
Synergistic control barrier functions with application to obstacle
avoidance for nonholonomic vehicles

Mathias Marley, Roger Skjetne, and Andrew R. Teel

Abstract— Control barrier functions (CBFs) have recently
emerged as a means to ensure safety of controlled dynamical
systems. CBFs are suitable for obstacle avoidance, where the
CBF is often constructed from the distance and relative velocity
between the vehicle and the obstacle. For vehicles required to
maintain non-zero forward speed, ordinary (non-hybrid) CBFs
cannot ensure safety due to vanishing control authority when
the vehicle is oriented directly towards the obstacle. In this pa-
per, synergistic CBFs are proposed, which is an intuitive exten-
sion of CBFs using ideas from synergistic Lyapunov functions.
A synergistic CBF for obstacle avoidance for nonholonomic ve-
hicles is constructed by shifting the orientations with vanishing
control authority. This induces a penalty for traversing the ob-
stacle in the counterclockwise or clockwise direction, where a
logic variable is used to determine the preferred direction. The
performance of the CBF is illustrated by a case study.

I. INTRODUCTION

The notion of control barrier functions (CBFs) was first
introduced in [1], as a means to ensure safety of controlled
dynamical systems. An overview of recent developments is
given in [2], along with application examples. CBFs are used
in [3] for collision avoidance of swarm robots, where the
robot agents are modeled as point masses with the linear
accelerations as control input. The CBFs are constructed
from the relative distance and velocity between robot agents.
CBFs based on a similar idea are used in [4] and [5] for
obstacle avoidance for fully-actuated autonomous marine ves-
sels. The short-comings of CBFs for collision avoidance are
noted in [3]; in perfectly symmetric cases the robot agents,
or autonomous vehicles, may enter deadlock situations, thus
precluding any guarantees for achieving some nominal control
objective. This is analogous to the fact that global asymptotic
stabilization to a point while avoiding an obstacle is impossi-
ble by continuous feedback control (see e.g. [6] for proof). Hy-
brid feedbacks for global asymptotic stabilization of compact
sets in presence of obstacles are proposed in [7], [8], and [9].

In this paper we consider CBFs for collision avoidance of a
vehicle with unicycle dynamics; ẋ = v cos(ψ), ẏ = v sin(ψ),
ψ̇ = ω, with non-zero forward speed v > 0. Since ω does
not appear in the derivative of the position p := [x y]>,
this results in limited control authority [10]. The challenge
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of constructing CBFs for vehicles required to maintain non-
zero forward speed is addressed in [11], where the authors
propose to construct barrier functions by calculating the future
evolution of the system subject to pre-determined nominal
evading maneuvers.

Inspired by synergistic Lyapunov functions for robust
global stabilization of continuous-time systems [12] [13], we
propose a type of hybrid CBFs intended for continuous-time
systems with limited control authority in certain configura-
tions. Adopting the terminology from [12], [13], we refer
to these as synergistic CBFs (SCBFs). The usefulness of
SCBFs is illustrated by applying it to the problem of obstacle
avoidance for a vehicle with unicycle dynamics, with constant
forward speed and turning rate as control input.

Hybrid CBFs appear in many contexts. In [14] and [15]
walking robots are controlled using CBFs, where the robot dy-
namics are modeled as a hybrid system. Hybrid (nonsmooth)
CBFs for obstacle avoidance are proposed in [10], where the
hybrid formulation is used to accommodate instantaneous
changes in the constraints (e.g. when an obstacle is detected).
In this paper, we use hybrid CBFs to address the problem of
vanishing control authority of the CBF. Earlier references for
CBFs assume uniform relative degree one (see for instance
[16]), which was extended to systems with uniform higher
relative degree in [14]. In [17] the assumption of uniform
relative degree is relaxed – however, the definitions therein
assume that the uncontrolled dynamics of the system are
safe (in the appropriate sense) whenever the control authority
vanishes. SCBFs ensure safety of systems with non-uniform
relative degree one by appropriate switching between overlap-
ping non-hybrid CBFs, without requiring that the uncontrolled
dynamics are safe when the control authority vanishes.

