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Abstract

Double complexes over a field are well-understood, and so are their associated
spectral sequences. Multicomplexes generalise the notion of double complexes.
We aim to understand the spectral sequence associated with a multicomplex
over a field. The homotopy transfer theorem (HTT) equips the cohomology
of the underlying cochain complex of a multicomplex with a transferred
multicomplex structure. We characterise first-page degeneration in terms of
these transferred differentials and then provide a method for computing the
spectral sequence page-by-page by repeated application of the HTT.

Sammendrag

Multikomplekser generaliserer kjedekomplekser og dobbeltkomplekser. Vi ser
hovedsaklig på spektralfølgen tilhørende et multikompleks over en kropp og
gir betingelser for degenerasjon på første side i spektralfølgen. Videre ser vi på
differensialene på senere sider i spektralfølgen og beskriver en fremgangsmåte
for å regne ut disse eksplisitt ved hjelp av homotopioverføringsteoremet
(homotopy transfer theorem).
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Introduction

A multicomplex (𝑀, 𝐷•) over a field K is a bigraded K-vector space 𝑀 together
with a family of endomorphisms 𝐷0, 𝐷1, 𝐷2, . . . of degrees |𝐷𝑟 | = (𝑟, 1 − 𝑟). These
maps are required to satisfy the relations

𝐷0𝐷𝑛 + 𝐷1𝐷𝑛−1 + · · · + 𝐷𝑛−1𝐷1 + 𝐷𝑛𝐷0 = 0 for all 𝑛 ⩾ 0.

Set 𝑛 = 0, and the relation above becomes 𝐷0𝐷0 = 0. Consequently, every mul-
ticomplex (𝑀, 𝐷•) has an underlying cochain complex (𝑀, 𝐷0) of graded vector
spaces. Given a multicomplex 𝑀, we define the cohomology complex 𝐻(𝑀) by
taking cohomology of the underlying cochain complex (𝑀, 𝐷0) degreewise.

𝐻𝑝,𝑞(𝑀) = ker(𝐷0 : 𝑀𝑝,𝑞 → 𝑀𝑝,𝑞+1)
Im(𝐷0 : 𝑀𝑝,𝑞−1 → 𝑀𝑝,𝑞)

We equip 𝐻(𝑀) with the trivial differential so that it (trivially) becomes a cochain
complex of graded vector spaces. Over a field, every cochain complex (𝑀, 𝐷0)
is homotopy equivalent to its cohomology complex. There exists a slightly
weaker notion of homotopy equivalence called a homotopy retract. If (𝑀, 𝐷)
and (𝑁, 𝐷′) are cochain complexes, then a homotopy retract data consists of
cochain maps 𝜋 : 𝑀 → 𝑁 , � : 𝑁 → 𝑀 and a homotopy ℎ : 𝑀 → 𝑀 of degree −1
such that �𝜋 − id𝑀 = 𝐷ℎ + ℎ𝐷 and � is a quasi-isomorphism.

(𝑀, 𝐷) (𝑁, 𝐷′).

𝜋

ℎ

�

Over a field, every homotopy retract data can be extended to an equivalence,
so the two notions are equivalent in this case. The homotopy transfer theo-
rem (HTT) for multicomplexes tells us that if (𝑀, 𝐷•) is a multicomplex and we
have a homotopy retract data as above, we can use the maps 𝜋, � and ℎ to define
maps 𝐷′

1, 𝐷
′
2, . . . : 𝑁 → 𝑁 compatible with 𝐷′

0 := 𝐷′ in the sense that (𝑁, 𝐷′
•)

becomes a multicomplex. In particular, since there always exists a homotopy retract
data of (𝑀, 𝐷0) to the cohomology complex 𝐻(𝑀), we can transfer the multicom-
plex structure on 𝑀 to one on 𝐻(𝑀). Said differently, the HTT allows us to lift the
cohomology functor 𝐻(−) : Ch(VectZ) → Ch(VectZ) to MCK, where Ch(VectZ)
and MCK denote the categories of cochain complexes of graded vector spaces
and multicomplexes over K, respectively. We can think of this as the following
commutative diagram, where the vertical arrows send a multicomplex to its
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underlying cochain complex.

MCK MCK

Ch(VectZ) Ch(VectZ)

𝐻(−)

𝐻(−)

Main results

The spectral sequence (𝐸•(𝑀), 𝑑•) associated with a multicomplex (𝑀, 𝐷•) is
constructed similarly as the one associated with a double complex. Namely, the
total complex of 𝑀 enjoys a natural filtration by columns which gives us a spectral
sequence by standard results. The 𝐸0-page of this spectral sequence is the under-
lying cochain complex (𝑀, 𝐷0) and the 𝐸1-page is the complex 𝐻(𝑀) equipped
with the transferred differential 𝐷′

1. In [LWZ20] an alternative description of this
spectral sequence is presented. They give a description in terms of witnessed
cocycles and coboundaries. This description allows for explicit computation of the
differentials in the spectral sequence whenever we have such a family of witnesses.
This is the view we adopt for most of this text, and the proofs often boil down to
finding the right witnesses. Our main goal is to understand the differentials in this
spectral sequence. To do so, we introduce a family of multicomplexes (𝑠𝑀, 𝑠𝐷•)
indexed by 𝑠 ⩾ 1 defined by repeated application of the HTT. Roughly speaking,
the multicomplex (1𝑀, 1𝐷•) is a shifted version of the cohomology complex 𝐻(𝑀)
together with the transferred differentials. We then define (𝑠𝑀, 𝑠𝐷•) inductively
to be a shifted version of the multicomplex (𝐻(𝑠−1𝑀), 𝑠−1𝐷′

•). This re-indexing is
inspired by the décalage functor introduced by Deligne in [Del71]. Put categori-
cally, if we denote the re-indexing functor by 𝜌, then the functor 1(−) is just the
composition 𝜌 ◦ 𝐻(−) : MCK → MCK and 𝑠(−) = 1(−) ◦ · · · ◦ 1(−)︸             ︷︷             ︸

𝑠 times

.

The essential observation is the following theorem relating the spectral sequence
associated with 𝑀 and the one associated with 1𝑀.

Theorem A (Theorem 4.0.6). The spectral sequence associated with 1𝑀 is a shifted
version of the spectral sequence associated with 𝑀 in the sense that

𝐸
𝑝,𝑞
𝑟 (1𝑀) = 𝐸2𝑝+𝑞,−𝑝

𝑟+1 (𝑀) and 1𝑑𝑟 = 𝑑𝑟+1 for all 𝑟 ⩾ 0.

What we truly are doing is pushing the multicomplex structure along while
computing the pages in the spectral sequence. That is, we equip each page in
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the spectral sequence with a multicomplex structure coming from the previous
page by choice of sections and the HTT. The following corollary of theorem A
then tells us that the multicomplex structure on the 𝐸𝑟-page contains both the
differential 𝑑𝑟 (as the underlying cochain complex) and all the information (the
higher differentials) needed to compute 𝑑𝑟+1.

Corollary B (Corollary 4.0.7). We have

𝐸
𝑝,𝑞
𝑟 (𝑀) = 𝑟𝑀𝑝−𝑟𝑛, 𝑞+𝑟𝑛 and 𝑑𝑟 =

𝑟𝐷0

for every 𝑟 ⩾ 1 where 𝑛 = 𝑝 + 𝑞.

If we write SpecSeqK for the category of spectral sequences with vector spaces
over K as entries, then theorem A and corollary B corresponds to the commutativity
of the inner squares and the outer square in the following diagram, respectively.

MCK SpecSeqK

MCK SpecSeqK

...
...

MCK SpecSeqK

𝐸(−)

1(−)

𝑠(−)

𝐸(−)

1(−)

𝜌−1

1(−)

𝜌−1

𝐸(−)

𝜌−1

𝜌−𝑠

Effectively, corollary B enables us to compute the spectral sequence associated with
a multicomplex, page-by-page. We point out that a result similar to corollary B can
be found in [Lap07, Proposition 3.1] but stated in a slightly different mathematical
language. The following corollary,which also follows immediately from theorem A,
completely characterises degeneration of the associated spectral sequence in terms
of the transferred differentials.

Corollary C (Corollary 4.0.8). The spectral sequence associated with a multicom-
plex 𝑀 degenerates at the 𝑘-th page if and only if 𝑘𝐷𝑟 = 0 for all 𝑟 ⩾ 0.

First-page degeneration

The main inspiration which led to theorem A and its corollaries,andespecially corol-
lary C, was the following result on first-page degeneration appearing in [DSV15].
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Theorem D (Theorem 3.0.1). The spectral sequence associated with a multicom-
plex 𝑀 degenerates at the first page if and only if all transferred differentials 𝐷′

𝑟

vanish.

Of course, once we have established theorem A, then theorem D follows from
corollary C by setting 𝑘 = 1. Still, section 3 is entirely dedicated to proving
theorem D and is included because it inspires the techniques used to prove the
generalisation in section 4.

Specialising to double complexes

Double complexes (also known as bicomplexes) are exactly the multicomplexes
whose differentials 𝐷𝑟 vanish for 𝑟 ⩾ 2. Double complexes over a field are well
understood as they decompose into direct sums of "squares" and "zig-zags".1
Consequently, the spectral sequence associated with a double complex is also
understood since the differentials involved can be computed by considering the
zig-zags of different lengths appearing in the decomposition. Another approach
to computing the spectral sequence associated with a double complex is applying
the HTT and considering the transferred differentials on the cohomology complex.
As pointed out in [LV12], this approach using the HTT gives us a "lifted version"
of the spectral sequence. To be precise, if (𝐸•, 𝑑•) denotes the spectral sequence
associated with the double complex (𝑀, 𝐷0, 𝐷1), and (𝐷′

𝑟)𝑟⩾1 are the transferred
differentials on 𝐻(𝑀, 𝐷0), then we have the following result:

Theorem E. The map induced by 𝐷′
𝑟 on the 𝐸𝑟-page is exactly 𝑑𝑟 .

