
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g 

Cy
be

rn
et

ic
s

Benjamin Benjaminsen

Procedural terrain modelling with
geometric multi-attribute features

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth
December 2021

M
as

te
r’s

 th
es

is





Benjamin Benjaminsen

Procedural terrain modelling with
geometric multi-attribute features

Master’s thesis in Cybernetics and Robotics
Supervisor: Sverre Hendseth
December 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics





Problem description

The generation of realistic landscapes is a hard and long sought after achievement
in Procedural Content Genration (PCG).

While the use of PCG today is applied to the generation of a wide verity of content,
the generation of landscapes and environments is possibly one of the most commonly
well known due to its visible impact, and gameplay impact on several popular games.

The topic of terrain generation has also received a significant amount of attention
from academic research over multiple decades, as well as there has been created
numerous tools either with the capabilities of, or for the specialized purpose of
authoring terrains with the help of procedural techniques.

Still after several decades of attention, efficient, detailed and realistic modelling of
real world terrain is a hard problem where there is no clear universal technique that
will satisfy all criteria for all cases. A usual approach to terrain generation is the
use of determinant noise and simulation of natural processes, in many cases this is
also combined with artistic modification to achieve desired results.

In this work the student shall approach the problem of procedural generation of
terrains based on discrete terrain features instead of noise. The work is an extension
of a previous work on the topic and is aimed at improving previously pointed out
aspects of the previous work, and the student shall:

1. Explore existing research and methods relevant to solving the problems

2. Formulate and consider possible approaches for solving these problems

3. Make design and implementation for these approaches to solving the problems
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Abstract

This work presents the designs and implementation created for further improving a
method of generating digital terrains based on procedurally modelling key landscape
features.

From the preceding work, a flexible framework was created for procedural generation
driven by geometric skeletons made from a collection of individual shapes repres-
enting such key features of a landscape as mountains, rivers and lakes. The method
however had issues with being excessively slow running and creating terrains with
little detail and key features shaped like straight lines.

This work improves upon and extends the previous work, addressing the efficiency
of creating the surface geometry from a skeleton, and creating more detail by the
use of fractal shapes to describe features. The method is also extended to generate
further values needed for a comprehensive description of a generated terrain beyond
the elevation.

The implementation also makes it simple to experiment with most of the implemen-
ted functionality by graphical configuration in the WorldSynth terrain authoring
software.
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Sammendrag

Dette prosjektet tar for seg utforming og implementasjon for å forbedre en metode
for generering av digitale landskap basert p̊a prosedyrisk modellering av viktige trekk
ved et landskap.

Fra det tidligere arbeidet, har det vært laget et fleksibelt rammeverk for prosedyrisk
generering bassert p̊a geometriske skjelett dannet fra en samling former som rep-
resenterer viktige og formende trekk i et landskap, slik som fjell, elver og innsjøer.
Men metoden viste seg å være urimelig treg å anvende, samt at resultatet var et
landskap med lite detaljer og tydelige rette linjer.

Dette prosjektet forbedrer og bygger videre p̊a det tidlige arbeidet, ved å forbedre ef-
fektiviteten til genereringen av overflategeometri fra en skjelett struktur, og innfører
bruk av fraktale former for å skape mer detaljer. Arbeidet utvides ogs̊a for å generere
ytterligere verdier for en mer utfyllende beskrivelse av et terreng i tilleg til høyde.

Implementasjonen gjør det ogs̊a enkelt å eksperimentere med det meste av den
implementerte funksjonaliteten ved bruk av grafisk konfigurering i WorldSynth, et
program spesialisert for tilvirkning av digitale landskap.
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Chapter 1

Introduction

1.1 Problem description

The problem taken on in this work is a continuation of my previous work, with
the title ”Feature-modeled procedural terrain generation with adaptive height eval-
uation” [1].

The focus of this continuation, is on accommodating further detail in the resulting
output, while also improving the efficiency of the method. This is so that the method
may be reasonable to use for generating a believable terrain during the run time of
an interactive application, like for example a game, in which the generation of the
final output needs to keep up with with a player traversing the generated terrain.

1.2 Motivation

Since environments are an important part of modern interactive media like for ex-
ample games, the creation of such environments is an important topic. Due to the
scale and complexity of many environment, it may quickly becomes unreasonably
time consuming and expensive to have a human creating all parts of an environment,
down to the finest details. Therefore the artistic creation of environments, whether
they are imitations of natural environments, like lush landscapes, or environments
created by human development, like dense modern cities, the process of digitally
creating them will generally rely on reuse of assets or procedurally generated assets.

The procedural generation of realistic terrains is a hard problem to solve as there are
many natural processes that together happen to shape a landscape over millions and
billions of years. When terrain assets are created for a game or a film production and
the terrain is expected to stay the same after release, it is possible for environment
artists to manually design terrain with fine control, and use simulations of natural
processes like erosion to greatly imitate real world landscapes that cohere to an
artistic vision, but this approach is not possible if the environment is expected to
instead be uniquely generated on a user’s system as it is being explored.
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For this fully procedural generation of environments, the problem of creating be-
lievable results becomes significantly harder as a computer will not have an artistic
vision to its creation, and the simulation of natural processes quickly become de-
manding to apply at run time, when expecting to deliver a seamless experience to
the user. And this is even before considering how results of these processes should be
propagated to avoid conflicting boundary values if one is to generate infinite world
put together by separately generated sections at different times.

One of the most recognized problems relating to generating realistic landscapes,
especially when the landscape is large or even infinite, is the generation of rivers
flowing in a consistent downwards direction.

Currently used approaches to procedural generation of terrains are often based on
the usage of coherent noises like perlin, open simplex or worley. But while these
noises are easy to use, and multiple octaves can produce results that have some
similarities to terrains, the results lack the general structure to terrain that has
been shaped by natural processes like erosion, that form continuous pathways for
water to flow from higher elevations to lower elevations. Instead these methods
instead tends to produce a series of local minimums where water would collect as
lakes without any given drain.

Some times rivers are imitated by the use of noise, but such rivers may often be
aptly named as long and narrow oceans that have infiltrated the landscape, or more
simply very weird shaped lakes, as they remain flat and without direction, usually
at a global elevation in all cases, and often do not even connect to another body of
water, instead often ending abruptly if not even going in loops.

In my previous work I explored generating terrains based on geometric features, with
deterministic evaluation of elevation at any point using weighted averages. The work
showed the method applied to generate procedural landscapes that include terrain
features like rivers, lakes and mountain ridges, but these show up as distinctly
unnatural straight lines while nature generally shows fractal properties in its forms,
and they are therefor not satisfactory for final use. Even more detrimental to actual
usage is the evaluation time to produce the elevation from a skeleton layout, which
grows with the total number of features in the skeleton layout instead of the density,
causing scaling of the method to have a quadratic time complexity.

And lastly a terrain is more than just an elevated plane void of further context, a
terrain is generally composed of different types of rocks, dirt, vegetation and other
details. Much of such details also have ties to the key features of the landscape, and
it is therefor also assumed to be reasonable to model these as a part of the features
in the skeleton layout.

From these considerations, it is therefor desirable to further develop the method
from the previous work into a more mature state, capable of efficiently creating
more detailed terrains.
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Chapter 2

Background

2.1 Spatial data structures

When an application needs to store and access large amounts of data, it is often
desirable to access subsets of the data that meets specific condition or that is in some
ways related or similar. The optimization of solving these kinds of problems for
different applications are achieved trough the use of data structures and algorithms.
The efficient organization and searchability of large amounts of data is an important
topic in the field of database systems, where large amounts of data needs to be
accessed, manipulated and queried quickly.

In relation to the topic of this work where features are in the form geometric primit-
ives placed across a multidimensional space, more specifically a plane, there exists a
lot of similarities to maps digital storage of map data, and there is also encountered
some problems with similarities to problems that are relevant in Geographic Inform-
ation System (GIS) applications like searching for data that overlaps with a point
or multidimensional range.

In the pursuit of fast and efficiency storage and querying spatial-temporal data,
significant research has gone into the development storage structures and database
systems that can handle data with multidimensional indexes. It is therefore reas-
onable to look for relevant storage structure and practices with relevance from GIS
application.

Some data structures for spatial data are:

• Spatial hashing

• Quadtree

• PM-quadtree

• MX-CIF quadtree

• KD-tree

3



• R-tree

• Bounding Volume Hierarchy

• AABB Tree

As with other data structures, these different structures have their own advantages
and use cases they are better suited for, and some like the R-tree has a whole family
of sub types that have been created over the years in pursuit of better versions for
both generalized and specialized problems [2].

Out of these data structures, the R-tree, or more specifically the R* tree version of
the structure, is one of the most generally utilized and flexible structures.

2.1.1 R-tree

The R-tree is an indexing structure for handling non-zero sized data in a multi-
dimensional space [3]. The indexing is done through a height-balanced tree structure
where each entry in a node of the tree has an associated bounding rectangle. For
leaf-nodes, the entries in the node are the indexed data entries, and the bounding
rectangles are the minimum bounding rectangles for these data entries. For non
leaf nodes, the entries are other nodes, either leaf nodes or non leaf nodes, and the
bounding rectangles are the minimum bounding rectangle enclosing all bounding
rectangles of the child node entries.

The R-tree is a height-balanced structure with all leaf nodes at the same depth in
the tree structure, and all indexed data entries are found in the leaf nodes. Each
node in the tree has a capacity for M entries, and has a minimum fill rate of M/2
entries. This holds true for both leaf nodes and non-leaf nodes.

Querying

An R-tree may be queried for data that intersects a point or an are that defines
a spatial query. When querying the R-tree, the search will starting from the root
node, descend the tree along the entries of the root node and subsequent entries of
these nodes, while the entries of the root node are not leaf nodes, when the bounding
rectangle of the entry intersects with the query point or area, until all relevant nodes
have been visited and data entries with intersecting bounding rectangles have been
retrieved. This search of the tree structure may need to visit anything between
no sub entries in a node, to all entries of the node depending on the entry bound
intersecting with the spatial query, and there is thus no good way to guarantee a
good worst case performance, as an area query intersecting all of the indexed entries
of the R-tree is possible. In practical use where the query is of limited size relative
to the coverage of the indexed entries with a uniform distribution, the R-tree offers
an efficient search performance for the query.
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Figure 2.1: The structure of an R-tree, both tree structure and the layout of the
bounding rectangles.

Source: R-trees: A dynamic index structure for spatial searching [3]
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Insertion

When a new data entry is inserted into the R-tree, it is wanted to insert the new
entry where the entry such that it is grouped together with entries the generally
same area. Therefore the insertion of a new entry first chooses the best fit leaf node
to insert the new entry into. This leaf node is chosen by traversing the tree down
the most fit child node for each level of the tree, until a leaf node is found.

What is the most fit node for the entry is determined in an order of choosing a node
with the least need of area enlargement of the bounding rectangle, with ties resolved
by choosing the node with the smallest area.

When a leaf node has been selected for insertion, the new entry is inserted into the
leaf node. If the insertion causes the leaf node to be overfilled by inserting the entry
into a node already M entries such that there become M + 1 entries, the leaf node
is split and the previous entries along with the new entry are distributed equally
between two leaf nodes in such a way to minimize the overlap of these two nodes.

After the new entry is inserted, and any split done, the changes to the tree is
propagated upwards the tree from the leaf node, adjusting the bounding rectangles
of the node and propagating any node split upwards. If the node split is propagated
to the root node such that the root node splits, the tree is grown taller.

Removal

When deleting an entry from the R-tree, the tree is searched for the leaf node
containing the entry, and if it is found, it is removed. Trying to remove entries that
are not indexed by the R-tree will not find any leaf node containing the entry, and
therefor not modify the R-tree.

After an entry is removed from the a leaf node, the tree may possibly be condensed
if this causes the leaf node to have too few entries. This causes the entries in the
node to be relocated among other nodes by reinsertion to the parent node, this
distributing the entries among the other leaf nodes, if the removal of the leaf node
causes the parent node to have too few entries as well, the change may possibly
propagate up to the root nod, in which case it is left with only one entry, the tree is
shortened. The removal of the entry also causes the bounding rectangle to update
for the parent node, and propagates up the tree.

R* tree

The R* tree is a variation of the R-tree optimized for making a tree structure with
better properties related to covered and overlapping area of non-leaf nodes, as well
as making more square nodes, thus creating smaller and more separated non-leaf
nodes [4]. This improvement of the non-leaf nodes makes a tree structure more
generally efficient to query, as there are fewer possible branching paths in the tree
that needs to be traversed when performing a spatial query. The R* tree also only
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has a slightly higher implementation cost than the original R-tree.

The optimization is achieved by the means of tree changes to the insertion behaviour
of the R-tree.

1) During insertion the traversal down the tree in search of a leaf node for insertion
only takes takes into account the change and size of the node area, such that this is
minimized in the original R-tree, the R* tree here improves the insertion by also a
taking into account margin and overlap in this search for a leaf node to insert into.

2) The R* tree also changes the node splitting operation when the chosen leaf node
is already full. The R* version for splitting is performed based on goodness values
determined from area-, margin- and overlap-values.

3) As the order of insertion of entries into the R-tree influences the shape of the tree
such that entries inserted early in the growth of the tree have introduces undesired
rectangular shapes of non-leaf nodes which are less efficient than rectangular nodes.
While a very local reorganization is performed during a node split, the R* tree also
addresses this by reorganizing the tree on a larger scale by forced reinsertion. When
a leaf node chosen during for insertion overflows with the addition of a new entry, a
portion of the entries in the leaf node is attempted reinserted instead of splitting the
node. The reinsertion of entries is only attempted once during an insertion, and if
the reinsertion further causes leaf nodes to overflow, these subsequently overflowing
nodes are split as normal.

2.2 Signed Distance Fields

Signed Distance Field (SDF) and its usage is based on the creation of functions that
can determine the distance between some point and a shape, whether that shape is
2D or 3D. Since SDF is signed, the distance function can also determine whether
the point is inside the shape to the edge or shell of the shape.

Figure 2.2: Illustration of the SDF of a line segment and a polygon.

Source: 2D distance functions [5]

The usage of distance functions has a use in rendering 3D graphics by a process of
ray marching where surfaces are implicitly given by the distance functions, and this
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way of rendering has shown interesting properties with rendering of procedural and
fractal surfaces [6] [7].

While a wide variety of shapes can be created as primitive shapes with SDF, more
variations and complex shapes may also be created by additional alterations or
combinations of such primitives [5] [8].

2.3 Level Of Detail

In the world of interactive 3D applications, such as games, 3D moidelling applica-
tions and others, there exists the issue of scenes consisting of 3D geometry becoming
more complex than a computer is able to render within reasonable time for an such
interactive applications [9]. This lag manifests itself in the form of reduced frame
rate of the output picture, and if the complexity of the scene becomes too high for
the hardware to render it within reasonable time, the user will experience this as an
issue during use of the application.

A case where the amount of detail in a scene may easily become a problem, is when
a scene becomes large with lots of details distributed all over the scene. In that case,
there may be significant more detail present far away from a viewpoint than what
can actually experienced in the rendered results, while the level of detail may be
what is desired when the viewpoint is close, thus the details of geometry that is far
away from the viewpoint is less important than the closer geometry. The rendering
of all details thus makes sense when the details are close to the viewpoint, but when
the details are far away, they do not contribute appreciably to the result and the
geometry could reasonably be be less detailed for these less important geometries.

Figure 2.3: An example of a 3D model with three levels of Level Of Detail (LOD),
from a fully detailed version to a lowest detail version used when the model is far
away and the detail is of little importance.