The remainder of this paper is organized as follows: Section
II describes the framework of hybrid systems. Section III con-
tains a brief review of barrier certificates for hybrid systems
and CBFs for continuous-time systems. SCBFs are proposed
in Section IV, which is the main contribution of this paper.
In Section V SCBFs are applied for obstacle avoidance for a
vehicle with unicycle dynamics. The results from Section V
is supported by numerical simulations in Section VI. Finally,
Section VII concludes the paper.

Notation: R is the set of real numbers and Rn is the n-
dimensional Euclidean space. R≥0 and R>0 are the set of
non-negative and positive numbers, respectively. N is the set
of non-negative integers. The Euclidean norm of a vector x ∈
Rn is denoted |x|. For two vectors x ∈ Rn, y ∈ Rn, we define
〈x, y〉 := x>y. For a function f : Rn×Y → Rm, the Jacobian
matrix with respect to x ∈ Rn is denoted Jx(f(x, y)) ∈



Rn×m. For a function f : Rn × Y → R, ∇x(f(x, y)) :=
J>x (f(x, y)) is a column vector. The subscript x is omitted
when the argument is clear from context. When convenient we
use the Lie derivative notation: LfB(x) := 〈∇xB(x), f(x)〉,
where f : Rn → Rn is a vector field and B : Rn → R is a
scalar function. For a set X , ∂X is the boundary and IntX
is the interior. An extended class-K function is a continuous
and strictly increasing function α : R → R, defined on the
entire real number line, with α(0) = 0. Finally, ẋ is the time
derivative of x, and x+ is the value of x after an instantaneous
change.

II. HYBRID DYNAMICAL SYSTEMS

A. Modeling framework

A hybrid inclusion is modeled as [18]

H :

{
ẋ ∈ F (x) x ∈ C,

x+ ∈ H(x) x ∈ D.
(1)

The state x ∈ Rn may evolve both in continuous time, referred
to as flow, and in discrete time, referred to as jumps. As
such, C ⊂ Rn is the flow set, F : Rn ⇒ Rn is the flow map,
D ⊂ Rn is the jump set, and H : Rn ⇒ Rn is the jump
map. H satisfies the hybrid basic conditions [18, Assumption
6.5] if: 1) C and D are closed, 2) F is non-empty, locally
bounded, outer semicontinuous and convex on C, 3) H is
non-empty, locally bounded and outer semicontinuous on D.

B. Forward invariance of hybrid systems

A solution to H exists on a hybrid time domain dom x ⊂
R≥0×N, parametrized by an ordinary time variable t ∈ R≥0

and a jump variable j ∈ N. If a solution cannot be extended,
it is said to be maximal, and if it exists on an unbounded
hybrid time domain it is said to be complete. Due to space
constraints we refer to [18, Definitions 2.3 – 2.7]. Central
to this paper is the notion of forward invariance, which for
hybrid dynamical systems may be stated as [19, Definition 1]:

Definition 1. The set K ⊂ Rn is forward invariant if for each
x0 ∈ K, each maximal solution x starting from x0 satisfies
x(t, j) ∈ K for all (t, j) ∈ dom x.

We will refer to K as the safe set, while forward invariance
of K is referred to as safety. In [19], Definition 1 is referred
to as forward pre-invariance, while forward invariance has the
additional requirement of maximal solutions being complete.
In this paper we do not make that distinction, since we are
mainly concerned with safety in the sense of solutions not
entering the complement of K, that is, ensuring x0 ∈ K =⇒
x(t, j) /∈ (C ∪ D) \ K ,∀(t, j) ∈ dom x. In particular, the
conditions of Proposition 1 below does not rule out escape to
infinity in finite time. We also note that Definition 1 does not
require that solutions are unique, and is sometimes referred
to as strong forward (pre-)invariance. Forward invariance, and
controlled forward invariance, of hybrid systems is studied
in [20] and [21], respectively.

