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DYNAMICS OF TRANSCENDENTAL HÉNON MAPS III: INFINITE ENTROPY

LEANDRO AROSIO†, ANNA MIRIAM BENINI‡, JOHN ERIK FORNÆSS, AND HAN PETERS

Abstract. Very little is currently known about the dynamics of non-polynomial entire maps in several
complex variables. The family of transcendental Hénon maps offers the potential of combining ideas

from transcendental dynamics in one variable, and the dynamics of polynomial Hénon maps in two.

Here we show that these maps all have infinite topological and measure theoretic entropy. The proof
also implies the existence of infinitely many periodic orbits of any order greater than two.

1. Introduction

A transcendental Hénon map is a holomorphic automorphism of C2 of the form

F (z, w) = (f(z)− δw, z),
where δ ∈ C \ {0}, and f is a transcendental entire function. Transcendental Hénon maps form a bridge
between two distinct families of holomorphic maps whose dynamical behaviors have been studied inten-
sively in recent years: the family of complex (polynomial) Hénon maps, and the family of transcendental
entire functions.

In two previous papers [ABFP19, ABFP20] we studied the dynamics of these maps, demonstrating
non-trivial dynamical behavior. For example, the Julia set is always non-empty. Here we provide further
evidence of non-trivial dynamics:

Theorem 1.1. Any transcendental Hénon map has infinite topological entropy.

As an immediate corollary we obtain an alternative proof that the Julia set is non-empty, and by the
Variational Principle that the metric entropy is also infinite. The proof implies that a transcendental
Hénon map has infinitely many periodic cycles of any order greater than 2. This result gives a complete
description on the possible periodic cycles, since there exist transcendental Hénon maps without any
periodic cycles of orders 1 and 2 [ABFP20]. We recall the analogy with one-dimensional transcendental
functions, which may not have any fixed points, but always have infinitely many periodic cycles of any
order greater than 1.

The topological entropy of holomorphic maps is a topic with an interesting history. It was shown
by Gromov that the topological entropy of a rational function of degree d is log(d), a result written
in a preprint in 1977, but not published until 2003 [Gro03]. In the meantime the result was obtained
independently by Lyubich [Lju83].

Smillie [Smi90] proved in 1990 that a polynomial Hénon map of degree d has topological entropy log(d).
Preliminary results for transcendental Hénon maps were obtained by Dujardin [Duj04], who proved that
the entropy of a Hénon-like map of degree d is log(d) as well, and used this fact to construct examples of
transcendental Hénon maps with infinite topological entropy.
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The fact that transcendental functions in one complex variables always have infinite entropy was proved
in the paper [BFP19] by the three last authors. However, after completing our paper we learned that
this result was obtained earlier by Markus Wendt [Wen02, Wen05b, Wen05a], who never published this
work. The proof we present in this paper will closely follow ideas from the proof of Wendt.

1.1. Outline of the proof. Following Wendt we give different proofs depending on whether the family
of rescaled maps fn(z) := f(n · z)/n is quasi-normal or not (see Definition 2.6). If this family is quasi-
normal, Wendt showed that f acts as a polynomial-like map of arbitrarily large degree on larger and larger
domains, hence has infinite entropy. Similarly, we show that F acts as a Hénon-like map of arbitrarily
large degree, hence by Dujardin’s result F also has infinite entropy.

When the family (fn) is not quasi-normal, Wendt shows that one can find an arbitrarily large number
of disks with pairwise disjoint closures, such that each of these disks contains a univalent preimage of all
but at most 2 of the disks; a consequence of the Ahlfors Five Islands Theorem [Ber00]. In the Hénon
setting, we prove similarly that any suitable graph over each of these disks contains a preimage of a
suitable graph over all but at most 2 of the other disks. In both the quasi-normal and the non quasi-
normal setting we obtain completely invariant compact subsets on which the entropy is arbitrarily large.
It follows that the topological entropy is infinite.

In section 2 we recall background on topological entropy, including the definition of entropy on non-
compact spaces that we will use. We also discuss the notion of quasi-normality, and recall Ahlfors
Five-Islands Theorem and some of its consequences. In section 3 we prove Theorem 1.1, first under the
assumption that the family (fn) is quasi-normal, and then under the assumption that the family is not
quasi-normal. In section 4 we prove the existence of periodic cycles of any period at least 3. In section
5 we construct examples of transcendental Hénon maps with arbitrarily slow or fast growing entropy in
terms of the size of the compact sets.

Acknowledgment. The result obtained here answers a question asked to us by both Romain Dujardin
and Nessim Sibony. We are grateful for their suggestion, which stimulated this research. The proof of
our result closely follows the ideas of Markus Wendt in unpublished work. We are grateful for Walter
Bergweiler for bringing this work to our attention, and for further discussion on this topic.

