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Abstract

In tandem with an increase in devices that can detect and store motion data, the
interest in analyzing this type of data has grown. Computing similarity distance is
crucial for all types of analysis, and for trajectory data, there are several algorithms
that compute it.

In this thesis, we theoretically and experimentally investigate seven different sim-
ilarity distance measures. The theoretical part of the thesis examines different
notions of trajectory similarly and relates it back to the trajectory data format.
The experimental part of the thesis is focused on how the theory unfolds in prac-
tice. We analyze a data set of arbitrary trajectories. The analysis emphasizes how
the different algorithms use different notions of similarity.
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Sammendrag

I takt med en økning av enheter som kan registrere og lagre bevegelsesdata har
interessen for å analysere denne dataen vokst. Å begrene likhetsavstand mellom
observasjoner er avgjørende for å kunne gjennomføre all type analyse. For tid-
srekkedata finnes det mange ulike algoritmer som måler deres likhetsavstand

Denne oppgaven består av teoretiske og eksperimentelle undersøkelser av syv
likhetsavstandsmål. Den teoretiske delen greier ut om ulike mål av sporlikhet,
og hvordan disse er inspirert av dataformatet til tidsrekker. Den eksperimentelle
delen av oppgaven handler om hvordan teorien utspiller seg i praksis. Vi ana-
lyserer et datasett bestående av tilnærmet vilkårlige spor. Analysen tydeliggjør
hvordan de ulike algoritmene bruker forskjellige definisjoner av likhet.
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Chapter 1

Introduction

1.1 Motivation

Several modern devices can collect location data which is usually stored as tra-
jectories. With the rise of available data, the interest in analyzing it has been
increasing as well. In order to achieve a meaningful analysis, we depend on the
similarity operator, but challenges arise when narrowing now what it means for
trajectories to be similar.

In computer vision, object outlines can be mapped as trajectories and thus their
shape similarity becomes essential for recognition. Furthermore, the ability to
determine the similarity between trajectories is essential to trajectory database
management. Pattern mining, classification, outlier detection, observational un-
certainty, and forecasts are examples of queries that depend on a similarity meas-
ure[1–4].

Trajectories have a compound data format; they are a series of observations that
vary over time and location. The location data may itself be multi-dimensional.
Complex geometric shapes do not have a simple notion of shortest distance. This
gives rise to different interpretations of how to quantify trajectory similarity and
in turn the development of different algorithms.

In this thesis, seven different similarity measures are used to perform a comparat-
ive study. In contrast to the majority of existing work, we do not seek an ordered
ranking of the most efficient or accurate measures. Rather, the aim is to accurately
describe the properties of the selected measures discussed and guide someone to
pick the most appropriate measure of them for their applications.

1
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1.2 Research Objectives

Given the purpose of this thesis, we formulate the research objectives as the fol-
lowing:

Research Objective 1: Describe qualities and traits of both conventional and
newer similarity measures.

Research Objective 2: Determine how different similarity algorithms treat tra-
jectory features and display these contrasts visually.

Research Objective 3: Shed light on how similarity algorithm selection matters
for a specific application.

1.3 Thesis Outline

The rest of the thesis is structured as follows:

Chapter 2 presents concepts and notations that will be used throughout the thesis.
We narrow down the definition of a trajectory, discuss how to concretize similarity
between two trajectories, and review trajectory mining as a comparative technique
for trajectory similarity.

Chapter 3 pitches seven trajectory similarity algorithms. We describe how they
quantify alikeness and bring up their associated advantages and shortcomings.

Chapter 4 briefly recounts the contents and conclusions of existing comparative
studies of similarity algorithms.

Chapter 5 proceeds to define the implementation details of the experiments. It
also describes the methodology, how we evaluated the results, and discloses the
simplifications that were made.

Chapter 6 is a presentation of the results. They are presented in three parts: the
similarity scores, the results from the mining tasks, and evaluation of those results.

Chapter 7 discusses the results that were presented in the preceding chapter. We
emphasize what each similarity measure’s result was like in comparison to its
theoretical characterization.

Chapter 8 contains the concluding remarks for this thesis. We reflect on what has
been achieved and revisit the research objectives. Finally, we discuss how this set
up could be advanced for future work.



Chapter 2

Theory

This section is largely based on the work done for the course TDT4501 Computer
Science, Specialization Project[5]. It is assumed that the readers of this thesis will
not have read the final report and thus some of its content is restated. This chapter
aims to summarize the related to trajectories and the manners of computing their
similarity. We define terms and notation that will be used throughout this work
and close the chapter by providing background for trajectory similarity usages.

2.1 Movement Data

Collecting data on how something moves is done in a wide variety of fields. Some
of the applications of movement data analysis are found in zoology, finance, fore-
casts, navigation, and medicine[6–9]. The fields process the movement data dif-
ferently and there different types of moment data that each process.

The type of movement data we will examine here are trajectories, a data format
whose prevalence is unmistakable.

2.1.1 Collection Techniques

A trajectory is a record of movement data commonly represented as a timestamped
sequence of positions. N. Andrienko et al. noted that there are four ways to observe
and record movement data[6]:

• Time-based collection means that the position is recorded at equidistant time
intervals. For instance, if we were to record the location of an entity every
other minute it would be time-based collection.

• Change-based collection means that a new location is recorded when an
entity has moved a set distance from its previous location. An example of
this would be sensors in smartwatches that count steps.

3



4 K. L. Holm: Trajectory Similarity

• Location-based collection means that records are created when an entity
enters a specific area. This is useful for tracking location changes over large
distances and when precision is not vital.

• For event-based data collection the data is only recorded if a set of prede-
termined events occur. In particular, the moving entity itself should trigger
the data sampling. A triggering event could be a user electing to share their
current location.

Lastly, the authors discussed a mixed-solution. As the name indicates, this collec-
tion method acknowledges that the listed techniques are not mutually exclusive.
In fact, depending on the application it may be desirable to combine them. In the
case of tracking taxi trips, data collection may be done via time-based techniques
during the ride. However, the only time the data is of interest is when there is a
passenger in the vehicle. A passenger getting into a taxi would then become the
triggering event for movement data collection.

2.1.2 Notation

As stated, a trajectory is a time-stamped sequence of positions. Phrased another
way, it is a sequence of measurements with a temporal component which is the
definition of a time-series, also referred to as simply series. Consequently terms
and techniques from time-series analysis will be used to characterize trajectories
in this work.

In particular, we will use the terms time-series and series when referring to the
trajectories. We shall use TA to denote trajectory A and TB denotes trajectory B. A
trajectory contains a several elements that each encompass temporal and spatial
information, see Equation (2.1)

Table 2.1: Notation

Notation Description

TA or A Trajectory A

a An element of TA

ai The ith element of TA

nA The length of TA

DistX (A, B) or X (A, B) Distance between trajectory A and B with measure X

d(ai , b j) or d(a, b) Distance between given trajectory elements of A and B

Rest(A) Trajectory A without its leading element
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TA = [a1, · · · , an] where ai = (ti , ai,LOC) (2.1)

Where n is the number of trajectory elements in TA, ti the timestamp, and ai,LOC is
the location. The dimensionality of this component is most commonly either two
or three[10].

In this thesis, trajectories have been simplified to consist of a series of locations in
2-d space and the temporal aspect is implicit. See Equation (2.2) for the format
of the trajectory elements. This simplification is common where time-based col-
lection is used to gather data.

ai = [ai,X , ai,Y ] (2.2)

where X is the longitudinal aspect and Y is the latitudinal one. See Table 2.1 for
additional notation used throughout in this thesis.

2.2 Trajectory Similarity Distance

Informally, a measure is something that numerically quantifies something. The
mathematical definition of a measure requires precise terminology; studying that
definition is far beyond the scope of this thesis. Consequently, we present a sim-
plified definition of a measure that complies with the proper one[11, 12]:

Definition 1 A measure on the set S is a function µ that assigns a non-negative
numeric value to each subset of S such that for E, F ⊂ S:

µ(E)¾ 0 Non-negativity

µ(;) = 0 Null empty set

E, F disjoint ⇒ µ(E ∪ F) = µ(E) +µ(F) Countable additivity

Another concept from mathematics we wish to bring forth is the notion of a met-
ric[13].

Definition 2 A function f (a, b) on S is a metric if for a, b, c ⊂ S the following
requirements are met:

f (a, b)¾ 0 Non-Negativity

f (a, b) = 0⇔ a = b Identity

f (a, b) = f (b, a) Symmetry

f (a, c)¶ f (a, b) + d(b, c) Triangle Inequality
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In mathematics, a metric is an abstraction of what distance means between mem-
bers of a set. There are a number of generic methods that are designed to work
with metric distance functions. Two examples of applications where a measure’s
metricity is required are sub-linear time approximation for clustering and index-
based search and pruning[14–16]. About half of the similarity algorithms we dis-
cussed in Chapter 3 are not proper metrics. Nevertheless, a distance function does
not have to be a metric to be applicable for some selected data mining tasks. [17].

Now that we have established what a measure is, we turn our focus to what simil-
arity means for trajectory data. We refer to work done by Golding and Kanellakis
who formalized the notion of two series’ similarity distance.[18]. They did so by
modifying a version of The Matching Problem which we have simplified and re-
stated below:

Given a query series Q of length n and another series S of length N, where
N is much larger than n, we are searching for a contiguous subsequence
within S that is identical to Q

Their work defined term Similarity Distance as seen in Definition 3.

Definition 3 The similarity distance, D, between TA and TB is a numerical value
produced by a given distance measure X :

DistX (TA, TB) = D

In essence, this thesis is a comparative study of how different measures affect sim-
ilarity distance. It is generally understood that a short distance signifies closeness;
in other words, the measure X has to be a dissimilarity measure.

