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Abstract

The present paper suggests a hybrid system identification method to estimate
the flutter derivatives from coupled free vibration tests. An optimized covariance-
based method is used as the initial guess in the modified unifying least squares
method. This combination optimizes the accuracy described by the coefficients
of determinations between measured and synthesized signals. Flutter derivatives
are identified at high wind speeds, close to and even above the critical flutter
wind speed. Results for a sharp-edged rectangular section with a width-to-depth
ratio B/D = 10 are presented for two different torsional-to-vertical frequency
ratios. In one case the torsional frequency are lower than the vertical, due to
a high mass moment of inertia, which makes it possible to estimate the flutter
derivatives at very high reduced wind speeds. This reveals that the torsional
aerodynamic damping derivative A∗

2 reaches a positive maximum followed by a
continuous decreasing tendency and eventually negative A∗

2 values are identified.
This implies that torsional flutter for the B/D = 10 section can be avoided if the
structural damping is designed to balance the negative torsional aerodynamic
damping expressed by the positive peak value for A∗

2.
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1. Introduction

The objective of the present work is to describe the self-excited forces, also
known as the motion induced or unsteady aerodynamic forces, of a sharp-edged
rectangular section with a width-to-depth ratio, B/D = 10. The self-excited
forces are usually expressed by a parametric representation of the flutter deriva-
tives (FD’s), A∗

i and H∗
i (i = 1, 2, 3, 4). These are defined as functions of the

reduced wind speed, U/(ωB), where B is the bridge deck width, U is the mean
wind speed and ω = 2πf is the circular frequency of motion. It is the aim of
the present work to estimate, evaluate and enhance the accuracy and precision
of the flutter derivatives estimated from coupled free vibration tests.

The B/D = 10 section is known to be prone to single degree of freedom tor-
sional flutter [20] because of positive A∗

2 values, which indicate negative aero-
dynamic damping for the torsional degree of freedom. However, negative A∗

2

values have been estimated for the same section by free vibration tests with low
amplitudes [21] and recent results for coupled free vibration tests with larger
amplitudes [2] showed that both torsional and coupled flutter were avoided when
the torsional natural frequency in still air, ωα = 2πfα, was lower than the ver-
tical, ωh = 2πfh. The latter indicates that A∗

2 is close to zero or even negative
at higher reduced wind speeds.

The FD’s estimated by system identification methods of wind tunnel tests,
which can be either forced motion or free vibration tests, express the damping
and stiffness in the fluid-structure system. Since the motion of a real bridge is
complex and may have a broadbanded response spectrum, both forced motion
tests and coupled free decay tests relies on the principle of superposition of
aeroelastic forces. If the principle of superposition holds, the flutter derivatives
should be independent of the motion. This implies that the FD’s estimated by
forced motion and free decay tests should be identical.

It is often assumed that the FD’s depends mainly on the geometry of the
bridge cross section, see e.g. [11, 25, 33]. Amplitude of motion and wind turbu-
lence can however possibly influence the FD’s [23, 29]. Even small discrepancies
in the estimated FD’s may cause large differences in the calculated critical flut-
ter wind speed [18, 26]. The accuracy of the experimental models and the flutter
derivatives estimated by system identification methods are therefore of crucial
importance.

1.1. Free vibration system identification methods

Scanlan and Tomko estimated the flutter derivatives, by free vibration tests
in [28]. First, two single degree of freedom (SDOF) free decays were used to
estimate the ’direct’ derivatives (H∗

1 , A∗
2, A∗

3) and then a coupled two degree
of freedom (2DOF) free decay was used to estimate A∗

1, H∗
2 and H∗

3 . Their
pioneering work relied on the principle of superposition of the aeroelastic forces
and that H∗

4 = A∗
4 = 0. Ibrahim and Mikulcik [12] introduced a MDOF time-

domain method known as the Ibrahim time-domain method (ITD) where a
multi degree of freedom state space representation of a structure was estimated
by using only a single free decay test where the response of several degrees
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of freedom were measured simultaneously. Sarkar and Scanlan [27] developed a
modified Ibrahim time-domain method (MITD) where the original ITD was used
as the starting point in an iteration procedure aiming to improve the damping
estimate given by ITD. This method allowed the simultaneously estimation of
8 FD’s, H∗

i and A∗
i (i=1-4), by a single free decay test.

Poulsen et al. [25] estimated the flutter derivatives for the Great Belt Bridge
by minimizing the residual sum of squares between the measured coupled free
vibrations and the response predicted by the estimated model parameters based
on Newton-Raphson iterations. Different torsional-to-vertical frequency ratios
ranging from γω = 1.4 to γω = 3.4 were tested for this section and no frequency
ratio dependency was observed. Each test was repeated 10 times in order to
minimize the statistical uncertainty. Gu et al. minimized the residual sum
of squares in the unifying least squares (ULS) method where an unified error
function for the vertical and torsional degree of freedom was introduced. The
initial estimate was given by the MITD [27] method [10]. The ULS method was
used to show that the still air mechanical properties had almost no effect on the
estimated FD’s in a parametric study of the streamlined Jiangyn Bridge in [11].