The takeaway is that, in the case of double complexes, the transferred differentials
on cohomology contain all the information of the associated spectral sequence
(except the zeroth page, of course). We give two proofs of theorem E. The first
one appears as proposition 2.3.1. Later, in example 4.0.9, we recover this result by
applying corollary B. Theorem E fails in the general case where higher differential
might be non-trivial. This is seen in example 4.0.3 where𝐷′

3 = 0 but 𝑑3 is non-trivial.
This suggests that there has to be more information contained in 𝑑𝑟 than just the
transferred differentials 𝐷′

𝑟 on 𝐻(𝑀, 𝐷0) whenever 𝑟 ⩾ 3.

1This decomposition of double complexes has been known as folklore for a long time. Recently,
proofs of this fact have been given in [Ste21] and [KQ20].
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Minimal models for multicomplexes

Similarly to how a cochain complex 𝑀 can be decomposed into a direct sum 𝐾 ⊕𝐻,
this is also true for multicomplexes. A multicomplex (𝑀, 𝐷•) is said to be minimal
if 𝐷0 = 0 and acyclic trivial if both 𝐷𝑟 = 0 for 𝑟 ⩾ 1 and the underlying cochain
complex (𝑀, 𝐷0) is acyclic. In appendix B, we follow [DSV15] and show how every
multicomplex 𝑀 decomposes into a direct sum 𝐾 ⊕ 𝐻 where 𝐾 is acyclic trivial
and 𝐻 is minimal.

Multicomplexes as homotopy algebras

As is remarked in [DSV15], [Val14] and [LV12], multicomplexes can be viewed
as algebras over a certain operad. This is also true for double complexes, which
are algebras over the operad D of dual numbers. First, we define an operad M

and show that the category of algebras2 over M is equivalent to the category
of multicomplexes with the right definition of morphisms. We then explicitly
compute the operad D∞ which is the cobar construction on the Koszul dual
cooperad of D and show that D∞ = M . Then, by definition, multicomplexes are
exactly the homotopy D-algebras. Viewing multicomplexes as homotopy algebras
allows us to apply results from the general theory of Koszul operads. For example,
both the homotopy transfer theorem and minimal models for multicomplexes
follows from more general results which can be found in [LV12].

Deformations of cochain complexes

We fix a cochain complex (𝑀, 𝐷0) and consider those formal power series

𝐷(𝑡) = 𝐷0 + 𝐷1𝑡 + 𝐷2𝑡
2 + · · · ∈ End(𝑀)J𝑡K

which satisfy 𝐷2 = 0. These are called formal deformations of (𝑀, 𝐷0). We prove
that formal deformations of cochain complexes form a category equivalent to the
category of multicomplexes. We also very briefly mention finite order deformations
of cochain complexes. Deformations of cochain complexes might serve as a
motivation for looking at multicomplexes and give us a compact notation for
encoding them. Of course, the results established in the earlier sections can be
translated to the category of deformations. This may be fruitful. However, this
direction is not further investigated in this text.

2Every operad P of arity 1 is completely determined by the algebra P(1). Moreover, algebras
over operads of arity 1 correspond to dg-modules over P(1)

10



How to read it

If one is interested in the most general results to be found in this text, one can skip
straight to section 4 and refer to section 1 and section 2 whenever necessary. On
the other hand, if one wants the extended edition, including the motivation behind
the general results, one should read it linearly from section 1. The appendices
are not directly related to the main results but might motivate the notion of
multicomplexes and reveal parts of the bigger picture they fit into.

Outline

Section 1 contains the preliminaries and prepares us for working with multicom-
plexes and the associated spectral sequence. First, we recall how a filtered cochain
complex gives rise to a spectral sequence and then go on to define multicomplexes
and the filtration on the total complex. We end this section with an exposition of
witnessed cocycles and coboundaries closely following [LWZ20].

Section 2 consists of three parts. The first part discusses the notions of homotopy
equivalence and homotopy retracts for cochain complexes over a field. We prove
(the well-known fact) that every cochain complex is homotopy equivalent to its
cohomology complex and explicitly write out the maps involved. The second part
is dedicated to the homotopy transfer theorem. The third part discusses the special
case of double complexes and their associated spectral sequences.

Section 3 is about first-page degeneration and contains the proof of theorem D.

Section 4 starts off by showing that the second differential 𝑑2 in the spectral
sequence is the map induced by 𝐷′

2 on the 𝐸2-page. We then give an example to
show that this is not true for 𝑑3. Inspired by how this example fails, we go on to
prove theorem A and end the section by proving its two corollaries.

Appendix A explains how multicomplexes can be viewed as homotopy D-algebras.

Appendix B is a short note on minimal models for multicomplexes.

Appendix C shows how (formal) deformations of cochain complexes form a
category equivalent to the category of multicomplexes. We also briefly mention
finite order deformations of cochain complexes at the end.
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Conventions

We restrict ourselves to the case of (graded) vector spaces over some fixed field K

of characteristic 0. Some results work in the more general setting. However, most
of the results rely on the fact that every short exact sequence splits. We stick to
cohomological grading for complexes, multicomplexes and spectral sequences.
That is, differentials always increase the (total) degree by one. In the bigraded
case, the differentials have bidegree (𝑟, 1 − 𝑟) and can be visualised as follows:

· · ·

We write 𝐽 for multi-indices (𝑗1, 𝑗2, . . . , 𝑗𝑘) of length 𝑘 ⩾ 1 with all 𝑗𝑠 ⩾ 1. When
summing over |𝐽 | = 𝑛, we sum over all such multi-indices with 𝑗1 + · · · + 𝑗𝑘 = 𝑛.
For example, if (𝑎𝑖) is some family indexed over the positive integers, then∑

|𝐽 |=1

𝑎 𝑗1𝑎 𝑗2 · · · 𝑎 𝑗𝑘 = 𝑎1,
∑
|𝐽 |=2

𝑎 𝑗1𝑎 𝑗2 · · · 𝑎 𝑗𝑘 = 𝑎1𝑎1 + 𝑎2,∑
|𝐽 |=3

𝑎 𝑗1𝑎 𝑗2 · · · 𝑎 𝑗𝑘 = 𝑎1𝑎1𝑎1 + 𝑎1𝑎2 + 𝑎2𝑎1 + 𝑎3 and so on.

12



1 Multicomplexes and spectral sequences

First, we briefly recall how a filtration on a cochain complex gives rise to a spectral
sequence. More details and omitted proofs can be found in [Spa95], [Wei95]
and [McC01]. Next, we clarify the notion of a multicomplex and morphisms
of such. Under a mild boundedness assumption on a multicomplex 𝑀, we can
construct the associated total complex Tot𝑀, equipped with a natural filtration.
The spectral sequence arising from this filtration is what we will call the spectral
sequence associated with 𝑀. In the last part, we follow [LWZ20] and describe the
associated spectral sequence in terms of witnessed cocycles and coboundaries.
This point of view will enable us to describe the differentials involved explicitly.

1.1 Filtered cochain complexes

Definition 1.1.1. A filtered cochain complex (𝐶, 𝐹) is a cochain complex 𝐶 with
differential 𝐷 : 𝐶𝑛 → 𝐶𝑛+1 together with a decreasing filtration 𝐹 = {𝐹𝑝𝐶}𝑝

𝐶 ⩾ · · · ⩾ 𝐹𝑝𝐶 ⩾ 𝐹𝑝+1𝐶 ⩾ · · · ⩾ 0

such that the differential on 𝐶 is compatible with the filtration in the sense
that 𝐷(𝐹𝑝𝐶𝑛) ⩽ 𝐹𝑝𝐶𝑛+1.

Given a filtered cochain complex (𝐶, 𝐹) we define

𝑍
𝑝,•
𝑟 = 𝐹𝑝𝐶 ∩ 𝐷−1(𝐹𝑝+𝑟𝐶), 𝐵

𝑝,•
0 = 𝑍

𝑝+1,•
0 and 𝐵

𝑝,•
𝑟 = 𝑍

𝑝+1,•
𝑟−1 + 𝐷𝑍𝑝−𝑟+1,•

𝑟−1

for 𝑟 ⩾ 1. It can be shown that the quotients 𝐸𝑝,𝑞𝑟 = 𝑍
𝑝,𝑞
𝑟 /𝐵𝑝,𝑞𝑟 are well-defined and

that the differential on 𝐶 induces differentials 𝛿𝑟 :

𝑍
𝑝,𝑞
𝑟 𝑍

𝑝+𝑟,𝑞+1−𝑟
𝑟

𝐸
𝑝,𝑞
𝑟 𝐸

𝑝+𝑟,𝑞+1−𝑟
𝑟

𝐷

𝛿𝑟

where the vertical arrows are the quotient maps. The main point is that we have a
spectral sequence. The following result is standard:

Proposition 1.1.2. There are isomorphisms 𝐸𝑝,𝑞
𝑟+1 � 𝐻

𝑝+𝑞(𝐸𝑟 , 𝛿𝑟) for 𝑟 ⩾ 0.

If 𝑥 is an element of 𝑍𝑝,𝑞𝑟 , we denote its class in 𝐸𝑝,𝑞𝑟 = 𝑍
𝑝,𝑞
𝑟 /𝐵𝑝,𝑞𝑟 by [𝑥]𝑟 . Using this

notation, we have that 𝛿𝑟([𝑥]𝑟) = [𝐷𝑥]𝑟 .

13



Definition 1.1.3. A filtration 𝐹 on 𝐶 is said to be convergent if
⋂
𝑛 𝐹

𝑛𝐶 = 0
and

⋃
𝑛 𝐹

𝑛𝐶 = 𝐶. We say that 𝐹 is bounded below if for every 𝑛, there exists a 𝑞(𝑛)
such that 𝐹𝑞(𝑛)𝐶𝑛 = 0.