2. Preliminaries

2.1. Entropy. For maps acting on compact spaces the concept of topological entropy has been introduced
in [AKM65].

Definition 2.1 (Definition of topological entropy for compact sets). Let f : X → X be a continuous
self-map of a compact metric space (X, d). Let n ∈ N and δ > 0. A set E ⊂ X is called (n, δ)-separated
if for any z 6= w ∈ E there exists k ≤ n − 1 such that d(fk(z), fk(w)) > δ. Let K(n, δ) be the maximal
cardinality of an (n, δ)-separated set. Then the topological entropy htop(X, f) is defined as

htop(X, f) := sup
δ>0

{
lim sup
n→∞

1

n
logK(n, δ)

}
.

In the literature there are several non-equivalent natural generalizations for the definition of topological
entropy on non-compact spaces (see for example [Bow73b], [Bow71], [Bow73a], [Hof74], and more recently
[HNP08]). We will use the definition used in [Duj04], which is smaller than or equal to all the ones
mentioned above.

Definition 2.2. Let f : Y → Y be a continuous self-map of a metric space (Y, d). Then the topological
entropy htop(Y, f) is defined as the supremum of htop(X, f) over all completely invariant compact subsets
X ⊂ Y. If there is no completely invariant compact subset the topological entropy is defined to be 0.
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Remark 2.3. Notice that this definition does not depend on the metric inducing the topology on Y ,
and is invariant by topological conjugacy, hence the name “topological entropy” is justified. In [BFP19]
the last three named authors used a slightly different definition of topological entropy, a priori larger
than or equal to the above one. Notice also that the topological entropy is also equal to the supremum
of htop(X, f) over all forward invariant compact subsets X ⊂ Y .

2.2. Ahlfors Theorem and quasinormality. The following is the normal families version of Ahlfors
five islands Theorem which can be found in [Ber00], Theorem A.1. A more classical formulation of
Ahlfor’s five islands theorem and Corollary 2.5 in terms of regularly exhaustible Riemann surfaces can
be found in [Sch93], Chapter 1.9.

Theorem 2.4 (Ahlfors five islands Theorem). Let D1, . . . , D5 be Jordan domains on the Riemann sphere
with pairwise disjoint closures and let D ⊂ C be a domain. Then the family of all meromorphic functions
f : D → Ĉ with the property that none of the Dj has a univalent preimage in D is normal.

As observed in [Ber00] after the statement of Theorem B.3, if the functions are holomorphic on D and
the domains Di are bounded the number 5 can be replaced by 3.

Corollary 2.5. Let D1, . . . , Dk with k ≥ 3 be bounded Jordan domains on the Riemann sphere with
pairwise disjoint closures and let D ⊂ C be a domain. Let F be family of holomorphic functions f : D → Ĉ
which is not normal in D. Then for all but at most 2 values of j, Dj has a univalent preimage in D.

We recall the definition of quasi-normality from the Appendix in [Sch93].

Definition 2.6. Let Ω ⊂ C be a domain. A family F of holomorphic functions on Ω is quasi-normal if
for every sequence (fn) of functions in F there exists a finite set Q ⊂ Ω and a subsequence (fnk

) of (fn)
which converges uniformly on compact subsets of Ω \Q.

The rest of this subsection is devoted to the proof of the following Proposition 2.7, which in turn will
be used in the proof of the not quasi-normal case.

Proposition 2.7. Let Ω ⊂ C be a domain and let F be a not quasi-normal family of holomorphic
functions Ω → C. Then there exists a sequence (fn) ⊂ F and an infinite subset Q = (xj)j≥1 ⊂ Ω such
that no subsequence of (fn) converges uniformly in any neighborhood of any xj.

Lemma 2.8. Let Ω ⊂ C be a domain and let F be a not quasi-normal family of holomorphic functions
Ω→ C. Then there exist a sequence (fn) in F with the following property: for every subsequence (fnk

),
there exists an infinite set E(fnk

) ⊂ Ω such that (fnk
) is not normal in any neighborhood of a point in

E(fnk
).

Proof. Assume F is not quasi-normal. Then there exists a sequence (fn) in F such that for any finite
set L ⊂ Ω and every subsequence (fnk

) of (fn), (fnk
) does not converge uniformly on compact subsets in

Ω \ L. For every subsequence (fnk
), define E(fnk

) as the set of all points x in Ω such that the sequence
(fnk

) is not normal in any neighborhood of x. We just need to prove that E(fnk
) is not a finite set. If

by contradiction E(fnk
) is a finite set, then for all points y ∈ Ω \ E(fnk

), the sequence (fnk
) is locally

normal around y. Since normality is a local property, it follows that (fnk
) is normal on Ω \ E(fnk

), and
thus we can extract a subsequence of (fnk

) converging on Ω \ E(fnk
), which is a contradiction. �

Lemma 2.9. Let Ω ⊂ C be a domain and let x ∈ Ω. If a sequence of holomorphic functions (fn : Ω→ C)
is not normal in any neighborhood of x, then we can extract a subsequence (fnk

) with the property that
no subsequence of (fnk

) converges uniformly in any neighborhood of x.
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Proof. Recall that a sequence (fn) is normal if and only if it is equicontinuous with respect to the spherical
metric on the Riemann sphere. Since (fn) is not normal on any neighborhood of x, it follows that (fn)
is not equicontinuous in x. This means that there exists a constant ε > 0 such that for all j there exist
|xj − x| < 1/j and an integer nj such that

d(fnj (xj), fnj (x)) ≥ ε.