Li et al. introduced weighting factors to the ULS method aiming to scale
the vertical and torsional signals to have the same root mean square value [17].
The iterative procedure used in the ULS method was enhanced in the modified
unifying least squares (MULS) method by Bartoli et al. [3]. A variation of the
MULS method is the improved stochastic search algorithm by Xu et al. [34]
which uses random variation of the modal parameter in the iterative scheme.

Juang and Pappa [16] developed the Eigensystem Realization Algorithm
(ERA), where the measured time-domain free responses are organized in a gen-
eral block-Hankel matrix and a time-shifted block-Hankel matrix. The singular
values and singular vectors of the general block-Hankel matrix are used to es-
timate the model parameters. Since the theoretical auto-covariance functions
of the response of a white noise excited linear structure are identical to a the-
oretical free decay of the same structure, the covariance functions of random
response measurements can be used within the classic ERA algorithm. This is
utilized in the covariance block-Hankel matrix (CBHM) method [4, 13, 14] and
in the covariance driven stochastic subspace identification (COV-SSI) method
[9].

It was shown by Jakobsen [13] that the theoretical auto covariance function
of a SDOF free decay is identical to the free decay itself. Thus, it is also possible
to use the covariance driven methods to estimate the FD’s from coupled free
decay tests, which will be used as the initial estimate for the MULS method in
the present work. However, it is well known that the covariance driven methods
are sensitive to the number of points (i.e. discrete time lag values) used from the
estimated covariance functions [4, 9]. Therefore, in the present work, the model
parameters are estimated using several different number of time lags, where the
accuracy is evaluated for each.

In addition to the wind tunnel techniques discussed in the present paper, it is
also possible to use computational fluid dynamics to estimate bridge deck flutter
derivatives. Numerical simulation of the free vibration method are conducted
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in [32].

1.2. Torsional Flutter

The rectangular section with a width-to-depth ratio, B/D = 10, is known
to have hybrid flutter properties [21] because both coupled flutter and torsional
flutter can be observed. In [21] it was shown by free vibration tests, that A∗

2

was negative for small angular vibration amplitudes and positive for larger.
These results have not received much attention in the literature [5, 6, 20, 22, 26]
where several references instead are given to later works [20, 22]. In [20, 22],
the estimated FD’s for the B/D = 10 section are obtained by SDOF harmonic
forced motion tests and simultaneous pressure measurements. Based hereon it
is suggested, generally, that torsional flutter instability occurs for rectangular
sharp-edged sections with B/D ≤ 10 while coupled flutter occurs if B/D ≥ 12.5.
This is not in agreement with [21] and was not confirmed for the B/D = 10
section recently published in [2]. Because of the contradictory results for A∗

2 in
the past, this issue needs to be investigated in more detail.

1.3. Present paper

The present paper is organized as follows. Wind tunnel free vibration tests
and procedures are described in Section 2. In Section 3, the equations of mo-
tion for free decay tests are defined. A validation method, based on the R2

coefficients of determination, is introduced in Section 4 in order to evaluate the
estimated model parameters. The most accurate modal parameters estimated
by an iterative variation of CBHM method [4, 13, 14] where the number of time
lags is optimized are used as the initial estimate for the MULS method [3]. The
influence of measurement time, number of time lags and accuracy of the initial
estimate on the final accuracy of the MULS estimates are described in Section
4.3. It is shown that the flutter derivatives can be estimated after the onset of
flutter by the present combination of the CBHM and MULS method. In Sec-
tion 5, the estimated flutter derivatives are presented and compared with results
known from the literature. Furthermore, the influence of static rotations and
the pitching motion amplitude on the flutter derivatives are investigated. The
estimated FD’s presented in Section 5 are used in an iterative mode by mode
flutter analysis presented in Section 6.

2. Wind tunnel tests

The spring suspended section model shown in Figure 1 was subjected to
free decay tests in the wind tunnel at Svend Ole Hansen Aps in Copenhagen,
Denmark. Initial vertical and torsional conditions were obtained by using an
electromagnetic release system. The length, width and depth of the section were
L = 1.7 m, B = 0.24m and D = 0.024 m respectively. Drag wires were used
to restrain the lateral degree of freedom during the tests. The static angle of
rotation of the section was set as close to zero as possible by using a digital
inclinometer on the section model before the free decay tests were conducted.
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At each wind speed, five free decay tests were conducted and the response was
measured in 120 seconds with a sampling rate of fs = 500 Hz. The initial
torsional displacement in the free decays was α0 ≈ 4.8°deg while the vertical
initial conditions were h0 ≈ −43 and −51 mm for series 1A and 1G respectively.
More details about the tests are available in [2]. The displacements of the section
was obtained from a linear relation between the measured forces in loadcells
which the springs were connected to, previously described in [2].