Source: A Review on Level of Detail [9]

To address the problem described, where a high level of detail is wanted in a scene,
while also having efficient rendering, games use LOD. LOD enables the same geo-
metry in a scene to appear with differing amounts of detail depending on the distance
the geometry is from the viewpoint, and thus ho much of the detail may be shown
in the rendered results. This woks such that the geometry is less complex, with
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less details, and faster to render when it is further away from the viewpoint, and
thus smaller in the rendered picture, while geometry closer to the viewpoint has
more complexity ans higher detail that may be appreciated only when the view-
point is close to the geometry. Moreover, in addition to just have the geometry in
the scene be static, the geometry is changed as the viewpoint moves closer or further
away from the given geometry, such that complex geometry becomes less detailed
as the extra detail is not important, and visa versa. The geometry may even change
between several levels of complexity for different distances to the viewpoint such
that the amount of detail in a scene is approximately the same as what can actually
be seen in the rendered result.

For LOD to work as desired, the geometry desired to be included in a scene need
to be prepared for inclusion with the use of LOD. This is usually done by creating
several version the geometry with varying amount of detail complexity, how many
variation will depend and the variations may be prepared through various means of
tools and using automated or manual processes, or a combination. These prepared
versions of the geometry then may be used at the run time of the application where
they will be changed between as described.

2.3.1 View Dependent Rendering and Virtualized Geometry

The traditional way of going about LOD, as described above, is to change the
geometry of objects in a scene between variation of the same object with differing
amounts of detail in the geometry, depending on the distance from the viewpoint.
This though requires the different version of the geometry to be prepared in advance
for the same object. And the geometry for an object is also completely replaced for
a detail level.

Since the general goal with applying LOD is to render the geometry with a detail
level fitting for how much of the detail may be displayed, and the geometry of an
an object is traditionally completely replaced for different levels of detail, there
comes an issue when the viewpoint becomes such that it sees a relatively large range
between the closes details and the furthest details seen of the object, as the closes
part of the object may need significantly more detail than the furthest part of the
object would need. With the object having a detail level appropriate for the closeup
view, the furthest viewable part of the same object may have significantly more
detail than is necessary in such cases, and it would therefor be desirable to have
differing levels of detail across the object.

With the introduction of the Unreal Engine 5, Epic Games introduced their vir-
tualized geometry system, which they call Nanite [10]. Nanite is an implemented
solution to view dependent LOD, where the density of detail across an object is
adapted to the detail that can be viewed in a rendered frame, and thus the detail
density of the mesh may differ across the object. This build on, and is in large part
an implementation of View Dependent Rendering (VDR) for polygon meshes [11]
[12].

VDR as a research topic is not especially new, and stems back several decades
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Figure 2.4: LOD with view dependent cutting in the detail levels used for differ-
ent parts of a mesh allows a model to feature different detail densities that are
individually chosen based on how much detail can be seen by the camera.

Source: Nanite - A Deep Dive [10]

already, with especially use in rendering of parametric surfaces, where it has been
used for adaptive tessellation of the NURBS surface [13] [14].

2.4 Midpoint Displacement

MidPoint Displacement (MPD) is a method for producing natural irregular objects
such as stones, terrain, trees or other such that are not characterizes by smooth
macroscopic features [15]. Rather such objects are of a fractal nature, where the
details of the object shrinks, but still remains complex even as one looks closer.

The method of MPD works by dividing primitive constructs such as lines, triangles
or squares, into multiple new and similar primitives contained within the previous
primitive. A random offset is then added to the newly created descriptive part of
the geometry resulting from the division. This operation is illustrated in Figure 2.5.

As an increasing number of iterations of this division are performed, the amount of
added displacement is lessened with each iteration, such that the random displace-
ment produces new detail with a detail level relative to the scale of the primitive
being divided. Results from such an iterative application of MPD is shown in Figure
2.6.

This is useful for producing fractal outlines and surfaces such as coastlines and
terrain surfaces. A method of producing terrain surfaces by the use of MPD, is to
iterative
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Figure 2.5: MPD performed on line between (t1, f1) and (t2, f2). The new point
(tmin, fmid) is displaced a randomized distance l in normal direction from the
midpoint of the line [15].

Source: Computer Rendering of Stochastic Models [15]

Figure 2.6: Fractal polyline with 2, 5, and 257 points created by multiple iterations
of midpoint displacement [15].

Source: Computer Rendering of Stochastic Models [15]
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Figure 2.7: A low amount of samples along a digitized model of the Australian
coastline with procedural details created by the use of MPD.

Source: Computer Rendering of Stochastic Models [15]

2.5 WorldSynth

The following section introducing WorldSynth, is an excerpt taken from: Feature-
modeled procedural terrain generation with adaptive height evaluation [1].

In this work of this report I will be using WorldSynth as an underlying framework
for the implementation of my generator [16].

WorldSynth (WS) is an open source project that functions as a framework, engine
and editor, for procedural generation of environments. WS provides an open and
flexible platform inspired by industry standard tools for terrain creation, but while
such other existing tools have their primary focus on providing tools used to create
large realistic terrains during the development process of a game or for other media,
WS aims at expanding the application of the existing workflows from these tools,
to also cover usage in-engine for generation of terrains in the run time of games, as
well as standalone use by environment artists creating premade assets, and it also
applies the existing workflows to handling a wider variety of environment data like
volumetric data.

While originally created for the purpose of the creation of a player modification to the
game Minecraft [17], to introduce a highly configurable terrain generator in replace-
ments of the game’s own included terrain generator, WS itself is game-agnostic, and
any platform specific compatibility necessities for any game are provided through
the use of addons to WS.

WS is a project created and maintained by the author of this report, and has been
in development for several years (since middle of 2017) before the work covered by
this report was started.

The work covered in this report does not, and is not intended to cover any aspects of
core developments to WS, but there is a possible that aspects of the work covered in
this report may be a cause and reason for some minor changes to WS during and after
the duration of this project, whether such relations are conscious or unconscious.
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Figure 2.8: Screenshot of the WorldSynth patch editor, here shown with an example
file for a volumetric voxel terrain.

This work has during its progression been developed using development versions of
WS, so some of the screenshots taken within WS at different times through out the
report may have some visual differences as a result of development on WS going on
in parallel to this work.

2.5.1 An overview of WorldSynth

WS is created to enable a modular and graphical, data flow driven approach to
terrain generation. In Figure 2.8, a screenshot of the WorldSynth patch editor,
called ”Patcher” is shown. A ”path” in WS is an arbitrary collection of modules
with configured parameters and that are connected together in a graph. This can
be seen in Figure 2.8 as the block diagram view to the right. Each block in this
view is called a ”module”, and represents an algorithm that produces an output,
possibly according to one or more inputs that may or may not be optional. The
modules can be connected together such that the output from one module becomes
the input to one or more subsequent modules in a directed acyclic graph, thus
allowing for combination of multiple simple discrete algorithms into sequentially
complex combinations in a graphical manner. The graph direction is read with
direction of operation from left to right, where the connections to the left of a
module produces inputs to the module, and connections to the right of a module
consumes the outputs from the module.

Each of the lines in the graph view represents the connections and flow of produced
output result from a module, to the input of subsequent modules. The data trans-
ferred between modules can for example be information about a terrain’s height at
different locations in the form of a heightmap, the color of the terrain in form of
a colormap, or the types of ecosystems in the form of a biomemap, and WS also
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extends to volumetric types.

The output results from a module can be viewed by selecting the module, and an
appropriate preview of the results is rendered in the preview render to the top left
of the editor as shown in Figure 2.8.

2.5.2 Data types

The types of information mentioned as example of outputs in the above segment are
just a few examples of what types can be operated with. This information that it is
moved along the graph is referred to as ”data types” in WS. Each data type is used
to store and different types of data used to representing a terrain or data used in its
construction, and each data type implementation has an according interface to set
and retrieve this data.

At the current time there are two important distinctions to used data in WS; there
is globally constant data, and location based spatial data. Globally constant data
is not bound to any spatial location or region, example of such are scalar values
that can be used as inputs for parametrization of complex patches, with possibly
algebraic combinations used as inputs to one or more modules that can accept scalar
inputs. There is also spatial data that on the other hand is location based data, and
this describes lactated data that needs to exist within a given location bound of up
to 3 dimensions. In WS this location bound is called an for an ”extent”, and an
examples of this type of data can be heightmaps. Heightmaps are a located data type
that describes terrain height within a given two dimensional with a start X and Z
coordinate, and a width and length relative to the start coordinate. Another example
is the ”materialspace” type that stores voxelized discrete material assignment within
a three dimensional bound, and can be used to store for example a soil compositions
underground.

Data types in WorldSynth are arbitrary to their purpose, and a data type for any
purpose may be implemented as long as an interface for it can be created. Taking
advantage of the object oriented programming and lambdas in Java, it is also possible
to implement data types for functionality instead of discrete data.

All data types in WorldSynth are extensions of the AbstractDatatype class in the
WorldSynth that defines the interface for WorldSynth data types. An addon can
implement its own custom data types by extending this class, and a preview renderer
for the datatype is implemented as an extension of the AbstractPreviewRender class
and defined for the data type as a part of the data type implementation.
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2.5.3 Modules

Figure 2.9: Example of a module and its parameters, shown in WS.

Source: Feature-modeled procedural terrain generation with adaptive height evaluation [1]

Modules in WS functions as containers for algorithms that can create, modify or
convert the data of different data types. They can have an arbitrary set of inputs
and outputs that can be connected up with compatible IO of other modules. Each
module also also has an arbitrary set of parameters that are used to configure the
module.

All modules in WorldSynth are extensions of the AbstractModule class. The Ab-
stractModule class implements the base functionality of a module and the interfaces
that need to be implemented for specific modules to define relevant IO and para-
meters, and for performing the module’s functionality.

When building the output results of a module, the module gets a requested for an
output. The module will first get a call to the getInputRequests method whare
it will determine what inputs it need to build the requested output. This request
for inputs is then returned and the individual requests are forwarded to any other
modules connected the the inputs to the current module for processing.

Later the module will a call to the buildModule method with the same output
request as well as any of the requested inputs that could be provided. According to
the request for output data, and the provided input data, the implemented algorithm
for the module will then generate the output if possible and return this. A more
detailed description of the working of this process is found in Appendix ??.

Implemented modules need to be registered by the module registry before they can
be instanced in a patch.
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2.6 Previous works

2.6.1 Feature-modeled procedural terrain generation with
adaptive height evaluation

In my previous work leading up to this project, explored feature defined terrain
generation for terrain formations with mountain ridges, rivers and lakes [1]. The
method developed in this work allowed for the creation of low detailed terrain by
procedural layout of primitive skeleton features, and the evaluation of terrain eleva-
tion of layout in the form of a function that can be used to continuously get terrain
elevation in a general area where such features exist in the skeleton layout.

The method developed was based on first performing a layout of features according
to an algorithm that can place the major features in the geography like mountains,
lakes and river with a reasonable relationship to each other. The features represented
as simple geometric primitives like lines and polygons, with corresponding elevations.
And then a terrain elevation is evaluated as a weighted average if such features based
on distance.

The method is broken down into several smaller discrete operations that may be
treated with a high level of modularity. These operations are executed in an order
that may be described by a Directed Acyclic Graph (DAG), and this order of execu-
tion of operations for how the method generated the layout, may even be graphically
configured as a form of data flow programming, as it is made available in WS.

The layout is mainly based on the creation of base landmass outline in the form of
a polygon, created by randomly displacing the vertices of a low-poly circle along a
line through the center and the given vertex, and then applying some number of
iterations of MPD to created further detail of a coastline. River may then further
be grown in lands by the use of a Poisson Disk Sampling (PDS) process where newly
grown points are connected with the parent to form lines. Along with the growth of
rivers, there may also be generated layout for lakes as well, although the possibilities
for different approaches to the creation of rivers and lakes are briefly discussed in
the work itself. Finally the work creates layouts for of mountain ridges by creating
a voronoi diagram from then previously laid out features, and removing edges in the
diagram that are assumed to cross previous features, before a final conflict resolution
is performed to clean up remaining artifacts of the mountain ridges layout. There is
also a discussion relating different approaches for conflict resolutions with possible
applications for different scenarios where features may be interfering by intersection,
though the only approach used in implementation is removal of conflicting features
based on priority.

An illustration of the configuration for skeleton layout with rivers, lakes and moun-
tain ridges in an island outline is shown in Figure 2.10.

Further on, the elevation evaluation is as described preformed by a process of
distance-weighted average of feature elevations. It is essential that all primitives
describing a feature has an SDF function that can evaluate the euclidean distance to
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Figure 2.10: Skeleton layout for the terrain of the results from the previous work. In
the layout preview the color coding is such that: red is the landmass outline, cyan
are rivers, orange are lakes and white are mountain ridges.

Source: Feature-modeled procedural terrain generation with adaptive height evaluation [1]

the primitive from any point in the horizontal plane. Also every primitive provides a
height function that can be evaluated at any point in the horizontal plane to acquire
an elevation for the primitive at the closest point. This elevation of the primitive
may be different, as for example for the line primitive that may have two different
elevations at each end.

h(p) =

∑n
i=1 h(Fi, p)× w(Fi, p)∑n

i=1 w(Fi, p)
(2.1)

w(Fi, p) = wd(d(Fi, p)) (2.2)

The weighted average is calculated according to Equation 2.1, where F is a collection
of feature primitives. The h function is the height evaluation for the current feature
being iterated over at a point in the plane p. The function w is the weight evaluation
of the feature according to Equation 2.2, where wd is some weight function that takes
the input of the distance evaluated by function d for feature primitive Fi at point p.

The distance function wd(d) may be an assortment of possibilities, in the work, there
is used three distance weight functions for wd given in Equations 2.3 through 2.5,
the resulting outputs from using each of these are shown in Figures 2.11 through
2.13.

w1(d) =
1

d
(2.3)
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w2(d) = max(0,
1− d

a

d
) (2.4)

w3(d) = max(0,
1− (d

a
)4

(d
b
)2 + 1

) (2.5)

Figure 2.11: Height evaluation using distance weight function w1(d)

Source: Feature-modeled procedural terrain generation with adaptive height evaluation [1]

Figure 2.12: Height evaluation using distance weight function w2(d)

Source: Feature-modeled procedural terrain generation with adaptive height evaluation [1]

The results from using each of these distance weight functions showed that the first
alternative w1 was gave poor results where the results overall tended to a global
average, while the other alternatives w2 and w3 gave better results for merging
features as these have a limited range where after the weight falls to zero, and
thus has no more contribution to the resulting elevation beyond this range. In the
Equations 2.4 and 2.5 for w2 and w3, this range is given by the value used for a. In
Equation 2.5, there is also a value b that determines how fast the weight falls close
to the feature, which can be used to make a feature appear wider or thinner in the
resulting height evaluation.
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Figure 2.13: Height evaluation using distance weight function w3(d)

Source: Feature-modeled procedural terrain generation with adaptive height evaluation [1]

Figure 2.14: The evaluated results from the skeleton in Figure 2.10 used to construct
a voxel terrain.

Source: Feature-modeled procedural terrain generation with adaptive height evaluation [1]
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Figure 2.15: Results from the previous work.

Source: Feature-modeled procedural terrain generation with adaptive height evaluation [1]

Figure 2.16: Results from the previous work with added noise for detailing.

Source: Feature-modeled procedural terrain generation with adaptive height evaluation [1]
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Chapter 3

Specification

The work herein builds upon my previous work on modelling terrain using a pro-
cedural geometric skeleton description of features, and evaluation by merging these
to produce a heightmap for a terrain [1].

