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The formation of topological spin textures at the nanoscale has a significant impact on the long-
range order and dynamical response of magnetic materials. We study the relaxation mechanisms at
the conical-to-helical phase transition in the chiral magnet FeGe. By combining ac susceptibility,
magnetic force microscopy measurements and micromagnetic simulations, we demonstrate how the
motion of magnetic topological defects, here edge dislocations, impacts the local formation of a
stable helimagnetic spin structure. Although the simulations show that the edge dislocations move
with a velocity of about 100 m/s through the helimagnetic background, their dynamics are observed
to disturb the magnetic order on the timescale of minutes due to pinning by randomly distributed
structural defects. The results corroborate the substantial impact of dislocation motions on the
nanoscale spin structure in chiral magnets, revealing previously hidden effects on the formation of
helimagnetic domains and domain walls.

INTRODUCTION

Chiral magnetic materials exhibit a variety of topolog-
ical structures, such as skyrmions, dislocations, disclina-
tions and domain walls [1–4]. Topological structures are
promising candidates for new spintronics applications,
where their stability and dynamical properties are uti-
lized to design, e.g., next-generation memory technol-
ogy [5] and artificial synapses for neuromorphic com-
puting [6]. Such non-trivial magnetic patterns occur in
a wide range of materials including the group of non-
centrosymmetric B20 materials [1, 2, 7, 8]. In these mate-
rials, the helimagnetic spin structures are stabilised by an
interplay of ferromagnetic exchange and Dzyaloshinskii-
Moriya (DM) interaction, representing the ground state
as illustrated in Fig. 1(a). Under the application of a
small magnetic field, the helical axis, described by the
wave vector Q, rotates in the direction of the field and
the spins form a conical spiral. For sufficiently high fields,
all spins are fully aligned in the direction of the magnetic
field (field-polarised state). The transition between the
conical and helical phase is accompanied by complex re-
laxation mechanisms [9–12], for which the formation and
annihilation of topological defects play a crucial role [13].

In order to structure the discussion, we distinguish
three relaxation processes at the conical-to-helical phase
transition. Each process is associated with a different
time scale: (i) single spin dynamics < 0.1 ms, (ii) reori-
entation of the wave vector Q ≈ 1 s [10, 12], and (iii) slow
relaxations via moving magnetic defects� 1 min [9]. It is

important to note that the three processes are not com-
pletely independent. The movement of individual dislo-
cations, for example, can cause variations in Q at the
local scale, reflecting the complexity of the overall relax-
ation process.

Mechanism (i) and (ii) originate from spin-spin inter-
actions and the transition between magnetic single- and
multi-domain states, respectively. The long time scales
of mechanism (ii) are proposed to result from the forma-
tion and destruction of domain walls [10, 12, 14] that can
possess a non-trivial topology [4]. In contrast, relaxation
mechanism (iii), with even longer time scales, was related
to the unpinning and subsequent motion of magnetic edge
dislocations. The latter was concluded indirectly on the
basis of the observation of jump-like 180◦ degree phase
shifts in spatiotemporal MFM maps and NV magnetom-
etry data gained on FeGe [9], that is, without resolving
the moving defects. Thus, the actual defect motion and
its impact on the local and global magnetic structure
formation, e.g., domains and domain walls, remain to be
demonstrated.

Here, we combine frequency-dependent ac suscep-
tibility measurements, magnetic force microscopy
(MFM) and micromagnetic simulations to investigate
the temporal evolution of the chiral magnetic order
in FeGe across the conical-to-helical phase transition.
We focus on studying edge-dislocation-related magnetic
relaxation processes in FeGe on both microscopic and
macroscopic length scales. Spatiotemporal MFM maps
provide direct evidence for the motion of magnetic edge
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dislocations and reveal how moving dislocations interfere
with the formation of stable domains and domain walls
in the helimagnetic state. The simulations indicate
that individual dislocations in FeGe have a velocity
of about 80 m/s. The unpinning of edge dislocations,
however, is a statistical process, disturbing the local
magnetic structure up to hours after the magnetic-field
removal. Despite the severe impact on the spin system
at the nanoscale, such micromagnetic effects are hidden
on macroscopic length scales as reflected by our ac
susceptibility data.