The data of the individual test series of importance for the present work are
given in Table 1 where the equivalent mass and mass moment of inertia per
unit length are denoted by me and Ie. These were estimated from the natural
frequencies in still air and the stiffness of the rig, i.e. added mass effects are
included. The torsional-to-vertical frequency ratio, γω = ωα/ωh = fα/fh were
adjusted by the mass moment of inertia, i.e. the torsional stiffness remained
unchanged between the two test series. The highest wind speed for which the
system was stable is denoted U1 and the lowest wind speed for which the system
was observed to be unstable is denoted U2. The critical flutter wind speed is
located between U1 and U2. At the highest reached tunnel wind speed for series
1A the system remained stable.

Table 1: Mechanical properties of test series in still air

Test γω fh me Ie U1 U2

series - Hz kg/m kgm2/m m/s m/s
1A 0.71 1.17 11.23 0.50 11.13
1G 1.19 1.17 11.23 0.18 5.10 6.12

Figure 1: The rectangular B/D = 10 section in the wind tunnel. From [15].

.

Examples of the measured free decays at the highest reached wind speeds for
which the systems were stable and their corresponding transient spectra are
shown in Figure 2. The two spectral peaks for the vertical response indicates
the strong degree of aerodynamic coupling between the two modes at high wind
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speeds. It can also be seen in the initial part of the time domain data, that the
response of the vertical DOF, h, is governed by both modes.
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Figure 2: Free decays as measured (above) and the corresponding transient spectra (below)

3. Equations of motion

The equation of motion for the section model subjected to self-excited forces
can be expressed in matrix form,

Mÿ + C0ẏ + K0y = Cae(U, ω)ẏ + Kae(U, ω)y (1)

where the mechanical still air properties of the section are given on the left
hand side and the self-excited forces are given on the right-hand side. The
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sign convention of the displacements, y =
[
h, α

]ᵀ
are illustrated in Figure 3.

The mechanical still air properties of the section are given by the equivalent
mass, damping and stiffness matrices per unit length, M, C0 and K0 respec-
tively. The mass matrix is a diagonal matrix where the diagonal elements are
diag(M) =

[
meq, Ieq

]
. The damping and stiffness matrices are estimated by

system identification of the measured free decays. The equivalent aerodynamic
damping and stiffness matrices are defined by,

Cae(U, ω) =
1

2
ρU2B2K

[
H∗

1/(UB) H∗
2/U

A∗
1/U BA∗

2/U

]
,

Kae(U, ω) =
1

2
ρU2BK2

[
H∗

4/B H∗
3

A∗
4 B2A∗

3

]
,

(2)

where the non-dimensional reduced frequency, K is given by K(U, ω) = ωB/U .
It has recently been discussed which frequency to use for the reduced frequency,
K, and the estimated FD’s in [5, 33]. In the present work, the frequencies, ωh
and ωα are uniquely identified for each free decay and thus ωh is used for H∗

1 ,
H∗

4 , A∗
1, A∗

4 and ωα is used for A∗
2, A∗

3, H∗
2 , H∗

3 .

U h

α

B

D

Figure 3: 2DOF Section Model

If the displacement and velocity dependent aerodynamic matrices are moved
to the left hand side, the equation of motion is reduced to

Mÿ + Ceẏ + Key = 0 (3)

where the effective damping and stiffness matrices are defined by Ce = C0−Cae

and Ke = K0 −Kae respectively. A state space representation of the equation
of motion is given by

ẋ = Aex, x =
[
y ẏ

]
(4)

where the effective state space system matrix, Ae, can be estimated by system
identification of the coupled free vibration tests of the section model in the wind
tunnel.

Ae =

[
0 I

−M−1Ke −M−1Ce

]
,

0 =

[
0 0
0 0

]
, I =

[
1 0
0 1

] (5)
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It can be seen that the effective stiffness and damping matrix are given by

Ke = −MAe
(2,1), Ce = −MAe

(2,2) (6)

Assuming that the aerodynamic damping and stiffness is zero in still air, the
aerodynamic matrices are given by the differences between the effective ma-
trices in still air and in wind. This implies that the flutter derivatives can
be expressed as functions of the estimated aerodynamic damping and stiffness
matrix coefficients, also dependent on wind speed and frequency.

H∗
1 =

2Cae1,1

ρB2ωh
H∗

2 =
2Cae1,2

ρB3ωα

H∗
3 =

2Kae
1,2

ρB3ω2
α

H∗
4 =

2Kae
1,1

ρB2ω2
h

A∗
1 =

2Cae2,1

ρB3ωh
A∗

2 =
2Cae2,2

ρB4ωα

A∗
3 =

2Kae
2,2

ρB4ω2
α

A∗
4 =

2Kae
2,1

ρB3ω2
h

(7)

4. System identification methods

The present authors agree with [3] that the most reliable way to investigate
the accuracy of the estimated model parameters is to compare the measured
signal, y, with a numerical simulation, ŷ, based on the estimated mechanical and
aerodynamic model parameters. However, the comparison should preferably be
based on a quantitative method rather than pure visual inspection of the signals
as was used in [3].

Several authors, including [3, 10, 17, 25], have used least squares regression to
minimize the objective function, J , which is the residual sum of squares between
measured decays and numerical simulations obtained using the estimated model
parameters.