Though the previous work produces the wanted results it was intended for, being
heightmaps featuring a general structure for terrain including mountain ridges, rivers
with a consistent downwards path, and also including lakes. The method has signi-
ficant room left for improvements in relation to efficiency and the visual complexity
of the results.

The goals in this project is to build further on the previous work to:

1. Improve evaluation efficiency

2. Change to accommodate non-global weighting of features

3. Add capability for generation of additional layers of terrain data

4. Generate terrain with more detailed feature geometries

These goals are set based on a desire to bring the method explored on in previous
work closer to a state where it may be usable in an interactive application like for
example a game, while producing visually pleasing results, and including data about
additional attributes of the terrain beyond just elevation.

3.1 Evaluation

In the previous work, there was little attention given to the efficiency of the method,
and the work was instead just concerned with the overall concept, in the layout of
skeleton features, and the evaluation for merging feature values to produce the
resulting elevation.

The evaluation method iterated over all features in the skeleton during evaluation of
any location. This was in part a result from the initial design assumptions, where a
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distance weight function did not have a limited bound to its range of influence. But
this weight function showed itself to produce undesired output results, in contrast to
the the weight functions giving a bounded influence. The global range of influence
also leaves little room for optimization as it demands the contribution of all features
be considered.

By changing the approach to use skeleton features with limited bound to their influ-
ence, the possibility is opened to exclude features from evaluation when evaluating
terrain that falls outside their bound of influence.

This exclusion of features from evaluation outside of their influence bound, may be
rather better reformulated as the inclusion of features when inside their influence
bound. This is a better description of the desired behaviour, and the formulation
also points in the the direction of a possible solution of spatially indexing features,
as that opens for a query to be performed during evaluation to acquire only the
necessary features that may influence the evaluated part of the terrain.

3.2 Attributes

From the previous work, the resulting output from the method is the elevation of the
terrain. There was however also shown that with additional posterior processing,
one could to some extent generate additional data describing the terrain.

An example of such was shown using the SDF values for a the set of features de-
scribing rivers and lakes, where the distance was applied to determine where there
should be water according to a distance threshold, and further carving out the rivers
and lakes and filling them with water. But this was not an integrated part of the
main method presented, and was instead performed separately as a posterior process
from the main evaluation giving the elevation.

The generation of such other data to describe the terrain, should preferably be
performed as a simultaneous evaluation process in a systematic manner.

3.2.1 Additional terrain data

To address the generation of further data to describe the terrain beyond elevation,
the method is extended by introducing attributes representative of each data value
used to describe the terrain at any point, like for example elevation, surface ma-
terial and water depth. Whereas these attributes mentioned as examples should
be implemented during this work, further attributes should be possible to add in a
systematic manner.

Any attributes should be assignable to any feature in arbitrary combinations, such
that the attributes may be used to model the contribution of a feature on the
corresponding values of the resulting terrain. As such, any feature may be created
to have an effect on multiple values describing the terrain, like elevation and material
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for a mountain ridge, or just a single value like the material for a footpath that does
not alter the terrain elevation.

3.2.2 Non-global weight functions

The use of globally applied weight function to all features during evaluation in
the previous work, allows for little customization of transitions between different
features. As it was seen, different weight functions produced different characteristics
in the results like sharp and smooth edges. In addition, this global application also
puts a limit on the possibility of having features with a relatively smaller or larger
influence range for merging with the terrain.

To address this, the weight functions applied during evaluation may with advantage
not be a parameter of the evaluation process, with global effect, but instead be a
property of the respective features. As such, individual features may be assigned
unique weight functions as desired during creation of the skeleton layout, for example
to create smooth valley bottoms and sharp mountain ridges, by the application of
two differing weight functions for the respective features.

When considering the addition of attributes to model different data describing the
terrain, the method no longer merges just elevation values though. Given the as-
sumption that all attributes will be merged according to distance weighting in line
with the previous work, it may be desirable to merge different attributes of a fea-
ture according to differing weight function. Therefore the weight functions should
instead be applied as properties of the attributes of a feature than an attribute of
the feature itself.

3.3 Details

The results from the previous work bear a clear characteristics of being derived from
simple geometric shapes, as the results display long stretches of straight lines and
little detail. This looks distinctively artificial as natural terrain exhibits surfaces
and outlines with fractal properties.

The previous work showed examples attempting to address this to an extent by
processing of the results. One such example made the elevation less smooth, but
this did not address the straight nature of prominent features like for example the
rivers, and another was the application of simulated hydraulic erosion, but this to
an extent defeats the initial purpose of the work to avoid the usage of simulation.

Instead of relying on posterior processing, it is desired to create further details
through the method itself. The obvious approach to creating more details is to
create more features, for a more detailed skeleton layout. Besides that this should
be expected to increase the number of features needed to be evaluated, and thus
increasing the run time of the evaluation, it may also be reasonable to consider that
this may have an impact on the shape of resulting transitions between features.

23



As such, this work should explore the results of applying this obvious approach,
as well as explore further possible approaches that may perform better to enable
increased details, taking advantage of the changes to evaluation and features.
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Part I

Attributes and Evaluation
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Chapter 4

Design

4.1 Attributes

4.1.1 Terrain attributes

When modelling an environment, there will usually be several aspects used in con-
junction to create a more complete model, such as for example the elevation, the
surface material of the terrain, and also aspects describing the biome of the en-
dowment such as vegetation, echo systems, temperature and humidity. When the
environment also contains bodies of water like rivers or lakes, we probably also want
to know the depth of these water bodies, or some variation of information pairs
that in composition allows the implication of water depth, or to determine other
information about the environment.

In models where water is involved situations, the possibly simplest way to describe
water level may be as simple as determining a global water surface elevation, and
thus considering there to be water at such a height over any terrain that has a
lower elevation. But this simple method is obviously not an applicable method for
modelling environments with bodies of water at non-global elevations, like lakes at
different elevations, and rivers flowing downwards and thus changing elevation under
ways.

The description of such aspects of the terrain is essential and I will consider them
to be attributes of the terrain, and it should be necessary to involve modelling of
these attributes in the generation of a complete description of the terrain.

It is desirable that the method for adding such attributes to the modeling be mod-
ular in its implementation so that new attributes may be easily implemented in a
structured manner. In this work I will primarily be focusing on covering aspects
of the terrain that was covered with additional posterior processing in the previous
work as listed below, but with with a systematic approach that is easily extended
to new attributes as they are needed.

1. Elevation
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2. Surface material

3. Water depth

The method from the previous work, where only elevation was taken into consid-
eration, is intended to be possible to produce deterministic results for any single
point in the continuous range of the horizontal plane where the terrain is defined on
evaluation, without any dependency on results from neighbouring values to perform
this evaluation. Therefore it is natural to look at the possibility of extending this
approach, such that the results other aspects may be evaluated in a similar manner
based on distance-weighted values.

With the introduction of further aspects that may be of a different nature than the
elevation aspects of possibly different nature to how they may be described than the
elevation in the previous work, as not every attribute may be best described by a
single floating value like the elevation, like the surface material as an example, the
modelling of attributes with different value descriptions should be explored. Here
in this work I will be distinguishing the attributes into continuous and discrete at-
tribute, but there may be more ways of modelling an attribute if it is of a more
complex nature that may involve multiple values in a composite, while I expect
the modelling of such attributes to be possible to build upon the foundations un-
derstanding of these two classes of attributes I describe herein as continuous and
discrete attributes.

4.1.2 Continuous attributes

As a general description for continuous attributes as considered in this work, con-
tinuous attributes are used to model aspects of the terrain that have values existing
on a continuous scale, such as for example the elevation, which is may change in
non-discrete steps between evaluated points, ant may theoretically taking on any
fractional where this is only limited by the computer’s handling of this value, as in
the example of the elevation where this is the precision of a floating point value.

Also the water depth attribute is a primary candidate for being a continuous attrib-
ute as this is very similar to the elevation of the terrain, but instead would be used
to describe the depth of a body of water for any point being evaluated.

Building on this basic understanding of a continuous attribute to be a consciously
variable value, it is also worth to mention the extension of the possibility of extending
such values beyond just monotone values and the possible composite descriptions
of single aspects, like for example color, where a value may be described by several
sub-components values such as values for red, green and blue components, or a
hue, saturation and lightness depending on desired function. While the value of a
color may be more complex to describe with several components of simple primitive
values, in contrast to elevation that may be described by a single such primitive
value, it is still a continuous value as all the sub-components describing the value are
also continuous by themselves and therefore form a continuous range with multiple
dimensions.
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4.1.3 Discrete attributes

As described previously, attributes can be continuous, like the terrain elevation, but
some attributes of the terrain may not be best described by continuous values, or the
description as a continuous value may be either too complex, or just not a necessary
complexity for the usage of the evaluated results, thus is also entered the concept of
discrete attributes.

Some examples of such discrete attributes of the terrain may be shown in for example
surface materials, like rock and soil materials for describing the terrain surface.
While such materials in reality may not be ultimately correctly described as discrete,
as there may exist continuous transitions in the composition of a soil material over an
area in the form of what minerals, organic materials and particle sizes it is made up
of. The modelling of such may for many purposes be unnecessarily complicated,
demanding and challenging for procedural terrain generation, depending on the
application. And in sch cases the surface material may possibly instead be be
described to satisfaction from an enumerated set of possible surface materials. It is
therefore necessary with techniques for handling merging of discrete attribute types
like these.

When merging of attributes based on discrete values, it is important to take into
consideration what the wanted output of such a merger should be. For discrete
types it may be possible that the wanted output is either a single discrete value or
possibly even a collection of several values. An output with single discrete discrete
value may describe the terrain such that for example a result that says ”the ground
surface is granite” or ”the ground surface is sand”. Alter naively an output based
on a collection of multiple values may for example describe a material mix such that
it says that ”the surface is a mix of granite and sand”, or even further be paired
with additional weight to describe fractional mixes such as ”the surface is a mix of
60% granite and 40% sand”.

These different approaches to formatting an output describing the attribute may
correct for different purposes, but it is worth noting here that the fractional mix
example starts to show significant similarities with a continuous attribute featuring
multiple dimensions of complexity, similarly to the color example described before,
but with discrete materials as the dimensions in this case. This highlights how
the difference between describing an attribute as either continuous or discrete, may
not be entirely straight forward as to simply separate of attributes into two classes.
Especially through the merging process, the way a value of an attribute describes the
terrain may possibly be transformed from being single discrete materials as input,
and outputting as a continuous fraction, or the other way around where the inputs
to be merged are continuous values, while the output may be discretized to a closest
discrete value in a set, that best describes the merged results.
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4.2 Features

In the previous work, where only the terrain elevation was evaluated, the difference
between a shape and a feature was not distinct, and the implementation of the shape
itself was used for the representation of the feature where the shape by itself fully
defined the position and elevation of the feature it described, as was all that was
needed. A collection of features where as such represented simply just by a collection
of shapes.

Also, what sort of a feature of the terrain, like rivers or mountain ridges, such a
feature in the layout represented, was a result of its creation and usage in relation
to other features in the layout. The actual mechanic of such features to be a rep-
resentations of for example a rivers or a ridge lines in the final terrain, where not
discrete in a way resulting from coded implementation enumerating type of features,
but were instead implicitly defined by relationships emerging from layout of the fea-
tures, and how grouped subsets of these features where collected used in a larger
configuration.

This method of having feature types implicitly emerge without the need for being
enumerated in code, where in the previous work claimed to have interesting prop-
erties, in the potential for creation of new types of features in the terrain, like for
example roads, by relying primarily on the creation of layout algorithms that can
create the desired layouts for such features, and without the need for further defining
new behaviour for the features as representative units for the layout.

In this continued expansion of the method, this is an interesting aspect to the
method to build upon, and the usage of attributes should help improve this implicit
definition of feature types to be even more flexible.

A feature should as per the previous work, be described by a shape, but in addition
it is herein also extended to define a set of attributes per feature.

4.2.1 Feature shape

From the previous work, shapes are simple 2D primitive geometries in the plane, that
are used to define the position and form of the any feature in the terrain in a discrete
manner. One of the most important aspects of such a primitive is that there needs
to be some method for evaluating a distance between the primitive and any point in
the plane, usually in the form of an SDF function. Additionally these primitives are
also used to define the elevations of these primitives, though differences elevation
should not impact the results distance elevation. Thus the shape also needs to be
possible to evaluate for elevation at any point in the plane.
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4.2.2 Feature attributes

As well as the previously mentioned shape the is important in defining position and
form of a feature, a feature with attributes should also have attributes that define
further details about the feature. For this a set of attributes is used that may contain
any arbitrary number and selection of implemented attributes

These arbitrary attributes may be assigned to a feature without any constraining
requirements of specific collections of attributes that must or must not be assigned
in conjunction for the instance of any feature. This means that while a feature need
to have defined a shape, it may not necessarily need to have assigned any attributes,
though such a feature will thus not have any impact on evaluated final results, it
may still have possible applications in intermediary steps of the layout procedure.
In some other possible scenario, a feature may also have defined a set of attributes
that involves multiple attributes of the same types, but with different values for each
instance of the attribute assigned to the feature.

Attributes as assigned in to features in the layout, are during the evaluation merged
into the final attribute results as was mentioned in 4.1.1. This merging is based on
distance weighting of an attribute’s value, therefore distance weight functions are
defined per attribute, instead of the per feature itself like it was in the previous work
[1]. Design of distance weight functions for this discussed in 4.2.3 and merging is
further described in 4.5.2.

Mainly for the purposes shown in this work, most if not all features will define the
terrain elevation attribute and thus contribute to defining the terrain elevation, and
will have additional attributes like surface material and water depth where necessary.

4.2.3 Feature distance-weight

In my previous work [1], the method allowed the evaluation of terrain height height
by taking a distance-weighted average height of all features present in the skeleton
layout. The weight of the height contributed by any feature was determined as a
function of on the distance from the evaluated point to the relevant feature in the
form of the closest distance to the describing shape in the feature. Note that the
distance is only calculated in the plane without taking into account the any distance
in height of the feature.

In the previous work there was presented and used three different examples of weight
functions that take the distance as the input value, respectively w1 through w3.

Considering these weight functions, w1 exhibits an unbounded area of influence
where the output weight tends towards zero as the input distance tends towards
positive infinity, but the weight never truly becomes zero. Meanwhile w2 and w3

exhibits a bounded area of influence, where the weight falls to zero as d >= a, giving
the feature now influence on the output of the weighted average beyond distance
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(a) w1 (b) w2 (c) w3

Figure 4.1: Example results from height evaluation with previous example distance-
weight functions.

Source: Feature-modeled procedural terrain generation with adaptive height evaluation [1]

4.2.4 Unbounded distance-weight

Results produced using these three weight functions are shown in Figure 4.1, and
shows that the unbounded distance-weight function w1 had an overall tendency to
have the terrain height tend towards the global average very fast between features,
which is an undesired behaviour as the goal of the height evaluation is to produce
fitting terrain height such that it blends surrounding features at the evaluated point.

Another issue with the unbounded distance-weight, is that by its infinite nature, the
infinite bound leaves little to no opportunity for optimizing the evaluation as the
complexity in the numbers of features in the skeleton layout grows, either as a result
of larger layouts or more detailed layouts. With features with an infinite bound,
the evaluation time must grow with an O(n) complexity with increasing number of
features, as the influence of every feature needs to be considered for each evaluated
point. And since the the features approximately uniformly spans an area of a layout,
the number of features will scale quadratically with uniformly changing layout sizes,
thus resulting in an evaluation time with O(n2) complexity with increasing layout
size.
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4.2.5 Bounded distance-weight

In contrast the bounded distance-weight functions w2 and w3 did both show better
conservation of a local average, and they also allows for optimization of the evalu-
ation process, where features need not be evaluated when the point being evaluated
is beyond the bound of the feature’s influence since the weight then becomes zero.
An example of this relationship between features and their area of influence is shown
ion Figure 4.2.