The distinction between similarity and dissimilarity measures is generally is useful
as they are opposite maximizing functions. The similarity function is useful for
detecting duplicates and automatic grouping whereas the dissimilarity function is
more appropriate for identifying outliers in a data set. [19]. Nevertheless, the term
similarity will be used to describe both types of alikeness quantification. This is
both due to being a natural shorting of similarity distance and it being being used
as such in the literature[20–23].

2.2.1 Elasticity of Methods and Time Shifting

Although the trajectories in this thesis are defined with implicit temporal com-
ponents, there are characteristics of time-series, and thereby time-series similarity,
which are easier understood when the temporal value is explicitly stated.

Definition 4 A similarity function is elastic if trajectory elements can be compared
one-to-many or one-to-none. In contrast, a lock-step function compares ai to bi at
every step. It requires the input trajectories to be of equal length.
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Definition 5 Global time shifting is a distortion or relative lag between trajector-
ies[24]. Formally we say that B is time shifted by δ from A if the following holds:

A= [(t1, a1), · · · , (tn, an)]

B = [(t1, b1), · · · , (tn, bn)]

B = Shift(A,δ) = [(t1 +δ, a1), · · · , (tn +δ, an)]

Definition 6 Local time shifting refers to time-shifts that occur non-uniformly and
locally.

In order to account for similarity under local time shifts, the measure has to be
elastic. This is because these measures can realign trajectories so that correspond-
ing trajectory sections can line up which maximizes shape similarity. We note that
it is possible to eliminate the effects of global time shifting by statistical normal-
ization. When a measure adapts to local time shifts, we say that it has warped
time. The warping could refer to single trajectory elements or whole trajectory
segments.

2.2.2 Sectioning Trajectories

With the aim of defining how similar whole trajectories are, we have to determ-
ine to decompose the trajectories into sections. Next, we must determine how to
quantify the distance between those. The manner in which this is done varies
according to the different trajectory similarity algorithms.

A straightforward idea is to simply use the raw observations in trajectories as the
basis; indeed that is a popular choice. All but one of the algorithms discussed
in this thesis uses this approach. This is not the only approach, we observe that
there are measures that remap the trajectories to direction vectors or sets before
computing their similarity [1, 25].

If the choice has been made to evaluate individual points as trajectory sections,
it is possible to use any number of point-to-point distance functions. The most
common choices are the Lp- metrics and the Haversine distance. If a trajectory spans
a great distance, we need to account for the curvature of the Earth. The Haversine
distance is was developed so that distances could be accurately computed at a
scale. However, in this thesis, we assume that the trajectories span a small area,
allowing for the assumption is of a flat geometry. This lets us safely use the Lp-
metrics, of which L1 and L2 are the most used ones. The latter of them is known
as the Euclidean distance, and almost all of the similarity algorithms examined use
it to quantify the distance between trajectory elements. Its definition is seen in
Equation (2.3) and for the remainder of this thesis, d(a, b) denotes the Euclidean
distance between trajectory elements unless otherwise specified.

d(a, b) =
Æ

(aX − bX )2 + (aY − bY )2 (2.3)
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2.2.3 Classes of Trajectory Similarity

With both spatial and temporal components or trajectories explicitly expressed,
it becomes evident that weighing them differently gives rise to different types of
similarity. Pelekis et al. categorized four classes of trajectory similarity which rep-
resent four different ways to account for the trajectories’ components[26]. Below
is a summary of each of the classes, each with an example of application.

1. When analyzing trajectories, we could value their Spatio-temporal similarity.
If so, we require trajectories to be alike in shape and to have occurred at
around the same time for them to be considered similar.

An example of where one would need this type of similarity would be when
analyzing traffic networks and attempting to detect the roads that have the
most congestion during rush hours.

2. Time-relaxed, or Spatial-only, Similarity as the name implies considers the
shape similarity of trajectory. Under this type of similarity the temporal,
component does not necessarily affect the final similarity score. A hybrid
approach primarily values the shape and then examines the temporal as-
pect afterward. This differs from Spatio-Temporal similarity as the temporal
component is treated as a secondary aspect rather than a primary one.

An example of where one would prefer this kind of similarity is “identifying
highways at sea”. The routes themselves are the subjects of to interest while
the time of which a vessel was in a specific location is not.

3. Speed-Pattern based spatial similarity can be conceptualized as an extension
of Spatial-Only similarity. As the name indicates, the shape of a trajectory
and the velocities of the entities are the components that are important for
this class.

This similarity class is instrumental when analyzing data sets to classify
entries that move at different velocities. If velocity data have been collec-
ted, the temporal component can be disregarded. On the other hand, if the
velocity is not recorded the temporal data is implicitly needed so that the
rate of change of location, the velocity, can be derived.

4. The last class is directional similarity. With this type of similarity, entities that
moved in the same directions in the same order are considered to be similar,
regardless of the entities’ origin. For instance, two entities will have a high
similarity score if they both did some movement east and then north-west.
As with spatial-only similarity, the temporal component of the trajectory
does not affect the similarity score.

This kind of similarity is used when one wants to examine how something is
moving. In particular, it is useful for looking into weather phenomena such
as cyclones, hurricanes, and typhoons.
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The class of similarity this thesis will focus on is the Spatial-Only class. In other
words, we will weigh the geometrical resemblance and disregard the temporal
and directional aspects of the trajectories. This leads us back the the notation we
laid out in Table 2.1 where TA = [a1, . . . an] and ai = [ai,X , ai,Y ] .

2.3 Trajectory Clustering

Data mining is a field that describes how one can process large data sets so that
underlying patterns become apparent. The field is broad and encompasses clus-
tering, classification, outlier detection as well as other tasks[27]. In this thesis, we
use trajectory mining, and specifically clustering, as an application for the simil-
arity measures.

To balance out the biases of specific clustering techniques, we have chosen to util-
ize two of them. It is a well-known issue that there is no ground truth to how to
precisely define a cluster[28]. Optimizing trajectory clustering is itself an inter-
esting research area, and great efforts are being put into it[29, 30]. Nevertheless,
we deemed that a proper exploration of trajectory clustering methods was out of
scope for this thesis. We have settled using well-known clustering techniques. We
briefly explain the theory of the two clustering methods we chose and an evalu-
ation index for cluster results.

2.3.1 Affinity Propagation (AP)

Affinity Propagation (AP) was first introduced in 2007 and it creates clusters by
passing messages between the data elements[31]. The passing of the messages
is an iterative process and the information passed relates to how well-suited the
elements are for being the cluster representative. Whether or not a given element
is suited to be the representative changes as both the number of clusters and the
member count of each cluster change. The algorithm completes either when it
has converged, meaning a new iteration does not update the clusters, or when an
iteration limit has met.

An advantage of AP is that it does not require the number of final clusters to be
known at the start.

2.3.2 Hierarchical Clustering Analysis (HCA)

Hierarchical Clustering Analysis (HCA), or just Hierarchical Clustering, refers to
a family of algorithms wherein there are different variation[32]. The version we
focus on in this thesis is agglomerative complete-linkage clustering. The agglom-
erative part of the name means that each data point starts out as a cluster, then
the most similar clusters are grouped into a new cluster. This happens recursively
until all data points are in the same cluster. The second part of the name specifies
how one determines which clusters should be merged. Under complete-linkage,
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Figure 2.1: Top: A simple scatter plot of some arbitrary data points
Bottom: A dendrogram illustrating the agglomerative process.
Notice that (b, c) are merged after (a, d) indicating that latter are more similar

each cluster finds the farthest neighbors of the other clusters. The clusters that get
merged are ones that have the closest “farthest neighbors”. This iterative merging
can be displayed in a dendrogram, see Figure 2.1

Under hierarchical clustering, any number of final clusters can be set. This means
that the number of final clusters is determined up to human discretion, thereby
not guaranteeing clearly defined clusters.

2.3.3 Evaluating Clusters

After the clusters have been generated, it is useful to evaluate the result. One way
to do this is with the Davis-Bouldin index (DB-index or DB-criterion) is defined as
the ratio of the “within-cluster”-distance and “between-cluster”-distance. “Within-
cluster”-distance is a description of dispersed elements of a cluster is and “between-
cluster”-distance is a description of how far apart the cluster are from each other.
This means that a low DB-index is an indication of a good clustering result.

In the context of this, the information gained from the DB-index is minimal. This is
because it as well as all other numerical evaluations, depend on a ground truth of
how to correctly quantify the similarity distance. The index may provide some in-
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sight, however, we expect the true information gain to be minimal and its ranking
to be biased.

As a closing remark, we acknowledge that there is no general standard for what
constitutes a “reasonable clustering” on account of it being highly domain-dependent.
Human inspection remains a vital tool for evaluating final clusterings[33]. In or-
der to discuss the clustering results from a visual perspective, we define the terms
Fuzzy and Crisp as seen in Definitions 7 and 8.

Definition 7 A cluster is fuzzy if its members appear spread out and with seemly
little relation to each other. For a "good" clustering result, we wish to minimize the
number of fuzzy clusters.

Definition 8 A cluster is crisp if its members create a clear silhouette with seemly a
clear correspondence. For a "good" clustering result, we wish to have as many crisp
clusters as possible





Chapter 3

Similarity Distance Algorithms

In this chapter, we present seven different similarity distance measures. First, we
describe four that are parameter-free, then we describe three algorithms that re-
quire a parameter. By chance, all of the parametric methods are based on Edit
Distance, so we briefly explain how its construction as well.

The methods have largely been chosen due to their prominence in the existing
literature[34–38]. However, we present two newer algorithms, one parameter-
free and one that requires a parameter. They are presented at the end of their
respective groupings.

As was the case in the previous chapter, large portions here are based on the report
created for TDT4501 Computer Science, Specialization Project

3.1 Parameter-Free Measures

3.1.1 Euclidean Distance (Ed)

As noted in Chapter 2, the Euclidean distance (Ed) is a way to quantify the distance
between two points in space. There is a naive extension of that principle that
lays the foundation for a Euclidean Distance measure for trajectories[36, 39–41].
This method would be to compute the mean point-point distances in a lock-step
manner as seen in Equation (3.1).