But then the sequence (fnj
) cannot have a subsequence converging uniformly in any neighborhood of

x. �

Proof of Proposition 2.7. Let (fn) be the sequence given by Lemma 2.8, and E(fn) be the associated
non-normality infinite set. Choose x1 ∈ E(fn). By Lemma 2.9 there exists a subsequence (fn1(h)) of (fn)
such that every subsequence of (fn1(h)) does not converge in any neighborhood of x1.

Let now E(fn1(h))) be the infinite set given by Lemma 2.8 for the subsequence (fn1(h)). Choose
x2 ∈ E((fn1(h))) different from x1. By Lemma 2.9 there exists a subsequence (fn2(h)) such that every
subsequence of (fn2(h)) does not converge uniformly in any neighborhood of the points x1, x2. By in-
duction we obtain an infinite set Q := (xj)j≥1 and a family ((fnk(h)))k≥1 of nested subsequences of (fn)
such that for all k ≥ 1 no subsequence of (fnk(h)) converges uniformly in any neighborhood of the points
x1, . . . , xk. The diagonal subsequence (gh := fnh

(h)) gives the result. �

3. Proof of Theorem 1.1

Let F (z, w) = (f(z)− δw, z) be a transcendental Hénon map. For n ∈ N and z ∈ C let us define

fn(z) :=
f(nz)

n
.

Observe that for each n, f and fn are topologically conjugate via the map z 7→ nz, so they have the same
entropy. Analogously, the maps Fn(z, w) = (fn(z) − δw, z) are topologically conjugate to F and hence
have the same entropy as F .

Example 3.1. For f(z) = ez the functions fn diverge on the right half plane, and converge to 0 on the
left half plane, thus (fn) is not quasi-normal in any neighborhood of any point on the imaginary axis.

Consider a sequence of complex numbers (a`) with |a`| → ∞ and |a`+1/a`| → ∞, and define

f(z) =
∏
`≥1

(1− z/a`).

Since the infinite product converges for every z by choice of the a`, and since it is not a polynomial, f
is a transcendental entire function. Notice that fn(0)→ 0, that the zeros of f are {a`}`≥1, and that the
zeros of fn are Zn := {a`/n}`≥1.

Given any sequence in (fn) we can find a subsequence (fnj
) for which the sets of zeros Znj

= {a`/nj}`≥1

converge as nj →∞ to the set Z∞, which is either {0,∞} or {0,∞, q} for some q ∈ C \ {0}, in terms of
the Hausdorff metric on the Riemann sphere.

Indeed, if a sequence of zeros a`j/nj accumulates on a point q 6= 0,∞, then up to passing to a
subsequence we may assume that a`j/nj → q as j →∞. Since |aj+1/aj | → ∞ it follows that as j →∞
we have that aij/nj tends to 0 whenever ij < `j , and converges to ∞ whenever ij > `j .

Let us work with the case Z∞ = {0,∞, q}. Write fnj
(z) as a product of three terms as follows:

fnj
(z) =

 1

nj

∏
`<`j

(
1− znj

a`

)(1− znj
a`j

)∏
`>`j

(
1− znj

a`

) .
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Observe that on any compact subset of C \ {0, q} the second of these terms converges uniformly to the
non-zero function 1 − z/q, while the third term converges uniformly to the constant function 1. The
first term diverges uniformly, proving quasi-normality. In the case Z∞ = {0,∞} one writes fnj (z) as a
product of two terms, similarly obtaining locally uniform divergence on C \ {0}.

The proof of Theorem 1.1 is divided into two cases, with different proofs, depending on whether
F := (fn) is a quasi-normal family or not. As mentioned in the introduction, the outline of our proof
follows Wendt’s proof [Wen02, Wen05b, Wen05a] for the one-dimensional case.

3.1. Quasinormal Case. In this subsection we prove the following result:

Theorem 3.2. Let F : (z, w) 7→ (f(z) − δw, z) be a transcendental Hénon map, and suppose that the
transcendental functions defined by fn(z) = f(nz)/n form a quasi-normal family. Then F has infinite
entropy.

For any r ∈ R let us denote by Dr the Euclidean disk of radius r centered at 0. Let f be entire
transcendental and let F be the family of rescalings fn(z) = f(nz)/n. Assume that F is quasi-normal.
Then there is a subsequence (fnk

) of (fn) and a finite set Q such that (fnk
) converges uniformly on

compact sets of C \Q.

Lemma 3.3. The set Q contains the origin, and there exists 0 < s < 1 such that fnk
→ ∞ uniformly

on compact subsets of Ds \ {0}.

