to the number of

present inhibitors

YES 5

Table 2: Several Boolean regulatory functions with four regulators (m = 2 positive {x1, x2}, k = 2 negative
{y1, y2}) and some metrics are presented. The two first columns provide two different function forms: a
standard one, i.e. either the link operator form distinguishing activating and inhibiting regulators or a simple
description in the case of the threshold functions, and the CDNF which is a special case of DNF (Section
4.1). The “Biological Interpretation” states in words the conditions that make a BRF become True, and
is explicitly translated from the terms in the corresponding CDNF. The “Consistent” column states if the
functions satisfy the properties 1-3 from Section 4.1 (YES, green-colored) or there are inconsistencies with the
underlying regulatory structure (NO, red-colored), i.e. if an activator (resp. inhibitor) appears as a negative
(resp. positive) literal in the corresponding CDNF. The functions are sorted according to an increasing
complexity metric (“Complexity” column), which is the number of terms in each respective, minimum-length
CDNF expression. In parentheses we provide the generalized formula for the number of CDNF terms of the
link operator functions with m activators and k inhibitors.
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3.2 DNF links to biological semantics

We argue here that the DNF is the most adequate function form to help us address the aforementioned
issues. Every Boolean regulatory function expressed in DNF, has a biological characterization that is directly
derived from the formula itself: each term in the DNF is an activation condition, i.e. a list of regulators,
some present (the positive literals) and some absent (the negative literals), which, when combined, make
the target (output of the function) active. Further merging of all the conditions using OR-semantics into a
description of how the regulators influence the target’s output, facilitates the biological interpretation of any
Boolean regulatory function.

In Table 2, we show a list of BRFs with two positive and two negative regulators. Most of the BRFs
presented have a different link operator separating the activators from the inhibitors. Using the functions
standard expressions (1st column) makes it very hard to derive a meaningful biological characterization as
expressed in the 3rd column of Table 2. For example, defining a meaningful description of the “NOR” or
“NAND-NOT” equations using only their standard expression, is a very difficult task. In contrast, by using
the equivalent DNFs (2nd column) we can make an explicit, “1-1” correspondence between mathematical
formulation and biological interpretation and use it to compare the different functions’ meanings. Thus,
by expressing the “NAND-NOT” equation in DNF, we can precisely identify the conditions that make the
outcome of the function True and translate these into a meaningful description such as “Presence of any
inhibitor or absence of all activators”. Consequently, we are led to a generalized and independent of the
number of regulators description of this link operator function. Such a description is intuitive to human
interpretation and reasoning, in terms of the function’s applicability, e.g. in comparing the “AND-NOT”
and “NAND-NOT” biological interpretations, we see that the first is semantically plausible while the second
completely contradicts the underlying biology.

4 Characterizing consistent regulatory functions

4.1 The 3 consistency properties

As observed in Table 2, not only can the DNF be used to uncover the biological interpretation of any BRF and
subsequently help determine its plausibility, but it also provides a means to compare the different function
meanings. Still, we need a more refined, technical description that is able to express the implausibility of the
“NAND-NOT” or “NOR” cases directly from their mathematical formulas, and which would be applicable to
every BRF. We define the consistency attribute of a BRF to describe its compliance with the underlying
regulatory network structure.

The first step in making a Boolean model is to build a graph (PKN), assembling the regulatory entities of
interest from various databases or the scientific literature, and use causality information to connect them
through their regulatory action on other entities. As such, a network structure can be defined, in which entities
can regulate (either positively or negatively) some of the other entities. Using such a simple network-driven
formalization, we define a set of three properties that describe the set of all the consistent Boolean regulatory
functions, i.e. the functions that comply with the underlying regulatory structure. So, for a consistent BRF,
the following propositions are satisfied [22]:

1. Its regulators can be partitioned into two disjoint sets: the set of activators (positive regulators,
enhance target’s activity) and the set of inhibitors (negative regulators, suppress target’s activity).
This stems from the fact that every interaction in the PKN has a fixed sign (either positive or
negative). As such, there are no dual regulations, i.e. a regulator cannot activate and inhibit a
target at the same time. This property essentially makes the set of consistent BRFs a subset of the
monotone Boolean functions [17].
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2. All regulators are essential: for every regulatory input, inverting their values, will also, in at least
one configuration of states of other regulators, change the output of the function. This means that
all regulators are indispensable for deriving the target’s activity output.

3. A consistent BRF can be represented in a unique complete DNF (CDNF) which is also known as
Blake’s Canonical Form [23]. This is a consequence of property (1), since monotone Boolean functions
expressed in any DNF, can be further simplified by removing redundant literals, resulting in the
equivalent unique CDNF expression [17]. This property is really important since it allows us to
identify which regulatory entities are activators and which are inhibitors from the corresponding
CDNF expression of a consistent BRF: an activator will always appear as a positive literal, whereas
an inhibitor will always appear as a negative literal.

We provide an example to delineate the difference between the DNF and CDNF forms and show violations of
the consistency properties. In Table 3, we present three Boolean functions, expressing the output of a target
regulated by one activator (x1) and one inhibitor (y1). The functions f2 and f3 are in CDNF whereas f1
is in normal DNF, since the positive regulator x1 appears both as a positive and a negative literal (i.e. it
acts as a dual regulator, making f1 inconsistent). Notice that f1 reduces to f2 by removing the redundant
negative literal (¬x1) in the term (¬x1 ∧ y1): y1 “absorbs” the larger term and thus a shorter expression
manifests, one that covers more True outcomes (i.e. 1’s) in the truth table. In addition, we observe that f2
is inconsistent, since inhibitor y1 appears as a positive literal. On the other hand, using a negative literal for
inhibitor y1 and a positive one for activator x1, makes f3 consistent.

Truth Table Term Boolean functions

x1 y1 (¬x1 ∧ y1) f1 = x1 ∨ (¬x1 ∧ y1) f2 = x1 ∨ y1 f3 = x1 ∨ ¬y1

0 0 0 0 0 1

0 1 1 1 1 0

1 0 0 1 1 1

1 1 0 1 1 1

Table 3: Truth table of three different Boolean regulatory functions with two input regulators, one positive
(x1) and one negative (y1). All functions are expressed in DNF. f1 and f2 result in the same target Boolean
output, with f2 expressed in CDNF. Activator x1 regulates the target both positively and negatively in f1,
making the function non-monotone and thus inconsistent. Inhibitor y1 is a positive literal in f2’s CDNF,
making it inconsistent as well. Function f3 is consistent since it’s written in CDNF with the activator x1 and
inhibitor y1 appearing as positive and negative literals respectively.

4.2 Most link operator functions are inconsistent

Examining Table 2, we note that the 2nd column presents not just any DNF expression of the studied Boolean
regulatory functions, but precisely the CDNF. Thus we can immediately identify which BRFs violate at least
one of the three properties discussed in Section 4.1 and are therefore inconsistent with the regulatory topology
(this information is presented in the 4th column, labeled “Consistent”). Two examples of such inconsistencies
include the “NAND-NOT” and “XOR” link operator functions, which have terms in their corresponding
CDNF in which an activator xi appears as a negative literal (NOT xi) and an inhibitor yj as a positive
literal (as itself). In total, from all the BRFs presented in Table 2, only the standardized “AND-NOT”,
the “OR-NOT”, the “Pairs” and the two threshold functions respect the underlying regulatory topology, as
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can be verified by examining their respective CDNFs. The rest of the link operator functions presented are
inconsistent and will not be considered for further analysis in this paper.

5 Truth Density as a measure of expected function output

In this section we present another interesting Boolean function metric, whose properties can be used to add
further knowledge about a Boolean function’s behavior. This metric, which we call truth density, allows us to
project what the regulatory target’s output will most likely be when the number of input regulators changes
and investigate how the ratio between activators and inhibitors may affect that output. From a modeler’s
perspective, this metric is useful to check if an assigned model parameterization (i.e. use of a specific BRF)
can asymptotically predefine the activity state of some targets. Equipped with this knowledge, a modeler can
verify the degree of fitness with the observations that such a parameterization allows, and thus discard a
specific function in favor of another, if the latter has a truth density value that better matches the outcome
observed in the data.

5.1 Truth Density

We define the truth density (TD) of a Boolean function as the fraction of all input configurations in its
corresponding truth table that yield a True (1) outcome. As such, TD ∈ [0, 1]. This quantity was first
introduced in [24] and more recently in [25] under the name of bias and was similarly defined as the probability
that a Boolean function takes on the value 1. Using the example with the three Boolean functions from
Table 1, we have TDf1 = 3/8 = 0.375, TDf2 = 5/8 = 0.625 and TDf3 = 8/8 = 1, where the last function is
a tautology, with the maximum possible truth density. Colloquially, we can say that a Boolean function is
biased, when it’s truth density is close to 0 or 1. Since the size of a truth table grows exponentially with the
number of inputs of the Boolean function (n inputs correspond to 2n rows), the existence of bias conveys the
information that most of the input regulatory configurations result in either an activated or inhibited target
(bias towards 1 or 0 respectively). On the other hand, we shall say that a Boolean function is balanced, if it
takes on the values 0 and 1 equally often, or equivalently, it’s truth density is approximately centered around
1/2 [26].

5.2 Asymptotic truth density results of the consistent regulatory functions

In Appendix A, we present a list of propositions and proofs that provide the exact truth density formulas
for the generic forms of the five consistent BRFs we studied in previous sections, namely the “AND-NOT”,
“OR-NOT” and “Pairs” link operator functions, and the two threshold functions, “Act-win” and “Inh-win”.
A very important element that enables the straightforward derivation of these formulas, is the use of the
equivalent DNF expressions in the proofs, especially for the case of the link operator Boolean functions. We
also noted that the truth densities of all the aforementioned BRFs depend on two variables: the number of
activators and the number of inhibitors (the total number of regulators also appears as a separate variable
but it depends on the first two, i.e. it is just their sum). Thus, we logically asked if a BRF’s truth density
asymptotically tends towards specific values in the [0, 1] interval (e.g. the function could be biased or
balanced), when the number of its input regulators increases or the ratio between activators and inhibitors
changes. The results of the asymptotic behavior of the truth density formulas are analytically presented in
Appendix B.

The asymptotic analysis of the truth density formulas confirmed the intuitive perception that the link operator
“AND-NOT” and “OR-NOT” functions show a characteristically opposite behavior with increasing number of
regulators: the standardized “AND-NOT” formula depends only on the number of inhibitors and its output
tends towards 0, whereas the “OR-NOT” formula depends only on the number of activators and is biased
towards 1. On the other hand, the “Pairs” and threshold functions truth densities don’t have an asymptotic
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limit since they depend on both the number of activators and inhibitors. Therefore, we proceeded in clarifying
the role of the activator-to-inhibitor ratio by investigating three scenarios which explicitly reveal the functions
truth density behavior for a significantly large number of regulators:

• A 1 : 1 activator-to-inhibitor ratio, where approximately half of the regulators are activators and half
are inhibitors.

• A high activator-to-inhibitor ratio, where all regulators are activators except one inhibitor.
• A low activator-to-inhibitor ratio, where all regulators are inhibitors except one activator.

In the 1 : 1 ratio scenario, where there is an equal number of activators and inhibitors, the asymptotic
behavior of the “AND-NOT” and “OR-NOT” functions corresponds to absolute inhibition (0) and activation
(1) respectively, following the biased behavior shown previously. The “Pairs” function behaves similarly to
the “OR-NOT” function and therefore is also biased towards 1. Only the threshold functions show balanced
behavior with their truth density value reaching asymptotically 1/2, since the majority rule does favor neither
activators nor inhibitors in this scenario. On the other hand, in the two extremely unbalanced scenarios, where
one set of regulators completely outweighs the other, the asymptotic truth density results of the “AND-NOT”
and “OR-NOT” functions depend on each respective scenario. Specifically, when the inhibitors dominate
over the activators, the “OR-NOT” is balanced and the “AND-NOT” is biased, since the former has been
shown to depend exclusively on the number of activators (which is just one in this case) for increasingly more
regulators, whereas the latter on the number of inhibitors. Their behavior is reversed when the activators
outbalance the inhibitors. In contrast, the “Pairs” function behaves in a balanced manner, having a truth
density asymptotically equal to 1/2 in both these scenarios, since the single minority regulator is paired
with every regulator from the dominant group in the respective DNF expression (Eq. 3) and as a result, it
significantly influences the function’s output. Lastly, the asymptotic results for the threshold functions follow
the larger size regulatory group, being biased towards 0 with significantly more inhibitors and biased towards
1 with significantly more activators.

5.3 Validation of asymptotic behavior

One key issue of immense practical importance for the modeler, which arises when analyzing the asymptotic
behavior of the truth density formulas, is the actual number of regulators that effectively make each of the
studied functions exhibit the demonstrated behavior. We noticed that most of the truth density formulas
(Eq. 11, 12 and 13) are the sum of two to three terms, with only one of them depending exclusively on the
number of regulators n. Also, this term is usually 1/2n, and can be omitted when considering values larger
than n = 10 regulators since it’s insignificant (1/210 ≈ 0.001). This suggests that the limit value of the truth
density formulas may be already derived from a much smaller number of regulators than what is implied by
the study of asymptotes. Therefore, we need to have a more data-centric view of the results from our previous
asymptotics analysis of the different BRFs, one that will enable us to verify the mathematically observed
behaviors but also identify an approximate range for the number of regulators where the asymptotics decide
the outcome of the studied functions.

We generated the complete truth tables for the five consistent BRFs of Table 2, from 2 up to 20 regulators,
accounting for every possible activator-to-inhibitor ratio. For example, for n = 10 regulators, every combination
of at least one activator and one inhibitor that adds up to 10 (1 activator + 9 inhibitors, 2 activators + 8

inhibitors, etc.) resulted in a different truth table for each considered Boolean function. Subsequently, using
the generated truth tables, we could easily calculate the exact truth density value for each function at every
considered ratio. The results are shown in Figures 1A and 1B for the link operator and threshold functions,
respectively.

