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Abstract. We prove that all entire transcendental entire functions
have infinite topological entropy.

1. Introduction

Topological entropy is a central property in dynamical systems and has
been studied extensively, both in the complex setting and outside. More
generally it was shown by Misiurewicz and Przytycki [MP77] that for smooth
self-maps of compact manifolds of topological degree d the entropy is at
least log(d). For polynomials and rational functions acting on the Riemann
sphere, it was shown independently by Gromov (in a preprint from 1977,
published in 2003 [Gro03]) and Lyubich [Lju83] that the topological degree
is equal to log(d).

The goal in this paper is to determine the topological entropy of transcen-
dental entire maps. Such maps have infinite topological degree, and hence
one can expect that the topological entropy is also infinite. This is indeed
the case, as we will prove here.

In [Ber00] Bergweiler proved that the Ahlfors Five Islands Property im-
plies for any transcendental function f the existence of a bounded sim-
ply connected open set D ⊂ C, and disjoint relatively compact subsets
U1, U2 ⊂⊂ D which are both being mapped univalently onto D by some
iterate fk. As was pointed out by Dujardin in [Duj04], an immediate conse-
quence is that the topological entropy of a transcendental function is always
strictly positive. Since no bound on k is given, the argument does not pro-
vide a definite lower bound on the entropy. The fact that the entropy is
strictly positive follows also from the results by [CF96].

We will prove the following statement, which gives less information on
the way the image covers the domain, but which does imply arbitrarily
large lower bounds on the entropy.
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Theorem 1.1. Let f be a transcendental entire function, and let N ∈ N.
There exists a non-empty bounded open set V ⊂ C so that V ⊂ f(V ),
and such that any point in V has at least N preimages in V , counted with
multiplicity.

The fact that f has infinite entropy follows from the next statement. We
refer to the Appendix for the proof and for the definition of entropy.

Theorem 1.2. Let V ⊂ C be a bounded open set, and let g : V → C be a
holomorphic function, having a holomorphic continuation to a neighborhood
of V . Suppose that every w ∈ V has at least N preimages in V , counted
with multiplicity. Then the topological entropy of g is at least log(N).

In the previous paper [BFP18] we treated the simpler case when the func-
tion f omits some value. In this case the domains V can be chosen equal to
arbitrarily large annuli of fixed modulus. As will be pointed out in exam-
ple 2.10, this cannot always be done for arbitrary transcendental functions.
Instead, the domain V that we construct is either a simply connected sub-
domain of some annulus, or equals a large disk.

Acknowledgement: The fact that transcendental functions have infinite
entropy was proved independently by Markus Wendt. His result from 2005,
whose proof relies upon Ahlfors Five Island Theorem, was never made public
but is mentioned in his PhD thesis [Wen05, Beispiel 4.7.3]. We are grateful
to Walter Bergweiler for bringing the work of Wendt to our attention.

2. Proof of the main theorem

Notation. Throughout the paper we denote by ∆(z, r) the open Euclidean
disk of radius r > 0 centered at z ∈ C. For a set C ⊂ C we denote by
diamEuclC its Euclidean diameter.

For a hyperbolic domain D ⊂ C let us denote by ρD(z)|dz| its Poincaré
metric, where ρD(z) is the hyperbolic density on D. For a subset D′ ⊂ D,
we denote by diamD(D′) the diameter of D′ in the Poincaré metric of D.
Following [Ahl] we will write Ω0,1 for the set C \ {0, 1}.

Estimates in the hyperbolic metric. The following estimate on the den-
sity of the Poincaré metric of the twice puctured domain Ω0,1 is well known,
see for example Theorem 1-12 in [Ahl].

Lemma 2.1. The hyperbolic density satisfies

ρΩ0,1(z) >
1

2|z| ln |z|

for |z| sufficiently large.
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In fact, more precise estimates by Hempel [Hem79] and Jenkins [Jen81]
show that the above equation holds whenever

ln |z| ≥ K,
where

K =
Γ4(1

4)

4π2
= 4.3768796 . . . ,

hence is satisfied when |z| > e5.