Proof. Observe first that for every r > 0, any subsequence of (fn) is unbounded in the circle ∂Dr. Indeed,
for any n we have that fn(D1/

√
n) = f(D√n)/n, and the maximum modulus of a transcendental function

on a disk of radius r grows faster than r2.
We claim that (fnk

) does not converge uniformly in a neighborhood of 0, so in particular, 0 ∈ Q.
Indeed, fnk

(0) = f(0)/nk → 0 as nk →∞, while (fnk
) is unbounded in any neighborhood of 0. Since Q

is finite we can find s such that fnk
→ g uniformly on compact subsets of Ds \ {0}, with g : Ds \ {0} → C

or g =∞. Since (fnk
) is unbounded in any circle ∂Dr we obtain g =∞. �

Proposition 3.4. Let s, (fnk
) be as in Lemma 3.3. Let 0 < r < s, and let R > 0 and m ∈ N. Then

there exists k0 ∈ N such that for k > k0 we have

(1) |fnk
(z)| > R for every z ∈ ∂Dr,

(2) the winding number of the curve fnk
(∂Dr) around the origin is larger than or equal to m.

Proof. (1) is an immediate consequence of Lemma 3.3. We now prove (2). Let a ∈ DR be a non-
exceptional point for f . Fix m ∈ N, and let ρ = ρ(m) such that a has at least m preimages in Dρ under
f . Let M such that f(Dρ) b DM . It follows that there is a connected component W of f−1(DM ) which
contains Dρ, and hence contains at least m preimages of a under f .

Let k0 be large enough such that for all k ≥ k0 we have M/nk < R, and such that (1) holds. Let
k ≥ k0. Denote by W/nk the set {z/nk : z ∈ W}. Then if z ∈ W/nk we have nkz ∈ W and hence
|fnk

(z)| < R. Thus W/nk ⊂ f−1
nk

(DR). Notice that 0 ∈W/nk. It follows by (1) that W/nk ⊂ Dr.
We now claim that W/nk contains at least m preimages of ak := a/nk under fnk

. Indeed W contains
at least m preimages of a under f , and for any such preimage z we have that

fnk
(
z

nk
) =

f(z)

nk
= ak.

Since ak ∈ DR, the result follows by the argument principle. �

Let ∆ = Dr1 × Dr2 be a bidisk, ∂v∆, ∂h∆ denote its vertical and horizontal boundary respectively.
The following definition of Hénon-like maps is Definition 2.1 in [Duj04].
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Definition 3.5 (Hénon-like map). An injective holomorphic map H defined in a neighborhood of ∆ is
called Hénon-like if

(1) H(∆) ∩∆ 6= ∅;
(2) H(∂v(∆)) ∩∆ = ∅;
(3) H(∆) ∩ ∂∆ ⊂ ∂v(∆).

Let πz, πw : C2 → C denote the projection to the z and to the w axis respectively.

Definition 3.6 (Degree of a Hénon-like map). Let H be a Hénon-like map defined in a neighborhood of
∆ = Dr1 × Dr2 and let Lh be any horizontal line intersecting ∆. Consider the holomorphic function

πz ◦H : H−1(∆) ∩∆ ∩ Lh → Dr1 . (3.1)

Then by condition (3) of Definition 3.5 we have that if (z, w) ∈ ∂(H−1(∆)∩∆∩Lh), then H(z, w) ∈ ∂v∆,
which means that the function in (3.1) is proper, and thus a branched covering. By Proposition 2.3 in
[Duj04], its degree is independent of the chosen horizontal line. This integer is the degree of the Hénon-like
map H.

The following theorem is proved in [Duj04, Theorem 3.1].

Theorem 3.7. Let H be a Hénon-like map of degree d. The topological entropy of H is log d.

Lemma 3.8. Let f be a holomorphic function defined in a neighborhood of Dr, let δ 6= 0, and suppose
that |f(z)| > (|δ|+ 1) · r whenever |z| = r. Assume that the winding number of the curve f(∂Dr) around
the origin is d ≥ 1. Then the map F : (z, w) 7→ (f(z) − δw, z) is a Hénon-like map of degree d on
∆ = Dr × Dr.

Proof. We check the three properties in Definition 3.5. The estimate |f(z)| > (|δ| + 1) · r gives that
|f(z) − δw| > r for all (z, w) ∈ ∂v∆, which implies property (2). The formula for F therefore implies
that F (∆) cannot intersect ∂h∆, giving property (3). Since f(∂Dr) winds around 0 exactly d ≥ 1 times,
0 has at least one preimage a ∈ Dr. Hence F (a, 0) = (0, a) ∈ ∆ which gives Property (1).

We now show that F has degree d on ∆. By Definition 3.6 it is enough to show that 0 ∈ Dr has d
preimages counted with multiplicity in F−1(∆) ∩ ∆ ∩ L0 under πz ◦ F , where L0 is the horizontal line
passing through 0. It is easy to see that these points coincide with the preimages in Dr of the origin
under the function f , and the result follows by the argument principle since the curve f(∂Dr) winds d
times around 0. �

Proof of Theorem 3.2. Recall that Fn(z, w) := (fn(z)− δw, z), and that Fn is topologically conjugate to
F for all n ≥ 0.