III. BARRIER CERTIFICATES AND CBFS

A. Barrier certificates for hybrid systems

Barrier certificates are used to establish forward invariance
of sets in nonlinear systems and hybrid systems. For forward
invariance of sets in hybrid systems, we will employ the
following proposition, as a special case of [19, Theorem 1]:

Proposition 1. Assume H satisfies the hybrid basic condi-
tions. Let B : Rn → R be a continuously differentiable func-
tion that defines the closed set K := {x ∈ Rn : B(x) ≤ 0}.
Let U be an open neighborhood of K. If the following holds:

〈∇B(x), y〉 ≤ 0 ∀x ∈ (U \ K) ∩ C ∀y ∈ F (x), (2)
B(h) ≤ 0, ∀x ∈ K ∩D ∀h ∈ H(x), (3)
H(x) ⊂ C ∪D ∀x ∈ D, (4)

then B is a barrier function and K is forward invariant.

See [19, Theorem 1] for proof. Condition (2) ensures that
x cannot leave K through flow; whenever x ∈ ∂K it is only
allowed to flow along the boundary or towards the interior
of K. Condition (3) and (4) ensures that x cannot leave K
through jumps; whenever x ∈ K it is only allowed to jump
to somewhere within K.

Remark 1. In some earlier literature, barrier functions are
defined as functions that approach infinity on the boundary
of the safe set. The barrier certificates for continuous-time
systems discussed in [2] follow a similar logic as the one
outlined above.

B. Control barrier functions for continuous-time systems

Whereas barrier certificates can be used to show safety of
closed-loop systems, CBFs are used to derive a set of control
inputs that render controlled systems safe. Define the affine
control system

ẋ = f(x) + g(x)u, (5)

with state x ∈ Rn and input u ∈ U ⊂ Rm.

Assumption 1. f : Rn → Rn and g : Rn → Rn×m are
locally Lipschitz. U is non-empty, convex, and bounded.

The following definition of CBFs is modified from [22,
Definition 5]:

Definition 2. Let B : X → R, where X ⊂ Rn, be a contin-
uously differentiable function that defines the sets

K := {x ∈ IntX : B(x) ≤ 0} (6)
∂K := {x ∈ IntX : B(x) = 0}. (7)

B is a CBF for (5) if there exists an extended class-K function
α : R→ R such that

inf
u∈U

[
LfB(x) + LgB(x)u

]
≤ −α(B(x)) ∀x ∈ X. (8)

Let UB : X ⇒ Rm be the admissible inputs defined by

UB(x) := {u ∈ U : LfB(x) + LgB(x)u+ α(B(x)) ≤ 0}.
(9)



Corollary 2 in [22] (see also [2, Theorem 2]) states forward
invariance of K for any Lipschitz continuous feedback con-
troller u(x) ∈ UB(x), provided that ∇B(x) 6= 0 ∀x ∈ ∂K.
In [23, Theorem 3] safety of the system

ẋ ∈ FB(x) := {f(x) + g(x)u : u ∈ UB(x)} (10)

is established, provided that the set-valued mapping FB :
Rn ⇒ Rn is Lipschitz continuous and ∇B(x) 6= 0 ∀x ∈ ∂K.
This allows discontinuous u, as long as UB is Lipschitz. Since
UB is defined on a neighborhood of K, forward invariance of
K may be established from Proposition 1, without requiring
that FB is Lipschitz, and omitting the regularity property
∇B(x) 6= 0 ∀x ∈ ∂K.

Proposition 2. If B is a CBF on X defining K, then K is
forward invariant for (10).

Proof. Since B is a CBF on X , and U is bounded and
convex by assumption, FB is non-empty, locally bounded,
outer semicontinuous, and convex on X . Since LfB(x) +
LgB(x)u ≤ −α(B(x)) ∀u ∈ UB , α(B(x)) > 0 ∀x ∈ X \K,
and K ⊂ IntX , there exists an open neighborhood U of K
such that

〈∇B(x), y〉 < 0, ∀x ∈ U \ K, ∀y ∈ FB(x). (11)

Forward invariance follows from Proposition 1, with C = Rn,
D = ∅ and arbitrary G.

IV. SYNERGISTIC CONTROL BARRIER FUNCTIONS

We now introduce SCBFs, which is an intuitive extension
of CBFs following a similar idea as synergistic Lyapunov
functions [12], [13]. SCBFs are motivated by a desire to
ensure safety of systems where the influence of the control
input on the CBF vanishes in certain configurations.