Ed(A, B) =
1
n
·

n
∑

i=1

d(ai , bi) (3.1)

where the distance between corresponding points is the L2-norm as defined in
Equation (2.3)

Its simplicity comes with a couple of disadvantages, one notable one is that it
requires the trajectories to be of equal length. In the cases where the number

13
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of points does not match one would have to adapt the data, potentially altering
the original observations. Furthermore, computing distance in a lock-step manner
means that it is sensitive to local time shifts and noise[42].

Even with these limitations, this measure is included for its simplicity. Previous
work has shown that it holds remarkably well up to more advanced methods[43],
further encouraging us to examine this metric.

3.1.2 Dynamic Time Warping (DTW)

As stated in Section 2.2.1 an elastic measure is needed in order to handle local
time shifts and Dynamic Time Warping (DTW) is precisely that. DTW was ori-
ginally designed for speech recognition which means that it handles relative lag
seamlessly[44, 45]. This makes it a prevalent choice for examining similarity un-
der temporal drift. The idea behind this algorithm is to stretch and contract time
such that a favorable alignment of the input trajectories can be found.

Figure 3.1 illustrates the implementation of DTW. The computation begins by tak-
ing input trajectories A and B and constructing a full cost matrix C . This matrix
keeps all pairwise distances between the trajectories’ elements. We use the L2
norm for point-to-point distance computation as is common for DTW[46]. After
the matrix has been constructed, the next step is to iteratively search through
C and find the optimal warping path, p. The optimal warping path is the set of
point-point pairings, entries of C , that minimizes the accumulated cost. The accu-
mulated cost along the warping path is the DTW distance between the trajectories.
Figure 3.2 exemplifies how the Euclidean distance and DTW differ with respect
to time-shift.

Figure 3.1: Cost matrix C (left) and accumulated cost matrix C ′ which the op-
timal warping path p (right) . Figure copied from [45]

The main drawback of DTW is that it weights all points of both trajectories equally
and thus it is not robust to noise. A naive implementation of DTW would forcefully
align the start- and endpoints of the two trajectories which can disproportionately
punish trajectories that are overall similar[47]. Generating the cost matrix quickly
becomes expensive due to pairwise comparing all points of the input trajectories
which makes it less suited for large data sets [45].

Its shortcomings have inspired iterations of DTW that seek to address them. Some
remark that constructing a full cost matrix may not be needed, and some seek to
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Figure 3.2: An illustration of how the Euclidean forces a lock-step computation
whereas DTW realigns the trajectories. Figure copied from [34]

speed up how to iterate through C[46]. We note that a popular choice is FastDTW,
which is a parameterized version of DTW. As the name indicates, it is much faster
than the naive implementation yet gives comparably accurate results[20]. Never-
theless, this thesis shall only focus on the parameter-free version.

3.1.3 Hausdorff Distance (Hd)

This technique is often discussed in relation to polygons and sets[48] however it
is applicable for time-series data as well. A consequence of its geometric origin is
that the trajectory direction no longer affects the final result, the notion of a first
or last trajectory element is not kept[41]. The Hausdorff distance from A to B is
the maximum of the minimum of all pairwise distances, see Equation (3.2)[49]

ÝHd(A, B) = maxa∈A

�

minb∈B d(a, b)
	

(3.2)

where d(a, b) is any metric distance function, here the L2-norm is used. The dis-
tance function described in Equation (3.2) is not symmetric and thereby not a met-
ric[50]. The function is referred to as the directed Hausdorff distance. To make the
Hausdorff metric, it is defined as the maximum of the two directed results. This
makes the function symmetric, so that it fulfills the requirements for a metric, see
Equation (3.3).

Hd(A, B) = max
�

ÝHd(A, B), ÝHd(B, A)
	

(3.3)

Since we can compare any point in A to any point in B this measure is elastic.
All points of the trajectories are weighted equally which makes it is sensitive to
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noisy data. Additionally, the effect of reducing the similarity score to the distance
between two points from each trajectory is that information about the trajectories’
overall shape is lost. The metric is highly sensitive to noise[4]. Lastly, we need to
work out both of the directed distances to get the similarly score. This means more
work per trajectory pair than naturally symmetric measures such as Ed and DTW.

3.1.4 Symmetrized Segment-Path Distance (SSPD)

As the Hausdorff distance, Symmetrized Segment-Path Distance (SSPD) method
is a spatial only algorithm that largely disregards the direction of the trajectories.
It is was developed from the same principles as the Hausdorff distance, but with
the addition of being able to account for the trajectories as a whole.[23, 51]. The
algorithms explained so far have used the trajectory elements directly as the basis
for the computations. For SSPD, this is no longer the case, and thus we define
notation and terms to describe this algorithm.

In line with Table 2.1 a, b are elements of Trajectories A, B respectively . A segment
is the line between two consecutive points, and we use ă to denote a segment of
A. Using indexes, ăi is the line between ai and ai+1.

Next we define the point-to-segment distance as shown in Equation (3.4). This
distance function requires us to find the point’s orthogonal projection onto the
segment. If it is within the segment, the distance will be the L2-norm between
the original point a and its projection ȧ. Otherwise, the L2- norm to segment’s
end points is computed nearest those distances becomes the point-to-segment dis-
tance.

dps(ai , b̆ j) =

¨

d(a, ȧ) if ȧ ∈ b̆ j

min{d(ai , b j), d(ai , b j+1)} otherwise
(3.4)

Where ȧ is the orthogonal projection of point a onto segment b̆ j and d is the
L2-norm.

From point-to-segment distance, point-to-trajectory distance is defined as shown
in Equation (3.5). The point-to-segment distance is computed for all the segments
of the trajectory and the lowest one becomes the point-to-trajectory distance.

DpT (ai , B) = minb̆∈B

�

dps(ai , b̆)
	

(3.5)

The Segment-Path-Distance (SPD) is directed. It is defined to be the mean of the
all point-to-trajectory distances from points of the first trajectory to the second
trajectory, Equation (3.6).

SPD(A, B) =
1
nA

nA
∑

i=1

DpT (ai , B) (3.6)
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As with the Hd, this distance measure is made symmetric by computing both direc-
ted versions first. However unlike Hd, the final result is the mean of the directed
results. The name comes from this last step and the final formula is shown in
Equation (3.7).

SSPD(A, B) =

�

SPD(A, B) + SPD(B, A)
�

2
(3.7)

The creators of SSPD note that if one were to use the max function rather than
computing the mean upon symmetrification this algorithm would be identical to
the Hausdorff function[51]. They note that with their method, this distance func-
tion becomes more robust to noise when calculating the mean, as opposed to
maximizing or minimizing. Moreover, they commend SSPD for being parameter-
free as well as not relying on interpolation between two observed point, preferring
to strengthen the importance of observed data. As a closing remark, we note that
SSPD does not fulfill the requirements of a metric.

3.2 Parameterized Measures

In this section, we have described measures that require a parameter. All of them
are based on String Edit Distance (SED) which is a similarity measure designed
for strings. The idea is to count the number of edits needed to convert one string
into the other using the edit operations are insert, delete and replace. Due to the
strings’ natural discretization, it is trivial to determine whether or not two symbols
are matching. There are variations of implementation but a common choice is to
let the cost of an edit be 1, creating a formula as seen in Equation (3.8):

SED(S1, S2) =



































|S1| if |S2|= 0

|S2| if |S1|= 0

SED(S1, S2) if |S1|= |S2|

1+min
�

SED(Rest(S1), Rest(S2))

SED(Rest(S1), S2)

SED(S1, Rest(S2))

otherwise

(3.8)

Real data does not let itself be discretized as fortuitously as strings, thereby leading
to the creation of the algorithms below. The measures differ in how they have
adapted SED for time series data, and the role of the parameter value changes as
well.
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3.2.1 Edit Distance on Real Sequence (EDR)

Edit Distance on Real Sequence (EDR)[42] introduces a threshold parameter ε
that determines if two trajectory elements are “matching”. Crucially, there can be
no partial matches so the point-to-point distance is either 1 or a 0 as shown in
Equation (3.9).

dedr(a, b) =

¨

0 if |aLNG − bLNG|¶ ε and |aLAT − bLAT |¶ ε
1 otherwise

(3.9)

where ε is the threshold parameter. After determining whether or not two points
match with the subcost function we get the full EDR is shown algorithm as seen
in Equation (3.10)

EDR(A, B) =



























nA if nB = 0

nB if nA = 0
min

�

EDR( Rest(A), Rest(B)) + dedr(a, b),

EDR( Rest(A), B) + 1,

EDR(A, Rest(B)) + 1
	

otherwise

(3.10)

where a, b are the leading elements of A, B.

The main advantages of EDR are its resistance to noise and the ability to handle
local time shifts. It is resistant to noise because of how it maps the distance
between elements to a binary 1 or 0. Toohey and Duckham asserted that EDR
performed well in spite of variance in the sampling rate[10].

EDR is not a metric measure as it does not fulfill triangle inequality, but it meets
other requirements of metrics. Furthermore, it evaluates similarity as trajectory
elements, not taking into account the trajectories’ overall shape. We have chosen
to include this algorithm as it is a well-studied algorithm. Its prevalence in the
literature has led it to be studied alongside DTW and Euclidean Distance.