Fix m ∈ N. Let s, (fnk
) be as in Lemma 3.3 and fix r < s,R > (|δ| + 1)r. Let k0 be given by

Proposition 3.4. Then, if k ≥ k0, it follows by Lemma 3.8 that Fnk
is Hénon-like of degree at least m on

the bidisk Dr × Dr. By Theorem 3.7 we have that the entropy of Fnk
is larger than or equal to logm,

and by topological invariance the same holds for the map F . �

3.2. Non Quasinormal Case. We will now prove the following:

Theorem 3.9. Let F : (z, w) 7→ (f(z) − δw, z) be a transcendental Hénon map, and suppose that the
transcendental functions defined by fn(z) = f(nz)/n do not form a quasi-normal family. Then F has
infinite entropy.



DYNAMICS OF TRANSCENDENTAL HÉNON MAPS III: INFINITE ENTROPY 7

Proof of Theorem 3.9. Assume that the family (fn) is not quasi-normal. Let (fnh
) be the subsequence of

(fn) given by Proposition 2.7 and let Q = (xj)j≥1 be the associated infinite set. Fix k ≥ 1. Let R > 0 be
such that the closures of the disks DR(xj), for j = 1, . . . , k are pairwise disjoint. Next define 0 < r < R
such that |δ|r < R − r. Recall that no subsequence of (fnh

) is normal in any of the k disks Dr(xj),
j = 1, . . . , k.

Lemma 3.10. For a given nh, and for i, ` ∈ {1, . . . , k} let

J(i, `) := {j ∈ {1, . . . , k} : DR(xj + δx`) admits a biholomorphic preimage under fnh
in Dr(xi)}.

Then there exists nh such that #(J(i, `)) ≥ k − 2 for every i, ` ∈ {1, . . . , k}.

Proof. Assume by contradiction that this is not the case. Then for all nh there exist i, ` ∈ {1, . . . , k} and
3 distinct values j1, j2, j3 ∈ 1, . . . , k such that the disks DR(xj1 + δx`),DR(xj2 + δx`),DR(xj3 + δx`) do
not admit biholomorphic preimages via fnh

in the disk Dr(xi). It follows that we can find a subsequence
(fmh

) with the following property: there exist i, ` ∈ 1, . . . , k and 3 distinct values j1, j2, j3 ∈ {1, . . . , k}
such that for all mh the disks DR(xj1 + δx`),DR(xj2 + δx`),DR(xj3 + δx`) do not admit biholomorphic
preimages via fmh

in the disk Dr(xi). By Ahlfors five islands Theorem (see Corollary 2.5) (fmh
) is normal

in Dr(xi), which gives a contradiction. �

In what follows we denote the map fnh
given by the previous lemma simply as fn. We will consider

the dynamics of the Hénon map Fn(z, w) := (fn(z)− δw, z), which is linearly conjugate to F .

Definition 3.11. Let i, ` both lie in {1, . . . , k}. A holomorphic disk D is called a (i, `)-disk if

• it is a holomorphic graph over Dr(xi), that is D can be parametrized as (z, w(z)) with w(z)
holomorphic in Dr(xi);

• πw(D) ⊂ Dr(x`), where πw is the projection to the second coordinate.

Lemma 3.12. Let i, ` ∈ {1, . . . , k}. Then for all j ∈ J(i, `) and for any (i, `)-disk D there exists a
holomorphic disk V ⊂ D for which Fn(V ) is a (j, i)-disk.

C

C

Dr(xi) Dr(x`) Dr(xj)

Dr(xi)

Dr(x`)

Dr(xj + δx`)

Fn
D

Fn(V )

V

fn(z)− δw(z)
fn(z)− δw(z) + δx`

W̃

Figure 1. Illustration of the statement and proof of Lemma 3.12. The disks Dr(xi) are
contained in larger disks DR(xi), which do not appear in this picture.
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Proof. It is clear that the w-coordinates of Fn(V ) are contained in Dr(xi), regardless of the choice of
V ⊂ D. We therefore merely need to find a holomorphic disk V ⊂ D such that Fn(V ) is a graph over
the disk Dr(xj) in the z-coordinate. Since j ∈ J(i, `) there is a biholomorphic preimage W ⊂ Dr(xi) of
DR(xj+δx`) under fn. It follows that the function fn−δx` : W → DR(xj) is a biholomorphism as well. Let

z 7→ (z, w(z)) be the graph parametrization of D. We claim that there exists an open subdomain W̃ ⊂W
such that fn(z)−δw(z) : W̃ → Dr(xj) is a biholomorphism. Once this is proved, setting V := D∩(W̃×C)

yields the result. Notice that up to shrinking R we can assume that fn − δx` : W → DR(xj) is a
homeomorphism. For all z ∈ ∂W we have

|(fn(z)− δw(z))− (fn(z)− δx`)| = |δ||x` − w(z)| ≤ |δ|r < R− r

by assumption, hence by Rouché’s Theorem it follows that for every u ∈ Dr(xj) there exists exactly

one point z ∈ W such that fn(z) − δw(z) = u. Setting W̃ := (fn − δw)−1(Dr(xj)) we have that

fn − δw : W̃ → Dr(xj) is a biholomorphism. �

We conclude the proof of non quasi-normal case by showing that Lemma 3.12 implies that the topo-
logical entropy of Fn is at least log(k − 2).