The phase diagram and magnetically ordered states of
a [100]-oriented FeGe crystal (see Supplementary Meth-
ods) are presented in Fig. 1(a). Phase boundaries are
derived from ac susceptibility measurements (1 Oe, 700
Hz, H ‖ [100]). Below the magnetic ordering temper-
ature Tc = 281.4 ± 0.2 K (determined from the phase
diagram in Fig. 1(a), FeGe displays helimagnetic long-
range order as sketched in Fig. 1(a). Application of a
magnetic field induces a conical spin structure at Hc1

and a field-polarized state for H > Hc2. HA indicates
the transition to the well-established skyrmion phase in
FeGe and Hx marks the transition into the paramagnetic
state determined by a fluctuation-disorder regime [15].
The measured phase diagram is in good agreement with
literature [16–21], representing the basis for our magnetic
relaxation investigations.

In order to analyse transition-specific relaxation times,
we consider frequency-dependent susceptibility measure-
ments as introduced in Ref [22] for Cu2OSeO3. Fig.1(b)-
(e) represent contour plots, showing the real and imag-
inary susceptibility – χ′ and χ′′, respectively – for two
frequencies, f = 700 Hz and f = 5 Hz , recorded with
decreasing magnetic field (H ‖ [111]) (for f = 0.1 Hz
see Supplementary Information). The phase transi-
tions identified by the real part of the susceptibility in
Figs. 1(b)-(c) are in agreement with the phase diagram
in Fig. 1(a), indicating the same behaviour for magnetic
fields along the [100] and [111] direction. Furthermore,
the temperatures and magnetic fields at which phase
transitions occur are largely frequency-independent aside
from subtle changes around the skyrmion phase and the
Hx transition, as well as a small decrease in Tc for smaller
frequencies. The frequency-dependent decrease in Tc in-
dicates that slowly varying magnetic fields destabilize
the helimagnetic order, which is similar to earlier find-
ings on Cu2OSeO3 [22]. In contrast, the imaginary part
χ′′ exhibits a strong frequency dependency as seen in
Figs. 1(d)-(e), indicating significant time-dependent dis-
sipation processes at the different magnetic phase transi-
tions. At high frequencies (700 Hz, Fig. 1(d)), we record
pronounced signals related to the skyrmion phase and
the field-aligned state; these signals increase even further
towards low frequencies (5 Hz, Fig. 1(e)). This signal in-
crease towards lower frequencies indicates slow magnetic

relaxations in the order of a few seconds [14, 20, 22, 23].
Most importantly for this work, the imaginary sus-

ceptibility χ′′ shows a signal related to the conical-to-
helical transition, which becomes more pronounced to-
wards lower frequencies as indicated by the red arrows
in Fig. 1(d) and (e). The respective relaxation time can
be extracted from frequency-dependent ac-susceptibility
measurements by simultaneously analysing χ′ and χ′′ by
a modified Cole-Cole formalism [14, 23]. In the evalu-
ated temperature regime (269 K-280 K), we find relax-
ation times below 0.2 s (see Supplementary Information
for details). The observation of a relatively long relax-
ation time is consistent with other B20 materials and is
associated with the reorientation of the Q vector [10, 12].
Reported time scales range from milliseconds [14] to tens
of seconds [23].

Thus, our macroscopic ac-susceptibility measurements
suggest that in the temperature range of 269 K-280 K
FeGe relaxes into the helimagnetic ground state in about
1 s. According to the established relaxation mechanisms,
the relaxation includes the processes (i) and (ii). In con-
trast, the longer relaxation times associated with moving
edge dislocations (iii) is not resolved in the macroscopic
measurements. Thus, we perform additional spatially
resolved MFM measurements to investigate the local
micromagnetic dynamics and corresponding time scales.