If (𝐶, 𝐹) is a filtered cochain complex, then there is an induced filtration on the
cohomology of 𝐶 given by 𝐹𝑝𝐻(𝐶) := Im(𝐻(𝐹𝑝𝐶) → 𝐻(𝐶)). Requiring that 𝐹 is
bounded below ensures that the induced filtration on 𝐻(𝐶) is convergent as well.

Theorem 1.1.4. [Spa95, p.469] Let (𝐶, 𝐹) be a filtered cochain complex with 𝐹

convergent and bounded below. Then there is a convergent spectral sequence with

𝐸
𝑝,𝑞

0 = 𝐹𝑝𝐶𝑝+𝑞/𝐹𝑝+1𝐶𝑝+𝑞 , 𝐸
𝑝,𝑞

1 = 𝐻𝑝+𝑞(𝐹𝑝𝐶/𝐹𝑝+1𝐶)

and 𝐸∞ is isomorphic to the associated graded of the induced filtration on 𝐻(𝐶).

The following notion of degeneracy will be central throughout this text.

Definition 1.1.5. A spectral sequence (𝐸•, 𝑑•) is said to degenerate at the 𝑘-th page
if 𝑑𝑟 = 0 for all 𝑟 ⩾ 𝑘.

Degeneration on some page merely means that nothing interesting will happen
from that point on. That is, we have arrived at our target 𝐸∞.

1.2 Multicomplexes and their associated spectral sequences

Definition 1.2.1. A multicomplex (𝑀, 𝐷•) over K consists of a bigraded K-vector
space 𝑀 = {𝑀𝑝,𝑞} together with a family of linear maps {𝐷𝑟 : 𝑀 → 𝑀}𝑟⩾0 of
bidegrees |𝐷𝑟 | = (𝑟, 1 − 𝑟). These maps are required to satisfy the relation∑

𝑝+𝑞=𝑛
𝐷𝑝𝐷𝑞 = 0 for every 𝑛 ⩾ 0.

The maps 𝐷𝑟 when 𝑟 ⩾ 1 are called higher differentials (or sometimes, even just
differentials). This is a slight abuse of terminology as they in general do not square
to zero. Multicomplexes generalise the notion of double complexes and cochain
complexes. A multicomplex where the higher differentials 𝐷𝑟 = 0 for all 𝑟 ⩾ 2 is
precisely a double complex. A multicomplex with only 𝐷0 possibly non-trivial is a
cochain complex of graded vector spaces. For every multicomplex (𝑀, 𝐷•), we
have an underlying cochain complex (𝑀, 𝐷0) of graded vector spaces. One can
visualise (𝑀, 𝐷0) as the following diagram:

14



...
...

...

· · · 𝑀𝑝−1,𝑞+1 𝑀𝑝,𝑞+1 𝑀𝑝+1,𝑞+1 · · ·

· · · 𝑀𝑝−1,𝑞 𝑀𝑝,𝑞 𝑀𝑝+1,𝑞 · · ·

· · · 𝑀𝑝−1,𝑞−1 𝑀𝑝,𝑞−1 𝑀𝑝+1,𝑞−1 · · ·

...
...

...

𝐷0

We denote the cohomology of (𝑀, 𝐷0) in degree (𝑝, 𝑞) by

𝐻𝑝,𝑞(𝑀) := 𝐻𝑞(𝑀𝑝,•, 𝐷0) =
ker(𝐷0 : 𝑀𝑝,𝑞 → 𝑀𝑝,𝑞+1)
Im(𝐷0 : 𝑀𝑝,𝑞−1 → 𝑀𝑝,𝑞)

and endow 𝐻(𝑀) with trivial differential.

Remark 1.2.2. Multicomplexes (not necessarily over a field) appear in [Wal61]
where resolutions for extensions of groups are constructed as the total complex of
a multicomplex with 𝐷𝑟 = 0 for 𝑟 ⩾ 3. Such multicomplexes also appear in [Liu17]
and [Liu14] under the name "homotopy double complexes", where they are used
to construct resolutions of certain generalised Weyl algebras.

Definition 1.2.3. Let (𝑀, 𝐷•) and (𝑁, �̃�•) be multicomplexes. A morphism

𝑓 : (𝑀, 𝐷•) → (𝑁, �̃�•)

of multicomplexes consists of a family 𝑓 = { 𝑓𝑛 : 𝑀 → 𝑁 | 𝑓𝑛(𝑀𝑝,𝑞) ⩽ 𝑁𝑝+𝑛,𝑞−𝑛}𝑛⩾0

of linear maps . In addition, we require the maps to satisfy∑
𝑝+𝑞=𝑛

𝑓𝑝𝐷𝑞 =
∑
𝑝+𝑞=𝑛

�̃�𝑝 𝑓𝑞 for all 𝑛 ⩾ 0. (1)

For 𝑛 = 0, eq. (1) amounts to 𝑓0 being a cochain map (𝑀, 𝐷0) → (𝑁, �̃�0). In the case
where 𝑀 and 𝑁 are double complexes and 𝑓𝑛 = 0 for 𝑛 ⩾ 1, eq. (1) is to say that 𝑓0
is a morphism of double complexes, i.e. 𝑓 commutes with both differentials. On a
multicomplex 𝑀, the identity morphism id𝑀 : 𝑀 → 𝑀 is given by (id𝑀)0 = id(𝑀,𝐷0)
and (id𝑀)𝑛 = 0 for all 𝑛 ⩾ 1. If 𝑓 and 𝑔 are morphisms of multicomplexes, we
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define their composition 𝑔 𝑓 by (𝑔 𝑓 )𝑛 =
∑
𝑝+𝑞=𝑛 𝑔𝑝 𝑓𝑞 whenever it makes sense.

Remark 1.2.4. In the operadic language of [DSV15] morphisms of multicomplexes
are called ∞-morphisms.

Definition 1.2.5. A morphism 𝑓 of multicomplexes is an isomorphism (quasi-
isomorphism) if 𝑓0 is an isomorphism (quasi-isomorphism).

Proposition 1.2.6. A morphism 𝑓 of multicomplexes is invertible if and only if 𝑓0
is an isomorphism of cochain complexes.

Proof. If 𝑓 has inverse 𝑔, then ( 𝑓 𝑔)0 is the identity on (𝑀, 𝐷0). Similarly, the same
is true for 𝑔 𝑓 . Conversely, suppose 𝑓0 is an isomorphism and denote its inverse
by 𝑔0. It is now a matter of solving (𝑔 𝑓 )𝑛 = 0 for each 𝑛 ⩾ 1. Doing this, we obtain
the following unique solution 𝑔:

𝑔𝑛 =
∑
|𝐼 |=𝑛

(−1)𝑘 𝑔0 𝑓𝑖1 𝑔0 𝑓𝑖2 𝑔0 · · · 𝑔0 𝑓𝑖𝑘 𝑔0 for 𝑛 ⩾ 1.

□

Throughout this text we will assume the following boundedness condition
on multicomplexes: a multicomplex (𝑀, 𝐷•) is said to be bounded below if for
each 𝑛 there exists an integer 𝑠(𝑛) such that 𝑀𝑝,𝑛−𝑝 = 0 whenever 𝑝 ⩾ 𝑠(𝑛). In
other words, each anti-diagonal eventually vanish going to the right. We asso-
ciate to a multicomplex 𝑀 the total complex denoted Tot𝑀 given in degree 𝑛
by Tot𝑀𝑛 :=

⊕
𝑎+𝑏=𝑛 𝑀

𝑎,𝑏 . We make Tot𝑀 into a cochain complex by giving
it the differential 𝐷 :=

∑
𝑟⩾0 𝐷𝑟 : Tot𝑀𝑛 → Tot𝑀𝑛+1. It is easy to see that 𝐷 is

locally finite and hence well-defined whenever 𝑀 is bounded below. There is a
natural filtration by columns on Tot𝑀 defined by letting

𝐹𝑝 Tot𝑀𝑛 :=
⊕
𝑎+𝑏=𝑛
𝑎⩾𝑝

𝑀𝑎,𝑏 . (2)

This filtration turns (Tot𝑀, 𝐹) into a filtered complex.

Remark 1.2.7. Convergence in the case where we do not assume any finiteness
condition on the multicomplex is discussed in [Boa98, Section 11].

Lemma 1.2.8. If (𝑀, 𝐷•) is bounded below, then the filtration defined in eq. (2) is
bounded below.
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Proof. By assumption, there exists for every 𝑛 an integer 𝑠(𝑛) such that 𝑀𝑝,𝑛−𝑝 = 0
whenever 𝑝 ⩾ 𝑠(𝑛). By letting 𝑞(𝑛) := 𝑠(𝑛), it is evident that 𝐹𝑞(𝑛)𝐶𝑛 = 0. □

The following corollary of theorem 1.1.4 now follows from the previous lemma:

Corollary 1.2.9. Let (𝑀, 𝐷•) be a multicomplex which is bounded below. Then the
spectral sequence associated with the filtration on Tot𝑀 converges to 𝐻(Tot𝑀).