Figure 4.2: Feature F1 and F2 with a bounded weight function each has an area of
influence illustrated by the red zones. For evaluation beyond these zones they do
not influence the results.

As bounded distance-weight functions has showed the best promise in producing the
wanted results, and also have opportunities for optimization, they will be the type
used in this work. Also while the distance-weight function was global in the previous
work and therefore affected the contribution of all features equally, this continued
work applies the distance-weight function as a property per feature, meaning that
different features can have different distance-weight functions, allowing for features
with different characteristics in their blending and range for influence. An example
of this could be to use previously mentioned w2 for ridge features as this produces a
sharper ridge, while w3 could be used for river features producing a more smoother
valley bottom.

w1(d) = max(0, 1− d

a
) (4.4)

w2(d) = max(0,
1− d

a

d
) (4.5)
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4.3 Attributes assignment to features

As features may have arbitrary collections of attributes, it is important hat these
attributes need to be possible to assign to a feature, and there needs to be an
understanding of when and how these are assigned, based on a knowledge of why
each specific feature needs their respectively assigned attributes.

As described several times previously and in the previous work on this method, the
nature of what a feature represents in the terrain is a result of emergent relations
and definitions by configuration of the process that generates the layout, and does
not involve coded enumeration in the implementation. As attributes are herein an
important aspect in describing a feature, it is herein natural to expect attributes to
be assigned features during the layout generation.

To perform this attributes assignment, it is reasonable to perform this assignment as
part of the layout generation for specific features in the layout that should represent
the same type of feature in the final terrain, such as for example rivers, as these
may be expected to all share, or at the very least have very similar attributes.

The assignment of attributes during the layout process may be designed such that
a layout process for a specific type of terrain feature involves the assignment of the
required attributes as part of the implementation for the layout algorithm, but a
further modular approach to the assignment of attributes during this layout would
be to provide the set of attributes to be assigned the generated layout feature as an
argument to the layout algorithm such that a layout algorithm may be reused for
features with different configuration of attributes to be assigned.

This assignment of separately configured attribute sets is the method used in this
work, and the modular approach later seen herein with the modular reuse of detail
generation with MPD and separate configuration of attributes during the layout
process where this allows the same layout algorithm to be used for different terrain
features.

4.4 Layout

The layout of features is as general operation performed using the same method as
in the previous work with minor changes to the implementation [1]. The changes
to the the implementation of these layout methods are the inclusion configurable
assignment of attributes as described in 4.3.

Additionally the layout generation herein also involves the generation of additional
detail based on previously laid out features by the use of MPD, but the workings of
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this is further described in 8.1.

4.5 Evaluation

4.5.1 Merging features

The merging of features are performed by merging their assigned attributes. See
4.5.2.

4.5.2 Merging attributes

The task performed during the evaluation process of the method, is the merging
of attribute values from close by features such that the values are best fitted to
the values described by features in the skeleton structure, and that these values
transition desirably in the range between the features.

In the previous work, the evaluation only considered terrain height as the value
to be evaluated, but with introduction of attributes of the terrain that may be
extended beyond just terrain height, merging process and resulting output need to
be extendable to handle more than just this one attribute.

In the previous work, the merging of height height values from the multiple features
was performed by using a WeightedAverage object. Along with a vector to the point
being evaluated and the used distance-weight function, this WeightedAverage object
was passed to a method part of the interface for the feature, to all features through
a method provided as an interface with the feature instances. The distance-weight
function was used in combination with the distance and height samples for the point
to add the contribution to the WeightedAverage object. After all the features had
been called, the WeightedAverage object could then be queried for the final average.

It is my suggestion for the extension that a similar process be used where a ”merger”
object implementing interfaces for adding contribution and querying final merged
results for all attributes be passed to the feature, since the distance-weight function
is already provider per attribute, there is no need to pass a distance-weight function
along with this any more. Each feature can then pass the merger object to all the
registered attributes for the feature such that they can call their respective interfaces
for contribution. After the merger object has been passed to all relevant features
for this contribution addition, it can then be queried for the results of the various
implemented attribute types.

4.5.3 Evaluation optimization

A significant part of the previous work [1] involves interactions between nearby fea-
tures, while the processes that where applied featured full iteration over all existing
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Figure 4.3: Feature F1 and F2 each has an area of influence illustrated by the red
zones. A Minimum Bounding Rectangle (MBR) can easily be constructed for which
a feature may be excluded from evaluation when an evaluated point does not fall
within the MBR.

data independent of whether there was even any chance of interaction.

Figure 4.4: Example layout of moderate size.

Take for example the height evaluation method from the previous work that evalu-
ates the weighted average of all features. As previously mentioned, in the previous
work the features where stored in a list structure, this would not be of concern when
using the w1 weight function, as it takes an unbounded average where it is necessary
to iterate over all the features. But when using w2 and w3, this changes as they
take a bounded average where only features within a given radius of the evaluated
point have any impact on the result. Features outside of this radius have no contri-
bution on the average and iterating iterating over these features is thus just wasting
time, especially important is this since this subset without contribution the may be
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significantly larger than the subset that actually have a contribute. It is therefore
unfortunate and simply unnecessary to naively iterate over all features.

In the pursuit of improving the efficiency of the method, it is clear that efficient
querying of the features to find the features close enough to the evaluated location
to have an impact on the result should be of major importance.

To do this I propose to apply spatial data structures for storage of the features.
Before discussing what data structure to apply to the problem, there is first a need
for understanding the data that will be stored, and how it will be queried for.

In the case of what type of entries that will be stored, they will be features described
by geometric primitives like for example points, lines and polygons. And in regards
to querying, the collection will be queried for any feature that may have an impact
on the results for a height evaluation at a point.
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Chapter 5

Implementation

5.1 Initial implementation setup

The implementation builds further upon the existing implementation from the pre-
vious work [18] [1].

5.2 Features

As described earlier, features are defined by their shape and attributes. The feature
is implemented in this work in the form of the ShapedFeature class. The shape value
and list of attributes are members in this class. As well there is an annotation color
value, this color value is used for coloring the feature when preview visualizing the
feature layout as primitives skeleton in the editor, but the color is not important to
the evaluation results and is an implementation detail to make it easier to understand
a layout when previewing in the editor.

5.2.1 Shape

The shape value of a feature, as described in 4.2.1, defines the form and placement
of the feature, and is an implementation of a geometric primitive. The shape defines
elevation when the feature has defined the terrain height attribute.

The implementation shapes in general has two important methods that need to
be implemented for evaluation purposes, these are the sdf(p) and the height(p)

which respectively returns distance and elevation of the closest point of the shape
at p, where p is a vector in the plane to the evaluated planar location.

For the purpose of organizing features in a spatial data structure, like the R-tree,
there is also a need for determining the bound of the influence the feature may
have on the evaluated results. This bound is described as a bounding rectangle
that not only encapsulates the whole shape as a minimum bounding rectangle, but
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also has to account for the range beyond the shape that the distance-weight of an
attribute allows for the influence to extend. Therefore the shape needs to implement
a method that returns a bounding rectangle expanded according to an offset, this
is the getBoundGeometry(offset) method.

5.2.2 Attribute

The attributes of a feature, as described in ??, defines the different aspects of the
terrain it has an influence on. This may be the terrain elevation, surface material,
water depth, just to take the few examples from this work, or any other value that
can be used for representing an aspect of interest to the final terrain.

The evaluation of these attributes require features in the layout to have assigned
values for these attributes with their desired value at the feature. This is done with
feature attributes.

In addition to specify the attribute value at the feature, the attribute also defines
the distance weight function for use with the attribute on evaluation of the given
feature with the attribute assigned.

As each feature may have assigned an arbitrary collection of such attributes, and a
lot of similar features are going to have the same values for these attributes, it is
prudent to minimize the memory footprint of these attributes by reusing instances.
Therefore the implementation of these attributes herein is made such that a single
instance of an attribute may be assigned to any number of features that should have
the same attribute.

Attributes are implemented according to the interface Attribute. This interface
defines two methods that an instance of a feature attribute needs to implement:

1. contribute(merger, feature, p, sdf)

The contribute method is called during the merging process to let an at-
tribute registered to a feature contribute to the merged results. The same
instance of an attribute may be assigned to several features if the behaviour
and configuration should be the same, this can save on unnecessary instancing
of unique attributes instances in many cases.

merger is an instance a merger that with the appropriate method for the given
attribute to call for its contribution.

feature is the feature instance the attribute contribution is called for.

p is a vector in the plane pointing to the position being evaluated, this can be
used for implementation of attributes with spatially dependable values.

sdf is the signed distance value of p from the feature feature, this is used to
determine the weight of the attribute during when contributing.

The method returns no value.

2. influenceDistance()

The influenceDistance method returns the influence distance of an attribute
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instance. The influence distance is determined through the weight function
used by the attribute, where the influence distance is the SDF distance value
in contribute at which the weight of the attribute contributions falls to zero
and remains so for any larger distance value.

The method returns the largest distance at which the attribute has any weight
more than zero.

5.2.3 Bound

As has been explained in ??, the bound of a feature is used for organizing features
in a spatially indexed structure like the R-tree. As the goal of this is to make the
evaluation process more efficient by not considering features that will not impact
the results because of the bounded influence distance, the bound should enclose the
area where the feature may provide an influence on the output result.

This is done with a MBR that encloses the feature shape, with a uniform offset of
the sides in all directions equal to the maximum influence distance of any of the
defined attributes.

The feature implementation provides a method getBoundGeometry() that returns
this bounding geometry. This is done by first iterating through all the defined
attributes of the feature to find the maximum influence distance among the attribute,
and then the getBoundGeometry(offset) method of the shape is called with the
maximum influence distance as the offset value. The returned returned geometry
from this the bounding geometry of the feature, which outside, the given feature is
guaranteed to not have an impact on any evaluation results, and may therefore be
ignored outside the bound.

Algorithm 1: Feature bound

input : The feature F with shape Fs and list of attributes Fa to
determine the bounding geometry for.

output: The bounding geometry Bf for the given feature.
1 begin
2 Let offset be the maximum influence distance of the feature according

to the weight functions of all the attributes, this is set to 0 to start
with.

3 foreach attribute a ∈ Fa do
4 Set offset to be the maximum of the current value and the influence

distance of a.
5 end
6 Let Bf be the bounding geometry of Fs with offset offset.

7 end
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5.3 Implemented attributes

Back in 5.2.2 I described the general interface for implementing an attribute, but I
will next describe more specifics of the implemented attributes.

5.3.1 Elevation attribute

The elevation attribute is as the name suggests used to specify the elevation of a
feature.

As described in 5.2.1, the shape also defines the elevation, and there is therefore no
elevation value to specify with this attribute, and the elevation value is gathered
from the shape of a feature by an interface created via the shape instance passed
when the contribute method is called.

It should though be trivial to implement a variation of the elevation attribute that
neglects the shape elevation for another value, or an offset; either may be constant
or using procedural noise.

The elevation attribute may also define a priority that is used when merging, in
addition to the distance weight function.

The contribute method receives the distance of the evaluated point to the cur-
rent feature and applies the weight distance function to determine the weight to
contribute the value with. The value itself is the elevation at the evaluated point.
This elevation is acquired by an elevation method of the passed feature, for the
evaluated point. Lastly the value is merged with any other feature attributes by the
contribution method for elevation of the merger. This merger instance contribution
method takes the input of the elevation, weight and optionally priority if that is
implemented. The details on how the elevation merging is performed are described
in 5.5.3.

5.3.2 Water depth attribute

In contrast with the elevation attribute previously described, the water depth is not
specified by the shape or in any other way by the feature. The he water depth is
herein this implementation instead defined as a function of distance to the feature,
somewhat similarly to the distance weight function, with the depth decreasing as
the distance increases.

As the depth goes to zero as the distance increases, it should also be natural that
the range of the weight function is coordinated with the depth function such that
the weight tends to zero over the same distance as the depth goes to zero.

When evaluation of the attribute contribution is performed, the weight and depth
function is evaluated for according to the passed distance value, and used as argu-
ments in the merger contribution method for water depth.
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5.3.3 Surface material attribute

The surface material attribute defines the surface material at a feature. In the
implementation of this work, this value does not change depending on position or
distance, so this is a constant value of the attribute alongside the distance weight
function.

When evaluating the attribute for contribution through the attribute contribute
method, the weight is obtained similarly to the previously described attributes using
the distance value and weight function, and the material value is added to the merge
using the material contribution method of the merger instance with the material and
weight as arguments.

5.4 Attribute assignment within WorldSynth

In the implementation of this work, attributes has been made manipulable trough
WS as a datatype that can be used in a graphical manner, allowing for creation of
individual attributes and collecting them for use with generated features, also in a
graphically editable way with WS.

The layout generation modules from previous work has received an attributes input.

5.4.1 Attributes datatype

The attributes datatype is a simple datatype that is made with just a collection
of attribute instances. The attributes are global and not located, and thus not
dependent on any extent.

5.4.2 Attribute generators

In this implementation, attributes are generated using attribute modules. There are
three modules made, one for each respectable attribute type implemented, being
elevation, surface material and water depth.

Figure 5.1: The elevation attribute generator module and parameters shown in WS.
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Figure 5.2: The surface material attribute generator module and parameters shown
in WS.

Figure 5.3: The Water depth attribute generator module and parameters shown in
WS.

5.4.3 Attributes collection

As with features in the previous work, there needs to be some way of combining
attributes together into larger sets that can be used [1]. This is achieved with the
implementation of an attributes collection module.

Figure 5.4: The attribute collect module and parameters shown in WS.

5.4.4 Attributes assignment

As the intention herein is to assign attributes to features at the layout time, the
feature generator from the previous work needs to have the addition of attribute
inputs for this purpose.

The usage of these inputs are purely extensions of the layout algorithms from the
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previous work to also apply the attributes provided by these inputs to the laid out
features. For modules like the lake and river layout, there are provided separate
inputs for usage with respectively the lake and the river features that are being laid
out, since thees are to some degree different features created at the same time.

Algorithm 2: Feature layout attributes assignment

input : The parameter inputs used for the relevant layout procedure.
A collection of attributes A to be assign for laid out features.

output: A collection F of features generated by the layout procedure.
1 begin
2 Let the layout of shapes be performed according to the respective layout

procedure, collect these in a collection S. See the precursor work for
details on different layout procedures [1].

3 foreach shape of a feature Sf ∈ S do
4 Construct a feature using shape Sf and attributes A, add this to the

features collection F .
5 end

6 end

Figure 5.5: Example of an attributes input addition to the river network layout
generator from the previous work.

5.5 Evaluation

The evaluation procedure performs the task of determining the results of all the
features at any point of the terrain. This is done through a merging method as
described in ?? where the general design of the merging process is described. The
process is a sort of design pattern that can be implemented for generation of terrain
with a verity of attributes, as long as it is reasonable that such determined as a
result through use of some form weighted merging of values.

5.5.1 R-tree indexing

For the R-tree implementation in this work, I am using the java library ”rtree2”
which provides a 2D implementation of the R-tree data structure in memory, in-
cluding the R* tree [19].
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5.5.2 Merger

The merging process depends on the implementation of a merger, as described in
?? and referred to previously in ?? with the description of the contribute method.