To study the micromagnetic relaxations that occur
as FeGe enters its helimagnetic ground state across the
conical-to-helical phase transition, we proceed as follows.
First, the system is exposed to a magnetic field of 120 mT
to induce the field polarized state (in-plane magnetic
field). Then, after removing the magnetic field, MFM
scans are recorded to analyse the local relaxation dy-
namics (Fig. 2(b)-(d)). As images are collected line by
line, the data provides both spatial and temporal reso-
lution, with the latter being limited by the time needed
to record an individual scan line (≈ 7.5 s for dual-path
MFM as applied here). Figures 2(b)-(d) thus represent
spatio-temporal maps with time, t, evolving along the
slow scan direction (vertical direction). The images are
taken 2 s, 64 min and 160 min after removing the mag-
netic field. The helimagnetic phase shows up as bright
and dark lines (perpendicular to Q) in the MFM images
originating from the stray field of the magnetic structure
(Fig. 2(a)).

Right after removing the magnetic field, three areas
with uniform Q-vector direction (Q domains) are ob-
served in Fig. 2(b) denoted as Q1-Q3 . The domains are
separated by different domain walls, including all funda-
mental types, namely one curvature wall (type I, marked
in Fig. 2(d)), one zig-zag disclination wall (type II) and
one edge dislocation wall (type III). For a detailed cover-
age of the different types of helimagnetic domain walls in
FeGe, we refer to ref [4]. The image corroborates that the
70 nm periodicity and direction of Q (relaxation process
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FIG. 1. (a) Magnetic phase diagram of FeGe with H ‖ [100] deduced from ac susceptibility measurements. The graph shows
five magnetic phases (paramagnetic phase (PM), helimagnetic phase, conical phase, skyrmion phase and the field polarised
state; different colours for data points are used for better visibility) with the corresponding magnetic structures sketched next
to the phase diagram. For further detail on how the phase boundaries are determined see Supplementary Methods. (b)-(e)
Contour plots for the real χ′ ((b) and (c)) and imaginary χ′′((d) and (e)) magnetic susceptibility for frequencies of 700 Hz and
5 Hz (decreasing magnetic field). The black squares indicate the phase boundaries and the red arrows mark the location of the
conical-to-helical phase transition.

(ii)), as well as associated domain walls, are established
immediately after removing the magnetic field (t < 2 s,
Fig. 2(b)). The inner structure of the domain walls is
evolving over much longer timescales. This is linked to
the 180◦ phase jumps, which are observed even hours
after removing the magnetic field (indicated by white ar-
rows in Fig. 2). Such 180◦ phase jumps are the fingerprint
of unpinning and subsequent climbing edge-dislocations
with the number of jumps decaying with 1/t as the sys-
tem relaxes [9] (see Fig. 2(e) for an illustration). Fig-
ure 2(b)-(d) shows that edge-dislocation triggered phase
jumps extend over several µm, even in the presence of do-
main walls. Importantly, these moving edge dislocations

also carry a topological charge of 1/2 [4], which alters the
topological structure of the domain walls whenever a de-
fect gets pinned by the wall. In case an edge dislocation
gets pinned at a domain wall, it will add 1/2 to the overall
domain wall charge and alter its topology. This leads us
to the conclusion that dislocation dynamics strongly im-
pacts the formation of stable domains and domain walls,
leading to ultra-slow build-up times for domain walls as
seen in Fig. 2(b)-(d).

Due to the significant impact of the moving edge
dislocations on the development of the local helimagnetic
structure, it is important to understand their dynamical
properties. Direct imaging of the edge dislocation mo-
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FIG. 2. (a) Schematic sketch of the working principle of an MFM measurement on a FeGe sample. (b)-(d) MFM image at
269 K 2 s, 64 min and 160 min after removing the magnetic field (the magnetic field was applied perpendicular to the surface
normal). The images show an area of three Q vector orientations separated by three domain walls, namely a curvature wall
(I), a zig-zag disinclination wall (II) and an edge dislocation wall (III). The white arrows indicate 180◦ phase jumps in the
MFM images. (e) Skematic sketch of an MFM image from a helimagnetic structure with an edge dislocation unpinning and
overtaking the magnetic tip during its scanning process. As the edge dislocation moves (vx) by the magnetic pattern changes
from one scan line to the next shifting the helimagnetic structure by 180◦.