3.2.2 Edit Distance with Real Penalty (ERP)

Edit Distance with Real Penalty (ERP) was designed to bridge the gap between
metrics distance functions and local time shifting tolerant ones. [52]. The design
of EDR began with the L1-norm Equation (3.11)

DistL1(A, B) =
n
∑

i=1

d(ai , bi) where dL1
(ai , bi) =

p
∑

j=1

|ai, j − bi, j| (3.11)
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From SED, the notion of a gap element is introduced. A gap element is a symbol
that could have been deleted from string S1 but instead is inserted into string
S2. The point-to-point distance function would then become what is shown in
Equation (3.12).

ded(ai , bi) =











0 if ai = bi

1 if ai or bi is a gap

1 otherwise

(3.12)

Rather than using a constant value to penalize all edit operations uniformly like
EDR, ERP differentiates between gap elements and non-gap elements. This dis-
tinction is important so that it will be tolerant to local time sifting. Gap elements
are penalized with a constant value, while non-gap elements have a real-value
cost based on their value. The parameter of ERP, g, is the reference value for cost
computation, and the point-to-point distance function is seen in Equation (3.13)

depr(ai , bi) =











|ai − bi| if neither is a gap

|ai − g| if bi is a gap

|bi − g| if ai is a gap

(3.13)

Again, the trajectory distance function is an adaption of SED, and the full al-
gorithm for ERP is shown in Equation (3.14)

ERP(A, B) =



















































nA
∑

i=1

|ai − g| if nB = 0

nB
∑

i=1

|bi − g| if nA = 0

min
�

ERP(Rest(A), Rest(B)) + derp(a1, b1),

ERP(Rest(A), B) + derp(a1, g),

ERP(A, Rest(B)) + derp(b1, g)
	

otherwise

(3.14)

The main drawback of this method stems from the characteristic that makes it a
metric, using differences of real values as costs. This method is a metric as long
as g is constant, making the cost of an edit vary the location of the trajectory
element. However, this makes ERP sensitive to noise[42].
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3.2.3 Move-Split-Merge (MSM)

Move-Split-Merge (MSM) [53] is similar to the aforementioned to the other SED-
based approaches in that it calculated the similarity score from how many oper-
ations are needed to transform one trajectory into another one. This algorithm is
tolerant to temporal misalignments and translation invariant[37] as are EDR and
ERP. What distinguishes this algorithm from them is how insertions and deletions
are handled. The MSM cost model uses both the value of the element being mod-
ified as well the adjacent one whereas ERP only uses the element being modified
and EDR uses a constant cost for all operations.

As the name of this algorithm indicates, the possible operations are Move, Split,
and Merge, which are then used to emulate the established Edit Distance oper-
ations Insert, Delete, and Substitute. The Move operation is a renaming of does
the same as Substitute. The Split operation inserts a copy of a given value directly
after itself, and the Merge operation deletes a value if it is immediately followed
by a matching value[37]. In other words, Split and Merge are each others’ inverse.
The Insert operation becomes a Split followed by a Move, while Delete becomes
a Move followed by a Merge. The MSM parameter, c, is a non-negative value that
determines the cost of every Split and Merge operation. See Equations (3.15)
to (3.20) for details.

A= [a1, · · · , ai−1, ai , ai+1, · · · , anA
]

Moveai→b j
(A) = [a1, · · · , ai−1, b j , ai+1, · · · , anA

] (3.15)

Cost
�

Moveai→b j
(A)
	

= d(ai , b j) (3.16)

Splitai
(A) = [a1, · · · , ai−1, ai , ai , ai+1, · · · , anA

] (3.17)

Cost
�

Splitai
(A)
	

= c (3.18)

Mergeai
(A) = [a1, · · · , ai−1, ai+1, · · · , anA

] (3.19)

Cost
�

Mergeai
(A)
	

= c (3.20)

Recall that the Mergeai
(A) operation is only permitted if ai = ai+1. This algorithm

fulfills the requirements of a metric and thus it can be used for indexing and
clustering techniques that are designed to function in metric spaces. In terms of
computational cost and accuracy, we refer to work done by Bagnall et. al. which
alludes to MSM being comparably efficient to ERP and more tolerant to noise
DTW[54].
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Table 3.1: Quick view of some aspects the similarity distance measures

Name Metric Single
Element

Time
Shifts

Parameter Noise
Tolerant

ED Yes Yes No No No

DTW No: Yes Yes No No

Hd Yes Yes Yes No No

SSPD No No Yes No Yes

EDR No Yes Yes Yes Yes

ERP Yes Yes Yes Yes No

MSM Yes No Yes Yes Yes

3.3 Summary of Algorithms

Table 3.1 summarizes some trajectory similarity features. Remark that none of the
measures have matching rows, further indicating that the meaning of trajectory
similarly varies with technique implementation.

We reiterate that large portions of this chapter stem from the report that was
mentioned at the beginning. Still, there is not a complete overlap of the measures
discussed in that report and this thesis.





Chapter 4

Existing Surveys of Time-Series
Similarly Distance

With there being a large number of time-series similarity distance functions, it
follows that there is an accompanying body of work which seeks to consolidate
the scattered information. In this chapter we go over some of the those studies,
and provide further motivation for the work conduced in this thesis.

We identify two varieties of studies: those that rank the measures according to
some predetermined standard and those that provide comprehensive feature de-
scriptions.

4.1 Ranking Studies

4.1.1 Trajectory Clustering

P. Besse et.al, the creators of SSPD, prefaced their work by examining existing dis-
tance functions for trajectories[51]. The measures were categorized into "shape-
based" ones and “warping-based” ones, referring to how a measure accounted for
the temporal component of the trajectories.

Their work studied the different clusterings that were obtained through clustering
tasks where the distance function varies. They determined that the “shape-based"
distance measures gave better results than the “warping-based" ones. However,
they concluded this based on the cluster quality criteria they defined. The cri-
terions resembled the Davies-Bouldin Index, but it was deconstructed so that the
“between-like” and “within-like” evaluations were presented individually.

23
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4.1.2 Time Series Mining

H. Din et.al did an experimental comparison of both time-series representations
and similarity distance measures in an effort to categorize mining techniques [43].
Their motivation was that other studies had been too narrowly focused on a spe-
cific measure, or that the conclusions were too optimistic.

Their experiments used a nearest neighbor classifier to evaluate nine different
similarity measures and eight different data representations. The thoroughness of
their setup was further emphasized as they ran their experiments on 38 different
time-series data sets. While data sets originated from a variety of real sources,
they were all suited to the mining task classification.

Under classification, labels are given to each time-series based on their similarity
are to other series. Typically the observations receive one label each. One key
way classification differs from clustering is that in that classification results rend
to be simpler to evaluate. They are distinct usages of similarity distance and the
conclusion drawn in this work are oriented towards the classification results. The
features of the similarity measures themselves were not emphasized.

4.2 Non-Ranking Studies

4.2.1 Review of Trajectory Measues

Work done by N. Magdy et.al examined 13 different trajectory similarity meas-
ures[40] in a theoretical manner. Of the seven discussed in Chapter 3, five of
them were examined by the authors.

Their work did not include an experimental component. The measures were cat-
egorized based on implicit similarity definition, and the traits of each measure.
Namely if whether or not they were noise-tolerant, could handle locally time-
shifted data, if they fulfilled the requirements of metricity and their computational
cost.

Furthermore, the researchers contrasted how the required data format varied, and
how that affected the notion of similarity. The work concluded by underlining
that there is no measure that is the most appropriate for any given data set. They
expressed a wish for a generic trajectory similarity measure which could then be
adapted to accommodate the desired specific type of similarity depending on the
application.

4.2.2 Effectiveness Study

H. Wang et.al conducted an effectiveness study on six trajectory similarity meas-
ures[36] and half of them that were also discussed in Chapter 3. After a theoretical
summary of the measures, they set up an experiment to test their effectiveness. The
study was realized on a data set where the researchers had intentionally altered
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some of the entries. This was done so that the advantages and drawbacks of their
selected measures would be highlighted.

One of the aims of this study was to lay the foundation for a new benchmark that
could objectively quantify the effectiveness of similarity measures. They tested the
measures under the following trajectory transformations: a simulated sampling
rate change, added noise, and shifts of the trajectory, both temporal and spatial.
The benchmark compared the original trajectory to a transformed one, changing
which similarity measures were used. The measures that recognized them as the
same trajectory, or as similar trajectories, were classified as “passing" under that
transformation. Using the experimental results they created a table that summar-
ized each measures’ effectiveness under the various transformations.

4.2.3 Vehicle Trajectory Survey

Abas et.al did a comprehensive survey of trajectory data[14]wherein they focused
on vehicular data. Their work investigated how the inherent inaccuracies of GPS
data affect the quality of trajectory analysis. They surveyed different trajectory
representations, noting the advantages and disadvantages of each. Next, they dis-
cussed processing techniques that are used to handle the drawbacks of a given
representation. Some of the trajectory representations they brought up were road-
network constrained trajectories, binary-encoded trajectories, and hash-based tra-
jectories.

A selection of similarity measures was specified for each type of representation and
they noted whether or not a measure fulfilled certain properties. The properties
in question were metricity, parameter dependency, ability to handle local time
shifts, and ability to handle noise. Four of the measures that were were brought
up in their work are also discussed in this thesis. One of the research gaps they
remarked was how one would process "big trajectory data".

4.3 Our Contribution

This thesis seeks to add the body of work that compares and contrasts traject-
ory similarity distance measures. The experiment we conducted here is based on
various elements of the aforementioned studies.

We did not see a selection of measures matching ours; notably, few studies ex-
amine MSM and SSPD which is in all likelihood a testament to their novelty. We
remark that the efforts described in “Trajectory Clustering” and “Vehicle Trajector-
ies” have had major influences on our work. We hope to provide a comprehensive
comparison wherein feature description and clustering results play equally im-
portant roles.





Chapter 5

Set Up and Method

5.1 Technical Environment

The experiments carried out in this thesis were executed in Google Colaboratory
(Colab) which is a Google-hosted implementation of Jupyter Notebook[55, 56].
The base components of a Notebook are cells that can be grouped thematically.
The cells can contain code or markdown, smoothing out the transition between
coding and writing which is conducive to a smooth workflow. Another key ad-
vantage of this setup is the ability to work from anywhere. This is possible as
the notebook is being executed by Google’s cloud servers; there were no specific
hardware dependencies for the computations.

Given the choice to work in the Jupyter environment, Python becomes the nat-
ural choice of programming language[57]. This choice is further substantiated by
the prevalence of existing modules made for data analysis. There are significant
computational gains from using an extension of Python called Cython[58].