10



A preprint - April 6, 2021

A

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●● ●● ●● ●●

More bias

More bias

0.00

0.25

0.50

0.75

1.00

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of regulators

Tr
ut

h 
D

en
si

ty
Boolean Regulatory Function AND−NOT OR−NOT Pairs

B

0.00

0.25

0.50

0.75

1.00

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of regulators

Tr
ut

h 
D

en
si

ty

Threshold Function Activators Win Inhibitors Win

Figure 1: Comparing the truth densities of five different Boolean regulatory functions for different numbers of
regulators and activator-to-inhibitor ratios. For each specific number of regulators, every possible combination
of at least one activator and one inhibitor that add up to that number, results in a different truth table output
with its corresponding truth density value. All such possible configurations up to 20 regulators are shown.
(A) The standardized “AND-NOT” function, along with the “OR-NOT” and “Pairs” functions, show an
increasingly biased behavior with more regulators. (B) The two threshold functions “Act-win” and “Inh-win”
show a more balanced behavior, since they respect the activator-to-inhibitor ratio and thus demonstrate a
larger spectrum of possible truth density values even for higher numbers of regulators.
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The data in general shows that the different regulatory functions demonstrate quite dissimilar behaviors
with regard to their asymptotic outcome. In particular, we recapitulate the findings from the asymptotics
analysis, namely the bias of the link operator functions, which is evident even from 7 to 10 input regulators.
Interestingly, the “Pairs” function follows asymptotically the behavior of the “OR-NOT” function but is in
general less biased. We note that the outliers in Figure 1A with truth density values closer to 1/2, represent
imbalanced activator-to-inhibitor ratio scenarios, i.e. either considerably more activators than inhibitors
for the “AND-NOT” function and the reverse for the “OR-NOT” function, or any imbalanced ratio for the
“Pairs” function. Lastly, Figure 1B shows that the threshold functions exhibit a more balanced behavior,
expressed as a higher spectrum of truth density values for any single number of regulators and with the
median truth density asymptotically reaching 1/2. This result is due to the fact that threshold functions
faithfully follow the activator-to-inhibitor ratio, i.e. with more activators the outcome is biased towards 1
whereas with more inhibitors the function outcome tends towards 0.

6 Link operator parameterization determines activity state in biological
networks

In this section we investigate if a model’s parameterization can effectively decide the activity state of nodes in
biological networks. In more detail, we will use the “AND-NOT” link operator function [9] and its symmetric
function “OR-NOT” (Eq. 1 and 2), to build Boolean models from prior causal knowledge and check if their
activity state profile as determined by dynamic attractor analysis, shows the biased behavior that we observed
in Section 5.

A major motivation for this analysis is the fact that the “AND-NOT” function is extensively used by logical
modelers and thus the knowledge of its bias, made possible through the lens of the truth density metric,
should be clearly demonstrated in practical use cases, e.g. biological network targets should mostly be in an
inhibited state when the “AND-NOT” parameterization is used in their respective Boolean equations and in
an active state in the case of the “OR-NOT”. As such, a modeler could make use of the link operator function
bias to select the appropriate model parameterization which statistically guarantees an activity state profile
that best matches the one supported by experimental evidence.

6.1 From topology to link operator Boolean models

In order to define Boolean models with the “AND-NOT” and “OR-NOT” link operator parameterization
forms, we implemented the software abmlog, which stands for “All possible Boolean Models Link Operator
Generator” (Software and Data Availability). Given a simple interaction (.sif) format file [7], representing
a PKN with clearly defined, positive and negative causal interactions, the abmlog software outputs all
combinatorially possible Boolean models where each link operator equation (deciding the state of a link
operator node, i.e. one whose Boolean activity state is determined by both positive and negative regulators)
will have either the “AND-NOT” or the “OR-NOT” function form. The models are saved in both the
widely-used BoolNet (.bnet) [27] format and the gitsbe format [28], with the latter additionally including
the attractors of the Boolean model, calculated via the BioLQM Java library [29]. A simple overview of the
software is presented in Figure 2.

By default, abmlog generates all possible Boolean models with the two link operator parameterizations, the
number of which depends on the number of link operator nodes. For example, if a network has 12 nodes with
both activating and inhibitory regulators, then a total of 212 = 4096 Boolean models will be generated. In
case the number of all possible Boolean models is very large or space restrictions do not allow the storage
of that many models, the software can also be used to generate a random sample of link operator Boolean
models from the total parameterization space. In summary, abmlog is a useful tool that can generate a large
pool of Boolean models for subsequent analyses, each with a unique link operator parameterization.

12
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...
A activates B
A activates C
 C inhibits   B 
 D inhibits   C 

 ... 

Topology
.sif file

...
B = A AND NOT C
C = A AND NOT D
...

...00...

...
B = A AND NOT C
C = A OR   NOT D
...

...
B = A OR   NOT C
C = A AND NOT D
...

...
B = A OR NOT C
C = A OR NOT D
...

Boolean Models Binary Model
Number

...01...

...10...

...11...

...10...

...00...

Models
Stable States

...01...

...10...

...10...

...10...

Contingency Table (B,C nodes)

Inhibited
State

Active
 State Total

AND-NOT 6 1 7

OR-NOT 1 4 5
Total 7 5 12

10 agreements over 12
possible comparisons

Figure 2: Data-flow overview diagram of the abmlog software and its related contingency table between
output model parameterization and stable state activity. A simple interaction file is given as an input to
produce a series of Boolean models where equations with both activating and inhibitory regulators have either
the “AND-NOT” or the “OR-NOT” formulation. Two link operator equations give rise to a total of 22 = 4

different Boolean models. Each unique parameterization can be represented by a single binary model number,
where a “0” corresponds to an equation with the “AND-NOT” link operator and a “1” to an equation with
the “OR-NOT”. This representation of parameterization can be directly compared to each of the models’
stable states, which enables the creation of a contingency table for the data pertaining to nodes B and C and
the derivation of measures of agreement (see Section 6.2).

6.2 Measuring agreement between parameterization and stable state

In order to quantify the link operator function bias, we use measures of agreement between parameterization
and stable state. The idea is that the more biased the link operator parameterization is, the higher the
expected agreement will be between a target node’s link operator assignment and its corresponding stable
state. For the rest of this work, we shall use two measures of agreement, namely the percent agreement and
Cohen’s kappa statistic [30].

In more detail, using the Boolean model data generated by abmlog, we focus in two categorical variables related
to a particular node of interest: its link operator parameterization (“AND-NOT”/“0” or “OR-NOT”/“1”) and
its corresponding stable state activity (“inhibition” or “activation”), obtained via attractor analysis. We shall
say that these two variables “agree” when a node whose target Boolean equation has the “AND-NOT” link
operator (resp. “OR-NOT”) ends up with an inhibited (resp. active) state in the corresponding attractor. In
the case of a Boolean model with multiple attractors, each of the stable states is used separately to measure
the agreement between the two aforementioned variables, since the activity of a node might change between
the different attractors, but its parameterization stays the same.

To define measures of agreement between the two proposed categorical variables, we visualize their interrelation
using a contingency table. A total of four data comparison counts can be used to fill in the table’s cells: two
where the parameterization and stable state match (i.e. node had the “AND-NOT” link operator form and
an inhibited stable state or the “OR-NOT” form and an active state) and two where they differ (i.e. node
had the “OR-NOT” form and its state was inhibited, or the “AND-NOT” form and an active state). The
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percent agreement is then simply defined as the total number of matches divided by the total number of
comparisons and is directly interpreted as the percentage of data that the two variables agree upon. In the
example of Figure 2, the corresponding contingency table counts all the matches and mismatches between
the link operator assignments for nodes B and C and their corresponding activity state (12 comparisons in
total). Since there are only two mismatches, the percent agreement is equal to 10/12 = 0.83, meaning that in
83% of the presented data, the link operator parameterization dictated function outcome. Naturally, a value
of 0 is the absolute minimum score and indicates complete disagreement between the two variables while a
perfect agreement score is equal to 1 or 100%.

A more robust statistic that we also apply in the Boolean model data is Cohen’s kappa (κ) coefficient [30].
This statistic is used to measure the extent to which data collectors (raters) assign the same score to the
same variable (inter-rater reliability) and takes into account the possibility of agreement occurring by chance.
In our case, this can be conceived as one rater that assigns link operator parameterization (“AND-NOT”
or “OR-NOT”) and another that assigns stable state activity (“inhibition” or “activation”). Both variables
are converted to a binary outcome (0 or 1), allowing the creation of a contingency table and subsequently
the calculation of Cohen’s formula for κ. The kappa statistic ranges from −1 to +1, where a value of 0
represents the amount of agreement that can be expected from random chance, and a value of 1 (resp. −1)
indicates perfect agreement (resp. disagreement) between the raters. In the example contingency table of
Figure 2, κ = 0.657, which is a considerable reduction in the level of congruence compared to the 0.83 percent
agreement.

6.3 Truth Density bias in biological networks

6.3.1 Bias guides model parameterization in a cancer signaling network

We used abmlog on a cancer signaling network, consisting of 77 nodes and a total of 149 curated causal
interactions that cover a variety of pathways linked to prosurvival and antisurvival cell signaling (e.g. cyclin
expression and caspase activation). This PKN, named CASCADE (CAncer Signaling CAusality DatabasE),
was successfully used to build a Boolean model able to predict anti-cancer drug combination effects in gastric
cell lines [14]. We used the CASCADE version from the Flobak paper (version CASCADE 1.0), with some
node naming changes for compatibility with the newest versions [31]. The number of nodes with both
activating and inhibiting regulators in the CASCADE 1.0 topology is 23, while the rest of the nodes have
regulators that belong to only one of the two regulatory categories. Thus, using abmlog, we generated all
223 possible Boolean models with the “AND-NOT” and “OR-NOT” link operator parameterizations. The
resulting stable state distribution across all produced models is presented in Figure 3A. For our subsequent
analysis we will use only the 2 802 224 Boolean models that had exactly one stable state, as it makes the
calculation of agreement between a node’s assigned link operator and its corresponding activity state across
all the selected models more straightforward.

The agreement results between link operator parameterization and stable state activity across all the selected
CASCADE models are presented in Figures 3B (percent agreement, per node) and 3C (Cohen’s κ, nodes
with the same number of regulators are grouped together). The percent agreement results show a high
variability across the link operator nodes and range from a minimum of 53% to a perfect agreement (100%).
This suggests that for all nodes, across any selected CASCADE 1.0 Boolean model, there is a higher than
random probability that the assignment of the “AND-NOT” (resp. “OR-NOT”) link operator formula in the
associated Boolean equations will result in the inhibition (resp. activation) of the target nodes. So, even
though none of the nodes have more than 5 regulators, we already start seeing signs of the truth density bias
in the link operator regulatory functions across a wide range of Boolean models.

When applying Cohen’s κ to evaluate level of agreement, we chose a conservative threshold equal to 0.6,
corresponding empirically to a substantial level of agreement [32, 33]. We found that 60% (14 out of 23) of
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the nodes have a κ value below the specified threshold. Our conclusion is that biological networks with higher
in-degree nodes (i.e. more than 7− 10 regulators) are needed to properly assess if there is a truly high level
of agreement between Boolean parameterization and function state outcome in the case of the link operator
regulatory functions, providing thus conclusive proof of their bias (Section 6.3.2).
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Figure 3: (A) Stable states distribution across all link operator parameterized Boolean models generated
by the abmlog software using the CASCADE 1.0 signaling topology. (B) Percent agreement scores between
parameterization and activity state across all single stable state CASCADE 1.0 models, for 23 nodes with
both inhibiting and activating regulators. Nodes are sorted according to the total number of input regulators.
(C) Same as (B), with the difference that the link operator nodes are now grouped into categories based on
the total number of input regulators and Cohen’s κ is used as an agreement statistic. (D) Same as (B), with
the agreement now calculated as the proportion of matches between a node’s link operator and its activity
state, in the models that had the specific parameterization. The link operator nodes are sorted according
to the average activity state across the considered CASCADE models and the colored node labels indicate
literature curated activity profiles from Flobak et al. [14]

15



A preprint - April 6, 2021

Regardless of the presence of bias or not, the agreement results can be used to show how experimental data
and topological regulatory knowledge (e.g. the activator-to-inhibitor ratio) can be coupled with the truth
density metric to guide the choice of regulatory functions. In one example scenario, a modeler asks what
the most probable link operator parameterization is among the “AND-NOT” and “OR-NOT” forms that
matches available experimental evidence. We used a literature curated activity profile derived for the AGS
cell line from [14], to annotate 7 of the link operator nodes in Figure 3D according to their experimentally
validated state (activation or inhibition). To clearly identify which of the two parameterizations best fits the
observed data, for each node we split the CASCADE models in two model pools, representing the “AND-NOT”
and “OR-NOT” node parameterizations, and calculated the proportion of models within each pool whose
link operator matched the expected state outcome. For example, in the contingency table of Figure 2,
the equivalent calculation would be to divide the number of matches in each row with the corresponding
row total sum, resulting in 6/7 = 85.7% of the “AND-NOT” Boolean equations with an inhibited stable
state and 4/5 = 80% of the “OR-NOT” equations with an active target node. Moreover, the link operator
nodes of Figure 3D are sorted in increasing order by their average stable state activity in the considered
CASCADE 1.0 Boolean models. It is evident that nodes with higher average activity in the stable state
have a higher agreement with the “OR-NOT” parameterization whereas nodes with lower average activity, a
higher agreement with the “AND-NOT” parameterization (0.85 and −0.74 Pearson correlation coefficients
with pOR-NOT

corr = 2.6× 10−7 and pAND-NOT
corr = 5× 10−5 respectively, see Software and Data Availability).