The merger should implement contrition methods for all the possibly implemented
attributes. These contribution methods should expect the value and weight for the
attribute being merged. Subsequently the merger should also implement a method
for querying the merged results for all the possibly implemented attributes.

A generic example of the interface to be implemented for these two methods are:

1. contributeSomeAttribute(weight, <priority>, value)

The contributeSomeAttribute method is called from the contribute method
of a corresponding attribute type, where the value and weight are determined
accordingly. The method performs the task of organizing the contributed val-
ues such that the results can be queried after the end of the merging process.
The exact strategy of how an attribute is merged will be an implementation
detail specific to the attribute, and contributeSomeAttribute should be con-
sidered in combination with getSomeAttribute.

weight is the weight with which the value should be merged into the results.

priority is an optional value which may be implemented use when for merging
the results.

value is the value of the terrain attribute to be merged into the results.

The method returns no value.

2. getSomeAttribute() The getSomeAttribute method is called after all fea-
tures has contributed their attributes. The method is then used to queries
the merger for the merged results of the given attribute. The exact strategy
of how an attribute is merged will be an implementation detail specific to the
attribute, and getSomeAttribute should be considered in combination with
contributeSomeAttribute.

The method returns the merged result for the attribute.

5.5.3 Elevation merging

The elevation attribute is used to describe the terrain’s elevation. It is merged
through creating a simple weighted average of elevation values contributed by fea-
tures. This is done by first summing the elevation and weight values during the
contribution stage of the evaluation. After the contribution stage is finished, the
terrain elevation can be queried by dividing the elevation sum with the weight sum.

The merger contribution method for the elevation attribute follows the pattern de-
scribe in 5.5.2 with the interface contributeElevation(weight, elevation), and
is implemented as described in Algorithm 3.
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Algorithm 3: Contribute elevation

input : W is the weight with which the elevation should be merged.
E is the elevation of the elevation attribute contributing to the

merge.
output:

1 begin
2 Let Sw be a weight sum, and Se be a elevation sum, both persistent to

the merger instance and with initial value zero.
3 Add weight W to the weight sum Sw.
4 Add elevation E to the elevation sum Se.

5 end

The merger query method for the elevation attribute follows the pattern describe
in 5.5.2 with the interface getElevation(), and is implemented as described in
Algorithm 4.

Algorithm 4: Get elevation

input :
output: E is the elevation.

1 begin
2 Let Sw be a weight sum, and Se be a elevation sum, both are the same

as in Algorithm 3.
3 Set the merged elevation E to be the weighted average Se

Sw
.

4 end

5.5.4 Elevation merging w/ priority

An extension of the elevation attribute is the addition of prioritized merging. This
introduces an additional stage to the merging where it’s possible to ensure some
features of the terrain have the possibility of overriding elevation values where they
occur.

This is done by creating a series of prioritized average merges and linearly interpol-
ating in steps from the lowest priority average merge to the highest.

The merger contribution method for the height attribute with priority follows the
pattern describe in 5.5.2 with the interface contributeElevation(weight, priority,

elevation), and is implemented as described in Algorithm 5.

The merger query method for the elevation attribute with priority follows the pat-
tern describe in 5.5.2 with the interface getElevation(), and is implemented as
described in Algorithm 6.
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Algorithm 5: Contribute elevation w/ priority

input : W is the weight with which the elevation should be merged.
P is the priority with which the elevation should be merged.
E is the elevation of the elevation attribute contributing to the

merge.
output:

1 begin
2 Let S be a list of tuples where the index of the tuple equals the priority.

The tuple is made of the values are: Sw a weight sum, and Se, an
elevation sum. S is persistent to the merger, and all the tuples have
both values initialized to zero.

3 Add weight W to the weight sum Sw of the tuple at the index equal to
the priority P .

4 Add elevation E to the elevation sum Se of the tuple at the index equal
to the priority P .

5 end

Algorithm 6: Get elevation w/ priority

input :
output: E is the elevation.

1 begin
2 Let S be the same list of Sw, and Se as in Algorithm 5.

3 Set the merged height E to be the weighted average Se

Sw
of the lowest

priority.
4 foreach tuple (Sw, Se) ∈ S do
5 Let Ep be the weighted average Se

Sw
of current priority.

6 Set E to be the linear interpolation between E and Ep according to
Sw of the current priority, clamped between 0 to 1.

7 end

8 end
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5.5.5 Water depth merging

The water depth attribute is used to describe the depth of a river or lake in the
terrain. This is merged similarly to how the terrain elevation is merged in 5.5.3,
through a weighted average of depth values.

As with the terrain elevation merging, this is done by first summing the depth and
weight values during the contribution stage of the evaluation. After the contribution
stage is finished, the water depth can be queried by dividing the depth sum with
the weight sum.

The merger contribution method for the water depth attribute follows the pattern
describe in 5.5.2 with the interface contributeWaterDepth(weight, depth), and
is implemented as described in Algorithm 7.

Algorithm 7: Contribute water depth

input : W is the weight with which the elevation should be merged.
D is the depth of the water depth attribute contributed to the

merge.
output:

1 begin
2 Let Sw be a weight sum, and Sd be a depth sum, both persistent to the

merger instance and with initial value zero.
3 Add weight W to the weight sum Sw.
4 Add depth D to the depth sum Sd.

5 end

The merger query method for the height attribute follows the pattern describe in
5.5.2 with the interface getWaterDepth(), and is implemented as described in Al-
gorithm 8.

Algorithm 8: Get water depth

input :
output: D is the water depth.

1 begin
2 Let Sw be the weight sum, and Sd be the depth sum, both are the same

as in Algorithm 7.
3 Set the merged water depth D to be the weighted average Sd

Sw
.

4 end

5.5.6 Surface material merging

The surface material attribute is used to describe the material composition of the
terrain surface. The merging of the surface material attribute may depending on
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the usage either result in a discrete material as an output, or a material fraction of
multiple materials in a mix. As the assumption for the surface material attribute
in this work, is that any single surface material attribute assignment to a feature
in the skeleton layout can only define one material to contribute, the contribution
method for merging surface materials is the same, whether the output is a discrete
material or a material fraction. The querying method though is different for discrete
or fractional surface materials outputs.

The merger contribution method for the surface material attribute follows the pat-
tern describe in 5.5.2 with the interface contributeMaterial(weight, material),
and is implemented as described in Algorithm 9.

Algorithm 9: Contribute material

input : W is the weight with which the elevation should be merged.
M is the material of the surface material attribute contributing to

the merge.
output:

1 begin
2 Let S be a map with materials as key and weight as value, persistent to

the merger.
3 Add W to the value of the map entry with key M , if there is no entry

for the key yet, assume the value for the key is zero, and set the the
value value for key M to be this new sum.

4 end

The merger query method for the surface material attribute follows the pattern
describe in 5.5.2 with the interface getMaterial(), but depending on wether a
discrete material or a fractional material mix is wanted, the implementations are
respectively described in Algorithm 10 and Algorithm 11.

Algorithm 10: Get discrete material

input :
output: M is the surface material.

1 begin
2 Let S be a the same map with materials as key and weight as value as in

Algorithm 9.
3 Let Wm be the maximum weight encountered while iterating through S,

initial value is zero.
4 foreach material key Mk ∈ S do
5 if The weight value S(Mk) > Wm then
6 Set M to be Mk.
7 Update the maximum weight Wm to be S(Mk).

8 end

9 end

10 end
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When merging discrete materials into a fractional material, the merged result con-
sists of a list of materials and their relative portion in the mix. This is in general
similar to the internal organization of the merged material data, but converted from
a map to a list of tuples with their weight normalizes according to the complete
material mix.

Algorithm 11: Get fractional material

input :
output: Mm is a material mix in the form of a list of tuples (M,F ) of

material and fractional portion.
1 begin
2 Let S be a the same map with materials as key and weight as value as in

Algorithm 9.
3 Let Ws be the weight sum for all material weights Wm ∈ S, this is used

to normalize the fractional mix.
4 foreach material key Mk ∈ S do
5 Let Wk be the weight of Mk given the value in S with Mk as key.

6 Add the tuple (Mk,
Wk

Ws
) to Mm.

7 end

8 end
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Chapter 6

Results

6.1 Generator configurations

For the presentation of the results, I will be using two generator configurations.
The first configuration focuses only on the generation of mountain ridges and rivers,
while the second is a simple alteration of the configuration that also generates lakes.

6.1.1 Ridges and rivers

The generated skeleton layout for this configuration is seen in Figure 6.1, and the
complete configuration within WS is seen in Figure 6.2 with annotation for groups
of modules performing specific task.

Figure 6.1: The ”Ridges and rivers” skeleton layout. The annotation colors in the
skeleton layout are as follows: Red is the landmass outline, cyan is rivers and white
are mountain ridges.
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Figure 6.2: The ”Ridges and rivers” WS configuration. The highlighted areas groups
modules used to configure different aspects of the terrain generation, like configuring
assigned feature attributes and feature layout operations.

In the configuration, there can be seen that there are three evaluation modules
for the respective terrain attributes: elevation, surface material and water depth.
Due to limitations of how WS works, the evaluation needs to be performed three
times, once for each attribute to produce a map of. But this triple evaluation is
only necessary because of WS. The evaluation process evaluates all the attributes
in the same operation, each of these modules just output the results for one of the
attributes at the time.

The final generated results of the configuration may either be viewed as voxels or as
a colored mesh. The colored mesh is based on the evaluated elevation, with coloring
of the surface materials applied as texturing. Where the water depth is more than
zero,the color is set to blue to indicate water, this only indicates water and there
is no geometry for the depth of the the water. The voxel results on the other hand
involve the surface being carved out for the water as voxels with the appropriate
material and depth for the water replaces the surface.

To the left in the configuration can be seen the attribute configurations used for the
three different features in the skeleton layout. 1) The top group are the attributes
used for the mountain ridges. The set of attributes created for this is contains an
elevation attribute, and a surface material attribute. 2) The middle group are the
attributes used for the landmass outline, and are used to define the water beyond the
landmass. The attribute set for this involves an elevation attribute, and and a water
depth attribute. 3) The last group to the bottom are the attributes configuration
for the rivers. This attributes set involves all the current attributes, being elevation,
surface material, and water depth attributes.

Collections of these attributes sets are provided as inputs to their respective feature
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layout generators, where they are assigned to all the features generated by their
respective layout generator.

6.1.2 Ridges, rivers and lakes

The second configuration produces terrain that includes mountain ridges, rivers and
lakes. This configuration only exchanges the river layout generator module, for the
lake and river layout generator module from the previous work.

Figure 6.3: The WS configuration of used for the ”Ridges, rivers and lakes” example.

(a) (b)

Figure 6.4: ”Ridges, rivers and lakes” skeleton layout and 2k extent results. The
addition of the lakes are annotated by orange color in the layout.
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6.2 Improved evaluation efficiency

To show the difference the selective evaluation makes to the efficiency of evaluation,
an extent of the ”Ridges and rivers” configuration has been evaluated using three
different methods to be compared. The methods are as following:

1) No optimization. This is the same method as the previous work, where all features
are taken into account during the evaluation of a point, whether they are in range
to have an influence on the terrain or not. This means the evaluation of any point
in the terrain evaluates every feature in the layout for its contribution, even tough
these for the most part may be zero.

2) R-Tree with querying for single points. This is the ideal way the new improvement
is intended to be used. This involves each point in the terrain being evaluated is
queried for the features with influence bounding rectangles that overlap with the
point being evaluated. While this query may still return features that have no
contribution due to the bounding box not being a perfect model for the influence
bound, but rather an upper bound in each of the four directions, it should still be
expected to drastically reduce the number of number of features evaluated.

3) T-Tree with grouped points. This is a hybrid of the first two methods that
will evaluate a group of points in one go, utilizing an initial query that covers
all these points in the group. The reasoning behind this method is that points
relatively closely clustered mostly share the same features being in influence range,
and that they thus will have mostly the same answers to their queries of the R-Tree.
Depending on the time it takes to perform an R-Tree query in relation to the time it
takes to evaluate features, a sufficiently high ratio of high query time to low feature
evaluation time, may possibly have an advantage by evaluating clustered points if
this is applicable, like generation of chunked terrain. The attempt of this method
is therefore of interest to get an indication of whether a bottleneck in the terrain
evaluation is in feature querying or feature evaluation.

These methods are applied to produce a map within a 2048x2048 centered extent,
hereafter called the ”2k” extent. The sampling resolution is 512x512 points, for
a total sample set of 262144 evaluated points in a regular grid. The results are
organized in Table 6.1.

The ”Ridges and rivers” configuration also has a polygonal landmass feature, which
is used to define the landmass outline and generate ocean beyond and therefor has an
infinite range. The infinite range makes makes it so the feature is always include in
the evaluation. Because the polygon also is relatively more intensive to evaluate than
single lines, the same set of comparisons on generating the map are also performed
to the configuration with the landmass feature excluded from the evaluation, and
the results are organized in Table 6.2.

Since the implementation in this work is produced within the Java programming
language, it is worth taking note of Java being a language that utilizes garbage
collecting that may run sporadically and with varying duration. The time meas-
urements in these results do not tack the time spent performing garbage collection
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”Ridges and rivers”

Evaluation type
Features Time
Layout Evaluated Evaluation
Total Total Avg. point Total Avg. point

No optimization 529 138674176 529 13574ms 0.0518ms
R-Tree single 529 4286801 16.3528 1185ms 0.0045ms
R-Tree group 16x16 529 5372160 20.4932 1356ms 0.0052ms

Table 6.1: Evaluation performance results for the ”Ridges and rivers” configuration
using the different evaluation methods.

”Ridges and rivers” excluding landmass

Evaluation type
Features Time
Layout Evaluated Evaluation
Total Total Avg. point Total Avg. point

No optimization 528 138412032 528 13380ms 0.0510ms
R-Tree single 528 4024657 15.3528 873ms 0.0034ms
R-Tree group 16x16 528 5110016 19.4932 1042ms 0.0040ms

Table 6.2: Evaluation performance results for the ”Ridges and rivers” configura-
tion, excluding the landmass polygon from evaluation, using the different evaluation
methods.

during the evaluation as it is assumed to be negligible in relation to the overall time,
but this may be a possible source to some level of variation in evaluation times.

6.3 Modelling of features using customized at-

tributes

The usage of attributes allows for the inclusion of several terrain attributes by assign-
ment to any skeleton features. In this implementation they are limited to elevation,
surface material and water depth attributes, but these may be freely assigned during
configuration of the generator operation.

The attributes assigned to the features are here used to map out values describing the
terrain as an inherit part of the method. Where for example rivers in the previous
work was produced by selecting the the subset of features in the skeleton layout
that represented rivers and using a threshold on the distance and depth based on
distance to any of these, this implementation with attributes system allows instead
for any evaluated point to be queried for the depth value similarly to how elevation
is acquired.

The implementation herein features the possibility for simple configuration of at-
tributes and assignment to different features during the layout of the skeleton. An
example of how attributes may be used to further stylize the results is shown by
changing the weight function for rivers elevation, as this may be configured to be
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different than the weight function for mountain ridges. This allows not just for dif-
ferent ranges of influence to be applied for different features, but also for changing
how the weights interact with each other. This is shown by the example in Figure
6.5, where the value b of weight function w3 is changed to different values for the
rivers in relation to the ridges to produce different characteristics for the resulting
terrain where these features interact.