We used the module trajectory_distance[23] to compute almost all the dis-
tance functions. There were no implementations of Euclidean Distance and Move-
Split-Merge, so we coded our own. The former was trivial to implement. As for
the latter, the creators of MSM had published a JAVA implementation of their al-
gorithm. Using that code as a guide we created a “Pure-Python”-Cython cell in the
Jupyter Notebook which was used for its similarity distance computation. Due to
the differences in implementation, we cannot evaluate the algorithms’ time com-
plexity fairly.
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Figure 5.1: Synthetic data set of randomly generated trajectories.

5.2 Data Set

In this thesis, the aim is to gain information about various similarity measures
and consequently, the setup should be as data set agnostic as possible. With this
in mind, we first generated synthetic data for initial test runs and then modified
real trajectory data which we could use for more extensive tests.

5.2.1 Synthetic Trajectory Generation

The generation of synthetic data was the first step of this experiment. The aim
of doing this was so that we could determine the architecture of the experiment
validate that the distance functions were producing reasonable results. The gen-
erated data set can be seen in Figure 5.1. It quickly became evident that the data
was too random to serve as a basis for the similarity algorithms. Rather than using
more advanced methods for creating synthetic data such that it could potentially
accurately represent a complex system, we chose to examine trajectory real data.

5.2.2 Real Trajectory Preprocessing

The data set that was selected for this thesis is a taxi trajectory data set with
over 1.7 million rows[59]. In addition to a large number of rows, there were
superfluous columns such as what type of taxi ride it was and whether or not the
trip was on a weekend. The first step of the data preprocessing was to remove
these attributes from the rows. Next, a random subset consisting of just over 500
trajectories was selected. They were given unique IDs their routes can be seen in
Figure 5.2a.
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As mentioned in the Chapter 3, the Euclidean distance may only evaluate traject-
ories of the same length. Rather than interpolate to add data points– or compute
the information gain of the trajectory elements and then get rid of the least in-
formative ones, we truncated all trajectories to the same length. Moreover, initial
tests indicated that a set of 500 trajectories was still too voluminous and time
consuming to analyze. ’ As a result, we created two subsets of those 500 raw tra-
jectories, one significantly smaller than the other so that tests could be run quickly.
The truncated trajectory sets are depicted in Figures 5.2b and 5.2c

As seen in Figure 5.2 the trajectories are fairly spread out, and so we normalized
the range of the coordinates of the data set. We scaled the data so that they would
be in the same value range and we could examine similarity on a seemly arbitrary
set of lines. ’ Without this step, trajectories spanning a small identical geographical
area would artificially receive a higher similarity score by being near each other,
regardless of shape similarity. This is the re-scaling disconnected data from their
real world source while maintaining a general similarity shape from trajectories
that followed the same roads. Finally, we remark that the re-scaling was done
with simplification of independently scaling the latitudinal and longitudinal di-
mensions, further distorting their relation to the underlying road network. The
final scaled data set is graphed in Figure 5.3.

5.3 Setting Parameter Values

Three of the measures required a parameter value. For each of the measures,
we followed the guidelines that the original creators set for determining a fitting
value. While the value may have been usable for our tests, we did not fully op-
timize any of the parameters for this specific data set. This may have negatively
impacted their performance, and as a counter, we would test more than one value
where we could reasonably determine another value. For details regarding para-
meters themselves, refer to Chapter 2.

5.3.1 EDR

The creators of this method explicitly stated that they achieved the best cluster-
ing results when the matching threshold ε was set to a quarter of the maximum
standard deviation[42]. The time-series data that were used in their research
were one-dimensional, thus finding the standard deviations of each series was
a straightforward task. Akin to how to how the re-scaling was done, a naive pro-
cess that isolated the two dimensions was used to estimate a sensible value for
ε. For each trajectory, the standard deviation of each dimension was calculated.
Then the mean of the largest standard deviations from the data set was computed.
A quarter of that value was used as the first value of ε, while the second value
was half; the two values we used for EDR were {0.101, 0.203}
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(a) Subset with 551 entries (b) Truncated subset, 353 entries

(c) Subset of the truncated data with 53
entries

Figure 5.2: Real data set with trajectories collected from taxis

(a) Scaled version of the data set in
Figure 5.2b

(b) Scaled version of the data set in
Figure 5.2c

Figure 5.3: The trajectories in the data set after re-scaling
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5.3.2 ERP

The researchers that developed ERP stated that the algorithm would be a metric
as long as the reference value, g, was fixed[52].

In their paper, they asserted that fixing g at the origin was a natural choice. Con-
sequently, we set g = (0, 0) for the tests in this set up. We did not try another
value for g due to there being a lack on information of how approximate another
suitable value.

5.3.3 MSM

Much like the creators of the algorithm– and subsequent experiments of MSM [38,
53, 60], we let the cost, c, vary over different orders of magnitude. Concretely c
took the values {1, 0.1,0.01}. These orders of magnitude were chosen based on
the results from initial tests executed on the subset of truncated trajectories.

5.4 Clustering Analysis

The first step was to compute all pairwise trajectory similarity scores using each
of the similarity distance functions. The next step was to create the clusters and
as specified in Chapter 2 two different models were used for this. Details on the
clustering models were given in that chapter as well.

The Python’s module sklearn contains functionality for creating for both types of
clustering, as well as models for even more options. The module can take para-
meters which affect how the model creates the clusters. An example would be
setting an iteration limit for affinity propagation. However, in keeping this stage
of the experiment as simple as possible, all but one parameter value were kept
their defaults.

The value we specified was the number of clusters that the hierarchical model
should create. This was necessary as the stopping criterion for agglomerative clus-
tering is to have one cluster that contains all elements. The number chosen was for
all intents and purposes arbitrary, but we set it to be the least number of clusters
found by affinity propagation. Our motivation for picking this number, and keep-
ing it equal for all measures, was that we wanted to have clusters of meaningful
sizes while still being able to spot the variances from a given measure.

Finally, we implemented a version of the Davies-Bouldin Index. Again, the under-
lying theory is elaborated upon on Chapter 2. The DB-index depends on having a
representative observation of each cluster. Commonly this is either the center of a
cluster or an exemplar observation that is the one nearest to other ones. Unfortu-
nately, the center of a cluster of series data does not let itself be computed easily–
especially in the cases where the trajectories are of unequal length. Furthermore,
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determining the exemplar observation would require us to pick a similarity to be
the proper one.

Yet again simplifications were made, and the center trajectory of a cluster was set
to be the series of mean positions of all trajectories in that cluster. The mean was
computed in a lock-step manner using the L2-norm. For the similarity distance
computations necessary for the DB-index calculation, the Euclidean distance was
used because of if the simplest one.

5.5 Simplifications

As stated at various points throughout the chapter, we made simplifications while
setting up our experiment. The simplifications were made in order to limit the
scope, and in some cases due to the time constraints surrounding the thesis. We
close the chapter by summarizing them below.

• The trajectories were truncated to equal length and then re-scaled so that
they did not remain true to their original relative location.

• At several points, longitude and latitude were treated as if they were in-
dependent series. This becomes particularly important with respect to re-
scaling and cluster evaluation.

• At the evaluation stage, point-point distances, and trajectory-trajectory were
calculated using the Euclidean distance. This further exaggerated the biases
of the DB-index.

• Clustering itself lacks a well-defined standard, meaning it is not necessarily
the most appropriate application comparison.

The effect of simplification and the importance of the cluster evaluation is further
elaborated upon in Chapter 7.



Chapter 6

Results

In this chapter, we will present the results of the analysis we conducted. First, we
briefly look at how the algorithms scored the trajectories. For the remainder of
the chapter, we focus on the clusters and meaningfully interpret them.

6.1 Similarity Scores

Even though they lay the basis for further analysis, there is no meaningful way to
directly compare the similarity scores. However, it could be interesting to look at
their ranking of trajectory pairs. We are present the ten pairs that each measure
deemed the most similar in Table 6.1.

We observe that there is variance with respect to where the pairs are placed, yet
there are a handful of recurrent pairs. We noticed that one of the trajectory pairs
appeared in the top-10 ranks for all the measures. Furthermore, two pairs ap-
peared for all but one measure, and one pair that was in all but two. These four
frequent pairs have been highlighted in Table 6.1 and are displayed in Figure 6.1.
The table has 27 distinct trajectory pairs, indicating that the measures generally
agree on which pairs are the most similar ones.

Table 6.1: Overview of most similar trajectory pairs according to each measure.
A larger version of the table is in??