The spectral sequence in the above corollary is called the spectral sequence associated
with the multicomplex 𝑀. The zeroth page of this spectral sequence is given by

𝐸
𝑝,𝑞

0 = 𝐹𝑝𝑀𝑝+𝑞/𝐹𝑝+1𝑀𝑝+𝑞 = 𝑀𝑝,𝑞

with differential 𝛿0 = 𝐷0. In other words, 𝐸0 is just the underlying cochain
complex (𝑀, 𝐷0). The first page is the given by 𝐸𝑝,𝑞1 = 𝐻𝑞(𝑀𝑝,•, 𝐷0) and 𝛿1 is the
map induced by 𝐷1 on cohomology. We should be aware that this pattern does not
generally hold for the differentials on later pages, as can be seen in the following
example borrowed from [Hur10]:

Example 1.2.10. Consider the following multicomplex 𝑀 consisting of one-
dimensional vector spaces:

0 0

0 K 𝑎 K 𝑐 0

0 K 𝑏 K 𝑑 0

0 0

𝐷1

𝐷0

𝐷1

with differentials𝐷1(𝑎) = 𝑐, 𝐷1(𝑏) = 𝑑, 𝐷0(𝑏) = 𝑐 and 𝐷𝑟 = 0 for all 𝑟 ⩾ 2. The total
complex

0 → K 𝑏 ⊕ K 𝑎

©«
𝐷1 0
𝐷0 𝐷1

ª®®¬−−−−−−−−→ K 𝑑 ⊕ K 𝑐 → 0.

is exact because the differential 𝐷 = 𝐷0 +𝐷1 is an isomorphism. By corollary 1.2.9
this means that 𝐸𝑝,𝑞∞ = 0 for all 𝑝, 𝑞. Taking cohomology with respect to 𝛿0 = 𝐷0,
we are left with two non-trivial entries at the 𝐸1-page:
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0 K 𝑎 0

0 K 𝑑 0

𝛿1 𝛿1

𝛿2≠0

𝛿1 𝛿1

Since 𝐸3 = 𝐸∞ by degree reasons, the generators 𝑎 and 𝑏 must be killed by the 𝛿2

differential and hence 𝛿2 ≠ 0, whereas 𝐷2 is zero.

1.2.1 Description in terms of witnessed cocycles and coboundaries

This part is essentially [LWZ20] with notation and grading conventions adapted
to our setting. Let (𝑀, 𝐷•) be a multicomplex and 𝑇 = Tot𝑀. The filtration on 𝑇
defined as in eq. (2) is denoted by 𝐹. If 𝑥 ∈ 𝐹𝑝𝑇, we can write 𝑥 uniquely as the
sum

𝑥 = 𝑥𝑝 + 𝑥𝑝+1 + · · · + 𝑥𝑝+𝑟−1 + 𝑥′ (3)

where 𝑥𝑝+𝑗 ∈ 𝑀𝑝+𝑗 ,• is the projection of 𝑥 to the column 𝑀𝑝+𝑗 ,• and 𝑥′ ∈ 𝐹𝑝+𝑟𝑇.
Now, suppose that 𝑥 ∈ 𝑍𝑝,•𝑟 . This is to say that 𝑥 ∈ 𝐹𝑝𝑇 and 𝐷𝑥 ∈ 𝐹𝑝+𝑟𝑇 where 𝐷
is the differential on 𝑇. As a consequence of eq. (3), the parts of 𝐷𝑥 which lie
in 𝐹𝑝+𝑗𝑇 for 𝑗 = 0, 1, . . . , 𝑟 −1 must vanish. In other words, the following equations
are required to hold true.

𝐷0𝑥𝑝 = 0

𝐷0𝑥𝑝+1 + 𝐷1𝑥𝑝 = 0
...

𝐷0𝑥𝑝+𝑟−1 + 𝐷1𝑥𝑝+𝑟−2 + · · · + 𝐷𝑟−1𝑥𝑝 = 0.

(4)

Similarly, if we let 𝑥 = 𝐷𝑤 for some𝑤 ∈ 𝐹𝑝−𝑟+1𝑇 we obtain another set of equations.
These observations lead to the definition of the following two subspaces of 𝑀𝑝,•:

𝒵𝑝,•
𝑟 =

{
𝑥 ∈ 𝑀𝑝,• | ∃ 𝑥𝑝+𝑗 ∈ 𝑀𝑝+𝑗 ,• for 1 ⩽ 𝑗 ⩽ 𝑟 − 1 such that

𝐷0𝑥 = 0 and 𝐷𝑛𝑥 +
𝑛−1∑
𝑖=0

𝐷𝑖𝑥𝑝+𝑛−𝑖 = 0 for 1 ⩽ 𝑛 ⩽ 𝑟 − 1
}

and

ℬ𝑝,•
𝑟 =

{
𝑥 ∈ 𝑀𝑝,• | ∃𝑤𝑝−𝑗 ∈ 𝑀𝑝−𝑗 ,• for 0 ⩽ 𝑗 ⩽ 𝑟 − 1 such that

𝑥 =

𝑟−1∑
𝑗=0

𝐷𝑗𝑤𝑝−𝑗 and
𝑟−1∑
𝑗=𝑙

𝐷𝑗−𝑙𝑤𝑝−𝑗 = 0 for 1 ⩽ 𝑙 ⩽ 𝑟 − 1
}
.
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Proposition 1.2.11. [LWZ20, Proposition 2.7] We have that ℬ𝑝,•
𝑟 ⩽ 𝒵𝑝,•

𝑟 .

Proof. Pick some coboundary 𝑥 ∈ ℬ𝑝,•
𝑟 . First, we confirm that 𝐷0𝑥 = 0:

𝐷0𝑥 =

𝑟−1∑
𝑗=0

𝐷0𝐷𝑗𝑤𝑝−𝑗 = −
𝑟−1∑
𝑗=1

𝑗−1∑
𝑙=0

𝐷𝑗−𝑙𝐷𝑙𝑤𝑝−𝑗 = −
𝑟−1∑
𝑙=1

𝐷𝑙

𝑟−1∑
𝑗=𝑙

𝐷𝑗−𝑙𝑤𝑝−𝑗︸         ︷︷         ︸
= 0

= 0.

Next, we claim that the elements 𝑥𝑝+𝑗 =
∑𝑟−1
𝑖=0 𝐷𝑗+𝑖𝑤𝑝−𝑖 ∈ 𝑀𝑝+𝑗 ,• where 1 ⩽ 𝑗 ⩽ 𝑟−1

satisfy the required relations for 𝑥 to be a cocycle. Again, we check this by direct
computation. Let 𝑥𝑝 := 𝑥 to simplify expressions.

𝑛∑
𝑖=0

𝐷𝑖𝑥𝑝+𝑛−𝑖 =
𝑛∑
𝑖=0

𝐷𝑖

𝑟−1∑
𝑘=0

𝐷𝑛−𝑖+𝑘𝑤𝑝−𝑘 =
𝑟−1∑
𝑘=0

𝑛∑
𝑖=0

𝐷𝑖𝐷𝑛+𝑘−𝑖𝑤𝑝−𝑘

= −
𝑟−1∑
𝑘=1

𝑛+𝑘∑
𝑖=𝑛+1

𝐷𝑖𝐷𝑛+𝑘−𝑖𝑤𝑝−𝑘 = −
𝑛+𝑟−1∑
𝑖=𝑛+1

𝐷𝑖

𝑟−1∑
𝑘=𝑖−𝑛

𝐷𝑘−𝑖+𝑛𝑤𝑝−𝑘︸               ︷︷               ︸
= 0

= 0.

□

Proposition 1.2.12. [LWZ20, Proposition 2.8] The map 𝜓 : 𝐸𝑝,𝑞𝑟 → 𝒵𝑝,•
𝑟 /ℬ𝑝,•

𝑟

defined by letting 𝜓([𝑥]𝑟) = [𝑥𝑝] is an isomorphism.

Proof. Consider the map �̂� : 𝑍𝑝,•𝑟 → 𝒵𝑝,•
𝑟 /ℬ𝑝,•

𝑟 defined by 𝑥 ↦→ [𝑥𝑝].

1. The map �̂� is well-defined and surjective:

Let 𝑥 ∈ 𝑍𝑝,•𝑟 . From the decomposition in eq. (3) and the relations in eq. (4) we
see that 𝑥𝑝 ∈ 𝒵𝑝,•

𝑟 , i.e., �̂�(𝑍𝑝,•𝑟 ) ⩽ 𝒵𝑝,•
𝑟 . Now, if the cocycle 𝑥 ∈ 𝒵𝑝,•

𝑟 is witnessed
by the elements 𝑥𝑝+1, . . . , 𝑥𝑝+𝑟−1, then the image of 𝑦 := 𝑥 + 𝑥𝑝+1 + · · · + 𝑥𝑝+𝑟−1

under �̂� is exactly 𝑥. The only thing left to check is that 𝑦 ∈ 𝑍𝑝,•𝑟 , but this follows
from eq. (4).

2. We have inclusion ker �̂� ⩽ 𝐵𝑝,•𝑟 :

Suppose that 𝑥 ∈ ker �̂� ⩽ 𝑍𝑝,•𝑟 . From eq. (3), it follows that we can write 𝑥 = 𝑥𝑝 +𝑤
where 𝑥𝑝 ∈ 𝑀𝑝,• and 𝑤 ∈ 𝐹𝑝+1𝑇. By assumption, 𝑥𝑝 ∈ ℬ𝑝,•

𝑟 so there exist
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witnesses 𝑤𝑝 , 𝑤𝑝−1, . . . , 𝑤𝑝−𝑟+1 with 𝑤𝑝−𝑗 ∈ 𝑀𝑝−𝑗 ,• satisfying

𝑥𝑝 =

𝑟−1∑
𝑗=0

𝐷𝑗𝑤𝑝−𝑗 and (5)

0 =

𝑟−1∑
𝑗=𝑙

𝐷𝑗−𝑙𝑤𝑝−𝑗 for 1 ⩽ 𝑙 ⩽ 𝑟 − 1. (6)

Define the element 𝑐 :=
∑𝑟−1
𝑘=0 𝑤𝑝−𝑘 ∈ 𝐹𝑝−𝑟+1𝑇. From eq. (6) it follows that𝐷𝑐 ∈ 𝐹𝑝𝑇

and so by definition we have that 𝑐 ∈ 𝑍
𝑝−𝑟+1,•
𝑟−1 . Furthermore, eq. (5) implies

that the part of 𝐷𝑐 which lives in degree 𝑝 is exactly 𝑥𝑝 so (𝑥𝑝 − 𝐷𝑐)𝑝 = 0
and hence 𝑥𝑝 − 𝐷𝑐 ∈ 𝐹𝑝+1𝑇. Define the element 𝑏 := 𝑥𝑝 − 𝐷𝑐 + 𝑤 ∈ 𝐹𝑝+1𝑇.
We can now write 𝑥 = 𝑏 + 𝐷𝑐 and consequently 𝐷𝑥 = 𝐷𝑏 + 𝐷2𝑐 = 𝐷𝑏. By
assumption, 𝑥 ∈ 𝑍𝑝,•𝑟 so 𝐷𝑥 = 𝐷𝑏 ∈ 𝐹𝑝+𝑟𝑇 and therefore 𝑏 ∈ 𝑍𝑝+1,•

𝑟−1 . We conclude
that 𝑥 ∈ 𝑍𝑝+1,•

𝑟−1 + 𝐷(𝑍𝑝−𝑟+1,•
𝑟−1 ) = 𝐵

𝑝,•
𝑟 .