tion by MFM is not feasible because of the limited scan
speed. On rare occasions, however, snapshots of mobile
dislocations can be obtained as shown in Fig. 3. Figure 3
presents an MFM image series with edge dislocations
pinned at three positions p1 to p3, corroborating that
edge dislocations can climb through the helimagnetic
structure. As edge dislocations change position, they
induce a 180◦ shift in the magnetic structure (see
pink lines in Figs. 3(b),(c)), consistent with what is
seen in Fig. 2. This finding corroborates the previous
assumption that a moving edge dislocation induces 180◦

phase shift in the helimagnetic structure. Further can be
noticed that the direction of the helimagnetic structure
changes by approximately 3◦ when going across the edge
dislocation (see white arrows indicating the Q vector
direction in Fig. 3(c)). The fact that dislocations are
resolved in three consecutive scans lets us assume that
they are pinned by structural defects, prohibiting their
free motion. Thus, the MFM data in Fig. 3 alone does
not allow for drawing conclusions about the dislocation
motion itself.

To gain additional insight and understand the dy-
namics of the edge dislocations in FeGe, we perform 3D
micromagnetic simulations and model their relaxation
dynamics using MuMax3 [24]. Figure 4(a)-(c) displays
three representative snapshots from the time-dependent
simulations, showing how an edge dislocation climbs

through the helimagnetic background. The simulations
are performed for a volume of 2048 × 1024 × 32 nm3

and a damping factor α = 0.25 [25]. Consistent with the
experimental data in Fig. 3(c), it is sufficient to intro-
duce a small variation in the orientation of Q to achieve
the edge dislocation in the initial state (Fig. 4(a)). In
this example, the orientation differs by 10◦ between
the left and the right part of the simulated volume
described by Q1 and Q2, respectively. We find that as
the helimagnetic structure relaxes, the dislocation climbs
about 260 nm in 4 ns (Fig. 4(a),(b)), which corresponds
to a velocity of ≈ 65 m/s. The gain in energy associated
with the ejection of the dislocation can be estimated by
comparing the data in Fig. 4(a) and (c), indicating a re-
duction of about 400 J/m3. A systematic analysis of the
dislocation velocity as function of the damping factor is
presented in Fig. 4(d), considering the range of α values
reported for FeGe in literature [18, 25]. In addition,
to account for the unknown thickness of the magnetic
surface domains in FeGe [4] we simulate the dynamics for
different realistic surface-domain thicknesses d between
8 nm and 64 nm, which leads to the error bars in Fig.
4(d). The result shows that the dislocations slow down
as the damping increases, yielding an average velocity of
vx = 80 ± 20 m/s for the investigated regime, which is
comparable to the velocities reported for ferromagnetic
domain walls [26]. We note that the calculated direction
of the dislocation motion is opposite to ref. [9], which
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FIG. 3. (a)-(c) MFM image series (269 K) showing edge dis-
locations at position p1, p2 and p3. Along with the position
of the edge dislocations denoted by p2 to p3, a 180◦ shift is
induced in the magnetic structure, which is indicated by the
two pink lines. The green lines highlight regions that are not
effected by the edge dislocation movement. The white arrows
indicate the Q vector direction before and after the edge dis-
location.

we ascribe to methodological differences in how the
DM interactions and boundary conditions were treated.
However, as the 3D surface domain structure is unknown
and we do not expect an impact on the calculated
velocity, this aspect is not investigated further. Thus,
the micromagnetic simulations demonstrate that edge
dislocations in a defect-free environment are moving
on much faster timescales than captured by our MFM
experiments. This result corroborates the assumption
that the dislocations in Fig. 3 are pinned by structural
defects, which allows resolving them in different loca-
tions.