From now on we let D ⊂ C be a hyperbolic domain, let d > 0, and let
C ⊂ D with diamD C < d/2.

Lemma 2.2. Let α ∈ C\{0}. Let f : D → C\{0, α} be holomorphic. Then
there exists k > 0, depending only on d, such that the following holds:

If there exists wM ∈ C with |f(wM )| > M > k|α|, then

|f(z)| > |α|
ed−1

ed ·M1/ed

for all z ∈ C.

Proof. Let us first suppose that α = 1. Since Ω0,1 is a complete metric space,
for any d there exists k > 0 such that if |f(wM )| > k then f(C) is contained
in the disk |z| > e5. Since holomorphic maps are distance decreasing

diamf(D) f(C) < d/2,

and hence
diamC\{0,1} f(C) < d/2.

and in particular
distC\{0,1}(f(z), f(wM )) < d/2

for any z ∈ C. By Lemma 2.1 and the fact that f(C) is contained in the
disk |z| > e5 it follows that

d/2 > distC\{0,1}(f(z), f(wM )) ≥
∫ |f(wM )|

|f(z)|

1

2t ln t

=
1

2
(ln ln |f(wM )| − ln ln |f(z)|),

which gives

|f(z)| > exp(exp(ln ln |f(wM | − d)) = |f(wM )|1/ed > |M |1/ed

When α 6= 1 the result follows directly by considering the function f(z)/α.
�

From now on we define k > 0 as in the above lemma, depending on d.

Corollary 2.3. Let f : D → C \ {0} be holomorphic, let wM ∈ C and
write M = |f(wM )|. Let |α| < M/k. If there is z ∈ C so that |f(z)| ≤
|α|1−

1

edM1/ed, then there exists z ∈ D so that f(z) = α.
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Proof. If there is no z ∈ D so that f(z) = α, then f : D → C \ {0, α}.
Moreover |f(wM )| = M > k|α|. Hence |f(z)| > |α|1−1/edM1/ed for all z ∈ C,
a contradiction. �

The following covering lemma bears similarities with Theorem 2.2 in
[RS15].

Lemma 2.4. Let f : D → C \ {0} be holomorphic. Let 0 ≤ m < M be such
that there exists wM , wm ∈ C with |f(wm)| = m and |f(wM )| = M . Then
f(D) contains the annulus

A =
{(med

M

) 1

ed−1

< |z| < M/k
}
.

Proof. Let α 6= 0 and suppose that α /∈ f(D). By Corollary 2.3, if |α| < M/k
we have

m ≥ |α|
ed−1

ed M1/ed

which gives

|α| ≤

(
med

M

) 1

ed−1

,

which implies that α /∈ A. �

From now on we assume that the domain D ⊂ C is simply connected.

Theorem 2.5. Let f : D → C \ {0} be holomorphic in a neighborhood of
D. Let 0 ≤ m < M be such that there exists wM , wm ∈ C with |f(wm)| = m
and |f(wM )| = M .

Let N ∈ N and define

AN =
{(med

M

) 1

ed−1

< |z| < M/kN
}
.

Then every α ∈ AN has at least N distinct preimages in D.

Proof. If AN is empty there is nothing to prove. Otherwise, since f omits
0 and D is simply connected we can choose an N th-root g = f1/N . Ob-
serve that |g(wM )| = M1/N , and that |g(wm)| = m1/N . Let α ∈ AN . Let
{ηj}j=1...N be the N -th roots of α. Let

B =
{( med/N

|g(wM )|

) 1

ed−1

< |z| < |g(wM )|/k
}
.

Since α ∈ AN , ηj ∈ B for all j. By Lemma 2.4 , for each j = 1 . . . N there
is zj ∈ D so that g(zj) = ηj . By definition of g, f(zj) = α. �

The following is immediate, replacing 0 by any complex number.
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Theorem 2.6. Let f : D → C \ {α} be holomorphic in a neighborhood of
D with α ∈ C. Let 0 < m < M be such that there exists wm, wM ∈ C with
|f(wm)| = m and |f(wM )| = M .