A. Synergistic CBF candidate

Augmenting (5) with a logic variable q ∈ Q, where Q is
a discrete set, results in

ẋ = f(x) + g(x)u, q̇ = 0. (12)

Let X ⊂ Rn be a closed set, and define X := X ×Q. Let
B : X → R be a continuously differentiable function that
defines the sets

K := {(x, q) ∈ IntX : B(x, q) ≤ 0} (13)
∂K := {(x, q) ∈ IntX : B(x, q) = 0}. (14)

Define Ψ ⊂ X as

Ψ := {(x, q) ∈ X :

LgB(x, q) = 0 and LfB(x, q) ≥ 0}, (15)

which is the set with vanishing control authority and non-
decreasing B. Let M(x) := minq∈QB(x, q) and define the
synergy gap

µ := inf
(x,q)∈Ψ

(B(x, q)−M(x)). (16)

If the synergy gap is non-zero, that is µ > 0, B is an SCBF
candidate for the system (12).

B. Guaranteed safety using Synergistic CBFs

Select a δ > 0, satisfying δ < µ, and define

D := {(x, q) ∈ X : M(x)−B(x, q) ≤ −δ} (17)
C := ((Rn ×Q) \D) ∪ ∂D. (18)

Definition 3. Let B be an SCBF candidate for (12), with
synergy gap µ > 0. B is an SCBF for (12) if there exists an
extended class-K function α : R → R such that, ∀(x, q) ∈
IntX ∩ C,

inf
u∈U

[
LfB(x, q) + LgB(x, q)u

]
≤ −α(B(x, q)). (19)

Note that (19) needs to hold on the flow set only. By
design, (Ψ ∩ C) \ ∂X = ∅. In other words, the only way
solutions can flow in IntX with LgB(x, q) = 0, is if B is
strictly decreasing. Let UB : X ⇒ Rm be defined by

UB(x, q) := {u ∈ U : LfB(x, q)

+ LgB(x, q)u+ α(B(x, q)) ≤ 0}. (20)

Further define FB : X ⇒ Rn as

FB(x, q) := {f(x) + g(x)u : u ∈ UB(x, q)}. (21)

Let H(x) := {q ∈ Q : B(x, q) = M(x)}, and define

HB :

{
ẋ ∈ FB(x), q̇ = 0 (x, q) ∈ C

q+ ∈ H(x), x+ = x, (x, q) ∈ D.
(22)

We now state our main theorem on safety of HB .

Theorem 1. If B is an SCBF on X defining K, then K is
forward invariant for HB defined in (22).

Proof. We prove the theorem by showing that the conditions
of Proposition 1 are satisfied. First note that x+ = x =⇒
B(x+, q) = B(x, q), and q̇ = 0 =⇒ 〈∇Bq(x, q), q̇〉 = 0.
Since B is a CBF on X , and U is bounded and convex
by assumption, FB is non-empty, locally bounded, outer
semicontinuous and convex on IntX ∩ C. Condition (2) is
satisfied by similar arguments as Proposition 2. D and H are
designed such that, ∀(x, q) ∈ D, ∀h ∈ H(x),

B(x, h)−B(x, q) = M(x)−B(x, q) ≤ −δ < 0, (23)

which shows that (3) is satisfied. (4) is satisfied since C∪D =
Rn×Q. Forward invariance follows from Proposition 1.

An important feature of SCBFs is that UB , and conse-
quently FB , is only required to be non-empty on a subset of
IntX , namely, the subset where flow is allowed. In the next
section we show that an SCBF exists for a system where
ordinary CBFs do not exist.