J =

N∑
i=1

(yi − ŷi)2 (8)

Instead of using J which is sensitive to the units used for the vertical and
torsional signals and the length of the signal, we propose using the R2 coefficient
of determination

R2 = 1− J

S
(9)

where S is the total sum of squares,

S =

N∑
i=1

(yi − ȳ)2 (10)
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The mean value of the measured signal y is denoted ȳ. The accuracy of the
estimated model parameters for the two degrees of freedom system is expressed
by the joint coefficient of determination,

R2
hR

2
α =

1−
N∑
i=1

(hi−ĥi)2

N∑
i=1

[hi−h̄]2

×
1−

N∑
i=1

(αi−α̂i)2

N∑
i=1

[αi−ᾱ]2

 (11)

where the i’th sample of the measured vertical and torsional response is denoted
hi and αi while the numerical simulated samples are denoted ĥi and α̂i. The
number of samples used here isN = 5000, starting at the first zero crossing of the
measured vertical signal, h. The numerical simulation of the coupled vertical
and torsional free decay is obtained by the sum of two modal contributions
expressed by

ĥ(t) = q0hφ
h
he
λht + q0hφ

h∗
h e

λ∗
ht + q0αφ

h
αe
λαt + q0αφ

h∗
α e

λ∗
αt

α̂(t) = q0hφ
α
he
λht + q0hφ

α∗
h eλ

∗
ht + q0αφ

α
αe
λαt + q0αφ

α∗
α eλ

∗
αt

(12)

where ∗ is the complex conjugated operator. The model parameters, i.e. the
complex eigenvalues and mode shapes estimated by system identification, are
given by

φj =
[
φhj , φ

α
j

]ᵀ
j ∈ {h, α}

λj = −ζjω0j + ω0j

√
1− ζ2

j i
(13)

where ω0j is the undamped frequency of mode j and q0j are constants depending
on the initial conditions of the measured free decay.

4.1. Iterative covariance driven identification method

The complex eigenvalues and mode shapes are first estimated by the CBHM
method [14], using m = 25 discrete time lags of the covariance functions. The
joint coefficient of determination, R2

hR
2
α, is calculated and saved. Another time

lag is added to the analysis for each iteration until m = 75. For each free decay,
the procedure is as follows.

The measured torsional and vertical signals are organized in the output
matrix, y =

[
h, α

]
. The initial part of the measured response before the first

vertical zero crossing is discarded and the remaining part of y is detrended.
An unbiased covariance estimator is used to calculate the covariance function
matrix, Ryy(τ), where τ is the discrete time lag. The first five samples of τ are
discarded and the next m lags of the covariance functions are organized in the
generalized block-Hankel matrix,

H1 =


[Ryy(6)] [Ryy(7)] · · · [Ryy(6 +m)]
[Ryy(7)] [Ryy(8)] [Ryy(7 +m)]

...
[Ryy(6 +m)] [Ryy(7 +m)] · · · [Ryy(6 + 2m)]

 (14)
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which is subjected to singular value decomposition,

H = UΣV∗ (15)

where ∗ is the Hermitian transpose operator. The measured free decays repre-
sent a 2DOF model which implies that the state space system matrix has the
order n = 4. The state space system matrix in discrete time, Ad, and in con-
tinous time, Ac and their eigenvalues are realized similar to the ERA method
[16] where the discrete state space system matrix is given by

Ad =
[
Σn×n

]−1/2 [
U2m×n

]ᵀ
H2

[
Σn×n

]−1/2 ∈ Rn×n (16)

where Σn×n is a diagonal matrix with the first n singular values, U2m×n are the
first n columns of the left-singular vector matrix, U and H2, is the time-shifted
block-Hankel matrix.

H2 =


[Ryy(7)] [Ryy(8)] · · · [Ryy(7 +m)]
[Ryy(8)] [Ryy(9)] · · · [Ryy(8 +m)]

...
[Ryy(7 +m)] [Ryy(8 +m)] · · · [Ryy(7 + 2m)]

 (17)

Eigenvalue decomposition of Ad yields,

Adφ = λdφ, |(Ad − λdI| = 0, {φ, λd} ∈ Cn×n (18)

Transformation of the discrete eigenvalues and state space system matrix to
continuous time is conducted as described in [16]. The continuous state space
system matrix is transformed to the effective equivalent coordinates used in
Equation (5), which is described in [13]. Finally, the flutter derivatives is ob-
tained by Equation (7).