Euclidean DTW SSPD Hausdorff ERP MSM; cost=1 MSM; cost=.1 MSM; cost=.01 EDR; ε= .203 EDR; ε= .101

QREOR-IHNMX LFQDH-ACJIG LFQDH-ACJIG WBNSL-SATNK QREOR-IHNMX QREOR-IHNMX QREOR-IHNMX LFQDH-ACJIG LFQDH-ACJIG LFQDH-ACJIG
LFQDH-ACJIG NVZCQ-TGKDX WBNSL-SATNK NVZCQ-TGKDX LFQDH-ACJIG LFQDH-ACJIG LFQDH-ACJIG NVZCQ-TGKDX LVFYZ-LENWX QREOR-IHNMX
BZCYT-VXLBC QREOR-IHNMX KQQUG-OVNBK NHNMB-PSVVR BZCYT-VXLBC BZCYT-VXLBC NVZCQ-TGKDX KQQUG-OVNBK XXVQK-LOBQA KQQUG-OVNBK
LHTXJ-TGKDX HXVAH-RPCOW QREOR-IHNMX HXVAH-RPCOW LHTXJ-TGKDX LHTXJ-TGKDX BZCYT-VXLBC WBNSL-SATNK BLHVW-ATPTV LFQDH-ASYEZ
PSVVR-XSJJE KQQUG-OVNBK NHNMB-PSVVR QREOR-IHNMX PSVVR-XSJJE PSVVR-XSJJE KQQUG-OVNBK QREOR-IHNMX WBTAG-QMRPP NVZCQ-TGKDX
NVZCQ-TGKDX JRDIM-OVNBK NVZCQ-TGKDX JRDIM-OVNBK NVZCQ-TGKDX NVZCQ-TGKDX LFQDH-ASYEZ HXVAH-RPCOW NKEGR-VXLBC BZCYT-VXLBC
TNPJQ-LRZLR WBNSL-SATNK HXVAH-RPCOW LFQDH-ACJIG TNPJQ-LRZLR TNPJQ-LRZLR LHTXJ-TGKDX LHTXJ-TGKDX TNPJQ-LRZLR PSVVR-XSJJE
HUSJF-UHLAI NHNMB-PSVVR JRDIM-OVNBK KQQUG-OVNBK HUSJF-UHLAI HUSJF-UHLAI PSVVR-XSJJE JRDIM-OVNBK PSVVR-XSJJE KQQUG-GRPNX
ZQZSA-NVZCQ LHTXJ-TGKDX LHTXJ-TGKDX DADNP-LOBQA ZQZSA-NVZCQ ZQZSA-NVZCQ HXVAH-RPCOW LFQDH-ASYEZ LHTXJ-TGKDX CWCGU-ACJIG
NVZCQ-TNPJQ BZCYT-VXLBC SATNK-FIVOK OAAYX-OKPGU NVZCQ-TNPJQ NVZCQ-TNPJQ HUSJF-UHLAI NHNMB-PSVVR HUSJF-UHLAI EBYMF-LENWX
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Figure 6.1: The trajectory pairs that appeared the most based on the similarity
scores.

6.2 Davies-Bouldin Index

In Table 6.2 we have presented the Davies-Bouldin results for each cluster per
type of clustering method. As was brought up in Chapter 5 and further elaborated
upon in Chapter 7, this is not a decisive ranking.

Three observations stand out in Table 6.2. Firstly, we note that SSPD and HD have
received the worst ranks under both AP and HCA. Next, we remarked that Ed and
MSM- which had identical rankings of trajectory pair, also got the same DB-index
under both types of clustering. ERP, which also had an identical top-10 raking,
received a DB-index under AP-clustering, but did so under HCA. The last thing
that stands out is that the HCA gave a worse result for almost all methods, except
for DTW and MSM with the lowest cost value. The difference is not significant,
but it is consistent.

Table 6.2: Davies-Bouldin Indices for each cluster result and how each algorithm
rank against each other according to this evaluation

Affinity Propagation Hierarchical Clustering
Score Rank Score Rank

Ed 0.091 3 0.095 2
DTW 0.156 8 0.140 5
Hd 0.294 9 0.459 9

SSPD 0.431 10 0.531 10
ERP 0.083 2 0.090 1

EDR ε= 0.203 0.082 1 0.162 6
EDR ε= 0.101 0.091 3 0.217 7

MSM cost= 0.01 0.150 6 0.137 4
MSM cost= 0.1 0.155 7 0.222 8
MSM cost= 1 0.091 3 0.095 2
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6.3 Clustering

We restate that the area of interest for this thesis is the similarity distance meas-
ures and not various clustering techniques. The clusters are presented grouped by
how they evaluated the trajectories’ similarity, or by the underlying idea trajectory
similarity.

The two models used to create the clusters will be presented alongside each other.
The number of clusters produced under affinity propagation varied from 23 to 48,
and as explained in Chapter 5 the number of hierarchical clusters was set to 23
for all measures. See Appendices B and C for higher resolution depictions of all
clusters.

The first three measures’ clusters we present are the ones with the identical rank-
ing of most similar trajectory pairs; Euclidean distance, ERP, and MSM with cost
parameter to 1. The clusters are depicted in Figure 6.2. Next, Figure 6.3 displays
the clusters obtained from the remaining parameter values of Move-Split-Merge.
Continuing with the parameters measured, Figure 6.4 shows the clusters that EDR
generated with both parameter values. Finally, Figure 6.5 shows the rest of the
measures, namely clusters created with DTW, Hausdorff distance, and SSPD.
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(a) Euclidean (b) MSM; cost=1 (c) ERP

(d) Euclidean (e) MSM; cost=1 (f) ERP

Figure 6.2: Clusters of the measures that had the same raking of most similar
pairs. The top row is the affinity propagation Clusters and the bottom ones are
from hierarchical clustering
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(a) MSM; Cost = 0.1

(b) MSM; Cost = 0.01

(c) MSM; Cost = 0.1 (d) MSM; Cost = 0.01

Figure 6.3: Clusters generated by Move-Split-Merge with different parameter val-
ues.The top row is the affinity propagation Clusters and the bottom ones are from
hierarchical clustering
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(a) EDR; ε= .101

(b) EDR; ε= .203

(c) EDR; ε= .101 (d) EDR; ε= .203

Figure 6.4: Clusters generated by Edit Distance on Real Sequence with different
parameter values.The top row is the affinity propagation clusters and the bottom
ones are from hierarchical clustering
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(a) DTW

(b) Hausdorff (c) SSPD

(d) DTW (e) Hausdorff (f) SSPD

Figure 6.5: Clusters created with DTW, Hausdorff and SSPD. The top row is the
affinity propagation clusters and the bottom ones are from hierarchical clustering





Chapter 7

Discussion

In this chapter, we seek to contextualize the results from the preceding chapter.
We apply theory from Chapter 2 and compare the result to the expected behavior

7.1 Similarity Scores

We have established that the measures define what makes trajectories similar.
Some of the measures have a similar base idea, and thus we expect to see this
reflected in the results. From the rankings of most similar pairs, there are a few
things that stand out and we will go over them here.

First of all, EDR with ε set to 0.203 was the column in Table 6.1 which had the least
number of frequent “most similar pairs”. When adjusting the parameter down
to 0.101, our approximation of the recommend parameter value, all of its eight
most pairs were found elsewhere in the table. Recall that EDR’s parameter is the
threshold distance that determines if points are “matching”. The similarity ranking
with the lower parameter value aligns more with the other measures, and this
could indicate that the other threshold was set too high. We would presume that
EDR would give a similar ranking as the other noise-tolerant edit-distance inspired
method, MSM. From what can be seen in the table, this appears to hold, but it
varies with its parameter value too.

Next, we note that the Hausdorff distance generated similar pairs which were
quite different from the other measures. As the Hausdorff metric is parameter-
free, we reckon that the reason its results stood out was that it defined trajectory
similarity in a different manner than the rest. We established that the Hausdorff
distance does not take into account the direction of a trajectory and the only other
measure that is invariant to direction is SSPD. Indeed they share many of the top
10 ranked scores, however, SSPD distinguishes itself Hd as it reduces the similarity
score to a single element-element pair making altering their internal rankings
again.

41
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The final observation from Table 6.1 we noted was that Euclidean distance, ERP,
and one of the MSM measures gave the exact same top 10 pairs. Upon closer ex-
amination, it turned out that their ranking remained the same until the 44th pair,
and the similitude between the measures continued beyond that. MSM with cost
value 1 and the Euclidean distance’s ranking match for 9456 of the 10 thousand
most similar trajectory pairs. We reason that this occurred as a consequence of
the cost of Splits and Merges being set too high, making MSM default to the Move
operation whose cost is the L2 norm between trajectory elements. As for ERP, we
reason that setting the reference point, g, to the origin, increased the cost for tra-
jectory elements that were far away. Again, making the method depend on the L2
norm between trajectory elements as the cost of an edit.

7.2 Davies-Bouldin Results

The essence of this thesis is to examine how the definition of similarity varies with
different measures. Clustering is a manner of grouping the trajectories such that
traits which are seen as the most defining characteristics under various definitions
get highlighted.

As stated in Chapter 2, there are a number of cluster evaluation techniques that
aim to numerically rank the quality of clustering results. One of these is the DB-
index however we will not an assumption regarding which type of type similarity
was the most “correct” one. The ranking created by this criterion is not invalid,
but the insight it adds to is limited. Nevertheless, we have chosen to leave in this
stage of the experiment and in the report on the account of the efforts that were
put into computing it as well as its natural role as a starting point for analyzing
the clusters.

Our version of Davis-Bouldin favors clusterings where each trajectory element
differs as little as possible from the mean of all trajectory elements when computed
in a. A consequence of this is that the cluster can appear fuzzy since the placement
of the surrounding points does not affect the index. From Table 6.2 it appears as
if the lock-step method and EDR with threshold parameter ε = 0.203 were the
best performing methods, and this is as expected.

Moreover, methods that do not take into account order observations, or methods
that would reorder the trajectory elements received low DB-index rankings. In
Figures 7.1 and 7.2 the clusters that were generated by the measures which re-
ceived highest and lowest DB-indexes are drawn. These figures illustrate the bias
of our DB-index implementation.

As a consequence of the unreliability of the DB-index, the main tool for examin-
ing the clusters will be visual inspection. This will allow us to account for the
different aspects of trajectory similarity and formulate conclusions accordingly.
Re-examining Figures 7.1 and 7.2 with visual inspection it would appear that
SSPD produced cleaner and fewer clusters than both EDR and ERP. This is in stark
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(a) EDR;ε= 0.203, highest rank

(b) SSPD, lowest rank

Figure 7.1: The AP-clusters of the measures the best and wort Davies-Bouldin
indexes.

contrast to the ranking created by the Davies-Bouldin criteria under both HCA and
AP analysis.

This evaluation alternative comes with its own drawbacks, one of which is the
matter of subjectivity. At the same time, it has been stated that human assessment
is an important component for determining the quality of clusters[33]. We will
not be declaring any measure better than the others as our results do not provide
support for an accurate ranking.