In conclusion, our ac susceptibility, MFM data and
micromagnetic simulations provide insight into the relax-

ation processes happening at the conical-to-helical phase
transition in FeGe. Our local results reveal the dynamics
of magnetic edge dislocations in chiral magnets and the
role these topological defects are playing for the relax-
ation of the nanoscale spin structure. We show that the
timescales associated with the edge dislocation motion
are rather fast with dislocation velocities in the order of
≈ 100 m/s. The magnetic edge dislocations, however,
can get trapped by randomly distributed (structural) de-
fects. Thus, the timescale is dominated by ”unpinning”
events, which is a statistical process, and explains the
long relaxation times associated with the motion of the
dislocations. Although the dislocation-driven relaxation
process does not manifest in macroscopic measurements,
it has a significant impact on the magnetic structure for-
mation inhibiting the formation of locally stable spin ar-
rangements, domains and domain walls on the timescale
of seconds to minutes. Thus, our results reveal the fun-
damental importance of moving edge dislocations for the
relaxation dynamics of chiral magnets and lamella-like
magnetic textures in general, demonstrating their sub-
stantial impact on the magnetic order at the nanoscale.
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Kanazawa, Y. Tokura, M. Garst, and D. Meier, Topolog-
ical domain walls in helimagnets, Nat. Phys. 14, 465–468
(2018).

[5] A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions:
advances in physics and potential applications, Nat. Rev.



6

FIG. 4. Micromagnetic simulations modelling the motion of a magnetic edge dislocation in the helimagnetic phase of FeGe.
(a),(b) and (c) are snapshots from the time-dependent simulation, illustrating the motion of a dislocation that initially formed
between the two regions described by the wave vectors Q1 and Q2 (∠(Q1,Q2) = 10 degree). The black dashed line indicates
the position of the dislocation and vx denotes the direction of motion (damping factor α = 0.25, thickness d = 32 nm; see main
text for details). (d) Relation between the edge dislocation velocity and the damping factor α. Error bars account for the
unknown thickness d of the surface domain through which the edge dislocation is moving, varying between d = 8 nm and 64 nm
in our simulations. The average velocity for the investigated regime is vx = 80± 20 m/s.

Mater. 2, 17031 (2017).
[6] K. M. Song et al., Skyrmion-based artificial synapses for

neuromorphic computing, Nat. Electr. 3, 148–155 (2020).
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1 Methods

Sample preparation and experimental details: For our experiments we used FeGe (B20) single

crystals grown by chemical vapour transport 1. FeGe belongs to the P213 materials and forms a

helical spin spiral below Tc = 278K with a periodicity of 70 nm 2. To detect the local magnetic

structure by MFM we used a standard NT-MDT NTEGRA Prima AFM in combination with a

home-build cooling stage 3. MFM is a surface sensitive technique, which uses a magnetic can-

tilever detecting the out-of-plane stray field induced by the magnetic order. All images were taken

with the same tip magnetisation in a temperature range of 265 − 270K. Measurements were per-

formed on (100) and (111)-oriented crystals that were aligned by Laue diffraction and cut in the

desired direction. Afterwards the samples were chemo-polished to achieve a roughness below

≈ 1 nm in the MFM measurements.

To compare the local magnetic behaviour with the macroscopic response, additional frequency

dependent ac susceptibility measurements were conducted. The real χ′ and imaginary χ′′ compo-

nents of the susceptibility were measured on several FeGe crystals (1−4mg) in a Quantum Design

MPMS3 SQUID. The DC magnetic field was aligned with the [100] or [111] direction parallel to

the AC field with an amplitude of 1 Oe. Field sweeps for increasing and decreasing magnetic field

were measured at different frequencies (0.1 Hz, 5 Hz, 700 Hz) after zero-field-cooling (ZFC). The

phase boundaries (Hc1, Hc2, HA) are derived from the extrema of dχ′/dB which corresponds to

the infliction point of χ′. Hx is derived from the same measurement however by the infliction point

of χ′ vs T 4.