4.2. Modified unifying least squares method

The complex eigenvalues estimated by the CBHM method having the highest
R2
hR

2
α value are used to define the initial estimate in the present implementation

of the MULS method. The iterative procedures in the ULS/MULS methods are
described in [3, 10, 17]. In the present implementation, the weighted error func-
tions described by [17] are used together with the enhanced iteration procedure
given in [3]. Time histories of 10 seconds starting at the first zero crossing for
the vertical signal are used in the iterative scheme. The iterations continue un-
til the residual sum of squares, J , is reduced by less than ∂J < 10−12 between
two iteration steps and the change in the estimated eigenvalues are less than
∂λ = 10−10. If this criterion is not reached within the first 150 iteration steps,
the iterations are stopped. Convergence is generally reached if there is a good
initial estimate of the complex eigenvalues. Finally, the effective damping and
system matrices are obtained from the estimated complex eigenvalues and mode
shapes as described in [3, 10, 17].
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4.3. Robustness and Sensitivity

The performance and the sensitivity of the system identification methods
described above are shown in Figure 6. It is seen that the number of time
lags used is important for the covariance driven method. The best estimates
by the CBHM method are generally slightly enhanced by the MULS method
at the cost of increased computational time which is shown in Table 2 for the
tests conducted in the pre-critical flutter regime. Using the combined iterative
CBHM/MULS method, a joint coefficient of determination, R2

hR
2
α > 0.99, were

obtained for 44 out of 45 free decay tests in series 1A and for 27 out of 28 free
decay tests below the critical wind speed in series 1G.

Table 2: Average computational time and accuracy

Time (s) R2
hR

2
α(%)

Series Free decay tests CBHM MULS CBHM MULS
1A 45 7.21 17.27 99.40 99.69
1G 28 7.28 17.42 99.09 99.70
All 73 7.24 17.32 99.29 99.70
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Figure 4: Illustration of the measured and simulated response during flutter. The right plot
zooms in on the two last seconds of the time histories

4.3.1. Measurement time

It may seem superfluous to measure 120 seconds when only 10 seconds are
used by the MULS method. But the variance of covariance function estimates,
and hence the accuracy of initial estimates used in the MULS method depend
on the measurement time. The signal-to-noise ratio is highest in the first part
of the free decay, which is the reason why it is the first 10 seconds that should
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be used to estimate the FD’s. If the covariance functions are estimated by using
the first 20 instead of all 120 seconds, the average R2

hR
2
α values for all tests

given in Table 2 are reduced to 98.9% and 99.5% for the CBHM and MULS
methods, respectively. It is therefore not suggested to reduce the measurement
time even though the final MULS estimate [3] is obtained from the first 10
seconds only. This point does, however, only applies to linear systems. During
flutter, nonlinear aerodynamic effects due to the pitching motion amplitude
should be avoided by using only the initial part of the time history which is
discussed in Section 4.6.

4.4. Effective damping and stiffness matrices in still air

The still air effective damping and stiffness matrices estimated by the MULS
method are shown in Table 3. It can be seen that the off diagonals in the stiffness
matrix are small compared to the diagonals, which indicates low mechanical
coupling.

Table 3: Damping and stiffness matrices estimated in still air with the MULS method [3].

Series Accuracy Damping Stiffness
R2
hR

2
α C0 K0

1A 99.72

[
0.405 0.036
0.013 0.025

] [
610.28 0.28
0.38 13.63

]
1G 99.6

[
0.52 0.017
0.009 0.017

] [
610.38 0.72
0.35 13.62

]

4.5. Validation

A good fit to the measured response is obtained from the estimated model
parameters as illustrated in Figure 5. The transient spectra in Figure 5b show
that two distinct modes are present at the highest wind speeds reached. How-
ever, due to aerodynamic coupling, most of the energy in the vertical DOF,
h, is obtained from the mode which eigenvalues are given by λα because the
participation of the vertical degree of freedom, h, in the torsional dominated
mode shape, φα, increases at higher wind speeds.

4.6. System identification after the onset of flutter

The R2
hR

2
α values in the post critical flutter regime for series 1G were gen-

erally lower than in the pre-critical regime. Totally, 5 tests were conducted
above the critical flutter wind speed. The CBHM method obtained a maximum
joint coefficient of determination of R2

hR
2
α = 0.93. The maximum number of

iterations used in the MULS method was therefore increased to 500 which re-
sulted in two out of five tests achieving R2

hR
2
α > 0.99 in the post-critical flutter

regime. An example of the measured and simulated response for the described
CBHM and MULS estimation after the onset of flutter are shown in Figure 4.
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Figure 5: Measured response and simulations based on the best estimate of the model param-
eters at high wind speed for series 1A

The simulation based on the optimized CBHM and MULS estimates have joint
coefficients of determination, R2

hR
2
α = 0.932 and R2

hR
2
α = 0.996 respectively for

the 10 seconds time history shown to the left in Figure 4. It can be seen that
the CBHM estimate (R2

hR
2
α = 0.932) is slightly off at the end of the 10 seconds

time history while the MULS estimate (R2
hR

2
α = 0.996) is in agreement with

the measured response in the right plot in Figure 4.

4.6.1. Shorter time histories

As shown in Figure 4, it is possible to fit a linearized system to the initial
part of a post critical flutter time history. The aerodynamics of the section
during flutter is not linear, however. This explains why the CBHM estimates
had relatively lower R2

hR
2
α values because the correlation functions used were

estimated from longer time histories (typically 60 seconds during flutter) which
includes large pitching and heaving amplitudes giving rise to nonlinear aerody-
namic effects.