Fix N ∈ N. Let

AN =
{((m+ |α|)ed

|M − |α||

) 1

ed−1

< |z − α| < |M − |α||/kN
}
.

Then every point in AN has at least N distinct preimages in D.

For R > 0 define the annulus

AR := {R/2 < |z| < 2R}

Corollary 2.7. Let f : D → C be holomorphic in a neighborhood of D. Let
0 < m < M be such that there exists wm, wM ∈ C with |f(wm)| = m and
|f(wM )| = M . Let k = k(d) be as in Lemma 2.2.

Fix N ∈ N, and let R, j such that kN < Rj/2. Suppose that m,M satisfy
the conditions:

|M − 2R|
kN

> 4R

and (
(m+ 2R)e

d

|M − 2R|

) 1

ed−1

<
1

Rj/2
.

Then either AR ⊂ f(D), or else there exists α ∈ AR \ f(D) so that(
AR \∆(α,

1

Rj/2
)

)
⊂ f(D).

In the latter case each β ∈ AR \∆(α, 1
Rj/2 ) has at least N distinct preimages

in D.

Proof. If f(D) ⊃ AR there is nothing to prove. Otherwise there is α ∈
AR \ f(D) and we are in the case that f : D → C \ {α}, hence Theorem 2.6
applies, with |α| < 2R. In particular f(D) covers at least N times the
annulus AN defined in Theorem 2.6. The conclusion follows by observing

that the conditions on m,M imply that
(
AR \∆(α, 1

Rj/2 )
)
⊂ AN . �

For R > 0 and θ ∈ [0, 2π] we define

DR := {R/2 + 1/9 < |z| < 2R− 1/9 , |Arg(z)− θ| < 3π/4}, and

CR := {2R/3 < |z| < 3R/2 , |Arg(z)− θ| < 2π/3}.

Note that DR is simply connected, that CR ⊂ DR ⊂ AR, and that CR
has finite hyperbolic diameter in DR, say d/2, which is independent from R
and θ. From now on we let k > 0 be the corresponding constant found in
Lemma 2.2.
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Theorem 2.8. Let f be a transcendental entire function. Let N ∈ N. Then
there exist arbitrarily large R and j large and θ ∈ [0, 2π] so that either AR ⊂
f(DR) or else there exists α ∈ AR \ f(DR) so that

(
AR \∆(α, 1

Rj/2 )
)
⊂

f(DR). In the latter case, each β ∈
(
AR \∆(α, 1

Rj/2 )
)

has at least N dis-

tinct preimages in DR.

Remark 2.9. We can moreover guarantee that CR contains at least two
points of maximum modulus which are at least R/10 apart from each other
as well as from the boundary of CR, and that there is a point wm ∈ CR with
|f(wm)| < 3 and whose distance from ∂CR is at least R/10.

Proof of Theorem 2.8 and Remark 2.9. Observe that the hypotheses on m
and M in Corollary 2.7 are satisfied provided that there exists wm, wM ∈ CR
such that |f(wM )| = M > Rj and |f(wm)| = m < 3R for large enough
R, j. Since the maximum modulus of f on {|z| = R} grows faster than any
polynomial in R, for R large enough we can always assume that there is a
point wM with |wM | = R and |f(wM )| > Rj .