More specifically, we observe that for all experimentally validated nodes, a modeler could a priori set the
link operator to the appropriate form and get a stable state activation profile that matches the observations
(“AND-NOT” to match an inhibition node profile or “OR-NOT” for an activation profile) with a higher
probability than if he was randomly choosing one of the two. For example, the data shows that 90% of
the models with an “OR-NOT” Boolean equation for the target family node TCF7_f, had the node as
active in their respective stable state. The same is observed for the CTNNB1 (92%) and ERK_f active nodes
(74%), as well as for the TP53 (65%) and PTEN (85%) inhibited nodes with the choice of the “AND-NOT”
parameterization. Additionally, all the aforementioned nodes have two regulators (one activator and one
inhibitor) and using the respective truth density formulas (Eq. 6 and 7) with n = 2 and m = k = 1, we have
that TDAND−NOT = 0.25 (closer to 0 or inhibition) and TDOR−NOT = 0.75 (closer to 1 or activation), as
was also shown in Figure 1A. As such, the nodes observed output matches the statistically expected binary
outcomes, showing that even with a low number of regulators, the BRF bias can be used to guide function
choice.

In another scenario, a modeler knows that a particular node has a skewed activator-to-inhibitor ratio and
wants to exploit such knowledge to make the node conform to a particular activity state of his choice. A
nice example from our data is the family node LRP_f, with four activators and one inhibitor. Using the
truth density formulas for the two link operator parameterizations (Eq. 6 and 7) with n = 5, m = 4 and
k = 1, we have that TDAND−NOT = 0.47 and TDOR−NOT = 0.97. So, if the modeler wants to have an
active LRP_f in the stable state, the “OR-NOT” parameterization should be preferred since the “AND-NOT”
has an approximate 50% probability for this to happen from a statistical point of view. These truth density
values also match the results from Figure 3D, since only half of the models that use the “AND-NOT”
parameterization end up with an inhibited LRP_f in the stable state while all of them have an active LRP_f
(100% agreement) in the case where the “OR-NOT” form is used. Also, the average activity of LRP_f across
all models is one of the highest in the data, suggesting that imbalanced activator-to-inhibitor ratios could
be a direct proxy for predicting regulation outcome. In a similar situation, but at the other range of the
activity spectrum, we have the TSC_f family node with one activator and four inhibitors. The truth density
values (now using n = 5, m = 1 and k = 4) are TDAND−NOT = 0.03 and TDOR−NOT = 0.53 respectively.
Therefore, the “AND-NOT” parameterization guarantees the inhibition of the TSC_f node (data shows 100%
agreement) and it should be a modeler’s first choice if that is the desired outcome. On the other hand, if the
activation of TSC_f was a modeler’s preference, then the choice of the “OR-NOT” form would be the most
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statistically appropriate according to the truth density metric. We observe though that there was no model
having TSC_f inhibited in the stable stable, indicating that the complex dynamics of the cancer network can
also play a significant role in the function outcome. In general, we note that the particular configuration
of activating and inhibiting regulators of a target in a specific model instance, can influence the dynamics
attributable to the parameterization, causing several results from our analysis to differ from the expected
behavior of the Boolean functions studied.

6.3.2 Hub node bias in random scale-free networks

In the previous section we showed that the truth density bias can be used to predict regulatory function
outcome in a specific cancer signaling network, but the question still remains open for general biological
networks. Also, we found evidence suggesting that Boolean dynamics also plays a significant role in deciding
each node’s state in the attractors and in some cases activity state results may contradict what is expected
from the use and asymptotic interpretation of the truth density formulas. Therefore, we now proceed to
investigate if networks with higher in-degree nodes (i.e. more input regulators) have stable states that can
be unquestionably decided a priori by the truth density metric, using the respective TD formulas for the
“AND-NOT” and “OR-NOT” link operator parameterizations.

We study the specific class of scale-free networks [34], based on the hypothesis that most biological networks
exhibit that property, i.e. their node degree distribution follows asymptotically a power law P (k) ∼ k−γ ,
with k the number of regulators and γ the scale-free exponent. We note that the CASCADE 1.0 model
also exhibits the scale-free property (see Software and Data Availability) and there has been evidence in the
literature both in favor and against this hypothesis. In particular, earlier studies showed that many complex
networks (including metabolic ones) are approximately scale-free [35, 36, 37, 38], whereas more recent efforts
demonstrated that not all cellular biological networks may share that property [39], but those that do, exhibit
the strongest level of evidence of scale-free structure [40]. Consequently, we shall use scale-free topologies as
acceptable substitutes of real biological networks in our analysis.

The methodology is as follows: we start by generating scale-free topology files with a total of 50 nodes each
and a maximum in-degree kmax = 50 [27]. For each network, the number of input regulators per node is
drawn from a Riemann Zeta distribution with parameter γ [41]. The choice of regulators for each network
node, as well as the type of regulation (positive or negative), is uniformly random. The Zeta distribution
allows the creation of in-degree values that far exceed the average connectivity in a network, giving rise to
the highest-degree nodes (often called “hubs”), which are the most defining characteristic of the scale-free
networks. The value of the scale-free exponent influences the number of hubs and their in-degree distribution.
More specifically, we created scale-free networks with γ = 2 and γ = 2.5, since most of the studied networks
have an exponent between 2 and 3 [41, 42]. Comparing the networks built with the above methodology, we
found that those with γ = 2 have more nodes with both activating and inhibiting regulators and higher
degree hubs than networks with γ = 2.5 (Figures 4A and 4B). These two characteristics suggest that the
scale-free networks with γ = 2 are better suited for use with the abmlog software, since the larger the number
of link operator nodes, the more Boolean models can be generated and thus more data comparisons can be
made between node parameterization and stable state activity. Additionally, the presence of higher degree
hubs is the perfect testbed for the link operator function bias, which manifests especially for nodes with more
than 7− 10 regulators, as we found from our earlier truth density asymptotics analysis (Figure 1A).

Our methodology proceeds with using each of the scale-free topologies with γ = 2 as input to the abmlog
software, and generating ensembles of Boolean models parameterized with every possible mix of the “AND-
NOT” and “OR-NOT” regulatory functions along with the calculation of their stable states (as demonstrated
in Figure 2). The produced Boolean models had zero, one, or more stable states. Interestingly, we observed
that around half of the tested scale-free topologies generated Boolean models with no stable states, no matter
which combination of link operators was used to define the model parameterization. Therefore, the randomly
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Figure 4: (A)-(B) Network statistics for scale-free topologies with different degree exponents. Every network
tested has 50 nodes and a maximum in-degree kmax = 50. A total of 100 topologies for γ = 2 and 1000

topologies for γ = 2.5 are compared. Networks with γ = 2 have a higher median number of nodes with
both activating and inhibiting regulators and higher degree hubs. (C)-(D) Agreement statistics between
link operator parameterization and stable state activity. The data is taken from Boolean models generated
with the abmlog software, using scale-free topologies with exponent γ = 2. A total of 757 link operator
nodes were compared across multiple link operator parameterization configurations with their corresponding
stable states. Nodes are grouped in buckets, where each bucket indicates a different range of input regulators.
Both the percent agreement and Cohen’s κ show considerable congruence between link operator assignment
(“AND-NOT” or “OR-NOT”) and resulting stable state (inhibition or activation respectively) for nodes with
more than 10 input regulators.

assigned regulators, regulatory effects, and Zeta distribution in-degree values, may result in networks which
do not have stable phenotypes, suggesting that alternative parameterizations might be more suitable in
modeling scenarios which specifically examine stable dynamics. Nonetheless, we discarded the models with
no stable states and used the rest that had single or multiple attractors in our analysis. Then, for each model
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node with both activating and inhibiting regulators, we compared its assigned link operator with the activity
state value in the corresponding stable state(s), across all the link operator parameterization spectrum that
yielded models with stable phenotypes. The agreement results between parameterization and stable state
activity are presented in Figure 4C for the percent agreement and in Figure 4D for Cohen’s kappa statistic.

We observe that both presented statistics show a large variation of agreement for nodes with less than 10

regulators and an increasing agreement with more regulators. This agreement manifests in link operator nodes
parameterized with the “AND-NOT” or “OR-NOT” Boolean functions, while at the same time exhibiting
inhibited or active states respectively in the associated model attractors. Therefore, we conclude that the
considered standardized Boolean regulatory functions are biased and their outcomes can be determined a
priori from the choice of the corresponding link operator parameterization, especially for nodes with more
than 7− 10 regulators.

7 Discussion

The specification of mathematical rules that describe the behavior of biological systems is one of the core
aspects of computational modeling. It is therefore of considerable value to have a list of metrics that can be
used to compare different model parameterizations and make an informed decision with regard to the selection
of an appropriate regulatory function that better matches the expected behavior in a specific modeling
application.

We specifically discussed two characterizations that can assist modelers in comparing various regulatory
functions and select the most plausible ones with regard to the causal interaction-based knowledge at hand.
Expressing Boolean functions in DNF makes biological interpretation concrete by explicitly specifying the
conditions (presence or absence of the positive and negative regulators, respectively) that make a target
active. Expressing the functions in CDNF allows to easily check for compliance with the underlying regulatory
topology and subsequently, the rejection of functions that violate such consistency. The difference between
these two characterizations lies in the fact that the consistency terminology stems from the mathematical
world, while biological interpretability is tightly connected to the world of language semantics and thus closer
to the modeler’s point of view. Finally, truth density is an informative measure which can be used to verify
if the function parameterization dictates biased Boolean outcomes. It can also be used as a test metric to
understand how a function behaves when the number of regulators increases or the balance between the
number of activators and inhibitors changes.

Using the truth density metric, we showed the presence of link operator function bias in the hubs of randomly
constructed scale-free networks. A potential application of this finding could be to dramatically decrease the
time needed to train Boolean models to fit observations via various optimization methods, by pre-assigning
the parameterization of link operator nodes with sufficiently many regulators. The pruning of the searchable
parameterization space, guided by the truth density metric, can result in more efficient automated methods
and can enable the training of larger models against data from numerous resources (e.g. large cell line panels).
The hub node bias has also interesting links to the presence of order in biological networks [43]. The dynamics
of a Boolean network can exhibit ordered or chaotic behavior. Ordered dynamics is characterized by the
presence of less stable states and limit cycle attractors with smaller mean length (number of states in a
complex attractor) and transition times (number of steps needed to reach an attractor starting out from an
arbitrary configuration) [41]. It is also known that the truth density (probability of target expression) as well
as the degree exponent γ (related to network connectivity) can modulate the dynamic transition between the
ordered and chaotic phases. Moreover, it has been shown that above the critical value of γc ∼ 2.47, ordered
behavior in the form of stable state dynamics manifests independently of the truth density, whereas for values
closer to γ = 2, order coincides with the presence of high biased nodes (see Fig. 4 in [41]). Our work confirms
this phenomenon, since the use of the link operator parameterization guarantees the presence of biased hubs,
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which enable the scale-free networks to exhibit stability and homogeneity in terms of regulatory output, and
thus stay in the ordered dynamic regime.

Searching for other function metrics that are applicable to logical modeling, the sensitivity of a Boolean
function is one of the most relevant [44]. As its name suggests, it measures how sensitive the output of the
function is to small changes of its inputs. Sensitivity is tightly linked to the truth density metric, since a
highly homogeneous Boolean function (i.e. a biased one), is unlikely to change its value between similar
regulatory input configurations and so, its sensitivity is relatively low. To compute the average sensitivity
value for an arbitrary Boolean function we need to sum over all the influences of the input variables, which
essentially represent a way to measure individual variable importance. In the context of regulatory functions,
a regulator’s influence is defined as the probability that a random toggle on its activity (from active to
inactive and vice-versa) will change the value of the Boolean function [45]. Therefore, by calculating the
influence of every regulator, the modeler can gain knowledge of which ones are more important and control
the respective function’s outcome. This transition of perspective from the function level to the regulator level
might be advantageous in cases where the modeler’s intention is to compare different parameterizations and
choose the one for which a particular regulator is labeled as significantly more important than the others,
based on the available biological knowledge.

Lastly, an important addition to a universal list of Boolean function metrics for modeling purposes, is the
notion of function complexity. A recent definition is given by Gherardi et al. [25], where the authors defined
it as the number of terms in the shortest possible DNF expression of a given Boolean function, divided by the
total number of rows in the corresponding truth table. We presented this information in the last column of
Table 2, where the BRFs are sorted from lower to higher complexity (note that the CDNF has the minimum
number of terms for every BRF included in the table). One useful observation is that the standardized
“AND-NOT” formula [9] is the function with the lowest complexity that is also consistent and thus biologically
plausible - all properties that make it a good choice from the modeler’s perspective. Assessing the complexity
of the studied regulatory functions using the derived formulas for the minimum number of CDNF terms for
any number of activators m and inhibitors k (see last column of Table 2), we comment on the fact that all
BRFs have very low complexity since O(m× k)� 2m+k, i.e. the number of function terms does not grow as
fast as the number of rows in the corresponding truth table. Same observation has been shown to be true in
manually-tuned, experimentally-validated Boolean functions [25], providing us with another confirmation
that the consistent functions from Table 2 are good candidates for logic-based modeling approaches.

8 Future work

In this work we make an attempt to address the logical rule specification problem, which can be simply stated
as: “Many functions may fit the available observations, which one is the most proper to use?” Of course
what is “proper” can be fairly subjective, but the main point is that a careful consideration of the underlying
application context (i.e. what output do I expect in a specific scenario of interest) along with a list of metrics
that explicate a Boolean function’s behavior and semantics, provides the user with the appropriate framework
to decide on the function parameterization that sets the basis for further model analysis and simulation. In
that regard, interesting directions for further research include the application of the metrics presented in this
work in different published biological models, and the subsequent comparison of different regulatory functions
within this framework. Such meta-analyses could potentially indicate regulatory functions that achieve a
higher degree of fitness with the observed data or general properties that are common in all Boolean functions
used to model biological systems.