(a) b = 20 (b) b = 10 (c) b = 5

Figure 6.5: Elevation attributes with different b values for distance weight function
w3 for the river features. The b value is 8 for the mountain ridge line features.

The results of this it can be seen that a higher value of b produces wider and flat U-
shaped valleys in contrast to an otherwise lower value of b result in sharper V-shaped
valleys.
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Chapter 7

Discussion

7.1 Improved evaluation efficiency

In the implementation from the previous work, the time it took to evaluate the
terrain from the skeleton layout was directly tied to the complexity of the skeleton
layout in how many features it involved [1]. As scaling up to a larger layout with
more features, the evaluation time would quickly increase with it.

To address this efficiency issue, features are now expected to have a bounded area of
influence, and the evaluation is selective of which features to include when evaluating
any point or area. A MBR enclosing the area of influence is created for all the
features in an evaluated skeleton, and they are indexed in an R-Tree that may be
queried for all the features with MBRs intersecting the point or area to be evaluated.

It is clear from the results that the selective evaluation dramatically decreases the
number of evaluated features per point. The ”Ridges and rivers” configuration
used to test generates a total of 529 features, whereas the number of features used
to evaluate the terrain, was on average just a little over 16 for any single point.
Previously without the selective evaluation, the evaluation would have used all the
529 features.

This is a reduction to using around every 1
31

features, while the corresponding evalu-
ation time is decreases to around 1

11
. When looking at the same results excluding the

landmass polygon, this time decreases to around 1
15

because polygons are a relatively
more intensive shape to evaluate than single lines.

But an ideal reduction of the evaluation time similarly the reduction in evaluated
features is not achievable, as searching of the R-tree is relatively slower than iterating
through a list.

With larger skeleton layouts containing more features, the selective evaluation is
expected to be mostly constant for the same feature density, and thus becomes in-
creasingly more efficient than the non-selective method given the quadratic increase
in features.
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The grouping of evaluated points also did not provide any advantage over evaluating
single points. This indicates that the evaluation of a few extra features is more
expensive than querying the R-tree for for each point.

7.2 Attributes

The introduction of attributes has has enabled the same evaluation process to pro-
duce additional values describing the terrain besides the original elevation value.
The resulting values for any attribute of the terrain are available from the merger
after evaluation, and are easy to use without further modifications.

The attributes serve as a flexible tool for further modelling unique classes of features
that goes beyond the emergence resulting from context and intent, as was introduced
in the previous work, and still this is without any need for hard coding as attributes
can be freely assigned as part of generating the skeleton layout by configuration as
needed.

The river feature is an example of how how assignment of differing attribute sets
may alter a feature. While both the ridges and rivers features have elevation and
material attributes assigned, but with differing values, the river feature in addition
also has a water depth attribute. The elevation and location arguably define these
features as ridges and rivers if following the conclusions from the previous work. But
the usage of the water depth attribute here in this work, is also a defining property
of the river feature, as without the creation of the river, the feature may better be
called for a valley feature if it does not carve out the river.

Meanwhile the attribute contribution is decided by distance through the weight
function. For the evaluation of a feature at any point, the distance only needs to be
evaluated once, and is reused for the contribution of all assigned attributes. Thus
performance impact of assigning any arbitrary set of multiple attributes, is therefor
dependent on the weight function, value function and merge function of the assigned
attributes.

Further new attribute types are also reasonably simple to create, as the method
provides a framework for implementing and handling additional attributes, with the
existing attributes from this work serving as examples for how different attributes
may be implemented.

7.3 Local weight functions

The local weight functions, defined as part of the attributes assigned to features,
adds to the flexibility of uniquely modelling features by configuration. As the weight
function properties of the feature may differ between attributes, a feature may con-
tribute to differing sets of attributes depending on the position of an evaluated point
relative to the feature geometry.
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This is seen by example in the river feature, where the range of influence for the
water depth is significantly smaller than the range of influence for the elevation and
material.

When considering the impact of such weight functions differing between attributes,
it is important to recognize that the bounding area the feature is indexed by is
based on the largest range resulting from the weight functions of a feature’s assigned
attributes. Therefore the addition of one or more attributes with a shorter range
than at least one other assigned attribute, does not alter the area for which the
feature is evaluated.

As was seen in the results, the usage of differing weight functions between features
may have an important impact on the results, as the example with the elevation
attribute showed, it may be applied to produce differing characteristic for the terrain,
like U- or V-shaped valleys.
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Part II

Detailing of Features
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Chapter 8

Design

8.1 More features

As from the previous work, the usage of straight lines as shapes of features in the
skeleton layout produces visibly straight lines in the finished evaluated results [1].
As the occurrence of continuous straight lines in nature is limited, and instead tends
to form fractal shapes and outlines, it is desirable to model procedural environments
to also feature such fractal details.

The possibly simplest and most obvious approach to creating such details, is in the
feature layout process by creating a more detailed layout with more and smaller
features. A method to create such features from existing features, is to use MPD on
features in the skeleton layout to produce several new and smaller features replacing
the originals.

For example features with a line shape that represent a river segments, may have
MPD applied to them, such that the segments resulting form the subdivision are
used as new river features replacing the original features, and together defines the
same river paths with higher detail, see Figure 8.1a and Figure 8.1b.

This method by itself is simple and requires no other new addition to the method
other than a function that can perform MPD on a set of features. Out of the
implemented shapes available, it only makes sense to perform MPD on shapes like
lines and polygons, but since this approach also produces separate new features, it
is not applicable as more detailed polygons can not simply be split into multiple
shapes.

Though this method is simple in application at first sight, there are expectable
issues that should be taken into account when applying this method for creating
more features for a high detail skeleton from a low detail skeleton layout. One of
them is already mentioned as it not being directly applicable to polygons.

Another expected issue with this method, is that this creation of fractal details
by more features, should be expected to give a quadratic increase in the number
of features that needs to be evaluated. This can be seen as the number of features
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(a) Single feature with a line shape.
(b) Four smaller line features result-
ing from applied MPD.

(c) Weight and transition from single
features making up the detail.

(d) Weight and transition from grouped
similar features making up the detail.

Figure 8.1: Transition being distorted by groupings of features changing wight pro-
portions in the transitioning area.
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replacing the original layout will be increased by a factor of 2n where n is the number
of iterations of MPD applied.

With an initial assumption that the newly created features from the MPD being
applied replaces the original low detail features, the weight function is kept the
same for the new collection of high detail features as for the features they where
created from, there may arise several possible issues that needs to be addressed. 1)
This dramatic increase in new features should be expected to increase the evaluation
time accordingly, as the evaluation time is directly related to the number of features
that need to be evaluated to acquire the results for any point. 2) The creation
of dense groups of features may affect the overall transitions results between such
groups of features, where the tightly packed groups may make up proportionally
increasing weight in the area close to the respectively dense groupings, causing the
values of the grouping to become more pronounced in the general area, see Figure
8.1.

8.2 Overlapping features

To address some of these issues related to evaluation complexity from 8.1, a solution
may be the use of both the low and high detail features, such that high detail
features define details relatively locally with shorted weight distance, while the low
detail features that where the starting point are still maintained with their original
weighting to provide the general shape of the transition area.

(a)

(b)

Figure 8.2: High detail features with smaller area of influence overlapping with low
detail base feature may be used for adding details with a more limited impact an
higher efficiency than just high detail features.

In practice this will mean that the resulting features from the applied MPD operation
is given a smaller range of influence, to only impact the results within the area that
is well defined already by the original low detail feature, in a sense overlapping with
the original feature where more detail is created. High detail group from different
features should thus not in practice have overlapping areas of influence. The area
of influence for such detailed features should in practice be determined in relation
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to the scale of the clusters of detail features that have large overlaps, which may
also create distortions of the details. The reduction of the area of influence of high
density features also helps reducing the expected number of features that need to
be evaluated to produce evaluated results from the skeleton model.

Also in addition to the possibility of this working with pure weighted average mer-
ging, this is also has a good potential for use with priority merging, where detail
features have attributes with higher priority than the base low detail feature such
that the detail takes over control of the evaluation results completely when ap-
proaching.

This approach is simple to approach and relies may relay on already existing systems
with only the addition of an operation to generate new features from existing features
sets by applying MPD. In addition this method may also be used make progressively
higher detail features that perform as a a form of LOD for evaluation of features
with a fractal nature.

One issue with the application of MPD to create more details in the layout phase,
is that the evaluation time of polygons is directly dependent on how many vertexes
they are made up of, and the progressive approach of applying a smaller range
of influence to more detailed polygons does not help resolve this issue as the whole
polygon needs to be evaluated as one unit either way. The progressive use of multiple
polygons with different detail level is rather likely to instead produce problems,
both by increasing the evaluation time for evaluation versions of the same polygon
at different detail level, and may also be likely to produce artefacts thanks to the
polygon having both an inside and outside area, and new details generated such
that they fall inside the low detail polygon may cause artefacts when merging is
performed, though this would already be a moot point thanks to the previously
mentioned reason of performance issues evaluating detailed polygons.

8.3 Fractal shapes

Lastly, the application of MPD may be used to alter the shape of a feature rather
than producing a collection of new features. This method instead makes a more
detailed shape for a feature, replacing the low detail shape with a higher detail
polyline or polygon than the original of the input.

This introduces the polyline shape, as the polygon shape already can support a
higher detail level in contrast to a line segment shape. The polyline is made up
of more than two vertices that connect together in a chain of line segments. The
distance to such a polyline is calculated by taking the minimum distance of all the
line segments that it is made up by.

This method may be expected to produce the most correct results as we get a true
distance function for a more complex shape, but it should also be expected to be
more demanding to evaluate as the distance to all smaller line segments have to
be calculated to acquire the results, and thus has a similar evaluation complexity
comparable to or worse than the the method in 8.1.
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In contrast to the previous methods though, this method works for both lines and
polygons as well.

Figure 8.3: Fractal polylines are made up of multiple short line segments treated as
part of the same line, instead of being split up into multiple discrete line.
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Chapter 9

Implementation

9.1 MPD module

Figure 9.1: The MPD module and parameters shown in WS.

To create the additional details according to the outlined methods, it is necessary to
apply MPD on existing features during the layout generation. For the implementa-
tion in WS, this is acomodated by the creation of a new module, with the purpose to
MPD to existing features in the skeleton layout. This MPD module takes a collec-
tion of features as input to apply MPD on, as well as an optional collection of new
attributes to be used as replacements in the output features. If no such attributes
input is provided in the configuration, the attributes of the input features are carried
on in their resulting features after MPD has been applied.

The module has two parameters for the MPD application, giving the iterations and
displacement factor uses, as well as two more parameters for how the MPD results
are used to create the output features. For respectively lines and polygons, these
options are NONE, REMOVE, STATIC and SPLIT, where SPLIT is only an option
for lines. The NONE option performs no MPD on shapes of the given type, and
outputs a feature with the same shape as result. The REMOVE option applies no
MPD and instead removes a feature with the given shape from the output. The static
STATIC option creates a higher detail shape from applying MPD to the respective
shape, a line result in a polyline, while a polygon results in a more detailed polygon.
The SPLIT option available for lines, splits the would be polyline into individual
simple line segments that form individual features.
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The pseudo code for applying MPD and generating the output features is described
in Algorithm 12, with details of how MPD is applied in line 4, for respectively lines
and polygons, being detailed in 9.1.1 and 9.1.2.

Algorithm 12: Features MPD

input : Iterations of MPD to apply n.
Displacement factor d.
A collection of features Fi to apply MPD to.
A collection of attributes A to be assign to the new features.

output: A collection of the new features Fo.
1 begin
2 foreach Feature fi ∈ Fi do
3 if Shape Sfi of fi is applicable for MPD then
4 Apply MPD to Sfi according to the shape method, n and d. This

may produce from none to multiple shapes in a collection S.
5 foreach Shape of a new feature Sfo ∈ S do
6 if Input A provides no attributes then
7 Create a new feature Fn with shape Sfo and attributes

copied from fi, add to Fo.
8 end
9 else

10 Create a new feature Fn with shape Sfo and attributes A,
add to Fo.

11 end

12 end

13 end

14 end

15 end

9.1.1 Line MPD

When the line method is set to NONE or REMOVE, the returned value is the
collection S either containing the input line or being empty, either way no iterations
of MPD are applied for these. When the line method is set to either STATIC or
SPLIT, a line shape will have MPD applied and then produce either a simple polyline
or several separate line segments in the collection S.

Both methods follow the same initial steps by applying n iterations of MPD, before
either a polyline or several split lines are created from the results. The pseudo
code for applying MPD to the input line is described in Algorithm 13, and the
subsequent operations for creating either split lines or a polyline shapes, is described
in Algorithm ?? and ??.
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Algorithm 13: Line MPD

input : Iterations of MPD to apply n.
Displacement factor d.
A line shape Si to apply MPD to.

output: A list of new shapes So.
1 begin
2 Create a linked list V with initial entries being the two vertices of Si.
3 Hash the positions of the initial vertices and use it as seed for the

random number generator.
4 for i = 1 to n do
5 j = 0
6 while j < V.size− 1 do
7 Let l describe a line connecting the vertex pair (V [j], V [j + 1]).
8 Create a new vertex v on the midpoint of l.
9 Let ll be the length of l.

10 Move v normally to the direction of l by a random value between
±d · ll.

11 Insert v at V [j + 1], increasing the size of V .
12 j = j + 2

13 end

14 end
15 Creates shapes from V and add to So according to Algorithm ?? or ??.

16 end

Split line

The SPLIT method takes the vertices from the initial MPD application in Algorithm
13 and creates separate straight line segments between each pair of consecutive ver-
tices. This uses the existing line shape and is a simple iterative loop of constructing
lines and adding them to the shapes list.

Algorithm 14: Line MPD - Split

input : list of vertices V from Algorithm 13.
output: The list So containing the new lines.

1 begin
2 for i = 1 to V.size− 1 do
3 Create a line shape with the vertex pair (V [j], V [i + 1]), add to So.
4 end

5 end

Polyline

Since the previous work does not already have a polyline shape implementation, this
needs to be implemented. The implementation of a polyline is somewhat similar to
the the implementation of a polygon, using a list of vertices that describe a series
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of connecting line segments, but without the last and first vertices being connected,
and as such also has no inside.

The distance from the polyline shape is calculated by taking the minimum distance
among all the line segments that make up the polyline.

The elevation of the polyline is calculated according to the straight line connecting
the end points, since determining elevation according to the closest line segment of
the polyline, will result in discontinuous transitions on the inner corner of connecting
line segments.

The construction of the polyline simply applies the same list vertices created from
Algorithm 13 as the vertices of the line.

Algorithm 15: Line MPD - Polyline

input : list of vertices V from Algorithm 13.
output: The list So containing the polyline.

1 begin
2 Create a polyline shape with the vertices in V , add to So.
3 end

9.1.2 Polygon MPD

Algorithm 16: Polygon MPD

input : Iterations of MPD to apply n.
Displacement factor d.
A polygon shape Si to apply MPD to.

output: A list containing a single polygon shape So.
1 begin
2 Create a linked list V with initial entries being the vertices of Si.
3 for i = 1 to n do
4 j = 0
5 while j < V.size do
6 Let l describe a line connecting the vertex pair (V [j], V [j + 1]),

where the j + 1 == V.size overflows back to index 0.
7 Create a new vertex v on the midpoint of l.
8 Let ll be the length of l.
9 Move v normally to the direction of l by a random value between

±d · ll.
10 Insert v at V [j + 1], increasing the size of V .
11 j = j + 2

12 end

13 end
14 Create a polygon shape with the vertices in V , add to So.