Define the compact subsets of C2

H :=
⋃

1≤i,`≤k

Dr(xi)× Dr(x`), L :=
⋂
m≥0

F−mn (H).

Clearly L is forward Fn-invariant. We say that a sequence (i0, i1, i2, . . .) ∈ {1, . . . k}N is admissible if
im+1 ∈ J(im, im−1) for every m ≥ 1 and similarly, a finite word is admissible if it is the start of an
infinite admissible sequence. Clearly, for every admissible sequence (i0, i1, i2, . . .), there exists a point
P ∈ L for which Fmn (P ) lies in a (im+1, im)-disk for all m ≥ 0. Moreover for all m ≥ 0 there are at least
k2 · (k − 2)m−2 admissible words of length m.

Thus L contains at least (k − 2)m points with distinct symbolic representations, which are therefore
(m, ε)-separated as soon as

ε < mini,` dist(Dr(xi),Dr(x`)).
This proves the claim that Fn : L→ L has topological entropy at least log(k−2), which in turn completes
the proof of Theorem 3.9.

4. Periodic cycles

We continue to a consider transcendental Hénon map F of the form

(z, w) 7→ (f(z)− δw, z).

In the previous paper [ABFP20] we showed that when δ = −1 the map F may not have any fixed point or
periodic orbits of period 2, but if F has neither, then it must have periodic points of order 4. The proof
of this fact relied upon algebraic manipulations of the equation F 4(z, w) = (z, w). Using the techniques
presented in the previous sections we can now obtain the following description.

Let us denote by Pern(F ) the set of points of exact period n for F .
Theorem 4.1. A transcendental Hénon map has infinitely many solutions to the equation FN (z) = z
for any N ≥ 3 and has periodic points of exact period n for all n sufficiently large.

In fact, when the sequence of rescaled transcendental functions (fn) is quasi-normal there are infinitely
many solutions for any N ≥ 1, and for any fixed d,

lim inf
n→∞

# Pern(F )

dn
≥ 1. (4.1)
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On the other hand, if the sequence is not quasi-normal there are infinitely many periodic cycles of any
order N ≥ 3.

Proof. We consider again the family of rescaled transcendental functions (fn). We have shown that if
this sequence is quasi-normal then appropriate restrictions of the Hénon map F act as Hénon-like maps
of larger and larger degrees. It was proved by Dujardin in [Duj04], Proposition 5.7, that a Hénon-like
map of degree d has exactly dN points which are fixed under FN , counted with multiplicity. By results
in [BLS93] (see Theorem 5.9 in [Duj04]), there exists a probability measure µ such that

1

dn

∑
P∈Pern(F )

δP → µ,

where δP is the Dirac delta at P . Equation (4.1) follows.
Let us now assume that the family (fn) is not quasi-normal and fix N ≥ 3. Let k > 3N − 1, and let

fnh
be the function given by Lemma 3.10. Since the subsequence (nh) plays no further role in this proof,

we will just write n instead of nh, and write as before Fn := (fn(z) − δw, z). Consider the (i, `)-disks
constructed in Definition 3.11, for i, ` = 1, . . . , k. Recall from Lemma 3.12 that for any i, ` = 1, . . . , k
there exists a subset J(i, `) ⊂ {1, . . . , k} with #(J(i, `)) ≥ k − 2 such that for any j ∈ J(i, `), any
(i, `)-disk Di,` contains a holomorphic disk V which Fn maps onto an (j, i)-disk. We first claim that the
number of N -tuples (i0, i1, . . . , iN−1) with distinct entries satisfying

ij+1 ∈ J(ij , ij−1), j = 0, . . . , N − 1,

(where the indices are taken modulo N) tends to infinity as k → ∞. Indeed, the number of N -tuples
whose entries are all distinct over k symbols is k · (k − 1) · . . . · (k − N + 1); on the other hand by
Lemma 3.12, the number of such N -tuples which violate the condition ij+1 ∈ J(ij , ij−1) in at least one
index is at most 2Nk · (k − 1) · . . . · (k − N + 2). Hence the number of admissible sequences is at least
k · (k−1) · . . . · (k−N + 2)(k−3N + 1)→∞ as k →∞. Notice that this counting argument breaks down
for N = 2, in agreement with the fact that there exists transcendental Hénon maps without periodic
points of period 2.

We will now argue that corresponding to any sequence {(i0, i1), . . . , (iN−1, i0)} of length N which is
periodic in the sense discussed above we can find a periodic cycle of minimal period N .