V. CASE: SAFETY OF NONHOLONOMIC VEHICLE

A. Vehicle model and problem statement

The unit circle and planar rotations are given by [24]

S1 :={z ∈ R2 : z>z = 1}, (24)

SO(2) :={R ∈ R2×2 : R>R = I, det(R) = 1}. (25)



We denote the unit vector corresponding to an angle a as

za :=

[
za1
za2

]
=

[
cos a

sin a

]
∈ S1, (26)

while the corresponding map R : S1 → SO(2) is given by

R(za) :=

[
za1 −za2
za2 za1

]
∈ SO(2). (27)

Let S be the rotation matrix corresponding to the 90 degree
counterclockwise rotation;

S :=

[
0 −1

1 0

]
∈ SO(2). (28)

The kinematic equation for motion along the unit circle with
angular velocity ωa = ȧ is given by ża = ωaSz

a.
We will consider a vehicle with unicycle dynamics. Let

p := (x, y) ∈ R2 be the position in the plane, and z ∈ S1

the unit heading vector, where the superscript is omitted for
compactness. Using this notation the unicycle kinematics are
given by ṗ = zv, ż = Szω, where v ∈ R>0 is the forward
speed assumed constant. The turning rate ω ∈ U ⊂ R is
considered the control input. Let ω be saturated by |ω| ≤
ωsat ∈ R>0, resulting in U := [−ωsat, ωsat]. Augmenting
the system with logic variables q ∈ Q, we obtain the affine
control system[

ṗ

ż

]
= f(z) + g(z)ω, q̇ = 0, (29)

where
f(z) :=

[
zv

0

]
, g(z) :=

[
0

Sz

]
. (30)

The states of the system are (p, z, q) ∈ R2×S1×Q, where q
is available for control system design. We consider a circular
obstacle with radius ro ∈ R>0. Without loss of generality, we
define a coordinate system with the obstacle centered at the
origin. Select a safety radius rs > ro and define the unsafe
set Ku := {(p, z, q) ∈ R2 × S1 × Q : |p| < rs}. Define
X := {p ∈ R2 : |p| ≥ ε}, where ε < rs is an arbitrarily
small positive number, and let X = X × S1 × Q. We are
now ready to state the control task.

Problem statement: Consider the system (29). Design a
set K ⊂ IntX and a corresponding set of control inputs UB :
X ⇒ R such that ω ∈ UB ensures forward invariance of the
set K \ Ku.

Remark 2. By requiring safety only for solutions starting in
K \ Ku, and not for all K, we implicitly allow K ∩ Ku 6= ∅.

B. Logic variables

We will first construct a non-hybrid CBF, which fails to
ensure safety when the vehicle is oriented directly towards
the origin. Next, we will construct a synergistic CBF with
the critical orientations shifted in the clockwise or counter-
clockwise direction, resulting in a preferred turning direction.
This is desired when approaching the obstacle, but may result
in undesired behavior when the vehicle is in the interior of

Ku. Finally, the non-hybrid CBF and the synergistic CBF are
combined into a new synergistic CBF, ensuring both safety
when approaching the obstacle and mitigating any undesired
behavior if disturbances pushes the vehicle far into Ku. To
this end we define the logic variables

q :=

[
q0

q1

]
∈ Q0 ×Q1 =: Q,

Q0 := {0, 1}
Q1 := {−1, 1}.

(31)

Here, q0 = 1 will indicate that the vehicle is in evasive
mode, where evasive mode is loosely defined as the vehicle
approaching the obstacle. When in evasive mode, q1 will be
used to assign the preferred turning direction.

C. Non-hybrid CBF

Let B0 : X × S1 → R be given by

B0(p, z) := rs − |p| − t0v
p>

|p|
z, (32)

where the last term is the relative velocity between the vessel
and the origin weighted by a time constant t0 ∈ R>0. B0 has
similar form as the non-hybrid CBFs used in [3], [4]. The
Lie derivatives of B0 are given by

LgB0(p, z) =− t0v
p>

|p|
Sz, (33)

LfB0(p, z) =− v p
>

|p|
z − t0

v2

|p|

(
p>

|p|
S>z

)2

. (34)

Define the set of critical orientations

Ψ0 := {(p, z, q) ∈ X
LgB0(p, z) = 0 and LfB0(p, z) ≥ 0}. (35)

The last term of (34) vanishes when LgB0(p, z) = 0. It
follows that p>

|p|
z = −1, ∀(p, z, q) ∈ Ψ0. (36)

Assume B0 defines K0 = {(p, z, q) ∈ IntX : B0(p, z) ≤ 0}.
We note that Ψ0 ∩ K0 6= ∅, which motivates the use of a
hybrid CBF.