15 end
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9.2 Details with more features

For this approach, there there needs to be implemented functionality for applying
MPD to create new features from the existing ones. This is implemented as a new
WS module that takes the input of the set of features for this to be applied to, and
the attributes to apply to the set of newly created features, which in this case will
have the input of the same attributes applied to the input set of features.

The method is applied in practice by inserting the MPD module from 9.1 after the
initial creation of the features to enhance, in this case being the river and mountain
ridge features. The attributes input is given the same attributes used for the initial
features, and the new features created is replacing the original features for the
collection used for evaluation.

For the creation of the original mountain features, the original river layout before
MPD is used.

Figure 9.2 shows how the method is applied to the ”Ridges and rivers 1” configur-
ation from 6.1.1.

Figure 9.2: The WS layout configuration from ”Ridges and rivers 1” in 6.1.1, mod-
ified to apply details with more features.

9.3 Details with overlapping features

For the approach with overlapping features, there is not needed any new modules as
it instead relies on a different configuration of already implemented functionality.
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Primarily this method is a further modification to the configuration described in ??,
where the output from the MPD module is combined with the input, using different
sets of attributes with a shorter influence range and higher priority for the the more
detailed output relative to the low detail original layout.

Figure 9.3: The WS layout configuration from the ”Ridges and rivers 1” in 6.1.1,
modified to apply details with overlapping features.

9.4 Details with fractal shapes

The application of this replaces the shapes of existing features with more detailed
shapes resulting from applying MPD. The attributes of the features are carried over
in the more detailed features without modification. In the practical implementation
created in WS, the configuration is the same as for the method with more features
from 9.2, seen in Figure 9.2, but with the MPD module application method para-
meter for lines and polygons set to the STATIC option. The configurations are
otherwise exactly the same.
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Chapter 10

Results

10.1 Method comparisons

To compare the differences between the three methods for adding details, the meth-
ods are applied to the ”Ridges and rivers” configuration, each used to produce a
map within the ”2k” extent. The sampling resolution is 512x512 points, for a total
sample set of 262144 evaluated points in a regular grid.

The amount of details to create is adjusted using the MPD modules, and there are
used 3 iterations of MPD for the creation of the given results.

Both the visual and performance differences are compared for the three methods,
along with the base configuration without detailing for reference. The resulting
maps can be seen in Figure 10.1, and the performance results in Table 10.1.

Detailing method
Features Time
Layout Evaluated Evaluation
Total Total Avg. point Total Avg. point

Reference base 529 4286801 16.3528 1185ms 0.0045ms
More features 4225 22370076 85.3351 4386ms 0.0167ms
Overlapping features 4753 5933890 22.6360 2206ms 0.0084ms
Fractal shapes 529 4313839 16.4560 1850ms 0.0071ms

Table 10.1: Evaluation performance for ”Ridges and rivers” with 3 iterations of
MPD.

Firstly When comparing these visual results of these methods, it is clearly visible in
Figure 10.1c, that the the overlapping features method has an unfortunate tendency
to create undesired artefacts in the form of double ridges and flat spots at the tops.
The rivers in contrast does not bear these same artefacts of duality, or at the very
least not visibly so.

The methods using more features or fractal shapes, seen in Figure 10.1b and 10.1d
in contrast produce results that have a visibly similar profiles to the elevation trans-
itions between the ridges and the rivers as the reference, but with the features
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following the desired, more detailed fractal path.

Comparing these two methods further, the method using more features generates
a more jagged edge along the top of the ridges compared to the smooth elevation
changes when using the fractal shapes method. Meanwhile the method using fractal
shapes generate more crease details in the transition areas between the ridges and
rivers, these creases following the path of these features being merged, where the
method splitting these paths up into smaller pieces create a smoothed out transition.

Considering the evaluation performance of these two methods as seen in Table 10.1,
it is clear that the method using more features is the least efficient approach, needing
around twice the time to be evaluated than the two other approaches.

The method using fractal shapes gives results that are visually comparable or even
better than the results when using more features, while also being the fastest one in
these result.

10.1.1 ”Ridges and rivers” with fractal shapes

Since the method using fractal shapes has shown itself to be a favorable approach
by brief comparison to the other methods, it is of interest to understand how the
performance is impacted by creating an increasing amount of detail by applying
further iterations of MPD.

To determine this, the configuration is kept the same, except for the iterations
of MPD being applied by the MPD modules being changed, and the performance
results are organized in Table 10.2, and the times plotted in Figure 10.2.

It is clear from the results that the evaluation time increases is quadratic, approach-
ing a doubling for each increment in MPD iterations being applied. It can also be
observed that the number of features evaluated slightly increases with more details.

Evaluation type
Features Time
Layout Evaluated Evaluation
Total Total Avg. point Total Avg. point

Reference base 529 4286801 16.3528 1185ms 0.0045ms
MPD 1 529 4300907 16.4067 1321ms 0.0050ms
MPD 2 529 4307768 16.4328 1511ms 0.0058ms
MPD 4 529 4316499 16.4661 2549ms 0.0097ms
MPD 6 529 4318931 16.4754 6565ms 0.0250ms
MPD 8 529 4319200 16.4764 23353ms 0.0891ms

Table 10.2: Evaluation performance for ”Ridges and rivers” using static evaluation
of fractal shapes for details.

72



(a) No detailing (b) Details with more features

(c) Details with overlapping features (d) Details with fractal shapes

Figure 10.1: Results of the different approaches to adding details.
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Figure 10.2: Evaluation times per point for ”Ridges and rivers” with static fractal
shapes.

10.1.2 ”Ridges, rivers and lakes” with fractal shapes

The previous evaluation for different numbers of MPD iterations are also repeated
for the ”Ridges, rivers and lakes” configuration.

The MPD modules are similarly added to the configuration ”Ridges, rivers and
lakes” configuration as described 9.4.

In addition, there is added an added an additional elevation attribute to to the
river and lake features. This new elevation attribute has a short influence range
and higher priority, and is added to address the elevation of the water in lakes not
being flat in the initial configuration, as the elevation was merged with surrounding
mountains when approaching the lake edges. The finished configuration for the
layout is seen in Figure 10.3.

Evaluation type
Features Time
Layout Evaluated Evaluation
Total Total Avg. point Total Avg. point

Reference base 551 4200864 16.0250 1332ms 0.0051ms
MPD 1 551 4213833 16.0745 1502ms 0.0057ms
MPD 2 551 4223485 16.1113 1744ms 0.0067ms
MPD 4 551 4232776 16.1468 3296ms 0.0126ms
MPD 6 551 4237016 16.1629 9439ms 0.0360ms
MPD 8 551 4237493 16.1648 34735ms 0.1325ms

Table 10.3: Evaluation performance for ”Ridges, rivers and lakes” using static eval-
uation of fractal shapes for details.
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Figure 10.3: The WS layout configuration for ”Ridges, rivers and lakes” with fractal
shapes.

(a) MPD 0 (Reference) (b) MPD 3 (c) MPD 6

Figure 10.4: Evaluation results for ”Ridges, rivers and lakes” with fractal shapes.
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Figure 10.5: Evaluation times per point for ”Ridges, rivers and lakes” with static
fractal shapes.

Comparing the performance results from this, the same pattern of quadratic growth
to the evaluation time is observer, but with relatively longer evaluation times.
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Chapter 11

Discussion

With the addition of the MPD module, it has been made possible to create more
detailed layout by further refining an existing layout. The module has been used in
three different method to generate more details.

Out of these three methods, the approach with using fractal shapes was shown to
produce the best results the fastest, but the reasons why this might be, gives further
insight on the different methods how the advantages of the methods may change on
application.

11.1 More features

I will firstly address the simplest, and to some extent naive approach of applying
MPD to the features and splitting them into multiple new features with the same
attributes. While this method was shown to create visually pleasing results for the
most part, with the exception of the jaggedness of the ridges that was not intended
as part of the model, the evaluation time is the worst of the group. Looking at the
number of feature evaluated, the method evaluated roughly 5 times more features
per point than the original reference, meanwhile the time is only 1

4
as slow.

The difference in the ratios here are likely to be explained in the overhead querying
the R-tree, as well as also in part the relatively higher workload of evaluating the
included landmass polygon feature, which was shown in the results of Part I.

The jaggedness of the ridges may be explained by the height average not perfectly
conforming to the height of the features modelling the ridges. As the max weight
per feature is a value of one, the weight of two ridge features sum up to a value
of two where tow adjacent ridge features connect. This gives the elevation value
of the ridge a higher weight where ridge feature connects than anywhere else. As
the weight of closely adjacent ridge features fall off towards the middle of any given
ridge feature, the elevation may be expected to rise and fall along the feature with
peaks at the connections causing the observed jaggedness. This behaviour of a slight
rise in the elevation of ridges where features connect is also possible to observe in
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the reference configuration without detailing on closer inspection.

In addition it is worth consideration that the approach of splitting polylines into in-
dividual line segments is not applicable to polygons. With polygons being connected
to form an encloses area on the inside, it is not reasonable to be splitting polygon
shapes as can be done for lines, and the approach is therefor limited to application
on lines only.

11.2 Overlapping features

The overlapping features method approaches the problem of adding details with a
mindset inspired by LOD, where more detailed geometry is applied when something
is observed from a closer perspective, where the translation to this implementation
is the usage of more detailed features representative of the same original feature
when evaluating the terrain closer to the feature.

The method attempts to achieve this by utilizing the priory merging of elevations
to use multiple smaller features providing more detail, to override the original low
detail feature when evaluating points close by.

The method shows the issue of creating features with a duality for the ridges, as the
same ridge may appear twice, with low and high detail level. But while the river
works similarly, this behaviour is not clearly observed for the river.

This is due to the elevation not changing nearly as fast close to the river as the
elevation changes close to the ridge lines. In addition, the displacement factor used
for the ridges is twice that of the rivers, causing the high detail ridges to deviate
more from the low detail features than the rivers do.

The method is reliant on the detailing features representing values somewhat close
to the values resulting from the low detail features, as the high detail features are
functions to provide relatively local overrides, and do not merge with other features
that otherwise merge with the low detail features. Therefor the displacement factor
for the ridge lines are in this case way to high to represent local details of the ridge
lines as the details fall far outside of the low detail ridge line.

The flat area on the top of the high detail ridges is due to the features overlapping
to produce weight sums higher than one further away from the feature, and thus
completely overriding the low detail merge for a region around the features, thus
not blending as desired with the low detail merge.

While the method has interesting properties that imitate a LOD system, and has
the potential to be applied to create several further levels of details in theory, the
practical results from merging the features do not produce the desired results using
the current method.

The method may possibly be improved by modifying the priority merge, such that
the linear interpolation between priority levels is performed according to a weight
maximum per level rather than the weight sum. This would be intended to avoid
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the expansion the full override beyond the location of the features, and thus avoid
the flat observed in the presented results.

11.3 Fractal shapes

The approach of using fractal shapes was in the results shown to be the comparably
better solution, both visually and performance wise, at least for the given detail
level.

While the method under the hood produces as much geometry to evaluate the dis-
tance of as the first method, where the geometry is split up into multiple individual
features, and evaluates the distance as many times, this the increase in distance
evaluations has clearly a significantly smaller impact on the evaluation time as the
overhead of the rest of the process, and it should be expected to outperform the first
method for any level of detailing.

Considering the method with different numbers of MPD iterations applied, it is
clear though that the evaluation time approaches an quadratic growth with further
iterations applied. The first few iterations do not experience this quadratic growth
to begin with because of the overhead of the rest of the process, like searching the
R-tree and merging the values for the attributes. But at higher detail, the distance
evaluations become the relatively dominant usage of the time, and the quadratic
nature of the method becomes a problem when wanting further details.

The same patterns are seen when considering a configuration that increases the
details of polygonal features, just with polygons being even more demanding to
evaluate to start with, which is amplified accordingly with the quadratic growth
when creating further details.

One advantage of the method i that it applies to polygons as well as it does to lines,
which neither of the two previous methods can accommodate likewise.

The quadratic growth in evaluation time is the main disadvantage of the method, as
it can quickly make it prohibitively expensive to create further details beyond 3 to
4 iterations of MPD, where the quadratic growth start to be dominant in increasing
the evaluation time.

Given that a possibly significant part of a shape may be relatively distant, relative
to the closest part of the shape, there are a lot of details to a shape being evaluation
that is far from even possibly affecting the results. Considering this it would be
desirable to ignore such details that are relatively distant in favour of the closer
parts of the geometry, with similarly to how LOD systems based on VDR may
adapt to use differing detail levels within the same geometry based on distance.
This possibility of this is further explored as the topic of Part III.
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Part III

Dynamic Shapes
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Chapter 12

Design

The results from adding further details in Part II showed that the the of creating
more detailed feature shapes held the most potential for adding details, both in
terms of the visual results and the efficiency. However the time taken by distance
evaluations of increasingly complex shapes created by an increasing number of MPD
iterations grows quadratic. Depending on the desired output detail level, the ex-
pense of the evaluation time that may quickly become prohibitively large, especially
considering usage at run time in a user interactive application.

To address this, two different possibilities to approach to mitigate the quadratic
growth has been considered that may apply to fractal shapes generated with MPD.
Both these take a dynamic approach to evaluating the distance. One of these is
a progressive approach to LOD, and the other is a progressive optimization of the
distance evaluation.

For the implementation, only the later of these is applied, but the former approach
may also have possible use cases.

12.1 Distance LOD

This first method is based on how LOD is used to limit the amount of detail rendered
of an object depending on the distance, as less details are visible from a distance.
When considering any shape with an SDF function, the distance function will ap-
proach that of a circle with the shape inscribed over a large enough distance. Given
this it is clear that a the details in the original shape is decreasingly propagated by
the distance function the further away one views it.

Given that this also will be the case for a fractal shape, it may be expectantly
reasonable replace the shape by decreasingly less detailed approximations as the
distance increases as the smaller details are lost or become indistinguishable.

The concept of this method is therefore to introduce these details progressively by
partial replacement of the shape as the evaluated point gets closer, as evaluation
from far distances does not appreciably display the smaller details. This has some
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essential similarities to how the detail creation approach overlapping features was
intended to work, as the smaller details only start taking effect when within a
set bound. And also similarly to the aforementioned approach to detailing, these
increasingly more detailed parts introduced for the shape, must to be smoothly
blend to override their previous detail level to avoid discontinuities in the distance
function that would cause discontinuous artefacts in output results.

The method is illustrated Figure 12.1, where it can be seen how the red dot being
evaluated sees a progressively more detailed shape as it closes in on the shape.

Figure 12.1: Distance LOD with progressively partial application of MPD eval-
uation. As the red point being evaluated approaches a line segment, the line is
subdivided and the distance is transitioned to give the distance to the new detail.

12.2 Distance evaluation optimization

The second method is a progressive optimization of the distance evaluation for fractal
shapes generated by MPD. The resulting distance found by this method will always
be descriptive of the distance to the fully detailed shape, no matter how far away
the distance is evaluated from. As such the distance is always the true distance and
not an approximation like the former method provided.

This progressive optimization incrementally evaluated the shape for each stage of
MPD, and selectively only progresses with further subdividing of lines that by an
estimate present the possibility of becoming the closest after subdividing, this es-
timate is based on the maximum possible displacement a line segment can be given
after subdivision, and any line that given the most favorable case cannot end up
at least as close as the currently closest line at a stage is not subdivided. This
progressive subdivision is then carried out until the most detailed version level is
reached, at which point the minimum distance is recorded.