An interesting study for example would be to analyze Boolean functions from published biological models
that have extreme activator-to-inhibitor ratios. If such imbalanced ratios also result in proportionally skewed
Boolean outcomes (i.e. with more activators, the truth density is closer to 1 and the reverse with more
inhibitors), suggesting that target outcome follows the majority regulatory groups, then the use of threshold
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functions could be a more proper parameterization alternative, as was shown in Figure 1B. Of course, we
note that each individual case must be examined with care, since there might be high influence nodes, whose
activity defines the target’s output even in the presence of a much larger regulatory group with opposite
effects. For example, CASP3 is a biological entity that, when activated, will almost certainly result in the cell’s
death even in the presence of a majority of proliferation-positive regulators at any given time. Subsequently,
a more appropriate choice based on the results of this study can be made, either by choosing between the
biased functions, which demonstrate a more balanced behavior for such extreme activator-to-inhibitor ratios
(e.g. using the “Pairs” or the “AND-NOT” functions which are balanced vs using the “OR-NOT” which
would make the target activated most of the time, see Scenario 2) or by using refined threshold functions, in
which each regulator’s weight will differ in order to match the influence that it has on the target.

There have been only a handful examples of published logical models [46, 47] and research papers [21, 48, 49,
50, 51, 52, 53, 54] that use the threshold modeling framework in biological systems. This is partly due to the
lack of tools that make threshold functions accessible to the average user, and the availability of such software
in open-source environments such as the CoLoMoTo Interactive Notebook [55]. We believe that the existence
of such novel software will enable the construction and configuration of generic Boolean threshold models and
provide users of the logical-modeling community and beyond with the necessary toolbox to further study
these models. This will enable applications that depend on the dynamical analysis of Boolean threshold
models (identification of attractors, reachability properties, formal verification and control) and the use of
optimization methods to calibrate the threshold function parameters to best fit the available experimental
data, as is done currently with analytical logic-based functions [12].

Software and Data Availability

The abmlog software that was used to generate Boolean models with the “AND-NOT” and “OR-NOT”
Boolean regulatory functions is available at https://github.com/druglogics/abmlog under the MIT
License. We used the version 1.6.0 for this analysis, which is also offered as a standalone package at
https://github.com/druglogics/abmlog/packages.

An extended analysis accompanying the results of this paper is available at https://druglogics.github.
io/brf-bias. It includes links to the produced model datasets and scripts to reproduce the results and
figures of this paper. In particular, the correlation analysis between average node state in the CASCADE
1.0 models and percent agreement per each link operator is available at https://druglogics.github.io/
brf-bias/cascade-1-0-data-analysis.html#node-state-and-percent-agreement-correlation. The
degree distribution of the CASCADE 1.0 topology and other network statistics are examined in https:
//druglogics.github.io/brf-bias/cascade-1-0-data-analysis.html#network-properties.
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A Truth Density formula proofs

For all the following propositions, we consider f to be a Boolean regulatory function fBRF : {0, 1}n → {0, 1},
with a total of n input regulators separated to two distinct sets, the set of m ≥ 1 activators x = {xi}mi=1 and
the set of k ≥ 1 inhibitors y = {yj}kj=1, such that n = m+ k.

Proposition 1 (“AND-NOT” Truth Density). The truth density of the “AND-NOT” link operator function
fAND−NOT (x, y) = (

∨m
i=1 xi) ∧ ¬

(∨k
j=1 yj

)
, with m ≥ 1 activators and k ≥ 1 inhibitors, is given by the

formula:

TDAND−NOT =
2m − 1

2n
=

1

2k
− 1

2n
(6)

Proof. Using the distributive property and De Morgan’s law we can express fAND−NOT (Eq. 1) in the
equivalent DNF:

fAND−NOT (x, y) =

(
m∨
i=1

xi

)
∧ ¬

 k∨
j=1

yj


=

m∨
i=1

xi ∧ ¬
 k∨
j=1

yj


=

m∨
i=1

(xi ∧
k∧
j=1

¬yj)

=

m∨
i=1

(xi ∧ ¬y1 ∧ ... ∧ ¬yk)

To calculate TDAND−NOT , we need to find the number of rows in fAND−NOT ’s truth table that result in a
True output result and divide that by the total number of rows, which is 2n (n input regulators).

Note that fAND−NOT , written in it’s equivalent DNF, has exactly m terms. Each term has a unique
True/False assignment of regulators that makes it True. This happens when the activator of the term is
True and all of the inhibitors False. Since the condition for the inhibitors is the same regardless of the term
we are examining and f is expressed in DNF, the True outcomes of the function f are defined by all logical
assignment combinations of the m activators that have at least one of them being True and all inhibitors
assigned as False. There are a total of 2m possible True/False logical assignments of the m activators (from
all False to all True) and fAND−NOT becomes True on all except one of them (i.e. when all activators are
False), with the corresponding 2m − 1 truth table rows having all inhibitors assigned as False. Therefore,
TDAND−NOT = (2m − 1)/2n.

Proposition 2 (“OR-NOT” Truth Density). The truth density of the “OR-NOT” link operator function
fOR−NOT (x, y) = (

∨m
i=1 xi) ∨ ¬

(∨k
j=1 yj

)
, with m ≥ 1 activators and k ≥ 1 inhibitors, is given by the

formula:

TDOR−NOT =
2n − (2k − 1)

2n
= 1− 1

2m
+

1

2n
(7)
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Proof. Using De Morgan’s law we can express fOR−NOT (Eq. 2) in the equivalent DNF:

fOR−NOT (x, y) =

(
m∨
i=1

xi

)
∨ ¬

 k∨
j=1

yj


=

(
m∨
i=1

xi

)
∨

 k∧
j=1

¬yj


= x1 ∨ x2 ∨ ... ∨ xm ∨ (¬y1 ∧ ... ∧ ¬yk)

To calculate TDOR−NOT , we find the number of rows of fOR−NOT ’s truth table that result in a False output
(Rfalse), subtract that number from the total number of rows (2n) to get the rows that result in f being
True, and then divide by the total number of rows. As such, TDOR−NOT = (2n −Rfalse)/2n.

Note that fOR−NOT , expressed in it’s equivalent DNF, has exactly m+ 1 terms. To make fOR−NOT False,
we assign the m activators as False and then we investigate which logical assignments of the inhibitors
{yj}kj=1 make the last DNF term also False. Out of all the possible 2k True/False logical assignments of
the k inhibitors (ranging from all False to all True) there is only one that does not make the last term of
fOR−NOT False, which happens specifically when all k inhibitors are False. Therefore, Rfalse = 2k − 1 and
TDOR−NOT = (2n − (2k − 1))/2n.

Proposition 3 (“Pairs” Truth Density). The truth density of the “Pairs” link operator function fPairs(x, y) =∨m,k
∀(i,j)(xi ∧ ¬yj), with m ≥ 1 activators and k ≥ 1 inhibitors, is given by the formula:

TDPairs =
(2m − 1)(2k − 1)

2n
(8)

Proof. Using the distributive property we can express fPairs (Eq. 3) in its equivalent conjunction normal
form (CNF), where two separate clauses are connected with AND’s (∧) and inside the clauses the literals are
connected with OR’s (∨):

fPairs(x, y) =

m,k∨
∀(i,j)

(xi ∧ ¬yj) =

(
m∨
i=1

xi

)
∧

 k∨
j=1

¬yj

 (9)

To calculate TDPairs, based on its given CNF, we find the number of rows in its truth table that have at
least one True activator (Ract) and subtract from these the rows in which all inhibitors are True (Rinh).
Therefore, only the rows that have at least one True activator and at least one False inhibitor will be left,
corresponding to the biological interpretation of fPairs. As such, TDPairs = (Ract −Rinh)/2n.

Ract can be found by subtracting from the total number of rows (2n), the rows that have all activators as
False. The number of these rows depends on the number of inhibitors, since for each one of the total possible
2k True/False logical assignments of the k inhibitors (ranging from all False to all True), there will be a
row in the truth table with all activators as False. Therefore, Ract = 2n − 2k = 2m+k − 2k = 2k(2m − 1).

Rinh depends on the number of activators, since for each one of the total possible 2m True/False logical
assignments of the m activators (ranging from all False to all True), there will be a row in the truth table
with all inhibitors as True. Note that we have to exclude one row from this result, which is exactly the
row that has all activators as False since it’s not included in the Ract rows. Therefore, Rinh = 2m − 1 and
TDPairs = (Ract −Rinh)/2n = (2k(2m − 1)− (2m − 1))/2n.
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Proposition 4 (Threshold functions Truth Density). The truth density of the Boolean threshold functions
“Act-win” (Eq. 4) and “Inh-win” (Eq. 5), with m ≥ 1 activators and k ≥ 1 inhibitors, is given by the formula:

TDthres =

∑m
i=1

[(
m
i

)
×
∑min(u,k)
j=0

(
k
j

)]
2n

(10)

where u = i or i− 1, depending on the use of the “Act-win” or “Inh-win” function respectively.

Proof. The truth density formula can be easily derived from the observation that we need to count the
number of rows in the respective truth table that have more True activators than True inhibitors. In the
case of the “Act-win” function, we also need to add the rows that have an equal number of True regulators
in each respective category.

Firstly, we count all the subset input configurations that have up to m activators assigned to True. These
include the partial True/False logical assignments that have either a single True activator, a pair of True
activators, a triplet, etc. This is exactly the term

∑m
i=1

(
m
i

)
. Note that each of these activator input

configurations is multiplied by a factor of 2k in the truth table to make complete rows, i.e. rows where the
activators logical assignments stay unchanged and the inhibitor values range from all False to all True.
Therefore, we need to specify exactly which inhibitor logical assignments are appropriate for each activator
subset input configuration. To do that, we multiply the size of each activator subset

(
m
i

)
with the number of

configurations that have less True inhibitors, i.e.
∑i−1
j=0

(
k
j

)
.

Let’s consider an example with m, k > 2 and set i = 2. We find that the number of subsets with 2 True

activators is
(
m
2

)
. Next, we multiply by the number of configurations that have one or no True inhibitors,

i.e.
∑1
j=0

(
k
j

)
. This results in the number of rows of interest for the “Inh-win” function, i.e. the rows where

there are exactly 2 activators assigned to True and less than 2 True inhibitors. For “Act-win”, we have to
multiply up to the True inhibitor pairs, i.e.

∑2
j=0

(
k
j

)
. In summation, we count the configurations that have

exactly i out of m activators assigned to True, and for each one, we multiply by the number of cases that
have 0 up to i inhibitors assigned to True to find the respective rows, i.e.

(
m
i

)
×
∑i
j=0

(
k
j

)
. Repeating this

calculation for every possible subset of i activators (from 1 up to all m of them), and summing the rows up,
will result in the numerator of the TDthres formula for the “Act-win” function.

Lastly, note that the largest inhibitor configuration subset size that we consider, is the minimum value
between the current activator subset size (u = i or i− 1, depending on which threshold function we use) and
the total number of inhibitors k. Therefore, we take into account the case where the number of inhibitors is
less than the activator subset size, i.e. k < u. This explains the term min(u, k) in the truth density formula
and concludes the proof.

B Truth Density asymptotic behavior

We study the asymptotic behavior of the four truth density formulas (Appendix A) for a large number of
regulators (n→∞). Note that for the calculations involving the two threshold functions, we will only use
the truth density formula corresponding to the “Act-win” function (Eq. 10, with u = i), since both functions
have similar formulas and therefore, their limiting behavior is analogous. The asymptotics results for each
regulatory function are as follows:

1. The “AND-NOT” function truth density (Eq. 6) depends only on the number of inhibitors k:

TDAND−NOT =
1

2k
− 1

2n
∼ 1

2k
(11)

For large k, it is biased towards 0:
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TDAND−NOT =
1

2k
k→∞−−−−→ 0

2. The “OR-NOT” function truth density (Eq. 7) depends only on the number of activators m:

TDOR−NOT = 1− 1

2m
+

1

2n
∼ 1− 1

2m
(12)

For large m, it is biased towards 1:

TDOR−NOT = 1− 1

2m
m→∞−−−−→ 1

3. The “Pairs” function truth density (Eq. 8) depends on both activators and inhibitors:

TDPairs =
(2m − 1)(2k − 1)

2n
=

2n − 2m − 2k + 1

2n
= 1− 2m + 2k

2n
+

1

2n
∼ 1− 1

2k
− 1

2m
(13)

4. The threshold functions truth density (Eq. 10) depends on both m and k variables and does not
have a single fixed limit for n→∞.

We now focus on the effect of the ratio (m : k) between number of activators and inhibitors on the asymptotic
truth density values for n→∞. We consider the following three scenarios for each of the Boolean functions:

Scenario 1 A 1 : 1 activator-to-inhibitor ratio, where approximately half of the regulators are activators
and half are inhibitors, i.e. m ≈ k ≈ n/2 (consider n is even without loss of generality).

1. The “AND-NOT” function truth density is biased towards 0:

(Eq. 11)⇒ TDAND−NOT ∼
1

2n/2
n→∞−−−−→ 0

2. The “OR-NOT” function truth density is biased towards 1:

(Eq. 12)⇒ TDOR−NOT ∼ 1− 1

2n/2
n→∞−−−−→ 1

3. The “Pairs” function truth density is biased towards 1:

(Eq. 13)⇒ TDPairs ∼ 1− 1

2n/2
− 1

2n/2
n→∞−−−−→ 1

4. The threshold functions truth density is balanced, meaning its limit asymptotically approaches 1/2.

Proof. We first rewrite the truth density formula substituting m = k = n/2:

(Eq. 10)⇒ TDthres =

∑n/2
i=1

[(
n/2
i

)
×
∑min(i,n/2)
j=0

(
n/2
j

)]
2n

=

∑n/2
i=1

[(
n/2
i

)
×
∑i
j=0

(
n/2
j

)]
2n

=
N

2n

Next we simplify N , by using the notation z = n/2 and x as a meta-symbol for
(
z
x

)
. For example,(

n/2
1

)
=
(
z
1

)
= 1. N is therefore expressed as:

N = 1(0+ 1) + 2(0+ 1+ 2) + ...+ z(0+ 1...+ z)

Using the symmetry of binomial coefficients:
(
z
x

)
=
(
z

z−x
)
∼ x = z − x, we can re-write N as:

N = (z − 1)[z + (z − 1)] + (z − 2)[z + (z − 1) + (z − 2)] + ...+ 0[z + ...+ 0]

Adding the two expressions for N we have that:
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2N = [0+ 1...+ z]2 + 12 + 22 + ...+ (z − 1)2 = 22z +

z−1∑
x=1

x2

Substituting back
(
z
x

)
= x and i = x (change of index) in expression N , we have that the threshold

functions truth density is written as:

TDthres =
N

22z
=

(1/2)
[
22z +

∑z−1
i=1

(
z
i

)2]
22z

As n→∞ (and hence z →∞), the term
∑z−1
i=1

(
z
i

)2 does not grow as fast as 22z - it is smaller by a
factor of

√
πz (see answer to Problem 9.18 in [56]), and so it becomes negligible:

lim
z→∞

TDthres = lim
z→∞

(1/2)22z

22z
=

1

2

Scenario 2 A high activator-to-inhibitor ratio (n− 1 : 1), where all regulators are activators except one
inhibitor, i.e. m = n− 1, k = 1.