By Picard’s Theorem, f takes on every value infinitely many times except
at most one value, so we can choose arbitrarily large R so that there also
exists a point wm with |wm| = R and |f(wm)| = m < 3R. Since CR
contains strictly more than half the circle |w| = R, and that there are
points of maximum modulus for every R, it follows that we can choose θ so
that both wm and wM are contained in CR, and such that CR contains at
least two points of maximum modulus which are at least R/10 apart from
each other as well as from the boundary of CR. The claim follows from
Corollary 2.7. �

Example 2.10. It is not true in general that for any entire transcendental
function f there exists R > 0 such that f(AR) covers AR arbitrarily many
times. Indeed, let

f(z) =
∞∏
i=1

zi − z
zi

,

where zi → ∞ very rapidly. For any R the set f(AR) covers AR at most
once. To see this, notice that for |zj−1| << |z| << |zj+1| one obtains

f(z) ∼ cjzj−1 · zj − z
zj

,

where cj = (z0 · z1 · . . . · zj−1)−1. Let w ∈ AR. By Rouché’s Theorem the
difference between the number of solutions to the equation f(z) = w on the
two disks ∆(0, R/2) and ∆(0, 2R) is at most 1, hence f(AR) covers AR at
most once.

We note however that this example does have infinite entropy. Indeed, for
|zi| << R << |zi+1| consider the image of the disk ∆(0, R). By the above
estimates each point in ∆(0, R) will have exactly i preimages in ∆(0, R),
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counted with multiplicity. By Theorem 1.2 the entropy of f is at least
log(i).

Final preparations. We will make a few elementary observations before
we start the proof of our main result.

Lemma 2.11. Let N ∈ N, and let D ⊂ C be a bounded simply connected
domain, let f be a holomorphic function defined in a neighborhood of D, and
suppose that there exists r > 0 such that |f(z)| ≥ r for all z ∈ ∂D. If there
exists ξ ∈ ∆(0, r) with N preimages in D, then every point in ∆(0, r) has
N preimages in D (counted with multiplicity).

Proof. For w ∈ ∆(0, r) let gw = f − w. We claim that gw has the same
number of zeroes (counted with multiplicity) as f . Observe that |gw − f | <
|f | on ∂D because |w| < r and |f | ≥ r on ∂D. The claim follows by Rouché’s
Theorem since the function gξ has N zeroes. �

Lemma 2.12. Let R, j > 4. There exists d > 0 such that the following
holds. Let z1, z2 ∈ CR, α ∈ AR, and assume that zi /∈ ∆(α,R/20) for i =

1, 2. Then there exists a simply connected open set D ⊂ DR \∆(α, 1/Rj/2)
with z1, z2 ∈ D such that distD(z1, z2) < d/2.

Proof. We consider three cases:
(i) ∆(α,R/20) ∩DR = ∅. Then we choose D = DR.
(ii) ∆(α,R/20) ∩ CR = ∅. Let D be the tubular neighborhood of CR with
radius R/20.
(iii) ∆(α,R/20)∩CR is nonempty. Let I1 . . . I4 be four arcs starting at α, two
radial segments and two circular arcs, ending when they hit the boundary of
DR (see Figure 1 for an illustration). Then we let D = DR\(∆(α,R/20)∪Ii)
for a suitable i depending on the position of the points z1, z2. It is clear that
D is simply connected, and that i can be chosen to obtain a uniform bound
on distD(z1, z2) not depending on the positions of z1, z2 and of α. �

Lemma 2.13. Let ε > 0 and ` ∈ N. Let α, z1, z2 and x1, . . . , x` be points
in the annulus

AR(ε) := {R/2 + εR ≤ |z| ≤ 2R− εR}
and assume that |α− zj | and |xi − zj | ≥ εR for all i = 1, . . . ` and j = 1, 2.
Then there exists d > 0, depending only on ε and `, and a simply connected
domain D ⊂ AR avoiding all the points xi and satisfying

D ∩∆(α,
1

Rj/2
) = ∅,

such that distD(z1, z2) < d/2.

Proof. Up to rescaling we may assume that R = 1. Observe that for each
choice of points α, z1, z2 and x1, . . . , x` we can find such a simply connected
domain D containing z1, z2 by removing the disk ∆(α, 1

Rj/2 ) and for each
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0

z2

z1

α

DR

CR

Figure 1. Illustration of the proof of Lemma 2.12. In green:
the point α, the boundary of the disk ∆(α,R/20) and the
four arcs Ii.

point α or xi a path connecting the point α or xi to ∂AR. Each path can
be chosen to be either a radial interval, or a combination of a small circular
interval and a radial interval.