D. Synergistic CBF: Part I

1) Shifting the critical orientations: We seek a function
B1 : X × S1 × Q1 → R that shifts the orientations with
vanishing control authority. To this end, define P : X×S1×
Q1 → [−1, 1] as

P (p, z, q1) :=
p>

|p|
R(zq1k1)z

= cos(q1k1)
p>

|p|
z + sin(q1k1)

p>

|p|
Sz,

(37)

with k1 ∈ (0, π2 ). The rotation matrix R(zq1k1) shifts the
critical orientations q1k1 radians in the counterclockwise
direction. The Lie derivatives of P are given by

LgP (p, z, q1) =
p>

|p|
R(zq1k1)Sz, (38)

LfP (p, z, q1) =
v

|p|
p>

|p|
Sz
p>

|p|
R(zq1k1)Sz. (39)



When the vehicle is oriented directly towards the center of
the obstacle we have, ∀(p, z, q) ∈ Ψ0,∀q1 ∈ Q1,

P (p, z, q1) = −z>R(zk1)z = − cos(k1) < 0 (40)

|LgP (p, z, q1)| = |z>R(zk1)Sz| = sin(k1) > 0. (41)

We are now ready to define B1 as

B1(p, z, q1) :=rs − |p| − t1v (P (p, z, q)− sin(k1)) , (42)

where t1 ∈ R>0 is a time constant. Assume that B1 defines

K1 := {(p, z, q) ∈ IntX : B1(p, z, q1) ≤ 0}. (43)

The constant sin(k1) ensures that forward invariance of K1

implies safety, as stated in the following proposition.

Proposition 3. For the system (29), if the set K1 is forward
invariant, so is the set K1 \ Ku. Moreover, any solution
starting in K1 ∩ Ku will converge towards K1 \ Ku.

Proof. The only way a solution can leave or enter the set Ku
is by evolution of p. We prove the proposition by showing
that |p| is non-decreasing in K1∩∂Ku, and strictly increasing
in K1 ∩ Ku. The time derivative of |p| is given by

d

dt
|p| := ∇p(|p|)ṗ = v

p>

|p|
z. (44)

Whenever |p| is increasing we have

p>

|p|
z ≥ 0 =⇒ p>

|p|
z ≥ P (p, z, q1)− sin(k1). (45)

This can be realized from some manipulations on (37). We
continue by establishing lower bounds for P (p, z, q1) −
sin(k1). By definition, B1(p, z, q1) ≤ 0, ∀(p, z, q) ∈ K1.
Furthermore, |p| − rs = 0, ∀(p, z, q) ∈ ∂Ku and |p| − rs <
0, ∀(p, z, q) ∈ Ku. This implies that

P (p, z, q1)− sin(k1) ≥0, ∀(p, z, q) ∈ K1 ∩ ∂Ku, (46)
P (p, z, q1)− sin(k1) >0, ∀(p, z, q) ∈ K1 ∩ Ku. (47)

It follows that |p| is non-decreasing for (p, z, q) ∈ K1 ∩∂Ku,
and strictly increasing for (p, z, q) ∈ K1 ∩ Ku.

2) Synergy gap for B1: We have that

LgB1(p, z, q1) =− t1vLgP (p, z, q1) (48)

LfB1(p, z, q1) =− v p
>

|p|
z − t1vLfP (p, z, q1). (49)

As before, define the set of critical orientations

Ψ1 := {(p, z, q) ∈ X :

LgB1(p, z, q1) = 0 and LfB1(p, z, q1) ≥ 0}. (50)

The following proposition states that the critical orientations
correspond to P (p, z, q) = −1.