Alternatively, if the correlation functions are estimated from the initial
10 seconds of recorded time history after the first vertical zero crossing, the
accuracy of the CBHM estimate increases to R2

hR
2
α > 0.95 and on average

µ(R2
hR

2
α) = 0.972 for all 5 tests. Because of the improved initial estimates, the

accuracy of the MULS estimates increases to µ(R2
hR

2
α) = 0.994 for all 5 tests.

This demonstrates three things:

1. The effect of nonlinear aerodynamics in the post critical flutter regime

2. The importance of choosing the proper time history length for the CBHM
method

3. The importance of the accuracy of the initial estimate for the MULS
method

13



The estimated damping ratios of the poles estimated at post critical flutter
wind speeds are shown in Figure 10 at U > 6 m/s. It can be seen that there
is a pole with positive damping and a pole with negative damping. The mode
shape related to the poles are shown in Figure 7 where it can be seen that the
excitation of the vertical degree of freedom, h, by the torsional dominated pole,
φα, increases with the wind speed, U .
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Figure 6: The R2
hR

2
α joint coefficient of determination and the residual sum of squares, J , for

the CBHM method and the MULS method

5. Flutter Derivatives

Flutter derivatives estimated with the CBHM method and the MULS method
having R2

hR
2
α > 0.99 are shown in Figure 8. Bin-averaging has been used to

reduce the number of points in the plots. Each point represents the mean value
of the estimated FD’s from free vibration tests at approximately the same wind
speed where R2

hR
2
α > 0.99 for all.

The negative H∗
1 and H∗

4 values indicate increasing aerodynamic damping
and stiffness for the vertical dominated mode as a function of the reduced wind
speed. The cross derivatives, H∗

2 and H∗
3 describe the aerodynamic coupling

between the vertical DOF, h, and the torsional dominated mode. The cross
derivatives, A∗

1 and A∗
4 describe the aerodynamic coupling between the tor-

sional DOF, α, and the vertical dominated mode. It might be because of high
damping of this mode, that the values of A∗

1 and A∗
4 are more scattered than the

other derivatives in Figure 8. The positive A∗
3 and H∗

3 values indicate negative
aerodynamic stiffness due to the excitation of the torsional dominated mode.

The flutter derivatives obtained after the onset of flutter for series 1G are
shown in the right part of the shaded areas in Figure 8.
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5.1. Torsional Flutter

Torsional flutter may occur if A∗
2 > 0. In Figure 8 it is clearly seen that

A∗
2 > 0 at the low reduced wind speeds and A∗

2 < 0 at higher reduced wind
speeds. The A∗

2 values for the B/D = 10 section obtained from forced motion
tests in [20] have been transformed to the present notation and are shown as
reference. The negative values obtained for series 1A indicate that torsional
flutter can be avoided for the B/D = 10 section if the still air torsional damping
is higher than the negative peak value for the aerodynamic torsional damping
caused by the positive peak value for A∗

2.

5.2. Mode shapes

The mode shapes change as the wind speed increases. The magnitude of
the complex vertical DOF normalized with the bridge deck width, h/B, and
complex torsional DOF, α, in φh/B and φα are shown in Figure 7. It can be
seen that the magnitude of the vertical DOF in the torsional dominated mode,

φ
h/B
α increases with the wind speed, U , which explains the values of the cross

derivatives H∗
2 and H∗

3 . It can also be seen that the torsional DOF in the
vertical dominated mode, φαh/B , increases in series 1G while it is unaffected in
series 1A. This might explain the slightly deviating values estimated for the
cross derivatives A∗

1 and A∗
4 between the two series seen in Figure 8.

5.3. Static rotations

The aeroelastic and static forces on a bridge section model are subject to
change with the mean angle of rotation [7, 8]. For configurations where ωα < ωh,
we suggest that the mass moment of inertia is raised instead of reducing the
torsional stiffness to avoid static rotations. The mean angle of rotation, µα,
during the free decay tests were zero at tunnel wind speeds, U < 8.2 m/s
corresponding to U/(Bωα) < 6.8. At the highest wind speeds, U ≈ 10.75
m/s, the measured mean angle of rotation of the measured free response was
µα ≈ 0.15°.

5.4. Amplitude effects

Several studies in the literature have shown that the torsional amplitude
affects the derivatives [19, 23, 31] of bluff bodies. Flutter derivatives estimated
from time histories starting when the torsional peaks has decreased to α ≤ 3°

are shown in Figure 9 for the lower reduced wind speeds. At higher reduced
wind speeds the joint coefficient of determinations decreases and the variance
of the flutter derivatives increases. A noticeable change of sign is observed for
A∗

2 when the initial amplitude is reduced.
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6. Flutter analysis

A third order polynomial was fitted to each of the flutter derivatives esti-
mated by the MULS method in Figure 8. These polynomials were then used
in a theoretical flutter analysis of the frequencies and damping ratios of the
B/D = 10 sections under wind action shown in Figure 10. Furthermore, the
mechanical still air damping and stiffness matrices given in Table 3 are used to
calculate the modal parameters for increasing wind speeds by an iterative com-
plex eigenvalue analysis described in [1]. The iterations are conducted mode-by-
mode at each wind speed until the frequency of the mode has converged with
the frequency used for K in the aerodynamic matrices given in Equation (2).