Note that the construction also works when the points lie in the closed
annulus AR(ε) and that each construction gives uniform estimates on the
hyperbolic distance between z1 and z2 for nearby locations of the points.
Compactness of the initial conditions implies that the constant d depends
only on ε and `.

�

Main statement and proof. Let us recall the statement of our main
Theorem:

Theorem 1.1. Let f be a transcendental entire function, and let N ∈ N.
There exists a non-empty bounded open set V ⊂ C so that V ⊂ f(V ) and
such that any point in V has at least N preimages in V under f , counted
with multiplicity.

Proof. Fix N ∈ N. Let d/2 be such that Lemma 2.12 and Lemma 2.13 hold
for ` = N and ε = R

2N(N+2) . Observe that if Lemma 2.13 is satisfied for d/2

with ` = n, it is also satisfied for all ` < n. Let k be so that Lemma 2.2
holds for d/2. Let j and R large enough so that Corollary 2.7 holds for k.
Choose R, θ, and j such that the hypotheses in Theorem 2.8 are satisfied.

It follows that either AR ⊂ f(DR), or f(DR) covers AR \∆(α, 1/Rj/2) at
least N times for some α ∈ AR \ f(DR).

Case I. : f(DR) 6⊃ AR.
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In this case there exists α ∈ AR \ f(DR) such that f(DR) covers at least

N times the set AR \∆(α, 1/Rj/2). Let us look for a subset of DR such that
its image covers itself at least N times.

If

(2.1) f(∆(α, 1/Rj/2) ∩DR) ∩DR = ∅,

we can choose V = DR \ ∆(α, 1/Rj/2) and the proof is complete. Hence

we can assume that f(∆(α, 1/Rj/2)∩DR)∩DR 6= ∅, and in particular that

there exists a point ξ ∈ ∆(α, 1/Rj/2) ∩DR with |f(ξ)| < 2R.

We will also assume that ∆(α,R/20) ⊂⊂ DR. Indeed, if this is not the
case, the proof is completely analogues by replacing DR by a slightly larger

simply connected open set D̃R ⊂⊂ AR for which ∆(α,R/20) ⊂⊂ D̃R is

satisfied. In this case, if f(D̃R) keeps omitting α we apply the proof of case
I, otherwise we move to case II.

Let wM be a point in CR \∆(α,R/20) for which |f(wM )| ≥ Rj . Recall
that we may assume that such point exists, since by Remark 2.9 we can
choose CR to contain at least two points of maximum modulus of distance
at least R/10 apart from each other.

We claim that there also exists a point wm ∈ CR \ ∆(α,R/20) so that
|f(wm)| < 3R. Let wm ∈ CR be as in Remark 2.9. If ∆(α,R/20)∩∂CR 6= ∅,
wm ∈ CR \ ∆(α,R/20) as required. Otherwise ∆(α,R/20) ⊂⊂ CR. In
this case, let us assume by contradiction that |f(z)| > 3R for all z ∈ CR \
∆(α,R/20). Then we also have that |f(z)| ≥ 3R on ∂∆(α,R/20). By
Lemma 2.11, since there is ξ ∈ ∆(α,R/20) with |f(ξ)| < 2R, we have that
f(∆(α,R/20)) ⊃ ∆(0, 3R). This contradicts the fact that α ∈ ∆(0, 3R) was
assumed not to lie in f(DR).

Now let D be as in Lemma 2.12, where z1 := wM and z2 := wm. Since
AR is not contained in f(D), it follows by Corollary 2.7 that f(D) covers

AR \∆(α,Rj/2) at least N times. Since D is contained in AR \∆(α,Rj/2)
this concludes the proof of case I.

Case II: f(DR) ⊃ AR.