2



Micromagnetic simulations: Micromagnetic simulations were performed using the open-

source micromagnetic simulation framework MuMax3 5 (version: 3.10), based on the Landau-

Lifshitz equation where contributions from the demagnetizing field were neglected. The simula-

tions were performed at T = 0 K using the following parameters for FeGe6: the saturation magne-

tizationMs = 384 kAm−1, the exchange stiffness A = 8.78 pJm−1 and the Dzyaloshinskii-Moriya

interaction D = 1.58 mJm−2, which corresponds to a helix period of 70 nm. The simulation vol-

ume is 2048 nm × 1024 nm × d, where d varies between 8 and 64 nm as discussed in the main

text. The unit cell volume is 4 × 4 × 4 nm3. The dislocation was generated by simulating of

two magnetic domains with the corresponding angles of the Q vector φ1 = 90◦ and φ2 = 100◦.

Periodic boundary conditions were set in y-axis.

2 Contour plots for f = 0.1Hz

Figure 1 is showing the contour plots for a frequency of f = 0.1Hz. The phase boundaries de-

duced from the real susceptibility are very similar to the f = 5Hz and f = 700Hz measurements.

The decrease in transition temperature Tc for slower frequencies which has been seen for the other

two frequencies, can be seen for f = 0.1Hz where it reaches 279K. In contrast, the imaginary sus-

ceptibility is vastly different with an order of higher signal strength than in the faster experiments.

However, no clear signals around the phase transitions and phases can be seen in comparison to the

other measurements. Thus, we did not add it to the main text, but still want to show it for full dis-

closure in the supplementary. The increase in signal is clearly coming from the slower measuring

speed, but this also seems to lead to higher noise and unreliable signals.
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Figure 1: a Contour plots for χ′ b and χ′′ for a frequency of 0.1Hz (decreasing magnetic field).

The black squares indicate the phase boundaries.

3 Determination of relaxation times

At the conical to helical transition (Hc1) close to the transition temperature (270 - 280 K) an in-

creasing signal in χ′′ is seen in the 5 Hz phase diagram. To determine the relaxation times, we si-

multaneously analyse χ′ and χ′′ by the modified Cole-Cole formalism 7, 8 (χ′ and χ′′ are connected

by the Kramers-Kronig relation, therefore reasonable values can only be found by analysing them

together 9).

Modified Cole-Cole formalism:

χ(ω) = χ(∞) +
χ(0)− χ(∞)

1 + (iωτ0)1−α
(1)

χ(0) and χ(∞) are the isothermal and adiabatic susceptibilities; ω is the angular frequency; and τ0

is the characteristic relaxation time. α is a parameter that defines the width of the relaxation fre-

quencies distribution. α = 0 corresponds to one single relaxation process and α = 1 accounts for

an infinitely broad relaxation distribution. The equation can be separated into a real and imaginary

part:

χ′(ω) = χ(∞) +
A0[1 + (iωτ0)

1−α sin(πα/2)]

1 + 2(ωτ0)1−α sin(πα/2) + (ωτ0)2(1−α)
(2)

χ′′(ω) =
A0(iωτ0)

1−α cos(πα/2)

1 + 2(ωτ0)1−α sin(πα/2) + (ωτ0)2(1−α)
(3)

with A0 = χ(0)−χ(∞). The equations can be fitted to our frequency data that was acquired

along the helical to conical phase transition. An example can be seen in Fig. 2a. All relaxation
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Figure 2: Fitting of the real a and imaginary b frequency-dependent susceptibility at 273 K and

under 10 mT. c Relaxation times and d α determined by fitting the frequency dependent Squid

measurements along the helical to conical phase transition (280 K/4 mT; 279 K/6 mT; 277 K/8 mT;

275 K/9 mT; 273 K/10 mT; 271 K/11 mT; 269 K/11.5 mT).

time values as well as α can be seen in Fig. 2b-c. Most of the relaxation times vary between 0.01 s

to 0.2 s and α ranges from 0.3 to 0.8. The real and imaginary susceptibility should give the same

relaxation times, which is true for almost all temperatures excluding 280 K. This indicates that our

Squid measurements are reliable and determine the macroscopic relaxation times. All α values are

between 0-1 indicating that several relaxation processes are happening at this phase transition.
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