Observe that in the proof of Lemma 3.12 the holomorphic disk V ⊂ D is of the form D∩(W̃×C), where

W̃ ⊂ W depends on D, but W is independent of the chosen (i, `)-disk D. Indeed, it is by construction
a simply connected domain W ∈ Dr(xi) that is mapped univalently onto DR(xj + δx`) by the function
fn, hence it depends only on the three indices i, j, ` of the domain, the (i, `)-disk, and the codomain, the
(j, i)-disk.

It follows that having chosen the domain W , the intersection of the bidisk W × Dr(x`) with the
preimage F−1

n (Dr(xj) × Dr(xi)) is connected; a union of straight horizontal disks Vw ⊂ W × {w} for
w ∈ Dr(x`).

Let us now consider the periodic sequence (i0, i1, . . . , iN−1) discussed earlier, where each ij+1 ∈
J(ij , ij−1). For each triple (ij−1, ij , ij+1) we select a disk Wj ⊂ Dr(xij ) as above, for j ≥ N we de-
fine these sets inductively by Wj = Wj−N , obtaining a periodic sequence. We will consider the nested
sets

(Wj × Dr(xij−1
)) ∩ F−1

n (Wj+1 × Dr(xij )) ∩ · · · ∩ F−mn (Wj+m × Dr(xij+m−1
)),

and show that the intersection for all m ∈ N is a unique holomorphic disk which is a holomorphic graph

Dr(xij ) 3 z 7→ (ϕ(z), z) ∈Wj × Dr(xij−1
),

and which is actually the local stable manifold of a saddle periodic point.
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Define the compact and forward invariant set

Γ :=
⋃

j=1,...,N

 ⋂
m≥0

F−mn (W j+m × Dr(xij+m−1
))

 .

Let D be the intersection of a (ij , ij−1)-disk with Wj × Dr(xij−1). We know that the image Fn(D)
contains a holomorphic graph over the disk

DR−|δ|r(xij+1) ⊃⊃ Dr(xij+1).

So the modulus of the annulus D \ F−1
n (Wj+1 × Dr(xij )) is bounded away from zero. Applying this

observation repeatedly and using the Gröztsch Inequality we have that D ∩ Γ consists of a single point.
Applying this argument to the trivial foliation of Wj × Dr(xij−1) consisting of disks D of the form

{w = c} we immediately get that Γ ∩ (Wj × Dr(xij−1)) is a graph z 7→ (ϕ(z), z) for some function
ϕ : Dr(xij )→Wj .

We claim that the function ϕ is actually holomorphic. Recall that in the proof of Lemma 3.12 we can
choose the ratio between the radii r and R as large as we wish. The function fn maps Wj univalently
onto DR(xij+1 + δxij−1). By applying Cauchy estimates to f−1

n from DR(xij+1 + δxij−1) into Dr(xij ) it
follows that |f ′n(z)| can be made arbitrarily large on the subset of Wj that is mapped by fn onto

Dr+|δ|r(xij+1
+ δxij−1

) ⊂⊂ DR(xij+1
+ δxij−1

).

It follows that we may assume that the derivative |f ′n| is arbitrarily large on (Wj×Dr(xij−1
))∩(F−1

n (Wj+1×
Dr(xij ))) for every j.

Recall that

DFn(z, w) =

(
f ′n(z) −δ

1 0

)
,

hence when |f ′n(z)| is sufficiently large the horizontal cone field Ch containing the tangent vectors (v1, v2)
with |v2| ≤ 2|v1| is forward invariant. Let Cv be the vertical cone field, given by the pullback under dFn
of the constant vertical cone field defined by |v2| ≥ 2|v1|. It follows that Cv is backwards invariant for any
point in Fn(Wj ×Dr(xij−1

)), and moreover, any non-constant tangent vector in Cv is contracted by some
uniform factor, while vectors in Ch are uniformly expanded. Thus Γ is a hyperbolic forward invariant
set by the cone criterion, and through every point (z, w) ∈ Γ there exists a stable manifold W s(z, w). It
immediately follows that Γ∩ (Wj ×Dr(xij−1)) has to coincide with a local stable manifold, and thus the
function ϕ is actually holomorphic.

By the forward invariance of Γ we know that the holomorphic disk Γ ∩ (Wj × Dr(xij−1
)) is mapped

into itself by FNn . The existence of a saddle periodic orbit of period N follows.
Since the maps Fn are all conjugate to F it follows that F has infinitely many periodic cycles of any

order N ≥ 3. �

For polynomial Hénon maps saddle periodic points form a dense subset of the Julia set J = J+ ∩ J−.
While the periodic points constructed above in the not quasi-normal setting are all saddle points, it is
unclear to the authors whether there also exist (infinitely many) saddle points of any order N ≥ 3 in the
quasi-normal case.