Observe that for each fixed N , Theorem 2.8 holds for arbitrarily large
radii R. If there is at least one of them for which case I holds, we are done.
Otherwise, for every R given by Theorem 2.8 we have that f(DR) ⊃ AR and
hence that f(AR) ⊃ AR.

If there are arbitrarily large R for which f(AR) covers itself at least N
times we are also done. Hence we may assume that there exists 1 ≤ ` < N
such that for any of the R given by Theorem 2.8 there is a point α = α(R) ∈
AR which has at most ` preimages in AR, counted with multiplicity. We can
therefore find a sequence of values of R for which the maximum number of
preimages in AR of some point α is at most `, and write ζ1 = ζ1(R), . . . , ζ` =
ζ`(R) ∈ AR for the preimages of α in AR.
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Let W := AR ∩ {z ∈ C : |f(z)| < 2R}. For i = 1 . . . ` let Wi be the
connected component of W which contains ζi (possibly, they are not all
distinct). Now one of the two following cases occurs.

Case IIa: For arbitrarily large R there exists R/2 < r < 2R such
that the circle {|z| = r} does not intersect the set W .

We claim that if R is chosen large enough then f(∆(0, r)) covers ∆(0, r)
at least N times, giving the claim. Let v ∈ C be a non-exceptional value for
f with |v| < 1. By Picard’s theorem, f takes on the value v infinitely many
times in any neighborhood of infinity, hence by choosing R sufficiently large
we may assume that v has at least N preimages in the disk ∆(0, R/2) ⊂
∆(0, r). Since W does not intersect the circle ∂∆(0, r), we have that |f(z)| ≥
2R on ∂∆(0, r). Hence by Lemma 2.11, in ∆(0, r), the function f takes on
any value in ∆(0, 2R) ⊃ ∆(0, r) at least N times, counted with multiplicity.

Case IIb: for arbitrarily large R the set W intersects all circles
{|z| = r} for R/2 < r < 2R.

Then there is some Wi, say W0 up to relabeling, with diameter at least
3R
2` for arbitrarily large R.

We claim that there exist wm, wM ∈ AR with |f(wm)| < 2R and |f(wM )| >
Rj , and such that |wm − ζi|, |wM − ζi| > R

2`(`+2) for i = 1, . . . , `, and

|wm − α|, |wM − α| > R
2`(`+2) . We also claim that the distance between

wm, wM and the boundary of AR is at least R
2`(`+2) .

Indeed, there are at most `+ 1 points in W0 that need to be avoided (all
of the ζi and α), so we can always find wm ∈ W0 which is at Euclidean

distance at least diamEuclW0

2(`+2) > 3R
4`(`+2) from all of the ζi and from α, as well

as from the boundary of AR. By definition |f(wm)| < 2R.

To find wM it is enough to find a point of maximum modulus in AR minus
the set U =

⋃
i ∆(ζi,

R
2`(`+2))∪∆(α, R

2`(`+2)), and which is at distance at least
R

2`(`+2) from ∂AR. This means that we have to avoid at most `+ 2 disks of

diameter R
`(`+2) , hence there are circles in AR \ U in which we can choose a

point of maximum modulus as required, which settles the claim.

By Lemma 2.13 and our choice of d in the beginning of the proof, we can
find D ⊂ AR simply connected with wm, wM ∈ D and ζi /∈ D for i = 1, . . . `,
and with D ∩∆(α, 1

Rj/2 ) = ∅, and such that distD(wm, wM ) < d/2. By our

choice of the constants k, j and R Corollary 2.7 holds, and since f(D) omits
α by construction, we have that for R sufficiently large f(D) covers at least
N times the set

AR \∆(α, 1/Rj/2) ⊃ D.

�
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Let us observe that each of the three cases I, IIa and IIb can occur.
Indeed, case I occurs when f has an omitted value [BFP18]; case IIa occurs
in Example 2.10; and case IIb occurs for f(z) = ez.