7.3 Cluster Behavior

First, we describe what we expected the clusters to look like based on the proper-
ties of the specific similarly distance function. For the methods that operate with
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(a) ERP, ε= 0.203, highest rank (b) SSPD, lowest rank

Figure 7.2: The HCA-clusters of the measures the best and wort Davies-Bouldin
indexes.

a parameter value, we discuss how changing that value would affect the cluster
results. Then we compare our expectations to the clusters themselves. Affinity
propagation is a was the parameter-free method, thus its results are weighted
more. On the other hand, the number of hierarchical clusters was arbitrarily set,
leading us to use its results as a supplementary evaluation.

7.3.1 Expectations

In general, there are three factors that will affect how we expect the final clusters
to appear. Measures that are context-aware should calculate fewer fuzzy clusters.
Next, measures that account for local time shifts should group trajectories that
have similar sub-sections but with an offset creating a wider band of similarity.
Lastly, we expect the noise-sensitive trajectories to create fuzzier trajectories.

Euclidean Distance is the only lock-step measure, and trajectories that are in the
same region might receive an artificially high similarly score by nature of being
near each other. A trajectory pair will be rewarded if they have elements at the
same index which are near each. This would create fuzzy clusters as each point
evaluated isolation and taking the average of the pairwise element-distances will
artificially smooth out the distances. An extra amount of fuzziness is expected to
come from the fact that this measure is sensitive to noise.
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Dynamic Time Warping optimizes for local shape similarity and warps traject-
ories to reflect similarity after shape-preserving transformations. We expect the
final clusters to appear fuzzy at first glance as the local similarities would be out
of sync. Yet upon closer examination, we should be able to spot bands of cohesive
trajectory sections. DTW is a noise-sensitive method, so we would expect some
level of fuzziness to be present, however, the clusters should be crisper than that
of the Ed.

From Hausdorff Distance, we would expect crisper clusters than both Ed and
DTW if we could guarantee the data free of noise. The maximizing over a min-
imum of all element-element pairings means that the overall shape similarity is
weighted in a way that the other measures do not account for. In other words, the
global resemblance matters more under this definition. However, the data set we
used is not noise-free so while we expect some crispness, there will be fuzziness
of the clusters due to its noise sensitivity.

One of the key features of Symmetrized Segment-Path Distance is that it ac-
counts for whole trajectory shape similarity. This means that we expect it to gen-
erate the crispest looking clusters. The expectation of crisp clusters is further sub-
stantiated by its tolerance to noise This method aimed to be invariant to the phys-
ical locations, meaning that trajectories of similar shapes with different origins
could be grouped together. This could result in some broader bands of similarity.

Recall that Edit Distance on Real Sequences uses the parameter ε to as the
matching threshold for how close how two trajectory elements are. Decreasing
the parameter value leads to an increase in strictness in how close elements have
to be, and in turn, would lead to crisper clusters. It goes without saying that a too
restrictive ε would no longer be accurate; if no trajectory elements are matching,
the only basis for similarity would be the trajectory lengths. Clusters are expec-
ted to have some level of fuzziness as EDR considers the trajectory element in
isolation.

Edit Distance with Real Penalty was computed with one parameter value. We
have established that this metric is sensitive to noise and that it accommodates
local time shifts. As EDR, this measure does isolates the trajectory elements when
computing the similarity distance. This means that there are three factors that
contribute to fuzzy clusters, thus we expect the fuzziest clusters to be generated
from this metric.

Move-Split-Merge handles local time shifts in the same manner as DTW and the
other Edit Distance-based measures. We expect to observe trajectory sections that
match and create wider bands. MSM distinguishes itself by accounting for the
values that surround a given element when computing the similarity score. This
means that we expect the clusters are crisper than those of generated by EDR
and ERP. The parameter of MSM determines to which degree Splits and Merges
are favored over Moves. As the cost increases, they will increasingly be evaded in
favor of directly substituting the element. The cost of a Move is pairwise element-
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element distance, and in turn, the clusters would resemble those created by a
Euclidean distance based measure. On the other hand, if the parameter is set too
low we expect more trajectories that do not resemble each other to get clustered
together.

7.3.2 Visual Inspection

The visual inspection inspects the apparent fuzziness of the clusters as well as
how scatted the trajectories within a cluster are. We will refer to the latter of
these characteristics as the band of similarity which describes the general trend
of the cluster. Where is it possible, we remark how larger trajectory sections were
processed. Unfortunately, spotting tendencies like that is not something visual
inspection excels at.

In the case of affinity propagation, we take note of how many clusters it generated.
The corresponding evaluation for the hierarchical clusters is taking note of how
balanced the final clusters are. With how hierarchical clusters are created, some
imbalance is expected as the most distinct trajectories will be connected last.

Euclidean Distance:

• AP: In terms of overall shape, the clusters appear very fuzzy. There are some
clusters where that have a clearer contour and some where it is possible to
spot a trend for the trajectories. Nevertheless the general impression re-
mains fuzzy; we observe trajectories that seem to oscillate freely around
the apparent trajectory band. While oscillations make the clusters appear
fuzzier, the clusters do not come across as randomly grouped observations.

• HCA: There appears to be a bias and clusters are unbalanced. Some of the
clusters contained a few trajectories while some of them encompassed a
large number of them. In those clusters the bands were obvious, but the
oscillations were even greater than those observed under AP. This makes
sense as the new clusters are created by merging similar sub-clusters. We
would expect a clearer band, but a fuzzier contour.

Dynamic Time Warping:

• AP: We observed two clusters that were very crisp and even more clusters
that exhibited clear trends. The trajectories do not seem to oscillate around
the band in the clusters as much as they did under Ed. We can spot some tra-
jectory sections that appear as if they have been re-aligned– leading to a less
messy expression. Still, there are some oscillations and noisy clusters that
make it hard to tell exactly why some trajectories were clustered together.
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• HCA: The clusters are unbalanced, however less so than the ones created by
Ed. They illustrate how shape similarity is persevered under this measure
by displaying a clear trend in the clusters. Yet, the clusters are fuzzy in that
their trajectories still deviate from the central band. From these clusters it
appears as if some of the trajectories are outliers; they appear to be distinct
from the rest of the trajectories and are placed in their own clusters.

Hausdorff Distance

• AP: Compared to DTW and Ed, the final number of clusters increased and
the clusters created were both crisper and fuzzier. The clusters display both
the most advantageous and most disadvantageous aspects of the Hausdorff
metric. However, the number of crisp clusters outweighs the fuzzy ones,
and the contours of the clusters are crisp enough to highlight more intricate
trajectory details.

• HCA: Again, we see both crisp and intricate clusters as well as very fuzzy
ones. The observations from affinity propagation hold for these clusters as
well; both the advantages and disadvantages of setting the similarity score
as the distance between two trajectory elements are highlighted. There is
one cluster that is so fussy that we were quite puzzled by how it was formed.

Symmetrized Segment-Path Distance:

• AP: This measure created fewer clusters than Hd, yet the clusters it created
appear to be at least equally as crisp. We observed that the clusters had
such tight bands that curves of the trajectories were accentuated. In con-
trast, DTW clustered the trajectories by their general shape and direction.
Whereas Hd was sensitive to noise, it becomes clear that SSPD addressed
that weakness. Two clusters stand out as more fuzzy than the others, but
this is likely due to noisy data.

• HCA: The clusters are about as balanced as those created by Hd. As was
demonstrated in the AP-clustering, there is a trend towards showing the
intricacies of shape similarity at a larger scale. The bands of similarity are
thinner than both Ed end DTW and more detailed than Hd.

Edit Distance with Real Penalty:

• AP: The clusters created by ERP are significantly more fuzzy than that of
Hd and SSPD. This is expected as it gives similarity scores based on edits
before and then the distance between trajectory elements. However, it is
unexpected that the resulting clusters were as fuzzy as those created by DTW
and Ed, especially as it created far more clusters than either of them did.
The increased number of clusters should indicate that we would have more
distinguished clusters, but this does not appear to be the case. Even still,
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we observe that clusters were not randomly put together. Looking closer at
specific clusters, it is possible to spot turns and segments that are just shifted
from each other.

• HCA: These clusters are unbalanced, there is a cluster that only has one tra-
jectory. Yet, that trajectory does not appear significantly distinct from the
ones existing clusters. From visual inspection it challenging to get more in-
sight. The bands across the clusters are quite general and there is not a
consistent show of shifted segments.

Edit Distance on Real Sequence: In discussing this method, we examine the
clusters obtained from both parameter values in parallel.

• AP: This measure generated the two largest number of AP-clusters. The most
restrictive parameter led to 48 clusters while the other value resulted in 39
clusters. In our subjective opinion, both of the parameters resulted in too
many clusters for a data set of 300 observations. However, with fewer tra-
jectories in each cluster analysis through visual inspection becomes is easier.
We observed that the clusters contained trajectories whose segments were
shifted from each other. Both parameter values resulted in crisp clusters, and
our approximation of the recommended value gave seemingly more defined
contours. While increasing the threshold value led to fuzzier clusters, these
clusters were crisper than those of ERP. This is an expected result as EDR is
noise-tolerant whereas ERP is not.

• HCA: For both parameter values, there were bands that obscured the intric-
acies of shape similarity. Once more we observed that increasing the para-
meter value resulted in fuzzier clusters. However, the increase in fuzziness
was less than expected. The largest parameter value led to a more unbal-
anced distribution of trajectories, further signifying that the smaller one
remains the most suited value for ε.

Move-Split-Merge:

As we did for EDR, the clusters created by MSM and the effect of varying the
parameter are discussed in parallel. We first note that the clusters MSM created
with the cost was set to 1 and were indistinguishable from those of Ed. This was
not an entirely unexpected result given what we know about MSM, and that the
two methods had identical rankings of the most similar trajectory pairs. By reason
of that cost parameter being set too high and the accompanying clusters already
being described, we will focus on the two remaining parameter values.