3. We have inclusion 𝐵𝑝,•𝑟 ⩽ ker �̂�:

Let 𝑥 ∈ 𝐵𝑝,•𝑟 and write 𝑥 = 𝑏 + 𝐷𝑐 with 𝑏 ∈ 𝑍𝑝+1,•
𝑟−1 and 𝑐 ∈ 𝑍𝑝−𝑟+1,•

𝑟−1 . By definition,
we have 𝑏 ∈ 𝐹𝑝+1𝑇 and 𝐷𝑐 ∈ 𝐹𝑝𝑇. Now, observe that 𝑥𝑝 = (𝐷𝑐)𝑝 =

∑𝑟−1
𝑗=0 𝐷𝑗𝑤𝑝−𝑗 .

Furthermore, 0 = (𝐷𝑐)𝑝−𝑙 =
∑𝑟−1
𝑗=𝑙 𝐷𝑗−𝑙𝑐𝑝−𝑗 for each 𝑙 = 1, 2, . . . , 𝑟 − 1. We conclude

that 𝑥𝑝 ∈ ℬ𝑝,•
𝑟 and hence �̂�(𝑥) = 0.

It now follows from the first isomorphism theorem that 𝜓 is an isomorphism.

𝑍
𝑝,•
𝑟 𝒵𝑝,•

𝑟 /ℬ𝑝,•
𝑟

𝐸
𝑝,•
𝑟

�̂�

𝜓

□

Proposition 1.2.13. [LWZ20, Theorem 2.10] Under the isomorphism in proposi-
tion 1.2.12 the differentials of the spectral sequence are given by

𝑑𝑟 : 𝒵𝑝,•
𝑟 /ℬ𝑝,•

𝑟 −→ 𝒵𝑝+𝑟,•
𝑟 /ℬ𝑝+𝑟,•

𝑟

[𝑥] ↦→
[
𝐷𝑟𝑥 +

𝑟−1∑
𝑖=1

𝐷𝑖𝑥𝑝+𝑟−𝑖

]
where 𝑥𝑝+1, 𝑥𝑝+2, . . . , 𝑥𝑝+𝑟−1 are witnesses for 𝑥 ∈ 𝒵𝑝,•

𝑟 .
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Proof. From the proof of proposition 1.2.12, we know that 𝑥+𝑥𝑝+1+· · ·+𝑥𝑝+𝑟−1 lives
in 𝑍𝑝,•𝑟 . Thus, [𝑥 + 𝑥𝑝+1 + · · · + 𝑥𝑝+𝑟−1]𝑟 ∈ 𝐸𝑝,•𝑟 and 𝜓[𝑥 + 𝑥𝑝+1 + · · · + 𝑥𝑝+𝑟−1]𝑟 = [𝑥].
The result now follows by direct computation:

𝑑𝑟[𝑥] = 𝜓𝛿𝑟[𝑥 + 𝑥𝑝+1 + · · · + 𝑥𝑝+𝑟−1]𝑟
= 𝜓[𝐷(𝑥 + 𝑥𝑝+1 + · · · + 𝑥𝑝+𝑟−1)]𝑟
= [(𝐷(𝑥 + 𝑥𝑝+1 + · · · + 𝑥𝑝+𝑟−1))𝑝+𝑟]

=

[
𝐷𝑟𝑥 +

𝑟−1∑
𝑖=1

𝐷𝑖𝑥𝑝+𝑟−𝑖

]
.

□

The following diagram illustrates how the image of 𝑥 under 𝑑𝑟 is computed from
a family of witnesses.

𝑥 •

𝑥𝑝+1 •

. . . •

𝑥𝑝+𝑟−1 𝑑𝑟[𝑥𝑝]

𝐷𝑟

𝐷𝑟−1

𝐷1

Throughout the rest of this text,when we talk about the spectral sequence associated
with a multicomplex, we will stick to this description in terms of witnessed cocycles
and coboundaries. That is, we write 𝐸𝑝,•𝑟 = 𝒵𝑝,•

𝑟 /ℬ𝑝,•
𝑟 and denote the differentials

of the spectral sequence by 𝑑𝑟 for 𝑟 ⩾ 0. Moreover, for an 𝑟-cocycle 𝑥 ∈ 𝒵𝑝,•
𝑟 , we

denote the class represented by 𝑥 in 𝐸𝑝,•𝑟 by [𝑥]𝑟 . Sometimes, we will leave out the
subscript if it is clear from context where the classes live.

Example 1.2.14. If (𝑀, 𝐷0, 𝐷1) is a double complex, then the differentials in the
associated spectral sequence is given by 𝑑0 = 𝐷0 and 𝑑𝑟[𝑥] = [𝐷1𝑥𝑝+𝑟−1] for 𝑟 ⩾ 1
where 𝑥𝑝 := 𝑥.

Proposition 1.2.15. We have inclusions ℬ𝑝,•
𝑟 ⩽ ℬ𝑝,•

𝑟+1 and 𝒵𝑝,•
𝑟+1 ⩽ 𝒵𝑝,•

𝑟 for all 𝑟 ⩾ 1.
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Proof. If 𝑥 ∈ 𝒵𝑝,•
𝑟+1 is witnessed by the elements 𝑥𝑝+1, . . . , 𝑥𝑝+𝑟−1, 𝑥𝑝+𝑟 , then clearly

the elements 𝑥𝑝+1, . . . , 𝑥𝑝+𝑟−1 witnesses that 𝑥 ∈ 𝒵𝑝,•
𝑟 . Similarly, if 𝑥 ∈ ℬ𝑝,•

𝑟 is
a coboundary witnessed by the elements 𝑤𝑝 , 𝑤𝑝−1, . . . , 𝑤𝑝−𝑟+1, we can simply
define 𝑤𝑝−𝑟 := 0. □

Corollary 1.2.16. Let 𝑥, 𝑦 ∈ 𝒵𝑝,•
𝑟 . If [𝑥]𝑟0 = [𝑦]𝑟0 for some 𝑟0 ⩽ 𝑟 then [𝑥]𝑠 = [𝑦]𝑠

for all 𝑟0 ⩽ 𝑠 ⩽ 𝑟.

Proof. By assumption 𝑥 − 𝑦 ∈ ℬ𝑝,•
𝑟0 ⩽ · · · ⩽ ℬ𝑝,•

𝑠 ⩽ · · · ⩽ ℬ𝑝,•
𝑟 . □

In particular, if two 𝑟-cocycles represent the same class in cohomology, then they
also represent the same class on the 𝐸𝑟-page.

22



2 Homotopy transfer

Let (𝑀, 𝐷•) be a multicomplex. Given a cochain complex (𝑁, 𝐷′
0) which is quasi-

isomorphic to the underlying cochain complex of 𝑀, we can transfer the higher
differentials 𝐷1, 𝐷2, . . . to obtain a multicomplex (𝑁, 𝐷′

•). This is the content of
the homotopy transfer theorem (HTT) for multicomplexes. In general, we need a
homotopy retract from 𝑀 to 𝑁 , but as we work over a field, a quasi-isomorphism
(actually, even just isomorphic cohomology groups) turns out to be sufficient. We
shall be most interested in the case where 𝑁 is the cohomology complex 𝐻(𝑀, 𝐷0)
equipped with a trivial differential. Before that, we prove some elementary results
about cochain complexes over a field.

2.1 Cochain complexes over a field

Definition 2.1.1. Let (𝑀, 𝐷) and (𝑁, 𝐷′) be cochain complexes over K. A homotopy
equivalence ( 𝑓 , 𝑔, ℎ, ℎ′) between 𝑀 and 𝑁 consists of cochain maps 𝑓 : 𝑀 ↔ 𝑁 : 𝑔
together with maps ℎ : 𝑀 → 𝑀 and ℎ′ : 𝑁 → 𝑁 of degree −1 such that

𝑔 𝑓 − id𝑀 = ℎ𝐷 + 𝐷ℎ and 𝑓 𝑔 − id𝑁 = ℎ′𝐷′ + 𝐷′ℎ′.

In the graded setting, we require the maps above to be graded maps, i.e., respect
the grading. Two cochain complexes are said to be homotopy equivalent if there
exists a homotopy equivalence between them. A cochain complex is contractible if
it is homotopy equivalent to the zero complex.

(𝑀, 𝐷) (𝑁, 𝐷′).