Appendix: Topological entropy on C.

For maps acting on compact spaces the concept of topological entropy
has been introduced in [AKM65]. In the literature there are several non-
equivalent natural generalizations for the definition of topological entropy on
non-compact spaces (see for example [Bow73b], [Bow71], [Bow73a], [Hof74],
and more recently [HNP08]). We will use the following:

Definition 2.14 (Definition of topological entropy). Let f : Y → Y be a
self-map of a metric space (Y, d). Let X be a compact subset of Y. Let n ∈ N
and δ > 0. A set E ⊂ X is called (n, δ)-separated if

• for any z ∈ E, its orbit {z, f(z), . . . , fn−1(z)} ⊂ X;
• for any z 6= w ∈ E there exists k ≤ n−1 such that d(fk(z), fk(w)) >
δ.

Let K(n, δ) be the maximal cardinality of an (n, δ)-separated set. Then the
topological entropy htop(X, f) is defined as

htop(X, f) := sup
δ>0

{
lim sup
n→∞

1

n
logK(n, δ)

}
.

We define the topological entropy htop(f) of f on Y as the supremum of
htop(X, f) over all compact subsets X ⊂ Y.

When Y is compact the definition coincides with the usual definition. In
the literature the finite orbits {z, f(z), . . . , fn−1(z)} are often not required
to remain in X. A disadvantage of this definition is that the entropy is
then dependent on the metric; for example, the entropy of a polynomial
acting on the complex plane is then infinite with respect to the Euclidean
metric. Our definition above, which may give a smaller value for the entropy,
is independent of the metric inducing the topology, and is invariant under
topological conjugation.

We are now ready to prove Theorem 1.2. The ideas of the proof are
similar to the ideas used in [MP77].

Proof of Theorem 1.2. Denote the set of critical points of g in V by C. Note
that C is finite. Let C0 ⊂ C contain only those critical points that are not
periodic. Write D for the product of the local degrees of g at the critical
points in C0.

Fix a point w ∈ V , not contained in a periodic cycle containing a crit-
ical point. It follows that all inverse orbits of w avoid a sufficiently small
neighborhood of each super-attracting periodic cycle. Let us denote the
complement of these neighborhoods in V by V ′.
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Let m ∈ N, and let ρ = ρ(m) > 0 be such that for every x ∈ C0 and every
n = 1, . . . ,m we have

gn(∆(x, ρ)) ∩∆(x, ρ) = ∅.

Such ρ can be chosen by finiteness of C0, and since the points x are not
periodic. By decreasing ρ > 0 if necessary we may assume that the disks
∆(x, ρ) are pairwise disjoint.

There exists an ε = ε(m) > 0 such that the following two properties hold:
For each y ∈ V ′ \

⋃
x∈C0 g(∆(x, ρ)) there are at least N preimages of y that

are ε-separated. On the other hand, if y ∈ g(∆(x, ρ)) then the number of
preimages (counted with multiplicity) near x that are not ε-separated is at
most the local degree of g at x, and the other preimages have distance at
least ε to the preimages near x.

Consider a finite inverse orbit y0, y−1, y−m of a point y0 ∈ V ′. By the
estimates on the number of preimages that may not be separated, and by
the fact that any inverse orbit of length m enters each disk ∆(x, ρ) at most
once, it follows that there are at most D − 1 other inverse orbits of y0 of
length m that are not ε-separated from y0. Thus, a lower bound for the
number of ε-separated backwards m-orbits of y0 is given by Nm

D .

Since the lower estimate holds for any y ∈ V ′, it holds in particular for
any point in f−km(w). Hence for any k ∈ N, the number of ε-separated
backwards orbits of w of length km is at least(

Nm

D

)k
=

(
N

D1/m

)km
,

which is therefore a lower bound for K(km, ε), the maximal cardinality
of a (km, ε)-separated set. Since D is a fixed constant and we can let m
converge to infinity as ε → 0, it follows that the topological entropy is at
least log(N). �
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