1. The “AND-NOT” function truth density is balanced:

(Eq. 11)⇒ TDAND−NOT ∼
1

21
=

1

2
2. The “OR-NOT” function truth density is biased towards 1:

(Eq. 12)⇒ TDOR−NOT ∼ 1− 1

2n−1
n→∞−−−−→ 1

3. The “Pairs” function truth density is balanced:

(Eq. 13)⇒ TDPairs ∼ 1− 1

21
− 1

2n−1
n→∞−−−−→ 1

2
4. The threshold functions truth density is biased towards 1:

(Eq. 10)⇒ TDthres =

∑n−1
i=1

[(
n−1
i

)
×
∑min(i,1)
j=0

(
1
j

)]
2n

=

∑n−1
i=1

[(
n−1
i

)
×
∑1
j=0

(
1
j

)]
2n

=

∑n−1
i=1

(
n−1
i

)
× 2

2n
=

2n−1 − 1

2n−1
= 1− 1

2n−1
n→∞−−−−→ 1

Scenario 3 A low activator-to-inhibitor ratio (1 : n− 1), where all regulators are inhibitors except one
activator, i.e. m = 1, k = n− 1.

1. The “AND-NOT” function truth density is biased towards 0:

(Eq. 11)⇒ TDAND−NOT ∼
1

2n−1
n→∞−−−−→ 0

2. The “OR-NOT” function truth density is balanced:

(Eq. 12)⇒ TDOR−NOT ∼ 1− 1

21
=

1

2
3. The “Pairs” function truth density is balanced:

(Eq. 13)⇒ TDPairs ∼ 1− 1

2n−1
− 1

21
n→∞−−−−→ 1

2
4. The threshold functions truth density is biased towards 0:

(Eq. 10)⇒ TDthres =

∑1
i=1

[(
1
i

)
×
∑min(i,n−1)
j=0

(
n−1
j

)]
2n

=

∑min(1,n−1)
j=0

(
n−1
j

)
2n

=

∑1
j=0

(
n−1
j

)
2n

=
1 + (n− 1)

2n
=

n

2n
n→∞−−−−−−−−−→

L’Hôpital Rule
0
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Zoology

Energy strategies in the cold: Metabolic and
thermoregulatory adaptations in small northern birds

1986 Bernt-Erik Sæther Dr. philos
Zoology

Ecological and evolutionary basis for variation in
reproductive traits of some vertebrates: A comparative
approach

1986 Torleif Holthe Dr. philos
Zoology

Evolution, systematics, nomenclature, and
zoogeography in the polychaete orders Oweniimorpha
and Terebellomorpha, with special reference to the
Arctic and Scandinavian fauna

1987 Helene Lampe Dr. scient
Zoology

The function of bird song in mate attraction and
territorial defence, and the importance of song
repertoires

1987 Olav Hogstad Dr. philos
Zoology

Winter survival strategies of the Willow tit Parus
montanus

1987 Jarle Inge Holten Dr. philos
Botany

Autecological investigations along a coast-inland
transect at Nord-Møre, Central Norway



1987 Rita Kumar Dr. scient
Botany

Somaclonal variation in plants regenerated from cell
cultures of Nicotiana sanderae and Chrysanthemum
morifolium

1987 Bjørn Åge
Tømmerås

Dr. scient
Zoology

Olfaction in bark beetle communities: Interspecific
interactions in regulation of colonization density,
predator - prey relationship and host attraction

1988 Hans Christian
Pedersen

Dr. philos
Zoology

Reproductive behaviour in willow ptarmigan with
special emphasis on territoriality and parental care

1988 Tor G. Heggberget Dr. philos
Zoology

Reproduction in Atlantic Salmon (Salmo salar):
Aspects of spawning, incubation, early life history and
population structure

1988 Marianne V. Nielsen Dr. scient
Zoology

The effects of selected environmental factors on carbon
allocation/growth of larval and juvenile mussels
(Mytilus edulis)

1988 Ole Kristian Berg Dr. scient
Zoology

The formation of landlocked Atlantic salmon (Salmo
salar L.)

1989 John W. Jensen Dr. philos
Zoology

Crustacean plankton and fish during the first decade of
the manmade Nesjø reservoir, with special emphasis on
the effects of gill nets and salmonid growth

1989 Helga J. Vivås Dr. scient
Zoology

Theoretical models of activity pattern and optimal
foraging: Predictions for the Moose Alces alces

1989 Reidar Andersen Dr. scient
Zoology

Interactions between a generalist herbivore, the moose
Alces alces, and its winter food resources: a study of
behavioural variation

1989 Kurt Ingar Draget Dr. scient
Botany

Alginate gel media for plant tissue culture

1990 Bengt Finstad Dr. scient
Zoology

Osmotic and ionic regulation in Atlantic salmon,
rainbow trout and Arctic charr: Effect of temperature,
salinity and season

1990 Hege Johannesen Dr. scient
Zoology

Respiration and temperature regulation in birds with
special emphasis on the oxygen extraction by the lung

1990 Åse Krøkje Dr. scient
Botany

The mutagenic load from air pollution at two
work-places with PAH-exposure measured with Ames
Salmonella/microsome test

1990 Arne Johan Jensen Dr. philos
Zoology

Effects of water temperature on early life history,
juvenile growth and prespawning migrations of
Atlantic salmon (Salmo salar) and brown trout (Salmo
trutta): A summary of studies in Norwegian streams

1990 Tor Jørgen Almaas Dr. scient
Zoology

Pheromone reception in moths: Response
characteristics of olfactory receptor neurons to intra-
and interspecific chemical cues

1990 Magne Husby Dr. scient
Zoology

Breeding strategies in birds: Experiments with the
Magpie Pica pica

1991 Tor Kvam Dr. scient
Zoology

Population biology of the European lynx (Lynx lynx) in
Norway

1991 Jan Henning L'Abêe
Lund

Dr. philos
Zoology

Reproductive biology in freshwater fish, brown trout
Salmo trutta and roach Rutilus rutilus in particular

1991 Asbjørn Moen Dr. philos
Botany

The plant cover of the boreal uplands of Central
Norway. I. Vegetation ecology of Sølendet nature
reserve; haymaking fens and birch woodlands

1991 Else Marie Løbersli Dr. scient
Botany

Soil acidification and metal uptake in plants

1991 Trond Nordtug Dr. scient
Zoology

Reflectometric studies of photomechanical adaptation
in superposition eyes of arthropods

1991 Thyra Solem Dr. scient
Botany

Age, origin and development of blanket mires in
Central Norway



1991 Odd Terje Sandlund Dr. philos
Zoology

The dynamics of habitat use in the salmonid genera
Coregonus and Salvelinus: Ontogenic niche shifts and
polymorphism

1991 Nina Jonsson Dr. philos
Zoology

Aspects of migration and spawning in salmonids

1991 Atle Bones Dr. scient
Botany

Compartmentation and molecular properties of
thioglucoside glucohydrolase (myrosinase)

1992 Torgrim Breiehagen Dr. scient
Zoology

Mating behaviour and evolutionary aspects of the
breeding system of two bird species: the Temminck's
stint and the Pied flycatcher

1992 Anne Kjersti Bakken Dr. scient
Botany

The influence of photoperiod on nitrate assimilation
and nitrogen status in timothy (Phleum pratense L.)

1992 Tycho Anker-Nilssen Dr. scient
Zoology

Food supply as a determinant of reproduction and
population development in Norwegian Puffins
Fratercula arctica

1992 Bjørn Munro Jenssen Dr. philos
Zoology

Thermoregulation in aquatic birds in air and water:
With special emphasis on the effects of crude oil,
chemically treated oil and cleaning on the thermal
balance of ducks

1992 Arne Vollan Aarset Dr. philos
Zoology

The ecophysiology of under-ice fauna: Osmotic
regulation, low temperature tolerance and metabolism
in polar crustaceans.

1993 Geir Slupphaug Dr. scient
Botany

Regulation and expression of uracil-DNA glycosylase
and O6-methylguanine-DNA methyltransferase in
mammalian cells

1993 Tor Fredrik Næsje Dr. scient
Zoology

Habitat shifts in coregonids.

1993 Yngvar Asbjørn
Olsen

Dr. scient
Zoology

Cortisol dynamics in Atlantic salmon, Salmo salar L.:
Basal and stressor-induced variations in plasma levels
and some secondary effects.

1993 Bård Pedersen Dr. scient
Botany

Theoretical studies of life history evolution in modular
and clonal organisms

1993 Ole Petter Thangstad Dr. scient
Botany

Molecular studies of myrosinase in Brassicaceae

1993 Thrine L. M.
Heggberget

Dr. scient
Zoology

Reproductive strategy and feeding ecology of the
Eurasian otter Lutra lutra.

1993 Kjetil Bevanger Dr. scient
Zoology

Avian interactions with utility structures, a biological
approach.

1993 Kåre Haugan Dr. scient
Botany

Mutations in the replication control gene trfA of the
broad host-range plasmid RK2

1994 Peder Fiske Dr. scient
Zoology

Sexual selection in the lekking great snipe (Gallinago
media): Male mating success and female behaviour at
the lek

1994 Kjell Inge Reitan Dr. scient
Botany

Nutritional effects of algae in first-feeding of marine
fish larvae

1994 Nils Røv Dr. scient
Zoology

Breeding distribution, population status and regulation
of breeding numbers in the northeast-Atlantic Great
Cormorant Phalacrocorax carbo carbo

1994 Annette-Susanne
Hoepfner

Dr. scient
Botany

Tissue culture techniques in propagation and breeding
of Red Raspberry (Rubus idaeus L.)

1994 Inga Elise Bruteig Dr. scient
Botany

Distribution, ecology and biomonitoring studies of
epiphytic lichens on conifers

1994 Geir Johnsen Dr. scient
Botany

Light harvesting and utilization in marine
phytoplankton: Species-specific and photoadaptive
responses



1994 Morten Bakken Dr. scient
Zoology

Infanticidal behaviour and reproductive performance in
relation to competition capacity among farmed silver
fox vixens, Vulpes vulpes

1994 Arne Moksnes Dr. philos
Zoology

Host adaptations towards brood parasitism by the
Cockoo

1994 Solveig Bakken Dr. scient
Botany

Growth and nitrogen status in the moss Dicranum
majus Sm. as influenced by nitrogen supply

1994 Torbjørn Forseth Dr. scient
Zoology

Bioenergetics in ecological and life history studies of
fishes.

1995 Olav Vadstein Dr. philos
Botany

The role of heterotrophic planktonic bacteria in the
cycling of phosphorus in lakes: Phosphorus
requirement, competitive ability and food web
interactions

1995 Hanne Christensen Dr. scient
Zoology

Determinants of Otter Lutra lutra distribution in
Norway: Effects of harvest, polychlorinated biphenyls
(PCBs), human population density and competition
with mink Mustela vision

1995 Svein Håkon
Lorentsen

Dr. scient
Zoology

Reproductive effort in the Antarctic Petrel Thalassoica
antarctica; the effect of parental body size and
condition

1995 Chris Jørgen Jensen Dr. scient
Zoology

The surface electromyographic (EMG) amplitude as an
estimate of upper trapezius muscle activity

1995 Martha Kold
Bakkevig

Dr. scient
Zoology

The impact of clothing textiles and construction in a
clothing system on thermoregulatory responses, sweat
accumulation and heat transport

1995 Vidar Moen Dr. scient
Zoology

Distribution patterns and adaptations to light in newly
introduced populations of Mysis relicta and constraints
on Cladoceran and Char populations

1995 Hans Haavardsholm
Blom

Dr. philos
Botany

A revision of the Schistidium apocarpum complex in
Norway and Sweden

1996 Jorun Skjærmo Dr. scient
Botany

Microbial ecology of early stages of cultivated marine
fish; impact fish-bacterial interactions on growth and
survival of larvae

1996 Ola Ugedal Dr. scient
Zoology

Radiocesium turnover in freshwater fishes

1996 Ingibjørg Einarsdottir Dr. scient
Zoology

Production of Atlantic salmon (Salmo salar) and Arctic
charr (Salvelinus alpinus): A study of some
physiological and immunological responses to rearing
routines

1996 Christina M. S.
Pereira

Dr. scient
Zoology

Glucose metabolism in salmonids: Dietary effects and
hormonal regulation

1996 Jan Fredrik Børseth Dr. scient
Zoology

The sodium energy gradients in muscle cells of Mytilus
edulis and the effects of organic xenobiotics

1996 Gunnar Henriksen Dr. scient
Zoology

Status of Grey seal Halichoerus grypus and Harbour
seal Phoca vitulina in the Barents sea region

1997 Gunvor Øie Dr. scient
Botany

Evaluation of rotifer Brachionus plicatilis quality in
early first feeding of turbot Scophtalmus maximus L.
larvae

1997 Håkon Holien Dr. scient
Botany

Studies of lichens in spruce forest of Central Norway.
Diversity, old growth species and the relationship to
site and stand parameters