𝑓

ℎ ℎ′

𝑔

We introduce an intermediate notion between quasi-isomorphism and homotopy
equivalence following the terminology used in [LV12] and [DSV15]:

Definition 2.1.2. Let (𝑀, 𝐷) and (𝑁, 𝐷′) be cochain complexes over K. A homotopy
retract (𝜋, �, ℎ) of 𝑀 to 𝑁 consists of cochain maps 𝜋 : 𝑀 → 𝑁 , � : 𝑁 → 𝑀 and
a homotopy ℎ : 𝑀 → 𝑀 of degree −1 such that �𝜋 − id𝑀 = 𝐷ℎ + ℎ𝐷 and �

(or equivalently 𝜋) is a quasi-isomorphism. If in addition we have 𝜋� = id𝑁 ,
then (𝜋, �, ℎ) is called a deformation retract.
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(𝑀, 𝐷) (𝑁, 𝐷′).

𝜋

ℎ

�

Every deformation retract extends to a homotopy equivalence by setting ℎ′ = 0 and
every homotopy equivalence ( 𝑓 , 𝑔, ℎ, ℎ′) restricts to a homotopy retract ( 𝑓 , 𝑔, ℎ).
More is true when working over a field: every quasi-isomorphism extends to a
homotopy equivalence. Moreover, given the data (𝜋, �, ℎ) of a homotopy retract, we
can find a ℎ′ so that (𝜋, �, ℎ, ℎ′)becomes a homotopy equivalence. Whenever (𝑀, 𝐷)
is a cochain complex and there is no room for confusion, we write 𝑍𝑛 = 𝑍𝑛(𝑀)
for the 𝑛-cocycles, 𝐵𝑛 = 𝐵𝑛(𝑀) for 𝑛-coboundaries and 𝐻𝑛 = 𝐻𝑛(𝑀) for the 𝑛-th
cohomology space.

Proposition 2.1.3. Every cochain complex (𝑀, 𝐷) over K is isomorphic to the
cochain complex 𝐾 ⊕ 𝐻 where 𝐾𝑛 = 𝐵𝑛 ⊕ 𝐵𝑛+1 with differential 𝐷𝐾 =

( 0 1
0 0

)
and 𝐻

is the cohomology of 𝑀 with trivial differential 𝐷𝐻 = 0.

Proof. Working over a field, the short exact sequences

0 → 𝐵𝑛 → 𝑍𝑛 → 𝐻𝑛 → 0 and 0 → 𝑍𝑛 → 𝑀𝑛 𝐷−→ 𝐵𝑛+1 → 0

split undera choice of sections. Thus,we can write𝑀𝑛 = 𝑍𝑛⊕�̃�𝑛+1 = 𝐵𝑛⊕�̃�𝑛⊕�̃�𝑛+1

where �̃�𝑛 and �̃�𝑛+1 are isomorphic to 𝐻𝑛 and 𝐵𝑛+1 respectively. Let �̃� : �̃�𝑛 → 𝐻𝑛

and �̃� : �̃�𝑛+1 → 𝐵𝑛+1 be the isomorphisms we obtain from choosing sections.
Define the isomorphism

𝜙 :=
(

1 0 0
0 0 �̃�
0 �̃� 0

)
: 𝑀𝑛 → 𝐵𝑛 ⊕ 𝐵𝑛+1 ⊕ 𝐻𝑛 .

Clearly, the following diagram with 𝐷′ := 𝐷𝐾 + 𝐷𝐻 =

( 0 1 0
0 0 0
0 0 0

)
commutes.

𝑀𝑛 𝑀𝑛+1

𝐵𝑛 ⊕ 𝐵𝑛+1 ⊕ 𝐻𝑛 𝐵𝑛+1 ⊕ 𝐵𝑛+2 ⊕ 𝐻𝑛+1

𝐷

𝜙

𝐷′

𝜙−1

In other words, we have that 𝑀 � 𝐾 ⊕ 𝐻. Furthermore, the differential 𝐷 is given
by 𝐷′ under this identification. □

Proposition 2.1.4. The decomposition in proposition 2.1.3 does not depend on the
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choice of sections.

Proof. Suppose we pick two different sets of sections so that

𝑀𝑛 = 𝐵𝑛 ⊕ �̃�𝑛 ⊕ �̃�𝑛+1 = 𝐵𝑛 ⊕ �̂�𝑛 ⊕ �̂�𝑛+1.

Denote the isomorphisms coming from these sections by

�̃� : �̃�𝑛 → 𝐻𝑛 , �̃� : �̃�𝑛+1 → 𝐵𝑛+1, �̂� : �̂�𝑛 → 𝐻𝑛 and �̂� : �̂�𝑛+1 → 𝐵𝑛+1.

As 𝐻 is equipped with a trivial differential, the isomorphism �̂�−1�̃� : �̃� → �̂� is
trivially an isomorphism of cochain complexes. Finally, it is easy to verify that the
map (

1 0
0 �̂�−1�̃�

)
: �̃� → �̂�

is an isomorphism of cochain complexes. □

Throughout this text, when we identify a cochain complex 𝑀 with the decomposi-
tion 𝐾 ⊕ 𝐻, we will usually leave out the isomorphisms in the proofs above and
simply write equality 𝑀 = 𝐾 ⊕ 𝐻.

Proposition 2.1.5. Every cochain complex (𝑀, 𝐷) over K, admits a deformation
retract (𝜋, �, ℎ) of 𝑀 to its cohomology.

(𝑀, 𝐷) (𝐻(𝑀), 0).

𝜋

ℎ

�

Proof. By proposition 2.1.3 we can write 𝑀 as the decomposition 𝑀 = 𝐾𝑛 ⊕ 𝐻𝑛

where the differential is given by

𝐷 =

( 0 1 0
0 0 0
0 0 0

)
: 𝐾𝑛 ⊕ 𝐻𝑛 → 𝐾𝑛+1 ⊕ 𝐻𝑛+1.

It is straightforward to check that the maps

� =
( 0

0
1

)
, 𝜋 = ( 0 0 1 ) and ℎ =

( 0 0 0
−1 0 0
0 0 0

)
form a deformation retract as claimed. □

The following remark will be essential for us later, as it allows us to apply the
homotopy transfer theorem to get a multicomplex structure on the cohomology.
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Remark 2.1.6. If (𝑀, 𝐷•) is a multicomplex, we can decompose the underlying
cochain complex (𝑀, 𝐷0) as follows. Denote the coboundaries in bidegree (𝑝, 𝑞)
by 𝐵𝑝,𝑞 . That is, 𝐵𝑝,𝑞 = Im(𝐷0 : 𝑀𝑝,𝑞−1 → 𝑀𝑝,𝑞) and let 𝐻 = 𝐻(𝑀). By proposi-
tion 2.1.5 we can now write 𝑀 degreewise as the sum

𝑀𝑝,𝑞 = 𝐵𝑝,𝑞 ⊕ 𝐵𝑝,𝑞+1 ⊕ 𝐻𝑝,𝑞 .

Under this identification, we obtain the deformation retract

(𝑀, 𝐷0) (𝐻(𝑀), 0)ℎ 𝜋

�

where 𝜋 = ( 0 0 1 ) � =
( 0

0
1

)
𝐷0 =

( 0 1 0
0 0 0
0 0 0

)
ℎ =

( 0 0 0
−1 0 0
0 0 0

)
. (7)

Proposition 2.1.7. Every quasi-isomorphism 𝑓 : (𝑀, 𝐷) → (𝑁, 𝐷′) extends to a
homotopy equivalence ( 𝑓 , 𝑔, ℎ, ℎ′).

Proof. By decomposing 𝑀 and 𝑁 as in proposition 2.1.5 we obtain homotopy re-
tracts (𝜋, �, ℎ) and (𝜋′, �′, ℎ′) of𝑀 and𝑁 to their respective cohomology complexes.
Let 𝑔 := �𝐻( 𝑓 )−1𝜋′ : 𝑁 → 𝑀. We compute

𝑔 𝑓 = �𝐻( 𝑓 )−1𝜋′ 𝑓 = �𝐻( 𝑓 )−1𝐻( 𝑓 )𝜋 = �𝜋 = 𝐷ℎ + ℎ𝐷 + id𝑀 .

In a similar way, we see that 𝑓 𝑔 − id𝑁 = 𝐷′ℎ′ + ℎ′𝐷′. □

Example 2.1.8. A cochain complex (𝑀, 𝐷) of vector spaces is contractible if and
only if it is exact. This follows from the above proposition applied to the zero
map 𝑀 → 0.

Proposition 2.1.9. Given a homotopy retract data (𝜋, �, ℎ) of (𝑀, 𝐷) to (𝑁, 𝐷′),
we can always find some ℎ′ : 𝑁• → 𝑁•−1 such that (𝜋, �, ℎ, ℎ′) is a homotopy
equivalence.

Proof. Since 𝜋 is a quasi-isomorphism, we use proposition 2.1.7 to find maps

�̂ : 𝑁 → 𝑀 and ℎ̂ : 𝑁• → 𝑁•−1
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such that id𝑁 −𝜋�̂ = 𝐷′ ℎ̂ + ℎ̂𝐷′. The required homotopy is given by the map
defined as ℎ′ := 𝜋ℎ �̂ + 𝜋� ℎ̂ − ℎ̂ as the following calculation shows:

𝐷′ℎ′ + ℎ′𝐷′ = 𝐷′𝜋ℎ �̂ + 𝐷′𝜋� ℎ̂ − 𝐷′ ℎ̂ + 𝜋ℎ �̂𝐷′ + 𝜋� ℎ̂𝐷′ − ℎ̂𝐷′

= 𝜋(𝐷ℎ + ℎ𝐷)�̂ + 𝜋�(𝐷′ ℎ̂ + ℎ̂𝐷′) − (𝐷′ ℎ̂ + ℎ̂𝐷′)
= 𝜋�𝜋�̂ − 𝜋�̂ + 𝜋� − 𝜋�𝜋�̂ + 𝜋�̂ − id𝑁
= 𝜋� − id𝑁 .