The thick dashed lines in Figure 10 show the modal parameters calculated
using the same K for all coefficients in the aerodynamic matrices similar to
Equation (2). The critical flutter wind speed is estimated to Ucr = 4.89 m/s
which is lower than the highest wind speed observed where the system was
stable, U1 = 5.10 m/s. It is seen that the gradient of the damping curve is
low which indicates soft and damping driven flutter. This agrees well with the
positive A∗

2 values in the range of reduced wind speeds where 2 ≤ U/(ωB) ≤ 3.
Hence, the calculated critical flutter wind speed is very sensitive to the still air
damping value and the curve fit to the experimentally estimated A∗

2 values.
The thin solid lines in Figure 10 represent the modal parameters calculated

using ωh for H∗
1 , H∗

4 , A∗
1, H∗

4 and ωα for A∗
2, A∗

3, H∗
2 , H∗

3 used in Equation
(7). The flutter wind speed calculated using this method in the iterations is
Ucr = 5.14 m/s which is closer to the experimental flutter speed observed. The
increased accuracy is caused by the fact that the implied approximation [5, 33]
is used both in the identification of the flutter derivatives and in the iterative
calculations of the modal parameters.

The scatter in Figure 10 shows the experimentally estimated values where
the joint coefficient of determination, R2

hR
2
α > 0.99. It can be seen that the

frequencies and damping ratios estimated in the post flutter regime fits well to
the remaining data. The thin dot-dashed lines for series 1G show the modal
parameters calculated using least square curve fits to the FD’s given in [20]. The
value of the critical flutter speed found in the present study is approximately
20% higher compared to the flutter speed calculated using the FD’s given in
[20]. Since the critical flutter wind speed is underestimated it is a conservative
estimation of the flutter speed, but higher accuracy are obtained using the FD’s
estimated in the present tests.

For series 1A, flutter is not observed. Instead, it is seen that the damping
decreases until U ≈ 5 m/s, where it starts to increase again. This agrees well
with the curvature of A∗

2 shown in Figure 8. In order to avoid extrapolation,
the modal parameters calculated based on the FD’s in [20] are not conducted
for U/(ωB) > 4 (U = 5 m/s) in Figure 10.
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Figure 10: The estimated frequencies and damping ratios where R2
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2
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7. Discussion

In Figure 8, the flutter derivatives were estimated by an iterative CBHM
procedure to find the optimum number of discrete time lags. This was done by
evaluating the accuracy of the estimated model parameters by the joint coeffi-
cient of determination, R2

hR
2
α, introduced in Equation (11). Bin-averaging and

rejection of estimated model parameters having a joint coefficient of determina-
tion value, R2

hR
2
α < 0.99 reduced the random errors. The flutter derivatives es-

timated by the MULS method generally agreed with the best CBHM estimates,
but higher accuracy was achieved giving higher values for R2

hR
2
α as shown in

Table 2. Nevertheless, the accuracy of the final estimate by the MULS method
depends on the accuracy of the initial CBHM estimate that increases with the
measurement time if the system is linear. In this case, the accuracy increases
using longer time series even though the MULS estimate is only based on e.g.
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the first 10 seconds. For non-linear system response, e.g. flutter, it is crucial to
use short time histories from the initial part only as shown in Section 4.6.

Deviating values for A∗
4 were observed, which might be explained by the

obstacles involved in observing very small changes in the frequency of a mode
with large damping. The values estimated were close to zero. Since they are
almost zero, their effect on the stiffness matrix of the section model in wind is
small. Even though they are larger than zero, it may not be important for the
development of the unstable flutter mode according to e.g. the sensitivity study
conducted in [24]. The derivatives associated with the torsional dominated
mode, A∗

3,A∗
2,H∗

3 ,H∗
2 were well identified because this mode has lower damping

and is therefore more observable compared to the vertical dominated mode.
The effective aerodynamic stiffness and damping matrices as well as the flutter
derivatives were uniquely identified because both modes were excited in the
beginning of each time series.

7.1. On torsional flutter

The estimated A∗
2 values seem to peak at U/(ωB) ≈ 5 whereafter they

decline as shown in Figure 8. Since the A∗
2 values are small and eventually

negative, torsional and coupled flutter were avoided in series 1A. This was caused
by an increase in the still air damping due to the large mass moment of inertia
making γω < 1. Nevertheless, flutter may occur even for very low positive A∗

2

values which was seen in Figure 10 for series 1G which had a lower still air
damping value. Future tests might answer why negative aerodynamic damping
is changed to positive aerodynamic damping at higher reduced wind speeds.

The complex mode shapes shown in Figure 7 illustrate that the motion in
the post flutter regime is not only torsional but the vertical degree of freedom
is excited by the unstable mode as well. Therefore it seems imprecise to char-
acterize it as ’SDOF torsional flutter’. The complex eigenvalues identified in
the post flutter regime showed that there was one mode with negative damping
and one mode with positive damping. The observed flutter motion can be seen
in the measured time series shown in Figure 4.