1997 Ole Reitan Dr. scient
Zoology

Responses of birds to habitat disturbance due to
damming

1997 Jon Arne Grøttum Dr. scient
Zoology

Physiological effects of reduced water quality on fish
in aquaculture



1997 Per Gustav Thingstad Dr. scient
Zoology

Birds as indicators for studying natural and
human-induced variations in the environment, with
special emphasis on the suitability of the Pied
Flycatcher

1997 Torgeir Nygård Dr. scient
Zoology

Temporal and spatial trends of pollutants in birds in
Norway: Birds of prey and Willow Grouse used as

1997 Signe Nybø Dr. scient
Zoology

Impacts of long-range transported air pollution on birds
with particular reference to the dipper Cinclus cinclus
in southern Norway

1997 Atle Wibe Dr. scient
Zoology

Identification of conifer volatiles detected by receptor
neurons in the pine weevil (Hylobius abietis), analysed
by gas chromatography linked to electrophysiology and
to mass spectrometry

1997 Rolv Lundheim Dr. scient
Zoology

Adaptive and incidental biological ice nucleators

1997 Arild Magne Landa Dr. scient
Zoology

Wolverines in Scandinavia: ecology, sheep depredation
and conservation

1997 Kåre Magne Nielsen Dr. scient
Botany

An evolution of possible horizontal gene transfer from
plants to sail bacteria by studies of natural
transformation in Acinetobacter calcoacetius

1997 Jarle Tufto Dr. scient
Zoology

Gene flow and genetic drift in geographically
structured populations: Ecological, population genetic,
and statistical models

1997 Trygve Hesthagen Dr. philos
Zoology

Population responses of Arctic charr (Salvelinus
alpinus (L.)) and brown trout (Salmo trutta L.) to
acidification in Norwegian inland waters

1997 Trygve Sigholt Dr. philos
Zoology

Control of  Parr-smolt transformation and seawater
tolerance in farmed Atlantic Salmon (Salmo salar)
Effects of photoperiod, temperature, gradual seawater
acclimation, NaCl and betaine in the diet

1997 Jan Østnes Dr. scient
Zoology

Cold sensation in adult and neonate birds

1998 Seethaledsumy
Visvalingam

Dr. scient
Botany

Influence of environmental factors on myrosinases and
myrosinase-binding proteins

1998 Thor Harald Ringsby Dr. scient
Zoology

Variation in space and time: The biology of a House
sparrow metapopulation

1998 Erling Johan Solberg Dr. scient
Zoology

Variation in population dynamics and life history in a
Norwegian moose (Alces alces) population:
consequences of harvesting in a variable environment

1998 Sigurd Mjøen
Saastad

Dr. scient
Botany

Species delimitation and phylogenetic relationships
between the Sphagnum recurvum complex
(Bryophyta): genetic variation and phenotypic
plasticity

1998 Bjarte Mortensen Dr. scient
Botany

Metabolism of volatile organic chemicals (VOCs) in a
head liver S9 vial  equilibration system in vitro

1998 Gunnar Austrheim Dr. scient
Botany

Plant biodiversity and land use in subalpine grasslands.
– A conservation biological approach

1998 Bente Gunnveig Berg Dr. scient
Zoology

Encoding of pheromone information in two related
moth species

1999 Kristian Overskaug Dr. scient
Zoology

Behavioural and morphological characteristics in
Northern Tawny Owls Strix aluco: An intra- and
interspecific comparative approach

1999 Hans Kristen
Stenøien

Dr. scient
Botany

Genetic studies of evolutionary processes in various
populations of nonvascular plants (mosses, liverworts
and hornworts)



1999 Trond Arnesen Dr. scient
Botany

Vegetation dynamics following trampling and burning
in the outlying haylands at Sølendet, Central Norway

1999 Ingvar Stenberg Dr. scient
Zoology

Habitat selection, reproduction and survival in the
White-backed Woodpecker Dendrocopos leucotos

1999 Stein Olle Johansen Dr. scient
Botany

A study of driftwood dispersal to the Nordic Seas by
dendrochronology and wood anatomical analysis

1999 Trina Falck
Galloway

Dr. scient
Zoology

Muscle development and growth in early life stages of
the Atlantic cod (Gadus morhua L.) and Halibut
(Hippoglossus hippoglossus L.)

1999 Marianne Giæver Dr. scient
Zoology

Population genetic studies in three gadoid species: blue
whiting (Micromisistius poutassou), haddock
(Melanogrammus aeglefinus) and cod (Gadus morhua)
in the North-East Atlantic

1999 Hans Martin Hanslin Dr. scient
Botany

The impact of environmental conditions of density
dependent performance in the boreal forest bryophytes
Dicranum majus, Hylocomium splendens, Plagiochila
asplenigides, Ptilium crista-castrensis and
Rhytidiadelphus lokeus

1999 Ingrid Bysveen
Mjølnerød

Dr. scient
Zoology

Aspects of population genetics, behaviour and
performance of wild and farmed Atlantic salmon
(Salmo salar) revealed by molecular genetic techniques

1999 Else Berit Skagen Dr. scient
Botany

The early regeneration process in protoplasts from
Brassica napus hypocotyls cultivated under various
g-forces

1999 Stein-Are Sæther Dr. philos
Zoology

Mate choice, competition for mates, and conflicts of
interest in the Lekking Great Snipe

1999 Katrine Wangen
Rustad

Dr. scient
Zoology

Modulation of glutamatergic neurotransmission related
to cognitive dysfunctions and Alzheimer’s disease

1999 Per Terje Smiseth Dr. scient
Zoology

Social evolution in monogamous families:

1999 Gunnbjørn Bremset Dr. scient
Zoology

Young Atlantic salmon (Salmo salar L.) and Brown
trout (Salmo trutta L.) inhabiting the deep pool habitat,
with special reference to their habitat use, habitat
preferences and competitive interactions

1999 Frode Ødegaard Dr. scient
Zoology

Host specificity as a parameter in estimates of
arthropod species richness

1999 Sonja Andersen Dr. scient
Zoology

Expressional and functional analyses of human,
secretory phospholipase A2

2000 Ingrid Salvesen Dr. scient
Botany

Microbial ecology in early stages of marine fish:
Development and evaluation of methods for microbial
management in intensive larviculture

2000 Ingar Jostein Øien Dr. scient
Zoology

The Cuckoo (Cuculus canorus) and its host: adaptions
and counteradaptions in a coevolutionary arms race

2000 Pavlos Makridis Dr. scient
Botany

Methods for the microbial control of live food used for
the rearing of marine fish larvae

2000 Sigbjørn Stokke Dr. scient
Zoology

Sexual segregation in the African elephant (Loxodonta
africana)

2000 Odd A. Gulseth Dr. philos
Zoology

Seawater tolerance, migratory behaviour and growth of
Charr, (Salvelinus alpinus), with emphasis on the high
Arctic Dieset charr on Spitsbergen, Svalbard

2000 Pål A. Olsvik Dr. scient
Zoology

Biochemical impacts of Cd, Cu and Zn on brown trout
(Salmo trutta) in two mining-contaminated rivers in
Central Norway

2000 Sigurd Einum Dr. scient
Zoology

Maternal effects in fish: Implications for the evolution
of breeding time and egg size



2001 Jan Ove Evjemo Dr. scient
Zoology

Production and nutritional adaptation of the brine
shrimp Artemia sp. as live food organism for larvae of
marine cold water fish species

2001 Olga Hilmo Dr. scient
Botany

Lichen response to environmental changes in the
managed boreal forest systems

2001 Ingebrigt Uglem Dr. scient
Zoology

Male dimorphism and reproductive biology in
corkwing wrasse (Symphodus melops L.)

2001 Bård Gunnar Stokke Dr. scient
Zoology

Coevolutionary adaptations in avian brood parasites
and their hosts

2002 Ronny Aanes Dr. scient
Zoology

Spatio-temporal dynamics in Svalbard reindeer
(Rangifer tarandus platyrhynchus)

2002 Mariann Sandsund Dr. scient
Zoology

Exercise- and cold-induced asthma. Respiratory and
thermoregulatory responses

2002 Dag-Inge Øien Dr. scient
Botany

Dynamics of plant communities and populations in
boreal vegetation influenced by scything at Sølendet,
Central Norway

2002 Frank Rosell Dr. scient
Zoology

The function of scent marking in beaver (Castor fiber)

2002 Janne Østvang Dr. scient
Botany

The Role and Regulation of Phospholipase A2 in
Monocytes During Atherosclerosis Development

2002 Terje Thun Dr. philos
Biology

Dendrochronological constructions of Norwegian
conifer chronologies providing dating of historical
material

2002 Birgit Hafjeld
Borgen

Dr. scient
Biology

Functional analysis of plant idioblasts (Myrosin cells)
and their role in defense, development and growth

2002 Bård Øyvind Solberg Dr. scient
Biology

Effects of climatic change on the growth of dominating
tree species along major environmental gradients

2002 Per Winge Dr. scient
Biology

The evolution of small GTP binding proteins in cellular
organisms. Studies of RAC GTPases in Arabidopsis
thaliana and the Ral GTPase from Drosophila
melanogaster

2002 Henrik Jensen Dr. scient
Biology

Causes and consequences of individual variation in
fitness-related traits in house sparrows

2003 Jens Rohloff Dr. philos
Biology

Cultivation of herbs and medicinal plants in Norway –
Essential oil production and quality control

2003 Åsa Maria O.
Espmark Wibe

Dr. scient
Biology

Behavioural effects of environmental pollution in
threespine stickleback Gasterosteus aculeatur L.

2003 Dagmar Hagen Dr. scient
Biology

Assisted recovery of disturbed arctic and alpine
vegetation – an integrated approach

2003 Bjørn Dahle Dr. scient
Biology

Reproductive strategies in Scandinavian brown bears

2003 Cyril Lebogang
Taolo

Dr. scient
Biology

Population ecology, seasonal movement and habitat use
of the African buffalo (Syncerus caffer) in Chobe
National Park, Botswana

2003 Marit Stranden Dr. scient
Biology

Olfactory receptor neurones specified for the same
odorants in three related Heliothine species
(Helicoverpa armigera, Helicoverpa assulta and
Heliothis virescens)

2003 Kristian Hassel Dr. scient
Biology

Life history characteristics and genetic variation in an
expanding species, Pogonatum dentatum

2003 David Alexander Rae Dr. scient
Biology

Plant- and invertebrate-community responses to species
interaction and microclimatic gradients in alpine and
Arctic environments

2003 Åsa A Borg Dr. scient
Biology

Sex roles and reproductive behaviour in gobies and
guppies: a female perspective



2003 Eldar Åsgard
Bendiksen

Dr. scient
Biology

Environmental effects on lipid nutrition of farmed
Atlantic salmon (Salmo salar L.) parr and smolt

2004 Torkild Bakken Dr. scient
Biology

A revision of Nereidinae (Polychaeta, Nereididae)

2004 Ingar Pareliussen Dr. scient
Biology

Natural and Experimental Tree Establishment in a
Fragmented Forest, Ambohitantely Forest Reserve,
Madagascar

2004 Tore Brembu Dr. scient
Biology

Genetic, molecular and functional studies of RAC
GTPases and the WAVE-like regulatory protein
complex in Arabidopsis thaliana

2004 Liv S. Nilsen Dr. scient
Biology

Coastal heath vegetation on central Norway; recent
past, present state and future possibilities

2004 Hanne T. Skiri Dr. scient
Biology

Olfactory coding and olfactory learning of plant odours
in heliothine moths. An anatomical, physiological and
behavioural study of three related species (Heliothis
virescens, Helicoverpa armigera and Helicoverpa
assulta)

2004 Lene Østby Dr. scient
Biology

Cytochrome P4501A (CYP1A) induction and DNA
adducts as biomarkers for organic pollution in the
natural environment

2004 Emmanuel J. Gerreta Dr. philos
Biology

The Importance of Water Quality and Quantity in the
Tropical Ecosystems, Tanzania

2004 Linda Dalen Dr. scient
Biology

Dynamics of Mountain Birch Treelines in the Scandes
Mountain Chain, and Effects of Climate Warming

2004 Lisbeth Mehli Dr. scient
Biology

Polygalacturonase-inhibiting protein (PGIP) in
cultivated strawberry (Fragaria x ananassa):
characterisation and induction of the gene following
fruit infection by Botrytis cinerea

2004 Børge Moe Dr. scient
Biology

Energy-Allocation in Avian Nestlings Facing
Short-Term Food Shortage

2005 Matilde Skogen
Chauton

Dr. scient
Biology

Metabolic profiling and species discrimination from
High-Resolution Magic Angle Spinning NMR analysis
of whole-cell samples

2005 Sten Karlsson Dr. scient
Biology

Dynamics of Genetic Polymorphisms

2005 Terje Bongard Dr. scient
Biology

Life History strategies, mate choice, and parental
investment among Norwegians over a 300-year period

2005 Tonette Røstelien PhD Biology Functional characterisation of olfactory receptor
neurone types in heliothine moths

2005 Erlend Kristiansen Dr. scient
Biology

Studies on antifreeze proteins

2005 Eugen G. Sørmo Dr. scient
Biology

Organochlorine pollutants in grey seal (Halichoerus
grypus) pups and their impact on plasma thyroid
hormone and vitamin A concentrations

2005 Christian Westad Dr. scient
Biology

Motor control of the upper trapezius

2005 Lasse Mork Olsen PhD Biology Interactions between marine osmo- and phagotrophs in
different physicochemical environments

2005 Åslaug Viken PhD Biology Implications of mate choice for the management of
small populations

2005 Ariaya Hymete Sahle
Dingle

PhD Biology Investigation of the biological activities and chemical
constituents of selected Echinops spp. growing in
Ethiopia

2005 Anders Gravbrøt
Finstad

PhD Biology Salmonid fishes in a changing climate: The winter
challenge



2005 Shimane Washington
Makabu

PhD Biology Interactions between woody plants, elephants and other
browsers in the Chobe Riverfront, Botswana

2005 Kjartan Østbye Dr. scient
Biology

The European whitefish Coregonus lavaretus (L.)
species complex: historical contingency and adaptive
radiation

2006 Kari Mette Murvoll PhD Biology Levels and effects of persistent organic pollutants
(POPs) in seabirds, Retinoids and α-tocopherol –
potential biomarkers of POPs in birds?