□

2.2 Homotopy Transfer Theorem (HTT)

We now show that the data of a homotopy retract (𝜋, �, ℎ) is sufficient to transfer the
higher differentials. As we have seen, a homotopy retract can always be extended
to a homotopy equivalence when working over a field. However, only the maps
constituting the homotopy retract will be involved in defining the transferred
structure. Therefore, we will only assume the data of a homotopy retract to be
specified.

Theorem 2.2.1 (Homotopy transfer theorem). [DSV15, Proposition 1.3] Let (𝑀, 𝐷•)
be a multicomplex and let (𝑁, 𝐷′

0) be a cochain complex of graded vector spaces.
If (𝜋, �, ℎ) is a homotopy retractof (𝑀, 𝐷0) to𝑁 andwe define the maps𝐷′

𝑛 : 𝑁 → 𝑁

by
𝐷′
𝑛 :=

∑
|𝐽 |=𝑛

𝜋𝐷𝑗1ℎ𝐷𝑗2ℎ · · · ℎ𝐷𝑗𝑘 � for 𝑛 ⩾ 1,

then (𝑁, 𝐷′
•) is a multicomplex. Moreover, the maps � and 𝜋 extend to morphisms

of multicomplexes �∞ and 𝜋∞ respectively. These maps are explicitly given by
setting �0 := �, 𝜋0 := 𝜋,

�𝑛 :=
∑
|𝐽 |=𝑛

ℎ𝐷𝑗1ℎ𝐷𝑗2ℎ · · · ℎ𝐷𝑗𝑘 � and 𝜋𝑛 :=
∑
|𝐽 |=𝑛

𝜋𝐷𝑗1ℎ𝐷𝑗2ℎ · · · ℎ𝐷𝑗𝑘 ℎ for 𝑛 ⩾ 1.

Proof. Repeatedly using the two relations

𝐷0𝐷𝑘 = −
𝑘∑
𝑖=1

𝐷𝑖𝐷𝑘−𝑖 and �𝜋 − id𝑀 = 𝐷0ℎ + ℎ𝐷0,
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one can see that

𝐷′
0𝐷

′
𝑛 = −𝜋

( ∑
|𝐽 |=𝑛

𝑘−1∑
𝑠=1

(𝐷𝑗1ℎ · · · ℎ𝐷𝑗𝑠 �)(𝜋𝐷𝑗𝑠+1ℎ · · · ℎ𝐷𝑗𝑘 ) +
∑
|𝐽 |=𝑛

𝐷𝑗1ℎ · · · ℎ𝐷𝑗𝑘𝐷0

)
�

= −
𝑛−1∑
𝑘=1

𝐷′
𝑘𝐷

′
𝑛−𝑘 − 𝐷

′
𝑛𝐷

′
0.

It then immediately follows that (𝑁, 𝐷′
•) is a multicomplex. Next, one has to show

that 𝜋∞ is indeed a morphism of multicomplexes. That is, we need to show that∑
𝑝+𝑞=𝑛

𝜋𝑝𝐷𝑞 =
∑
𝑝+𝑞=𝑛

𝐷′
𝑝𝜋𝑞 holds for all 𝑛 ⩾ 0.

The required computation again relies on the two relations mentioned above and
the definition of 𝐷′

𝑟 . A similar argument also works for �∞. □

The following toy example demonstrates the homotopy transfer theorem where
we set 𝑁 = 𝐻(𝑀) and 𝐷′

0 = 0.

Example 2.2.2. Consider the multicomplex 𝑀 from example 1.2.10 where the
differentials map generators to generators and 𝐷𝑟 = 0 for all 𝑟 ⩾ 2.

0 0

0 K 𝑎 K 𝑐 0

0 K 𝑏 K 𝑑 0

0 0

𝐷1

𝐷0

𝐷1

Taking cohomology of the underlying cochain complex (𝑀, 𝐷0), we obtain

𝐻0(𝑀−1,•) = K 𝑎 0

0 𝐻−1(𝑀1,•) = K 𝑑.

𝐷′
2

𝐷′
1

𝐷′
1

Let (𝜋, �, ℎ) be a deformation retract as in remark 2.1.6. We get the following
transferred multicomplex structure on 𝐻(𝑀):

𝐷′
1 = 0 and 𝐷′

2 = 𝜋𝐷1ℎ𝐷1� : 𝑎 ↦→ −𝑑.
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If we modify 𝑀 by adding a non-trivial 𝐷2 : K 𝑎 → K 𝑑, 𝑎 ↦→ 𝑑, we see that all the
transferred differentials vanish on 𝐻(𝑀).

Lemma 2.2.3. Every homotopy retract (𝜋, �, ℎ) of 𝑀 to 𝐻(𝑀) is a deformation
retract.

Proof. This follows from proposition 2.1.9 as the differential on 𝐻(𝑀) is trivial. □

Proposition 2.2.4. If (𝜋, �, ℎ) and (�̂�, �̂, ℎ̂) are any two deformation retracts of 𝑀
to 𝐻(𝑀), then the transferred multicomplex structures on 𝐻(𝑀) coming from
each of these retracts are isomorphic.

Proof. Extend the maps 𝜋, �, �̂� and �̂ to morphisms of multicomplexes as in
theorem 2.2.1. We claim that the map �̂�∞�∞ : 𝐻(𝑀) → 𝐻(𝑀) is an isomorphism
of multicomplexes with inverse 𝜋∞ �̂∞. By proposition 1.2.6, it is enough to check
that �̂�� is invertible. Using lemma 2.2.3 and the fact that the involved maps are
cochain maps, we see that

(�̂��)(𝜋�̂) = �̂�(id+𝐷0ℎ + ℎ𝐷0)�̂ = �̂��̂ + (�̂�𝐷0)ℎ �̂ + �̂�ℎ(𝐷0 �̂) = �̂��̂ = id𝐻(𝑀) .

The other composition can be checked similarly. □

Remark 2.2.5. In [DSV15], a homotopy retract

(𝑀, 𝐷0) (𝐻(𝑀), 0)

𝜋

ℎ

�

with the property that all transferred differentials (𝐷′
𝑟 |𝑟 ⩾ 1) from theorem 2.2.1

vanish on 𝐻(𝑀) is called a Hodge-to-de-Rham degeneration data of 𝑀. We will refer
to such a homotopy retract as a degeneration data.

Let us illustrate the homotopy transfer theorem applied to the cohomology complex
in the cases 𝑛 = 1, 2 and 3 with diagrams. The first transferred map is just 𝜋𝐷1�

which agrees with the first differential 𝑑1 = 𝐻(𝐷1) in the spectral sequence
associated with 𝑀.

𝑀𝑝,𝑞 𝑀𝑝+1,𝑞

𝐻𝑞(𝑀𝑝,•) 𝐻𝑞(𝑀𝑝+1,•)

𝐷1

𝜋�

𝐷′
1

The second case is the sum of the two different ways we can walk down the stairs:
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𝑀𝑝,𝑞 𝑀𝑝+1,𝑞

𝑀𝑝+1,𝑞−1 𝑀𝑝+2,𝑞−1

𝐻𝑞(𝑀𝑝,•) 𝐻𝑞−1(𝑀𝑝+2,•)

𝐷1

𝐷2

ℎ

𝐷1

𝜋

𝐷′
2

�

𝐷′
2 = 𝜋(𝐷1ℎ𝐷1 + 𝐷2)�.

We will see later that 𝐷′
2 induce the second differential 𝑑2 on the 𝐸2-page in the

spectral sequence. In the third case, we sum the four different possibilities:

𝑀𝑝,𝑞 𝑀𝑝+1,𝑞

𝑀𝑝+1,𝑞−1 𝑀𝑝+2,𝑞−1

𝑀𝑝+2,𝑞−2 𝑀𝑝+3,𝑞−2

𝐻𝑞(𝑀𝑝,•) 𝐻𝑞−2(𝑀𝑝+3,•)

𝐷1

𝐷2
𝐷3

ℎ

𝐷1

𝐷2

ℎ

𝐷1

𝜋

�

𝐷′
3

𝐷′
3 = 𝜋(𝐷1ℎ𝐷1ℎ𝐷1 + 𝐷1ℎ𝐷2 + 𝐷2ℎ𝐷1 + 𝐷3)�.

As we have already mentioned, the pattern stops here as 𝐷′
3 does not in general

induce the differential 𝑑3 in the spectral sequence.

2.3 HTT and the spectral sequence associated with a double
complex

This section treats the particular case where 𝑀 is a double complex. That is, we
have two potentially non-trivial differentials on 𝑀: the vertical differential 𝐷0 and
the horizontal differential 𝐷1. These are subject to the relations

𝐷0𝐷0 = 0, 𝐷1𝐷1 = 0 and 𝐷1𝐷0 + 𝐷0𝐷1 = 0.
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Let (𝜋, �, ℎ) be a deformation retract of 𝑀 to 𝐻(𝑀, 𝐷0) obtained by choosing
sections as in remark 2.1.6 and let 𝐷′

• be the transferred differentials on 𝐻(𝑀).
Since 𝐷𝑟 = 0 for 𝑟 ⩾ 2, the transferred differentials all consist of exactly one term:

𝐷′
1 = 𝜋𝐷1�

𝐷′
2 = 𝜋𝐷1ℎ𝐷1�

...

𝐷′
𝑟 = 𝜋𝐷1ℎ𝐷1ℎ · · · ℎ𝐷1�.

We show that the differential 𝑑𝑟 on the 𝐸𝑟-page of the spectral sequence associated
with𝑀 is exactly the map induced by the transferred differential𝐷′

𝑟 . Put differently,
the multicomplex (𝐻(𝑀), 𝐷′

•) is a "lifted version" of the spectral sequence. This fact
is already claimed in [LV12,p. 385] and [Val14,p. 36]. Recall that the differential 𝑑𝑟 on
the 𝐸𝑟-page of the spectral sequence is given by 𝑑𝑟[𝑥]𝑟 = [𝐷1𝑥𝑝+𝑟−1]𝑟 . Both [Ste21]
and [KQ20] give proofs of the (previously folklore) result stating that double
complexes can be written as a sum of squares and zig-zags. For simplicity, let us
write • for a one-dimensional K-vector space and ±1 for the map sending generator
to ± generator.