Proposition 4. For the set Ψ1, the following holds:

P (p, z, q1) = −1, ∀(p, z, q) ∈ Ψ1. (51)

Proof. It is trivial to verify that LgB1(p, z, q1) = 0 =⇒
LgP (p, z, q1) = 0 =⇒ P (p, z, q1) = ±1. It remains to
show that P (p, z, q1) 6= 1, ∀(p, z, q) ∈ Ψ1. Since

LfP (p, z, q1) =
v

|p|
p>

|p|
SzLgP (p, z, q1) = 0, (52)

we have that LfB1(p, z, q1) = −v p
>

|p| z, ∀(p, z, q) ∈ Ψ1. In-

serting P (p, z, q1) = 1 into (45) yields p>

|p| z ≥ 1− sin(k1) >

0, which implies LfB1(p, z, q1) < 0, which is not contained
in Ψ1. It follows that P (p, z, q1) 6= 1,∀(p, z, q) ∈ Ψ1.

We can now show that B1 has a non-zero synergy gap.
Define

M1(p, z) := min
q1∈Q1

B1(p, z, q1), (53)

µ1 := inf
(p,z,q)∈Ψ1

{B1(p, z, q1)−M1(p, z)}

= t1v(1− cos(k1)) > 0.
(54)

Since µ1 > 0, B1 is an SCBF candidate.

Remark 3. If X contained the origin, the synergy gap would
be zero, since B1(0, z, q1)−M(0, z) = 0 ∀(z, q1) ∈ S1×Q1.
Moreover, LfP → ±∞ as |p| → 0. Since X does not contain
the origin this does not pose a problem.

E. Synergistic CBF: Part II

Define B : X → R as

B(p, z, q) := (1− q0)B0(p, z) + q0B1(p, z, q1). (55)

Note that B = B0 when q0 = 0, and B = B1 when q0 = 1.
Assume that B defines the set

K := {(p, z, q) ∈ IntX : B(p, z, q) ≤ 0}. (56)

Further define

Ψ := {(p, z, q) ∈ X :

LgB(p, z, q) = 0 and LfB(p, z, q) > 0},
(57)

M(p, z) := min
q∈Q

B(p, z, q) (58)

µ := inf
(p,z,q)∈Ψ

{B(p, z, q)−M(p, z)}. (59)

B is a synergistic CBF candidate for (29) if µ > 0. Sufficient
conditions for µ > 0 is given in the following proposition.

Proposition 5. B defined in (55) has non-zero synergy gap if

t0 > t1(cos(k1) + sin(k1)) > 0. (60)

Proof. We begin by noting that Ψ ⊂ Ψ0 ∪Ψ1. From (53-54)
we obtain B(p, z, q)−M(p, z) = B1(p, z, q)−M1(p, z) =
µ1 > 0 ∀(p, z, q) ∈ Ψ1. It remains to verify that (60) en-
sures B(p, z, q) −M(p, z) > 0, ∀(p, z, q) ∈ Ψ0. We have,
∀(p, z, q) ∈ Ψ0,

B0(p, z)−B1(p, z, q1) = t0v − t1v(cos(k1) + sin(k1)).
(61)

Thus, if (60) is satisfied, we have
µ = min{µ1, v(t0 − t1(cos(k1) + sin(k1))} > 0.



F. Safety-critical controller

Select a δ > 0, satisfying δ < µ, and define

D := {(p, z, q) ∈ X : M(p, z)−B(p, z, q) ≤ −δ}, (62)

C := ((R2 × S1 ×Q) \D) ∪ ∂D. (63)

An illustration of C and D is provided in Figure 1. Define

H(p, z) := {q ∈ Q : B(p, z, q) = M(p, z)}. (64)

Define UB : X ⇒ R as

UB := {ω ∈ U : LfB(p, z, q) + LgB(p, z, q)ω

+ α(B(p, z, q)) ≤ 0}, (65)

with α an extended class-K function. Since Ψ∩C ∩ IntX =
∅, the critical orientations on IntX are fully contained in D.
This implies that it is always possible to ensure that UB 6=
∅,∀(p, z, q) ∈ IntX ∩ C, by appropriate selection of t1, t0,
and k1. Let FB : X ⇒ R2 × S1 be given by

FB(p, z, q) := {f(z) + g(z)ω : ω ∈ UB(p, z, q)}, (66)

and define the system

HB :


[
ṗ

ż

]
∈ FB(p, z, q), q̇ = 0 (p, z, q) ∈ C

q+ ∈ H(p, z), p+ = p, z+ = z (p, z, q) ∈ D,
(67)

We conclude this section with the following theorem.