2006 Ivar Herfindal Dr. scient
Biology

Life history consequences of environmental variation
along ecological gradients in northern ungulates

2006 Nils Egil Tokle PhD Biology Are the ubiquitous marine copepods limited by food or
predation? Experimental and field-based studies with
main focus on Calanus finmarchicus

2006 Jan Ove Gjershaug Dr. philos
Biology

Taxonomy and conservation status of some booted
eagles in south-east Asia

2006 Jon Kristian Skei Dr. scient
Biology

Conservation biology and acidification problems in the
breeding habitat of amphibians in Norway

2006 Johanna Järnegren PhD Biology Acesta oophaga and Acesta excavata – a study of
hidden biodiversity

2006 Bjørn Henrik Hansen PhD Biology Metal-mediated oxidative stress responses in brown
trout (Salmo trutta) from mining contaminated rivers in
Central Norway

2006 Vidar Grøtan PhD Biology Temporal and spatial effects of climate fluctuations on
population dynamics of vertebrates

2006 Jafari R Kideghesho PhD Biology Wildlife conservation and local land use conflicts in
Western Serengeti Corridor, Tanzania

2006 Anna Maria Billing PhD Biology Reproductive decisions in the sex role reversed pipefish
Syngnathus typhle: when and how to invest in
reproduction

2006 Henrik Pärn PhD Biology Female ornaments and reproductive biology in the
bluethroat

2006 Anders J. Fjellheim PhD Biology Selection and administration of probiotic bacteria to
marine fish larvae

2006 P. Andreas Svensson PhD Biology Female coloration, egg carotenoids and reproductive
success: gobies as a model system

2007 Sindre A. Pedersen PhD Biology Metal binding proteins and antifreeze proteins in the
beetle Tenebrio molitor - a study on possible
competition for the semi-essential amino acid cysteine

2007 Kasper Hancke PhD Biology Photosynthetic responses as a function of light and
temperature: Field and laboratory studies on marine
microalgae

2007 Tomas Holmern PhD Biology Bushmeat hunting in the western Serengeti:
Implications for community-based conservation

2007 Kari Jørgensen PhD Biology Functional tracing of gustatory receptor neurons in the
CNS and chemosensory learning in the moth Heliothis
virescens

2007 Stig Ulland PhD Biology Functional Characterisation of Olfactory Receptor
Neurons in the Cabbage Moth, (Mamestra brassicae
L.) (Lepidoptera, Noctuidae). Gas Chromatography
Linked to Single Cell Recordings and Mass
Spectrometry

2007 Snorre Henriksen PhD Biology Spatial and temporal variation in herbivore resources at
northern latitudes

2007 Roelof Frans May PhD Biology Spatial Ecology of Wolverines in Scandinavia



2007 Vedasto Gabriel
Ndibalema

PhD Biology Demographic variation, distribution and habitat use
between wildebeest sub-populations in the Serengeti
National Park, Tanzania

2007 Julius William
Nyahongo

PhD Biology Depredation of Livestock by wild Carnivores and
Illegal Utilization of Natural Resources by Humans in
the Western Serengeti, Tanzania

2007 Shombe Ntaraluka
Hassan

PhD Biology Effects of fire on large herbivores and their forage
resources in Serengeti, Tanzania

2007 Per-Arvid Wold PhD Biology Functional development and response to dietary
treatment in larval Atlantic cod (Gadus morhua L.)
Focus on formulated diets and early weaning

2007 Anne Skjetne
Mortensen

PhD Biology Toxicogenomics of Aryl Hydrocarbon- and Estrogen
Receptor Interactions in Fish: Mechanisms and
Profiling of Gene Expression Patterns in Chemical
Mixture Exposure Scenarios

2008 Brage Bremset
Hansen

PhD Biology The Svalbard reindeer (Rangifer tarandus
platyrhynchus) and its food base: plant-herbivore
interactions in a high-arctic ecosystem

2008 Jiska van Dijk PhD Biology Wolverine foraging strategies in a multiple-use
landscape

2008 Flora John Magige PhD Biology The ecology and behaviour of the Masai Ostrich
(Struthio camelus massaicus) in the Serengeti
Ecosystem, Tanzania

2008 Bernt Rønning PhD Biology Sources of inter- and intra-individual variation in basal
metabolic rate in the zebra finch, Taeniopygia guttata

2008 Sølvi Wehn PhD Biology Biodiversity dynamics in semi-natural mountain
landscapes - A study of consequences of changed
agricultural practices in Eastern Jotunheimen

2008 Trond Moxness
Kortner

PhD Biology The Role of Androgens on previtellogenic oocyte
growth in Atlantic cod (Gadus morhua): Identification
and patterns of differentially expressed genes in
relation to Stereological Evaluations

2008 Katarina Mariann
Jørgensen

Dr. scient
Biology

The role of platelet activating factor in activation of
growth arrested keratinocytes and re-epithelialisation

2008 Tommy Jørstad PhD Biology Statistical Modelling of Gene Expression Data

2008 Anna Kusnierczyk PhD Biology Arabidopsis thaliana Responses to Aphid Infestation

2008 Jussi Evertsen PhD Biology Herbivore sacoglossans with photosynthetic
chloroplasts

2008 John Eilif
Hermansen

PhD Biology Mediating ecological interests between locals and
globals by means of indicators. A study attributed to
the asymmetry between stakeholders of tropical forest
at Mt. Kilimanjaro, Tanzania

2008 Ragnhild Lyngved PhD Biology Somatic embryogenesis in Cyclamen persicum.
Biological investigations and educational aspects of
cloning

2008 Line Elisabeth
Sundt-Hansen

PhD Biology Cost of rapid growth in salmonid fishes

2008 Line Johansen PhD Biology Exploring factors underlying fluctuations in white
clover populations – clonal growth, population
structure and spatial distribution

2009 Astrid Jullumstrø
Feuerherm

PhD Biology Elucidation of molecular mechanisms for
pro-inflammatory phospholipase A2 in chronic disease

2009 Pål Kvello PhD Biology Neurons forming the network involved in gustatory
coding and learning in the moth Heliothis virescens:



Physiological and morphological characterisation, and
integration into a standard brain atlas

2009 Trygve Devold
Kjellsen

PhD Biology Extreme Frost Tolerance in Boreal Conifers

2009 Johan Reinert Vikan PhD Biology Coevolutionary interactions between common cuckoos
Cuculus canorus and Fringilla finches

2009 Zsolt Volent PhD Biology Remote sensing of marine environment: Applied
surveillance with focus on optical properties of
phytoplankton, coloured organic matter and suspended
matter

2009 Lester Rocha PhD Biology Functional responses of perennial grasses to simulated
grazing and resource availability

2009 Dennis Ikanda PhD Biology Dimensions of a Human-lion conflict: Ecology of
human predation and persecution of African lions
(Panthera leo) in Tanzania

2010 Huy Quang Nguyen PhD Biology Egg characteristics and development of larval digestive
function of cobia (Rachycentron canadum) in response
to dietary treatments - Focus on formulated diets

2010 Eli Kvingedal PhD Biology Intraspecific competition in stream salmonids: the
impact of environment and phenotype

2010 Sverre Lundemo PhD Biology Molecular studies of genetic structuring and
demography in Arabidopsis from Northern Europe

2010 Iddi Mihijai Mfunda PhD Biology Wildlife Conservation and People’s livelihoods:
Lessons Learnt and Considerations for Improvements.
The Case of Serengeti Ecosystem, Tanzania

2010 Anton Tinchov
Antonov

PhD Biology Why do cuckoos lay strong-shelled eggs? Tests of the
puncture resistance hypothesis

2010 Anders Lyngstad PhD Biology Population Ecology of Eriophorum latifolium, a Clonal
Species in Rich Fen Vegetation

2010 Hilde Færevik PhD Biology Impact of protective clothing on thermal and cognitive
responses

2010 Ingerid Brænne Arbo PhD Medical
technology

Nutritional lifestyle changes – effects of dietary
carbohydrate restriction in healthy obese and
overweight humans

2010 Yngvild Vindenes PhD Biology Stochastic modeling of finite populations with
individual heterogeneity in vital parameters

2010 Hans-Richard
Brattbakk

PhD Medical
technology

The effect of macronutrient composition, insulin
stimulation, and genetic variation on leukocyte gene
expression and possible health benefits

2011 Geir Hysing Bolstad PhD Biology Evolution of Signals: Genetic Architecture, Natural
Selection and Adaptive Accuracy

2011 Karen de Jong PhD Biology Operational sex ratio and reproductive behaviour in the
two-spotted goby (Gobiusculus flavescens)

2011 Ann-Iren Kittang PhD Biology Arabidopsis thaliana L. adaptation mechanisms to
microgravity through the EMCS MULTIGEN-2
experiment on the ISS: The science of space
experiment integration and adaptation to simulated
microgravity

2011 Aline Magdalena Lee PhD Biology Stochastic modeling of mating systems and their effect
on population dynamics and genetics

2011 Christopher
Gravningen Sørmo

PhD Biology Rho GTPases in Plants: Structural analysis of ROP
GTPases; genetic and functional studies of MIRO
GTPases in Arabidopsis thaliana

2011 Grethe Robertsen PhD Biology Relative performance of salmonid phenotypes across
environments and competitive intensities



2011 Line-Kristin Larsen PhD Biology Life-history trait dynamics in experimental populations
of guppy (Poecilia reticulata): the role of breeding
regime and captive environment

2011 Maxim A. K.
Teichert

PhD Biology Regulation in Atlantic salmon (Salmo salar): The
interaction between habitat and density

2011 Torunn Beate
Hancke

PhD Biology Use of Pulse Amplitude Modulated (PAM)
Fluorescence and Bio-optics for Assessing Microalgal
Photosynthesis and Physiology

2011 Sajeda Begum PhD Biology Brood Parasitism in Asian Cuckoos: Different Aspects
of Interactions between Cuckoos and their Hosts in
Bangladesh

2011 Kari J. K. Attramadal PhD Biology Water treatment as an approach to increase microbial
control in the culture of cold water marine larvae

2011 Camilla Kalvatn
Egset

PhD Biology The Evolvability of Static Allometry: A Case Study

2011 AHM Raihan Sarker PhD Biology Conflict over the conservation of the Asian elephant
(Elephas maximus) in Bangladesh

2011 Gro Dehli Villanger PhD Biology Effects of complex organohalogen contaminant
mixtures on thyroid hormone homeostasis in selected
arctic marine mammals

2011 Kari Bjørneraas PhD Biology Spatiotemporal variation in resource utilisation by a
large herbivore, the moose

2011 John Odden PhD Biology The ecology of a conflict: Eurasian lynx depredation on
domestic sheep

2011 Simen Pedersen PhD Biology Effects of native and introduced cervids on small
mammals and birds

2011 Mohsen
Falahati-Anbaran

PhD Biology Evolutionary consequences of seed banks and seed
dispersal in Arabidopsis

2012 Jakob Hønborg
Hansen

PhD Biology Shift work in the offshore vessel fleet: circadian
rhythms and cognitive performance

2012 Elin Noreen PhD Biology Consequences of diet quality and age on life-history
traits in a small passerine bird

2012 Irja Ida Ratikainen PhD Biology Foraging in a variable world: adaptations to
stochasticity

2012 Aleksander Handå PhD Biology Cultivation of mussels (Mytilus edulis): Feed
requirements, storage and integration with salmon
(Salmo salar) farming

2012 Morten Kraabøl PhD Biology Reproductive and migratory challenges inflicted on
migrant brown trout (Salmo trutta L.) in a heavily
modified river

2012 Jisca Huisman PhD Biology Gene flow and natural selection in Atlantic salmon

2012 Maria Bergvik PhD Biology Lipid and astaxanthin contents and biochemical
post-harvest stability in Calanus finmarchicus

2012 Bjarte Bye Løfaldli PhD Biology Functional and morphological characterization of
central olfactory neurons in the model insect Heliothis
virescens.