• AP: We observed that the lowest parameter value resulted in fewer clusters,
but both of the parameter values led to a larger number of clusters than
expected. As with EDR, the large number of clusters makes it easier to visu-
ally analyze them. Given that this measure is both moderately noise-tolerant
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and context-aware we expect the clusters to be crisp. Indeed, the majority
of the clusters have crisp contours wherein the intricacies of the trajectories
are preserved. Some clusters contain what appear to be outlier trajector-
ies. This would suggest that the discrimination degree of this measure was
high enough to isolate them in a way that no measures did. The smaller
parameter value resulted in both fuzzier clusters and an increase in clusters
with few trajectories. This may be an indication of that value being too low,
suggesting that 0.1 was the most appropriate cost for this data set.

• HCA: The clusters created by the lowest cost parameter were more unbal-
anced and fuzzier than those generated by the middle one. This further
supports the argument that the middle of the cost value is the most fitting
one. Interestingly, there were still trajectories that were clustered by them-
selves as if they were outliers. It looks as if these trajectories are consistent
across both parameter values and clustering techniques.

7.4 Reflections

The measures created clusters whose qualities coincide with the anticipated res-
ults. We observed fuzzy clusters where the underlying measure was less tolerant to
noise and crisper clusters where the measure accounted for whole trajectory sim-
ilarity. Almost all of the measures were elastic, and we observed several clusters
with trajectories that were time-shifted.

By visual inspection, it was hard to tell if metricity affected the clusters although
this may have been a result of picking clustering techniques that did not require
a metric distance function.

The clusters’ appearance remained consistent between AP and HCA for a given
measure, even as the number of clusters changed. This observation was to be
expected as the models that created the clusters used the same similarity distances
scores.

Lastly, we comment on a few algorithm-specific observations. The fuzziness of the
clusters created by the Euclidean distance align with its lock-step design just as
the crispness of SSPD’s clusters aligns with its design purposes. It was initially
unexpected that ERP would have the fuzziest looking clusters. However, upon
closer examination, we reasoned that it made sense that a non-context aware,
noise sensitive method that adapts to time shifts would lead to quite fuzzy clusters.

The way MSM could consistently filter out trajectories that did not behave like the
others would imply that it would be well suited for outlier detection.
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7.5 Inconsistencies from Simplifications

As noted in Chapter 5, several simplifications were made for this experiment. We
close this chapter by reflecting on how these simplifications have affected the
results.

7.5.1 Data format

The first simplification that was made was truncating the trajectories to equal
length. In doing this we removed the option to study how measures would have
handled cases like this. There would be insight to be gained from examining meas-
ures at different trajectory lengths. In particular, it is not reasonable to assume
that real data would have this property. The clusters could have ended up look-
ing quite different, possibly highlighting the difference between trajectory section
and whole trajectory similarity.

Of the algorithms in this thesis, only the Euclidean distance lacked a definition for
trajectories of unequal length. It is possible to design a comparative study where
lock-step measures can give scores for these trajectories. An option would be to
artificially add more trajectories elements by interpolation. However, we decided
against it as we felt confident there would be enough properties to examine after
the simplification.

The next data-format simplification we did was the re-scaling. The manner in
which it was done meant that the data would lose its connection to the real world.
To exemplify this we refer to Figure 7.3. The clusters were created based on the
scaled data, thus those clustered were quite crisp. However, when displaying those
same clusters with their raw coordinates it becomes clear how scattered the tra-
jectories are. It becomes clearer that trajectories were clustered together based on
shape similarity. We reiterate that the intent was to study measures themselves,
thus the data set selection— and thereby the re-scaling was inconsequential.

7.5.2 Distance Computation and Evaluation

We tested three measures that required a parameter and we did not do any proper
parameter tuning. ERP would likely have had more agreement with the other
measures in Table 6.1 if different values for the reference point had been tested
out.

The application we chose for the similarity distance measures, clustering, is itself
an area of active research. The interconnectedness of clustering techniques and
distance algorithms could have been studied in more detail before settling on
affinity propagation and hierarchical clustering analysis as the evaluation basis.
We acknowledge that there may be traits of the selected measures that have been
obscured or misrepresented.
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Figure 7.3: Affinity propagation clusters created with SSPD, but showing the raw
trajectory locations





Chapter 8

Conclusion and Further Work

8.1 Conclusion

In this thesis, we studied seven similarity measures for trajectory data, five conven-
tional ones and two recent ones. First, we clarified what constitutes a trajectory,
and then we discussed how the notion of similarity of them varies. The measures
we reviewed vary in how they defined similarity and we elaborated upon some of
their advantages and disadvantages.

In order to experimentally compare the algorithms, we defined an application
wherein the only thing that varied was the similarity distance computation. The
application we decided on was clustering and we used two techniques for creating
them. The clusters gave us a vantage point for further description of the measures,
and from the clusters, we were able to observe the theoretical characteristics of
the measures in practice. We summarize what has been achieved in this thesis by
referring back to the research objectives:

Research Objectives 1 and 2:

The conventional similarity measures we examined were the Euclidean distance,
Dynamic Time Warping, Hausdorff Distance, Edit Distance on Real Sequence, and
Edit distance with Real Penalty. The latter two are newer than the other ones, how-
ever, their prominence in the literature establishes them as conventional methods.
A commonality between these measures is that they are not context-aware. In
terms of noise tolerance, there was no consistency, and as for elasticity all but Ed
are could adapt to local time shifts.

Both Move-Split-Merge and Symmetric Segment Path Distance are methods that
were developed in order to address the shortcomings of the conventional methods.
Based on this we categorized them as the newer distance measures.

53
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The development of MSM was a response to DTW and ERP while SSPD was an
advancement of Hd. A feature that is shared between MSM and SSPD is that they
both were designed to account for whole trajectory similarity. Additionally, they
are more tolerant to noise than their respective conventional method inspirations.
We saw this experimentally as MSM producing crisper clusterings than DTW and
ERP and SSPD producing crisper clusterings than Hd.

We were not able to determine any effects of metricity, neither for the conventional
methods nor for the newer ones. For the visual representation of how trajectory
features were treated by the we refer to Appendices B and C

Research Objective 3:

In our set up, there was only one application that tested the algorithms’ perform-
ance against each other. The lack of diverse applications and their removal from
real-world observations are limiting how much insight we could gain regarding
broader uses for the measures. Nevertheless, the variance of the cluster we gen-
erated demonstrates that similarity distance measure choice matters.

We could have constructed arguments that would have framed a given measure
as the most suited one for shape-based clustering. However, we reiterate could
not have generalized its applicability to other tasks.

Optimizing for global shape-similarity should be prioritized if the intended applic-
ation is computer vision or migration analysis. On the other hand, locally shifted
similarities are needed for database management tasks such as outlier detection
and trajectory uncertainty. An outlier in this context could be either a trajectory
element that stands out from its surrounding elements or a trajectory that stands
out from the rest. Trajectory uncertainty management seeks to increase the utility
of trajectories by approximating locations between observations. In both cases, a
reference model of local resemblance is more apt.

Consequently, we remark that the accuracy and reliability of analysis or manage-
ment tasks depend on whether or not an appropriate algorithm was chosen.
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8.2 Further Work

The work we have done for this thesis explored just one class of trajectory simil-
arity and one particular application for similarity measures. There are aspects of
trajectory similarity we did not inquire into. Thus we suggest two extensions of
our experiment which would facilitate a more comprehensive study.

As we noted in Chapter 5, our set up was not conducive to examining the dif-
ferences in computational complexity. If it were possible, we would have liked to
include an evaluation of measures’ performances; both for the data set used here
and sets where the lengths of the trajectories had not been artificially shortened.
As with most algorithms, it is good to be informed about how they will perform
as the size of the data or the data set increases.

It would make sense to include more applications for the measures. Along with
clustering, classification is a commonly selected application for testing the meas-
ures. However, we argue it would be interesting to run either an outlier detec-
tion or noise removal task. This could hopefully highlight peculiarities of how the
measures distinguish the trajectories.
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68 K. L. Holm: Trajectory Similarity

Figure B.1: Affinity Propagation: Dynamic Time Warping
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Figure B.2: Affinity Propagation: Euclidean Distance



70 K. L. Holm: Trajectory Similarity

Figure B.3: Affinity Propagation: Edit Distance on Real Sequence, ε= 0.101
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Figure B.4: Affinity Propagation: Edit Distance on Real Sequence, ε= 0.203



72 K. L. Holm: Trajectory Similarity

Figure B.5: Affinity Propagation: Edit Distance with Real Penalty
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Figure B.6: Affinity Propagation: Hausdorff Distance



74 K. L. Holm: Trajectory Similarity

Figure B.7: Affinity Propagation: Move-Split-Merge, cost= 1
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Figure B.8: Affinity Propagation:Move-Split-Merge, cost= 0.1



76 K. L. Holm: Trajectory Similarity

Figure B.9: Affinity Propagation:Move-Split-Merge, cost= 0.01
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Figure B.10: Affinity Propagation: Symmetrized Segment-Path Distance
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80 K. L. Holm: Trajectory Similarity

Figure C.1: Hierarchical Clusters: Dynamic Time Warping
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Figure C.2: Hierarchical Clusters: Euclidean Distance



82 K. L. Holm: Trajectory Similarity

Figure C.3: Hierarchical Clusters: Edit Distance on Real Sequence, ε= 0.101
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Figure C.4: Hierarchical Clusters: Edit Distance on Real Sequence, ε= 0.203



84 K. L. Holm: Trajectory Similarity

Figure C.5: Hierarchical Clusters: Edit Distance with Real Penalty
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Figure C.6: Hierarchical Clusters: Hausdorff Distance



86 K. L. Holm: Trajectory Similarity

Figure C.7: Hierarchical Clusters: Move-Split-Merge, cost= 1
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Figure C.8: Hierarchical Clusters:Move-Split-Merge, cost= 0.1



88 K. L. Holm: Trajectory Similarity

Figure C.9: Hierarchical Clusters:Move-Split-Merge, cost= 0.01
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Figure C.10: Hierarchical Clusters: Symmetrized Segment-Path Distance
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