Theorem 2. For the system HB defined in (67), assume that
(60) is satisfied, and UB 6= ∅ ∀(p, z, q) ∈ IntX ∩ C. Then
K \ Ku is forward invariant.

Proof. Proposition 5 and the assumption that B defines K in
(56) is sufficient to establish that B is an SCBF candidate for
(29). Since UB is non-empty on IntX ∩C by assumption, B
is an SCBF. Then, by Theorem 1, K is forward invariant. It
remains to verify that forward invariance of K implies forward
invariance of K \Ku. This part of the proof is omitted, since
it follows a similar logic as proposition 3.

VI. NUMERICAL SIMULATIONS

In this section a small simulation study is presented. We
first design a nominal controller for path-following, using the
line-of-sight (LOS) algorithm [25], with desired path chosen
as x ∈ R, y = 0, traveling in the positive x-direction. The
LOS orientation vector is then given by [26]

zLOS :=
1√

∆2
LOS + y2

[
∆LOS

−y

]
∈ S1. (68)

The look-ahead distance ∆LOS is set to 100m. The nominal
feedback control law for ω is chosen as

κ(z̃) := −ωsat
z̃2√

1− λ2z̃2
1

, z̃ = R(zLOS)>z, (69)

which is a non-hybrid version of the hybrid kinematic con-
troller presented in [27]. We select ωsat = 8 π

180 [rad/s] (cor-
responding to 8 [deg/s]) and λ = 0.9. When κ(z̃) /∈ UB , ω
is set to

Fig. 1. Illustration of flow set C and jump set D, projected onto R2, for
q0 = 0 (top), and q0 = q1 = 1 (bottom). Fixed z = [1 0]>, i.e. vehicle
traveling from left to right. Parameters; v = 5, rs = 100, ε = 20, k1 = π

3
,

t1 = 7.16, t0 = t1(1 + sin(k1)) and δ = µ
4

.

ωB := −LfB(p, z, q) + α(B(p, z, q))

LgB(p, z, q)
, (70)

saturated by ωsat. If |ωB | ≤ ωsat, we have ωB ∈ ∂UB . The
safety radius about the origin is set to rs = 100m. We further
select v = 5, k1 = π

2.5 , t1 = ω−1
sat, t0 = t1(sin(k1) + 1),

(which yields µ = µ1 > 0), δ = µ
4 , and α(B) = 0.5B. A

simulation is initialized with p(0, 0) = [−250 20]>, z(0, 0) =
[1 0]>, and q0(0, 0) = 0. The resulting trajectory is shown
in Figure 2, while the corresponding control input and logic
variable q0 is shown in Figure 3. Since the vehicle is ap-
proaching the obstacle, q0 immediately toggles to 1. Since
q1 also toggles to 1, the evasive maneuver is performed with
an initial counterclockwise turn. Following that the vehicle
travels along the boundary of Ku, before converging to the
desired path. Note that, for this example q0, toggles back
to 0 after the SCBF becomes inactive, meaning that similar
performance would have been achieved with the SCBF B1.

VII. CONCLUSION AND FUTURE WORK

This paper proposed synergistic CBFs as a tool to ensure
safety of continuous-time systems with limited control au-



Fig. 2. Trajectory of p in the R2-plane. The vehicle is traveling from left
to right. The red dots mark where the CBF becomes active and inactive.
Boundary of Ku shown in dotted black lines, corresponding to |p| = rs.

Fig. 3. ω (top) and q0 (bottom) corresponding to the trajectory in Figure
2. The dashed horizontal lines indicate when the CBF becomes active and
inactive.

thority in certain configurations. By shifting the critical ori-
entations, an SCBF for obstacle avoidance for nonholonomic
vehicles was constructed. The performance of the SCBF
was illustrated by a numerical simulation. In future work,
higher derivatives of the turning rate will be considered as
control input, such as acceleration or torque input. Suitable
applications are vehicles with limited speed envelope, e.g.
underactuated ships or fixed-wing aircraft.
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