For polygons, the point is also either inside or outside the polygon. The evaluation
of a normal polygon determines this by observing how many sides of the polygon a
line from the evaluated point stretching in the left direction would be intersecting, or
alternatively formulated, the number of sides in the polygon that has the evaluated
point falls in the right projected shadow of. If the number is even, it gives that the
point is outside, while an odd number gives that it is inside.
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The progressive approach uses this same method, and observes this relation with
sides of the polygon when they either are not subdivided, whether that be because
they cannot become the closest, or because they cannot be subdivided because the
final level of subdivision has been reached.
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Chapter 13

Implementation

As mentioned, the implementation only includes the second method of distance
evaluation optimization.

The method is implemented such that it is made available as a method option for
lines and polygons in the MPD module, the option is called DYNAMIC. This option
creates the fractal shape similarly to the STATIC option, but the shape is evaluated
using the optimized method.

The implementation sets up a queue of active line segments to be considered for
subdivision. For each iteration of MPD applied, all the previously queued line seg-
ments are evaluated for distance, and their distances queued up as well as minimum
stored. Given the an assumption of all these line segments being optimally aligned
symmetrically to evaluated point, the maximum possible displacement is subtracted
from each and if it falls below the current minimum, indicating an estimate of the
line possibly creating closer geometry by subdivision, the line segment is subdivided
into the subsequent two line segments that are queued up. If the final detail level
is reached, the subdivision check is ignored and the distances are instead compared
for their minimum.

The pseudo code for the implemented evaluations are shown in Algorithm 17 for
polylines, and Algorithm 18 for polygons.
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Algorithm 17: Polyline dynamic distance evaluation

input : A list V of vertices giving the polyline.
Position p to find the distance at.

output: Distance D from p to the polyline.
1 begin
2 D =∞
3 Create list Lt for vertex tuples representing lines.
4 Create list Ld for distance values.
5 Add the initial line as vertex tuple (V.fist, V.last) to Lt.
6 while Lt.size > 0 do
7 d =∞
8 foreach lt ∈ Lf do
9 Let dd be the distance from p to the line described by lt.

10 Ld.add(dd)
11 d = min(d, dd)

12 end
13 foreach lt ∈ Lt and ld ∈ Ld when entering the loop do
14 Remove lt and ld from their respective lists.
15 if Vertices in lt are not adjacent in V then
16 D = min(D, ld)
17 Continue to next loop iteration.

18 end
19 Let lmd be the maximum possible displacement when splitting lt.
20 Let lmpd = ld − lmd estimate the minimum possible distance after

splitting lt.
21 if lmpd <= min(D, d) then
22 Split lt into two new line tuples and add them to Lt.
23 end

24 end

25 end

26 end

85



Algorithm 18: Polygon dynamic distance evaluation

input : A list V of vertices giving the polygon.
Position p to find the distance at.

output: Distance D from p to the polyline.
1 begin
2 D =∞
3 s = 1
4 Create list Lt for vertex tuples representing lines.
5 Create list Ld for distance values.
6 Create list Ls for distance signs.
7 Add the initial polygon sides as vertex tuples to Lt.
8 while Lt.size > 0 do
9 d =∞

10 foreach lt ∈ Lt do
11 Let dd be the distance from p to the line lt, also let dd be

negative if p is in the right projected shadow of lt.
12 Ls.add(sign(dd))
13 Ld.add(abs(dd))
14 d = min(d, abs(dd))

15 end
16 foreach lt ∈ Lt, ld ∈ Ld and ls ∈ Ls when entering the loop do
17 Remove lt, ld and ls from their respective lists.
18 if Vertices in lt are not adjacent in V then
19 D = min(D, ld)
20 s = s · ls
21 Continue to next loop iteration.

22 end
23 Let lmd be the maximum possible displacement when splitting lt.
24 Let lmpd = ld − lmd estimate the minimum possible distance after

splitting lt.
25 if lmpd <= min(D, d) then
26 Split lt into two new line tuples and add them to Lt.
27 end
28 else
29 s = s · ls
30 end

31 end

32 end

33 end
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Chapter 14

Results

Since dynamically evaluating the distance to polylines and polygons produce the
same results as statically evaluating the distances, the resulting output from the
generation are the same as previously, with only the aim of improving the evaluation
performance.

The implementations are also the same as previously, only with the method paramet-
ers in the MPD modules being set to DYNAMIC instead of the previous STATIC.

Because of this, the results here only present the resulting evaluation performances.

14.1 Adaptive calculation of polyline distances

Results for the ”Ridges and rivers” configuration is evaluated similarly as in 10.1.1
for different iterations of MPD being applied, but with the MPD modules method
parameters set to DYNAMIC.

Evaluation type
Features Time
Layout Evaluated Evaluation
Total Total Avg. point Total Avg. point

Reference base 529 4286801 16.3528 1185ms 0.0045ms
MPD 1 529 4300907 16.4067 1732ms 0.0066ms
MPD 2 529 4307768 16.4328 2172ms 0.0083ms
MPD 4 529 4316499 16.4661 3405ms 0.0130ms
MPD 6 529 4318931 16.4754 4913ms 0.0187ms
MPD 8 529 4319200 16.4764 6655ms 0.0254ms
MPD 10 529 4319480 16.4775 8775ms 0.0335ms

Table 14.1: Evaluation performance for ”Ridges and rivers” using dynamic evalu-
ation of fractal shapes.
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Figure 14.1: Evaluation times per point for ”Ridges and rivers” with dynamic fractal
shapes.

14.2 Adaptive calculation with polygon distances

Results for the ”Ridges, rivers and lakes” configuration is evaluated similarly as in
10.1.2 for different iterations of MPD being applied, but with the MPD modules
method parameters set to DYNAMIC.

Evaluation type
Features Time
Layout Evaluated Evaluation
Total Total Avg. point Total Avg. point

Reference base 551 4200864 16.0250 1332ms 0.0051ms
MPD 1 551 4213833 16.0745 1964ms 0.0075ms
MPD 2 551 4223485 16.1113 2502ms 0.0095ms
MPD 4 551 4232776 16.1468 3884ms 0.0148ms
MPD 6 551 4237016 16.1629 5541ms 0.0211ms
MPD 8 551 4237493 16.1648 7401ms 0.0282ms
MPD 10 551 4237777 16.1658 9462ms 0.0361ms

Table 14.2: Evaluation performance for ”Ridges, rivers and lakes” using dynamic
evaluation of fractal shapes.
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Figure 14.2: Evaluation times per point for ”Ridges, rivers and lakes” with dynamic
fractal shapes.
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Chapter 15

Discussion

In Part II, it was shown that the approach of using fractal shapes to create details
was the most favorable out of the methods attempted. But it also had the problem of
creating an quadratic growth in the evaluation time as the detail level was increased.

By adapting to the detail level of a fractal shape on the base of relative proximity
during distance evaluation, it was considered that the evaluation time for features
with fractal shapes could be reduced.

The implementation of a method to progressively adapts to increasing details created
by MPD during distance evaluation, has here been shown to in practice be capable
of reducing the time complexity of the distance evaluation from quadratic growth,
to linear growth when increasing the number pf MPD iterations.

The implemented method also evaluates the true distance to the fractal shapes,
similarly to the the results in the previous part, and thus produces the same final
results.
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Part IV

Concluding remarks
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Chapter 16

Discussion

With the finished results presented for all parts, it is now possible to consider the
full picture of what has been achieved. The goal of the project was to bring the
method the method presented in my previous work to a more competent state for
reel world usage in interactive applications such as games.

The method as of the time of entering this project was intolerably slow compared to
the expected possibility, especially if considering larger layouts than the presented
ones used in the results. It was also lacking in detail when observing the final output,
as it did not imitate any of the fractal properties of real world terrains.

The method as it functions now after the applied changes is now considerably faster,
as it is more efficient with the selective evaluation of features, excluding all features
that are guaranteed to not have an impact for any given location in the resulting
terrain. It is important to take notice that this inclusion is not a guarantee for
only feature with an impact being evaluated though. The selection is based on the
minimum bounding rectangle of the area of influence for any given feature, which
should not be expected to be a perfect representation, and it will therefor contain
parts in the bounded area where the feature contribution becomes zero. The amount
if this non utilized area will depend on the feature shape and influence range.

Whether the new run times are acceptable for usage in an interactive application, will
depend on the constraints set for the application. The method is still significantly
slower than using noise will be in most cases. I consider it unreasonable to draw
any general conclusions on this topic as was is acceptable is a consideration that
needs to be done on a per use basis for real use cases. But I will give some brief
thoughts on the usage of the method to generate terrain with the game Minecraft
as an example case [17].

In Minecraft the world is generated in chunks with a correctional area of 16x16 units
of blocks. The generation of this requires a 16x16 samples heightmap to generate
the chunk. Given that the method without extra details needs an average of around
0.0045ms per sample, this results in 1.1520ms per chunk needed to apply this method
method. If the time spent on other aspects of generating the chunk is ignored for
now, this would give up to 868 chunks per second, or over a 29 chunks square. This
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is in the general case, a larger area than the player can view with normal settings.
As such, while the method may be relatively slower than using noise for the same
purpose, it is not unreasonable that it can be acceptable.

If considering the application with more details, the evaluation time per sample is
0.0148ms for the ”Ridges, rivers and lakes” configuration with 4 iterations of MPD
applied using dynamic evaluation of fractal shapes. Making the same assumptions
of currently ignoring time spent on other parts of the chunk generation, this results
in 3.7888ms spent per chunk, for a total of 263 chunks per second, or over a 16x16
square of chunks. While this is slower, it may possibly still be acceptable if the player
is traversing the world at slow pace. If the time is to slow, it may also be possible
to reduce the sample rate and perform linear interpolation over small distances if a
minor loss of details can be acceptable.

While these examples avoid looking at the total time of actually generating a full
chunk, from earlier experience with modifying certain operations of chunk generation
with comparable impact on the time spent per chunk, the addition of one or possibly
even a few milliseconds per chunk may not be very noticeable to a player, and does
not break the experience.

As such, it may considering the time and given similar constraints, be considered
reasonable to use the method in an interactive application with the implemented
improvements.
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Chapter 17

Further work

Further work could approach several different possibilities of the project, some are
more fundamental about the design of the, and some other are related to the imple-
mentation.

One possibility of interest, it the combination of this method with persistent noise or
other input to modulate or even generate the values for various attributes assigned
to features. This could be used to compliment, or outright replace the currently
constant values assigned to a feature. This could allow the resulting outputs to
take on certain characteristics and textures, such as a mountain feature may have
its elevation modulated by a noise value to create rougher surfaces, while the river
feature creating the valley below may not be modulated as such and result in a
smooth surface, and these characteristics would be blended together as the elevation
is merged.

Another possibility that could be of interest to the implementation, is creating new
attributes within the graphical editor of WS, for example by making available a set
of modules for different types of values that can be used to create unique attributes
defined by a tag name, were attributes with similar tag and value type are merged
together. Likewise the possibility for a user to create their own unique weight
functions in the editor could be useful, instead the current reliance the available
hard coded weight functions.

An important part modelling further details are also the creation of methods of
generation feature layouts. A topic of interest here would be the generation of for
example roads in combination with mountains and rivers, possibility even having
such roads connecting areas defined to generate suitable terrain for settlements.

Considering the topic of settlements, the usage of the method to generate the terrain
of a settled area, whether a city or suburban area may be a possible case study for
usability. Such an environment would may have completely different rules to gener-
ation of features, and a collection of other feature classes than has been considered
in the work up until now, such as different infrastructure aspects of the environment
and plots of land for purposed for buildings or agriculture.

Since the method is based on merging values using weighted SDF evaluation, the
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method may reasonably also extended to generate three dimensional. While gener-
ating a volume is significantly more demanding than a plane, the use for generating
cave systems is one interesting possible use case for such an extension.

Another possibility that relates to further approaches to layout generation is the
possibility creating manual feature layouts,and to further use such manual layouts
as seed values for generating features by modifying, extending or coexisting with
such manual features.
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Chapter 18

Conclusion

In this work I have improved the method of feature-based procedural generation
presented in my previous work ”Feature-modeled procedural terrain generation with
adaptive height evaluation” [1].

Where the previous work was capable of producing a terrain including mountains,
rivers and lakes, such that water could flow in a consistent downwards direction, the
method was slow, only accommodated the generation of elevation values, and the
results looked artificial with a lack of details.

In this work, the evaluation performance has been improved by spatially indexing
features, such that they can be selectively used for evaluation only when relevant,
and this has been shown to significantly reduce the evaluation times. Instead of
evaluation time relying on the number of features in a layout, as it was previously,
it now instead relies on the density and configuration of features in the layout.
Whether the improved evaluation efficiency is enough to make the method applicable
for run time generation in interactive applications, like for example games, may still
depend on the constraints and expectations for the application. The method is
still significantly slower than the simplest forms of noise based generation, but the
evaluation of arbitrarily large skeleton layouts can now be considered to be relatively
consistent independently of the size of the skeleton layout, as it is also the general
case for noise based generation.

The work presented has also shown the method being extended to handle further
values describing the terrain through attributes, like surface materials for texturing,
and water depth for carving out rivers and lakes filled with water, as well as the
elevation. The use of attributes has also been shown to be an important tool in
the modelling of various types of features by configuration, further developing the
approach introduced in the previous work of feature classes emerging from intent
when configuring a generator, rather than by hard coded implementations.

How attributes are merged is also in part flexible to the needs of an implementation.
Including continuous and discrete attributes, as well as the possibility of merging
attributes values with priority which allows for values to be overridden by higher
priority values. The attributes system may enable building of complex models with
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feature interactions, and an example of this concept has even been shown in the
usage to implement a simple level of detail system for the evaluation of elevation.

As with the introduction of attributes themselves, the decision of making the weight
function a property of the individual attributes to be assigned features, has become
a useful tool in configuring unique classes of features that can provide different
characteristics to the resulting terrain.

To address the problem of the previous work producing low detail results, there has
been presented and compared three different approaches for adding further detail.
Out of these the most promising method of using fractal shapes has been further
developed to be more efficient, by a progressive optimisation to determine distance,
it may evaluates complex shapes with the level of detail changing dynamically across
parts of the shape according to relative proximity.

The combinations of these improvements has made the method capable of produ-
cing terrains with the desired logical structure to bodies of water, but now more
efficiently and featuring fractal details to the paths and outlines taken by features.
With the flexible options to configuring features, and the possibility to design con-
figurations with a graphical tool like WS, it may be possible for a user given the
access to appropriated layout generators can to create skeleton layouts with complex
interaction between features configured to behave as unique classes of features.

The implementation is also well on the way to becoming a greatly powerful addition
to the WorldSynth library of functionality, and it is my intention to further develop
it further as a public addon to WorldSynth. With future work including including
such as further options to specify wight functions, modulation of feature elevations
using noise, as well as further attributes and layout options, possibility even manual
pipeline to creating full or partial layouts, it has potential become a systematic tool
for use in both artistic terrain authoring and run time terrain generation.
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Appendix

A Project source compiled version

The source code and compiled version project can be acquired at:
https://gitlab.com/booleanbyte/project4900

The implementation is an addon for WorldSynth version 0.4.X. WorldSynth can be
acquired from the download section of the WorldSynth website:
https://www.worldsynth.net

To use the project implementation, acquire the compiled project and WorldSynth
software as described above. After unzipping the WorldSynth download, put the
compiled project version ”Project4900.jar” file in the ”addon” folder of the World-
Synth download. The modules implemented in this work will then be available after
launching the application.

The WorldSynth example patches used in the results are also provided with along
with the source and compiled addon of the project, these files are found in the
project example folder.
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