The differences in flutter derivatives for the B/D = 10 section given in [20]
compared to [21] and the present results should be carefully considered. In [20]
the A∗

2 values are all positive, but the curve seems to level off at the highest
wind speed reached. Some of the tests discussed in [21] showed negative A∗

2

values for smaller pitching motion amplitudes and positive values for the largest
amplitudes. The pitching motion amplitudes during the present free vibration
tests were up to three times larger than the largest amplitudes discussed in
[21]. However, amplitude effects were observed. Using an initial amplitude of
α = 3° instead of α = 4.8° caused negative values for A∗

2 at reduced wind speeds
U/(ωB) < 1.5. This agrees well with the amplitude dependencies described in
[23].

The negative A∗
2 values shown in Figure 9for lower pitching motion ampli-

tudes might be explained by a smaller separation bubble at the leading edge of
the section and a longer zone with reattached flow.
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7.2. Amplitude effects

The flutter derivatives is based on a linearization of the aeroelastic forces and
was originally intended only to be valid for small pitching motion amplitudes
[28, 30]. The good agreement between simulations of linear systems and the
measured response in the present study indicate that the aeroelastic forces can
be linearized at higher amplitudes, but the estimated flutter derivatives are only
valid under similar conditions under which they were obtained and may change
according to the pitching and heaving motion amplitudes as shown for A∗

2 in
Figure 9.

The R2
hR

2
α values were based on 10 seconds time histories. Longer time

histories would cause larger discrepancies and lower R2
hR

2
α values due to the

amplitude motion effects. This was shown for the CBHM estimates at post
critical flutter wind speeds in Section 4.6.

It was not possible to estimate the flutter derivatives at reduced wind speeds
higher than U/(ωB) ≈ 1.5 for the lower pitching motion amplitudes because
the free decaying response vanished into pure buffeting due to the aerodynamic
damping.

7.3. Static rotations

The static angle of rotation increased to approximately 0.15° in the present
study at the highest wind speed, which seems small compared to the studies
conducted in [19, 23], but may have a small affect. Different end effects, surface
roughness and sharpness of the edges of the section models may affect the flow
around the section and the wake which can affect the FD’s.

7.4. Flutter wind speed

The flutter derivatives estimated for the present B/D = 10 section are com-
pared with [20] in Figure 8. There is a reasonable agreement for the general
tendencies of the derivatives. For A∗

2, however, there is an inflection point which
coincides with the highest reduced wind speed in [20]. Furthermore, the A∗

2 val-
ues in [20] are larger than in the present study. This could possibly explain why
the observed flutter wind speed in the wind tunnel is approximately 20% higher
in the present study compared to the flutter speed calculated using the FD’s
given in [20]. If the flutter wind speed is calculated by the FD’s estimated in
the present study, a better agreement with the experimentally observed flutter
wind speed is achieved, which seems to indicate that the results in the present
study are correct, however.

8. Conclusions

The flutter derivatives of a sharp-edged B/D = 10 rectangular section was
estimated by an optimized system identification method based on an iterative
CBHM [4, 13, 14] procedure in combination with the MULS [3] method. The
flutter derivatives were obtained from coupled free vibration tests at very high
reduced wind speed and even after the onset of flutter. The accuracy of the
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estimated derivatives was evaluated by a simple method relying on the R2 co-
efficients of determination between the measured and simulated vertical and
torsional signals. The product of the R2 coefficients for the vertical and tor-
sional signals were denoted the joint coefficient of determination, R2

hR
2
α.

The CBHM estimate having the highest R2
hR

2
α value was used as the initial

estimate for the MULS method. An improvement of the accuracy of the initial
estimate improved the accuracy of the final MULS estimate. This may indicate
that local minima are present and that different minimization algorithms might
lead to different results. By the present optimization of the methods, it was
possible to estimate the FD’s by free vibration tests in both the pre- and post
critical flutter regime with a joint coefficient of determination R2

hRα > 0.99
for 10 seconds of time data starting at the first vertical zero crossing after the
release of the section.

Due to the stable behavior of the section model when ωα < ωh, the flutter
derivatives were estimated at reduced wind speeds U/(ωB) ≈ 9 which is unusu-
ally high for free vibration tests. An inflection point for the positive A∗

2 values
prevented the onset of torsional flutter. This implies that torsional flutter can
be avoided for the B/D = 10 if the structural still air damping balances the
negative torsional aerodynamic damping expressed by the positive peak value
for A∗

2 at the inflection point.
The influence of pitching motion amplitude on A∗

2 for U/(ωB < 1.5) showed
negative values for smaller amplitudes and positive values for the largest ampli-
tudes. A change in the gradient of the estimated A∗

2 values for small amplitudes
indicates that they may change sign to positive at U/(ωB) > 1.5. It is un-
likely, however, that positive A∗

2 values larger than the peak value, A∗
2 = 0.86 at

U/(ωB) = 3.03 occur because torsional flutter remained unobserved at the high-
est reached tunnel wind speed for test series 1A corresponding to U/(ωB) ≈ 10.
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