5. Arbitrary Growth of entropy

In [Duj04], Dujardin constructed transcendental Hénon maps with infinite entropy by letting f(z)
be an entire function which, on suitable disks Di, is well approximated by polynomials of some degree
di →∞, to deduce that the corresponding Hénon map is Hénon-like on the bidiscs Di ×Di of the same
degree di. It follows that the Hénon map has topological entropy at least log di →∞.
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The rate of the growth of entropy is then given by the relation between di and the radii of the disks
Di.

In this section we show that the entropy of lacunary power series, i.e. power series with mostly
vanishing coefficients, can grow at any prescribed rate. We will first prove the statement for entire
functions in one variable:

Theorem 5.1. Let h(R) be a continuous positive increasing function h : [0,∞) → [0,∞) with h(0) = 0
and limR→∞ h(R) = ∞. Then there exists an entire function f(z) and a sequence of radii Rj ↗ ∞ so

that the topological entropy of f on DRj
equals h(Rj).

Lemma 5.2. Let P (z) := azn with a 6= 0 and n ≥ 2. Let r > 0, set R := |a|rn, and assume that
R/2 > r. Let g : Dr → C be a holomorphic function such that |g(z)| < R/2n for all z ∈ Dr. Then the
function defined as f := P + g,

f : Dr ∩ f−1(DR
2

)→ DR
2

is a polynomial-like map of degree n.

Proof. The function f satisfies f(∂Dr) ∩ DR/2 = ∅ and by Rouché’s Theorem the winding number of

the curve f(∂Dr) around the origin is n. It follows that f : Dr ∩ f−1(DR/2) → DR/2 is a proper map of
degree n, and by the maximum principle every connected component of its domain is simply connected.
To prove that it is polynomial-like it suffices to show that Dr ∩ f−1(DR/2) is connected. Notice that
|f | > 0 for |z| > r/2, hence all preimages of 0 under f are contained in Dr/2, and hence all connected

components of f−1(DR/2) have to intersect Dr/2. On the other hand, Dr/2 ⊂ f−1(DR/2), hence there is

only one connected component of f−1(DR/2) in DR as claimed. �

Recall that the entropy of a polynomial-like map of degree n is log n. It follows from the fact that
such maps are topologically conjugate (in fact, hybrid conjugate) to a true polynomial of degree d by
Douady-Hubbard Straightening Theorem [DH85] in a neighborhood of their Julia set, or one can prove it
directly as for polynomials following for example [Lju83]. We note that the definition of a polynomial-like
map can be extended to allow for a disconnected preimage domain, an idea that appeared in [LM93],
[Lyu94]. In this case the entropy is still known to be log n [DS03].

Proof of Theorem 5.1. We construct f as a lacunary series
∑∞
i=1 aiz

ni with (ai) positive real numbers.
Define gj :=

∑
i 6=j aiz

ni . By choosing ai, ri, ni appropriately we will ensure that for each j the monomial
ajz

nj = f−gj is the leading term on the circle of radius rj , in the precise way needed to apply Lemma 5.2.
We will construct the series inductively, along with a sequence of radii (rj) such that for all integer

j ≥ 1 we have

h(rj) = log nj ; (5.1)

|gj(z)| ≤
rj
2nj

, ∀ z ∈ Drj ; (5.2)

ajr
nj

j > 2rj ; (5.3)

aj ≤ 2−(j+1)j/2. (5.4)

By (5.4) the series converges to an entire function f . By (5.2),(5.3), and Lemma 5.2 we immediately
obtain that the topological entropy of f on Drj equals log nj , which by (5.1) is equal to h(rj).

We start setting a1 = 1/2, r1 > 2 such that h(r1) = log(n1) for some integer n1 ≥ 2. We will choose
a2, r2, n2 such that

a2r
n2
1 ≤

a1r
n1
1

2n1+1
, (5.5)
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and

a1r
n1
2 ≤

a2r
n2
2

2n2+1
. (5.6)

Consider all possible radii r2 > r1 for which h(r2) is of the form log(n2) for some integer n2. Set
a2 := a1r

n1−n2
1 /2n1+1, which satisfies (5.5). Substituting in (5.6) we obtain(

r2

r1

)n2−n1

≥ 2n1+n2+2,

which is satisfied once r2 (and hence n2) is chosen large enough. Notice that a2 = 1/2 1
22 , hence (5.4)

is satisfied, and similarly if r2 (and hence n2) is chosen large enough (5.3) is satisfied. Iterating this
procedure yields the desired series. �

Corollary 5.3. Let h, f be as in Theorem 5.1. Then the topological entropy of F (z, w) = (f(z)− δw, z)
on Drj × Drj equals h(rj) for all j sufficiently large.

Proof. In the proof of Theorem 5.1 we obtained a sequence of disks Drj with rj ↗∞ such that |f(z)| >
(|δ|+ 1) · rj for |z| = rj and j sufficiently large, and that f(z) winds nj times around the origin as z runs

around the circle ∂Drj . It follows from Lemma 3.8 that the restriction of F to the bidisk Drj × Drj is a

Hénon-like map of degree nj , which by Theorem 3.7 implies that the topological entropy on Drj × Drj
equals h(rj) for all j sufficiently large. �
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