2012 Karen Marie
Hammer

PhD Biology Acid-base regulation and metabolite responses in
shallow- and deep-living marine invertebrates during
environmental hypercapnia

2012 Øystein Nordrum
Wiggen

PhD Biology Optimal performance in the cold

2012 Robert Dominikus
Fyumagwa

Dr. Philos
Biology

Anthropogenic and natural influence on disease
prevalence at the human –livestock-wildlife interface in
the Serengeti ecosystem, Tanzania



2012 Jenny Bytingsvik PhD Biology Organohalogenated contaminants (OHCs) in polar bear
mother-cub pairs from Svalbard, Norway. Maternal
transfer, exposure assessment and thyroid hormone
disruptive effects in polar bear cubs

2012 Christer Moe
Rolandsen

PhD Biology The ecological significance of space use and movement
patterns of moose in a variable environment

2012 Erlend Kjeldsberg
Hovland

PhD Biology Bio-optics and Ecology in Emiliania huxleyi Blooms:
Field and Remote Sensing Studies in Norwegian
Waters

2012 Lise Cats Myhre PhD Biology Effects of the social and physical environment on
mating behaviour in a marine fish

2012 Tonje Aronsen PhD Biology Demographic, environmental and evolutionary aspects
of sexual selection

2012 Bin Liu PhD Biology Molecular genetic investigation of cell separation and
cell death regulation in Arabidopsis thaliana

2013 Jørgen Rosvold PhD Biology Ungulates in a dynamic and increasingly human
dominated landscape – A millennia-scale perspective

2013 Pankaj Barah PhD Biology Integrated Systems Approaches to Study Plant Stress
Responses

2013 Marit Linnerud PhD Biology Patterns in spatial and temporal variation in population
abundances of vertebrates

2013 Xinxin Wang PhD Biology Integrated multi-trophic aquaculture driven by nutrient
wastes released from Atlantic salmon (Salmo salar)
farming

2013 Ingrid Ertshus
Mathisen

PhD Biology Structure, dynamics, and regeneration capacity at the
sub-arctic forest-tundra ecotone of northern Norway
and Kola Peninsula, NW Russia

2013 Anders Foldvik PhD Biology Spatial distributions and productivity in salmonid
populations

2013 Anna Marie Holand PhD Biology Statistical methods for estimating intra- and
inter-population variation in genetic diversity

2013 Anna Solvang Båtnes PhD Biology Light in the dark – the role of irradiance in the high
Arctic marine ecosystem during polar night

2013 Sebastian Wacker PhD Biology The dynamics of sexual selection: effects of OSR,
density and resource competition in a fish

2013 Cecilie Miljeteig PhD Biology Phototaxis in Calanus finmarchicus – light sensitivity
and the influence of energy reserves and oil exposure

2013 Ane Kjersti Vie PhD Biology Molecular and functional characterisation of the IDA
family of signalling peptides in Arabidopsis thaliana

2013 Marianne Nymark PhD Biology Light responses in the marine diatom Phaeodactylum
tricornutum

2014 Jannik Schultner PhD Biology Resource Allocation under Stress - Mechanisms and
Strategies in a Long-Lived Bird

2014 Craig Ryan Jackson PhD Biology Factors influencing African wild dog (Lycaon pictus)
habitat selection and ranging behaviour: conservation
and management implications

2014 Aravind Venkatesan PhD Biology Application of Semantic Web Technology to establish
knowledge management  and discovery in the Life
Sciences

2014 Kristin Collier Valle PhD Biology Photoacclimation mechanisms and light responses in
marine micro- and macroalgae

2014 Michael Puffer PhD Biology Effects of rapidly fluctuating water levels on juvenile
Atlantic salmon (Salmo salar L.)

2014 Gundula S. Bartzke PhD Biology Effects of power lines on moose (Alces alces) habitat
selection, movements and feeding activity



2014 Eirin Marie
Bjørkvoll

PhD Biology Life-history variation and stochastic population
dynamics in vertebrates

2014 Håkon Holand PhD Biology The parasite Syngamus trachea in a metapopulation of
house sparrows

2014 Randi Magnus
Sommerfelt

PhD Biology Molecular mechanisms of inflammation – a central role
for cytosolic phospholipase A2

2014 Espen Lie Dahl PhD Biology Population demographics in white-tailed eagle at an
on-shore wind farm area in coastal Norway

2014 Anders Øverby PhD Biology Functional analysis of the action of plant
isothiocyanates: cellular mechanisms and in vivo role
in plants, and anticancer activity

2014 Kamal Prasad
Acharya

PhD Biology Invasive species: Genetics, characteristics and trait
variation along a latitudinal gradient.

2014 Ida Beathe
Øverjordet

PhD Biology Element accumulation and oxidative stress variables in
Arctic pelagic food chains: Calanus, little auks (Alle
alle) and black-legged kittiwakes (Rissa tridactyla)

2014 Kristin Møller
Gabrielsen

PhD Biology Target tissue toxicity of the thyroid hormone system in
two species of arctic mammals carrying high loads of
organohalogen contaminants

2015 Gine Roll Skjervø Dr. philos
Biology

Testing behavioral ecology models with historical
individual-based human demographic data from
Norway

2015 Nils Erik Gustaf
Forsberg

PhD Biology Spatial and Temporal Genetic Structure in Landrace
Cereals

2015 Leila Alipanah PhD Biology Integrated analyses of nitrogen and phosphorus
deprivation in the diatoms Phaeodactylum tricornutum
and Seminavis robusta

2015 Javad Najafi PhD Biology Molecular investigation of signaling components in
sugar sensing and defense in Arabidopsis thaliana

2015 Bjørnar Sporsheim PhD Biology Quantitative confocal laser scanning microscopy:
optimization of in vivo and in vitro analysis of
intracellular transport

2015 Magni Olsen
Kyrkjeeide

PhD Biology Genetic variation and structure in peatmosses
(Sphagnum)

2015 Keshuai Li PhD Biology Phospholipids in Atlantic cod (Gadus morhua L.)
larvae rearing: Incorporation of DHA in live feed and
larval phospholipids and the metabolic capabilities of
larvae for the de novo synthesis

2015 Ingvild Fladvad
Størdal

PhD Biology The role of the copepod Calanus finmarchicus in
affecting the fate of marine oil spills

2016 Thomas Kvalnes PhD Biology Evolution by natural selection in age-structured
populations in fluctuating environments

2016 Øystein Leiknes PhD Biology The effect of nutrition on important life-history traits in
the marine copepod Calanus finmarchicus

2016 Johan Henrik
Hårdensson Berntsen

PhD Biology Individual variation in survival: The effect of
incubation temperature on the rate of physiological
ageing in a small passerine bird

2016 Marianne Opsahl
Olufsen

PhD Biology Multiple environmental stressors: Biological
interactions between parameters of climate change and
perfluorinated alkyl substances in fish

2016 Rebekka Varne PhD Biology Tracing the fate of escaped cod (Gadus morhua L.) in a
Norwegian fjord system

2016 Anette Antonsen
Fenstad

PhD Biology Pollutant Levels, Antioxidants and Potential Genotoxic
Effects in Incubating Female Common Eiders
(Somateria mollissima)



2016 Wilfred Njama
Marealle

PhD Biology Ecology, Behaviour and Conservation Status of Masai
Giraffe (Giraffa camelopardalis tippelskirchi) in
Tanzania

2016 Ingunn Nilssen PhD Biology Integrated Environmental Mapping and Monitoring: A
Methodological approach for end users.

2017 Konika Chawla PhD Biology Discovering, analysing and taking care of knowledge.

2017 Øystein Hjorthol
Opedal

PhD Biology The Evolution of Herkogamy: Pollinator Reliability,
Natural Selection, and Trait Evolvability.

2017 Ane Marlene Myhre PhD Biology Effective size of density dependent populations in
fluctuating environments

2017 Emmanuel Hosiana
Masenga

PhD Biology Behavioural Ecology of Free-ranging and Reintroduced
African Wild Dog (Lycaon pictus) Packs in the
Serengeti Ecosystem, Tanzania

2017 Xiaolong Lin PhD Biology Systematics and evolutionary history of Tanytarsus van
der Wulp, 1874 (Diptera: Chironomidae)

2017 Emmanuel Clamsen
Mmassy

PhD Biology Ecology and Conservation Challenges of the Kori
bustard in the Serengeti National Park

2017 Richard Daniel
Lyamuya

PhD Biology Depredation of Livestock by Wild Carnivores in the
Eastern Serengeti Ecosystem, Tanzania

2017 Katrin Hoydal PhD Biology Levels and endocrine disruptive effects of legacy POPs
and their metabolites in long-finned pilot whales of the
Faroe Islands

2017 Berit Glomstad PhD Biology Adsorption of phenanthrene to carbon nanotubes and
its influence on phenanthrene bioavailability/toxicity in
aquatic organism

2017 Øystein Nordeide
Kielland

PhD Biology Sources of variation in metabolism of an aquatic
ectotherm

2017 Narjes Yousefi PhD Biology Genetic divergence and speciation in northern
peatmosses (Sphagnum)

2018 Signe
Christensen-Dalgaar
d

PhD Biology Drivers of seabird spatial ecology - implications for
development of offshore wind-power in Norway

2018 Janos Urbancsok PhD Biology Endogenous biological effects induced by externally
supplemented glucosinolate hydrolysis products
(GHPs) on Arabidopsis thaliana

2018 Alice Mühlroth PhD Biology The influence of phosphate depletion on lipid
metabolism of microalgae

2018 Franco Peniel Mbise PhD Biology Human-Carnivore Coexistence and Conflict in the
Eastern Serengeti, Tanzania

2018 Stine Svalheim
Markussen

PhD Biology Causes and consequences of intersexual life history
variation in a harvested herbivore population

2018 Mia Vedel Sørensen PhD Biology Carbon budget consequences of deciduous shrub
expansion in alpine tundra ecosystems

2018 Hanna Maria Kauko PhD Biology Light response and acclimation of microalgae in a
changing Arctic

2018 Erlend I. F. Fossen PhD Biology Trait evolvability: effects of thermal plasticity and
genetic correlations among traits

2019 Peter Sjolte Ranke PhD Biology Demographic and genetic and consequences of
dispersal in house sparrows

2019 Mathilde Le Moullec PhD Biology Spatiotemporal variation in abundance of key tundra
species: from local heterogeneity to large-scale
synchrony

2019 Endre Grüner Ofstad PhD Biology Causes and consequences of variation in resource use
and social structure in ungulates



2019 Yang Jin PhD Biology Development of lipid metabolism in early life stage of
Atlantic salmon (Salmo salar)

2019 Elena Albertsen PhD Biology Evolution of floral traits: from ecological contex to
functional integration

2019

2019

2019

2019

2019

2019

2019

2019

2019

2019

2019

2020

2020

2020

2020

2020

2020

2020

Mominul Islam
Nahid

Knut Jørgen Egelie

Thomas Ray Haaland

Kwaslema Malle
Hariohay
Mari Engvig Løseth

Joseph Mbyati
Mukeka
Helene Løvstrand
Svarva

Nathalie Briels

Anders L.Kolstad

Bart Peeters

Alex Kojo Datsomor

Ingun Næve

Rachael Morgan

Mahsa Jalili

Haiqing Wang

Louis Hunninck

Kate
Layton-Matthews
Amit Kumar Sharma

PhD Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Interaction between two Asian cuckoos and their hosts
in Bangladesh

Management of intellectual property in
university-industry collaborations – public access to
and control of knowledge
Adaptive responses to enviromental stochasticity on
different evolutionary time-scales
Human wildlife interactions in the Ruaha-Rungwa
Ecosystem, Central Tanzania
Exposure and effects of emerging and legacy organic
pollutants in white-tailed eagle (Haliaeetis albicilla)
nestlings
Human-Wildlife Conflicts and Compensation for
Losses in Kenya: Dynamics, Characteristics and
Correlates
Dendroclimatology in southern Norway: tree rings,
demography and climate
Exposure and effects of legacy and emerging organic
pollutants in developing birds – Laboratory and field
studies
Moose browsing effects on boreal production forests –
implications for ecosystems and human society
Population dynamics under climate change ad
harvesting: Results from the high Arctic Svalbard
reindeer
The molecular basis of long chain polyunsaturated fatty
acid (LC-PUFA) biosynthesis in Atlantic salmon
(Salmo salar L): In vivo functions, functional
redundancy and transcriptional regulation of LC-PUFA
biosynthetic enzymes
Development of non-invasive methods using
ultrasound technology in monitoring of Atlantic salmon
(Salmo salar) production and reproduction
Physiological plasticity and evolution of thermal
performance in zebrafish
Effects of different dietary ingredients on the immune
responses and antioxidant status in Atlantic salmon
(Salmo salar L.): possible nutriomics approaches
Utilization of the polychaete Hediste diversicolor (O.F.
Millier, 1776) in recycling waste nutrients from
land-based fish farms for value adding applications'
Physiological and behavioral adaptations of impala to
anthropogenic disturbances in the Serengeti ecosystems
Demographic consequences of rapid climate change
and density dependence in migratory Arctic geese
Genome editing of marine algae: Technology
development and use of the CRISPR/Cas9 system for
studies of light harvesting complexes and regulation of
phosphate homeostasis
Drivers of change in meso-carnivore distributions in a
northern ecosystem



2020

2020

2020

2020

2020

2020

2020

2021

2021

2021

2021

2021

2021

2021

2021

2021

2021

Lars Rød-Eriksen

Lone Sunniva Jevne

Sindre Håvarstein
Eldøy

Vasundra Touré

Silje Forbord

Jørn Olav Løkken

Kristin Odden
Nystuen

Sam Perrin

Lara Veylit

Semona Issa

Monica Shilereyo

Vanessa Bieker

Håkon Austad
Langberg

Julie Renberg

Olena Meleshko

Essa Ahsan Khan

Tanja Kofod Petersen

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Phd Biology

Development and dispersal of salmon lice
(Lepeophtheirus salmonis Krøyer, 1837) in commercial
salmon farming localities

The influence of physiology, life history and
environmental conditions on the marine migration
patterns of sea trout

Improving the FAIRness of causal interactions in
systems biology: data curation and standardisation to
support systems modelling applications

Cultivation of Saccharina latissima (Phaeophyceae) in
temperate marine waters; nitrogen uptake kinetics,
growth characteristics and chemical composition

Change in vegetation composition and growth in the
forest-tundra ecotone – effects of climate warming and
herbivory

Drivers of plant recruitment in alpine vegetation

Freshwater Fish Community Responses to Climate
Change and Invasive Species

Causes and consequences of body growth variation in
hunted wild boar populations

Combined effects of environmental variation and
pollution on zooplankton life history and population
dynamics

Small Mammal Population Ecology and Ectoparasite
Load: Assessing Impacts of Land Use and Rainfall
Seasonality in the Serengeti Ecosystem, Tanzania 

Using historical herbarium specimens to elucidate the
evolutionary genomics of plant invasion 

Fate and transport of forever chemicals in the aquatic
environment: Partitioning and biotransformation of
mixtures of Per- and Polyfluoroalkyl Substances
(PFAS) from different point sources and resulting
concentrations in biota

Muscular and metabolic load and manual function
when working in the cold

Gene flow and genome evolution on peatmosses
(Sphagnum)

Systems toxicology approach for evaluating the effects
of contaminants on fish ovarian development and
reproductive endocrine physiology:A combination of
field-, in vivo and ex vivo studies using Atlantic cod
(Gadus morhua)

Biodiversity dynamics in urban areas under changing
land-uses



2021 Katariina Vuorinen Phd Biology
When do ungulates override the climate? Defining the
interplay of two key drivers of northern vegetation
dynamics
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allowing new approaches
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