• •

• •

−1

1
1

1 • • •1
•

•
1

• •

• •

1

1
1

· · ·

Squares and the zig-zags starting and ending in a vertical arrow die when passing
to the 𝐸1-page. Single points survive to the 𝐸∞-page. The starting (ending) point
of a zig-zag starting with a horizontal (vertical) arrow and ending with a vertical
(horizontal) arrow also survives to the 𝐸∞-page. That leaves us with the zig-zags
with an even number of •’s. These are the ones corresponding to the differentials
in the spectral sequence.

Proposition 2.3.1. If (𝑀, 𝐷0, 𝐷1) is a double complex, then the map induced by 𝐷′
𝑟

on the 𝐸𝑟-page is exactly 𝑑𝑟 .

Proof. Let 𝑥 denote the generator in degree (𝑝, 𝑞) and let 𝑥𝑝+𝑖 ,𝑞−𝑗 denote the the
other generators in degrees (𝑝 + 𝑖 , 𝑞 − 𝑗) in the following zig-zag diagram:
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(𝑝,𝑞)
•

(𝑝+1,𝑞)
•

(𝑝+1,𝑞−1)
• . . .

. . .

. . . (𝑝+𝑟−1,𝑞−𝑟+2)
•

(𝑝+𝑟−1,𝑞−𝑟+1)
•

(𝑝+𝑟,𝑞−𝑟+1)
•

1

1

1

1

1

1

Choosing sections as in remark 2.1.6 we obtain a deformation retract (𝜋, �, ℎ)
where ℎ maps 𝑥𝑝+𝑖 ,𝑞−𝑗 to −𝑥𝑝+𝑖 ,𝑞−𝑗−1. Define the elements

𝑥𝑝+1 := ℎ𝐷1𝑥, 𝑥𝑝+2 := ℎ𝐷1ℎ𝐷1𝑥, 𝑥𝑝+3 := ℎ𝐷1ℎ𝐷1ℎ𝐷1𝑥 and so on.

Clearly, we have 𝐷1𝑥𝑝+𝑖 + 𝐷0𝑥𝑝+𝑖+1 = 0 so these elements defines witnesses for 𝑥
and we can compute the differential

𝑑𝑟[𝑥]𝑟 = [𝐷1𝑥𝑝+𝑟−1]𝑟 = [𝐷1ℎ𝐷1𝑥𝑝+𝑟−2]𝑟 = · · · = [𝐷1ℎ𝐷1ℎ · · · ℎ𝐷1𝑥]𝑟 = [𝐷′
𝑟[𝑥]]𝑟 .

Since we assume 𝑥 to be an 𝑟-cycle, we only have to consider zig-zags as the one
above, so we are done. □
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3 First-page degeneracy

In the case of double complexes, we saw that the differentials in the spectral
sequence are precisely the maps induced by the transferred differentials on
cohomology. Thus, for the spectral sequence associated with a double complex,
degeneration at the 𝑘-th page is equivalent to the vanishing of the maps induced
by the transferred differentials 𝐷′

𝑟 for all 𝑟 ⩾ 𝑘. This is not true in general when
there are non-trivial differentials 𝐷𝑟 with 𝑟 ⩾ 2 in play. We will give examples
of this failure in section 4. However, for first-page degeneration, we prove the
following theorem which appears in [DSV15]. Recall that a degeneration data is
just a homotopy retract with the property that all transferred differentials vanish
on 𝐻(𝑀).

Theorem 3.0.1. The spectral sequence associated with a multicomplex 𝑀 degener-
ates at the first page if and only if there exists a degeneration data of 𝑀.

We split this theorem into two propositions, one for each direction.

Proposition 3.0.2. If there exists a degeneration data of the multicomplex 𝑀, then
the spectral sequence associated with 𝑀 degenerates at the first page.

Proof. Suppose (𝜋, �, ℎ) is a degeneration data of 𝑀 and let 𝑥 ∈ 𝒵𝑝,•
𝑟 with 𝑟 ⩾ 1

be an arbitrary 𝑟-cocycle. By definition, 𝐷0𝑥 = 0 meaning 𝑥 is an 1-cocycle and
hence represents a class in cohomology. Consider the 1-cocycle 𝑥𝑝 := �𝜋(𝑥).
Observe that [𝑥𝑝] = [𝑥] because �𝜋 is homotopic to the identity. The idea is
to construct a family of elements witnessing that 𝑥𝑝 is in fact an 𝑟-cocycle and
consequently [𝑥𝑝]𝑟 = [𝑥]𝑟 by corollary 1.2.16. In the end, we compute the image
of [𝑥]𝑟 under 𝑑𝑟 to be zero using the constructed witnesses.

1. The 1-cocycle 𝑥𝑝 is an 𝑟-cocycle:

Define the following family of elements:

𝑥𝑝+𝑗 = ℎ
∑
|𝐼 |=𝑗

𝐷𝑖1ℎ𝐷𝑖2ℎ · · · ℎ𝐷𝑖𝑘𝑥𝑝 for 1 ⩽ 𝑗 ⩽ 𝑟 − 1. (8)

To see that 𝑥𝑝+1, . . . 𝑥𝑝+𝑟−1 are witnesses for 𝑥𝑝 being an 𝑟-cocycle, we need to
verify that the equation

𝐷𝑛𝑥𝑝 +
𝑛−1∑
𝑖=0

𝐷𝑖𝑥𝑝+𝑛−𝑖 = 0 (9)
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holds for all 𝑛 = 1, 2, . . . , 𝑟 − 1. First, we verify the base case 𝑛 = 1:

𝐷0𝑥𝑝+1 + 𝐷1𝑥𝑝 = 𝐷0ℎ𝐷1𝑥𝑝 + 𝐷1𝑥𝑝 = (𝐷0ℎ + id)𝐷1𝑥𝑝

= (�𝜋 − ℎ𝐷0)𝐷1𝑥𝑝 = � (𝜋𝐷1�)︸ ︷︷ ︸
= 0

𝜋(𝑥) + ℎ𝐷1 (𝐷0𝑥𝑝)︸ ︷︷ ︸
= 0

= 0.

Now, suppose that
∑𝑘
𝑖=0 𝐷𝑖𝑥𝑝+𝑛−𝑖 = 0 holds for all 𝑘 = 1, 2, . . . , 𝑛 − 1. We want to

show that it also holds for 𝑘 = 𝑛. First, observe that we can rewrite

𝑛∑
𝑖=0

𝐷𝑖𝑥𝑝+𝑛−𝑖 = (𝐷0ℎ + id)
∑
|𝐼 |=𝑛

𝐷𝑖1ℎ𝐷𝑖2ℎ · · · ℎ𝐷𝑖𝑘𝑥𝑝 .

Using this observation, we complete the induction step:

𝑛∑
𝑖=0

𝐷𝑖𝑥𝑝+𝑛−𝑖 = (𝐷0ℎ + id)
∑
|𝐼 |=𝑛

𝐷𝑖1ℎ · · · ℎ𝐷𝑖𝑘𝑥𝑝
(1)
= (�𝜋 − ℎ𝐷0)

∑
|𝐼 |=𝑛

𝐷𝑖1ℎ · · · ℎ𝐷𝑖𝑘𝑥𝑝

= � 𝜋
∑
|𝐼 |=𝑛

𝐷𝑖1ℎ · · · ℎ𝐷𝑖𝑘 �︸                   ︷︷                   ︸
=𝐷′

𝑛= 0

𝜋(𝑥) − ℎ𝐷0
∑
|𝐼 |=𝑛

𝐷𝑖1ℎ · · · ℎ𝐷𝑖𝑘𝑥𝑝

(2)
= ℎ

∑
|𝐼 |=𝑛

(−𝐷0𝐷𝑖1)ℎ · · · ℎ𝐷𝑖𝑘𝑥𝑝

(3)
= ℎ

∑
|𝐼 |=𝑛

(
𝑖1∑
𝑟=1

𝐷𝑟𝐷𝑖1−𝑟

)
ℎ𝐷𝑖2ℎ · · · ℎ𝐷𝑖𝑘𝑥𝑝

= ℎ

𝑛∑
𝑖1=1

𝑖1∑
𝑟=1

𝐷𝑟𝐷𝑖1−𝑟
∑

|𝐽 |=𝑛−𝑖1

ℎ𝐷𝑗1ℎ · · · ℎ𝐷𝑗𝑘𝑥𝑝

(4)
= ℎ

𝑛∑
𝑗=1

𝑗∑
𝑟=1

𝐷𝑟𝐷𝑗−𝑟𝑥𝑝+𝑛−𝑗

(5)
= ℎ

𝑛−1∑
𝑟=1

𝐷𝑟

𝑛∑
𝑗=𝑟

𝐷𝑗−𝑟𝑥𝑝+𝑛−𝑗 + ℎ𝐷𝑛 𝐷0𝑥𝑝︸︷︷︸
= 0

= ℎ

𝑛−1∑
𝑟=1

𝐷𝑟

𝑛−𝑟∑
𝑖=0

𝐷𝑖𝑥𝑝+𝑛−𝑟−𝑖︸            ︷︷            ︸
= 0 by induction hyp.

= 0.

In (1) we use that �𝜋 − id = 𝐷0ℎ + ℎ𝐷0. In (2) we use the assumption that (𝜋, �, ℎ)
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is a degeneration data, and in (3) we use the multicomplex relations. In (4) we
relabel the index 𝑖1 to 𝑗 and use the definition of 𝑥𝑝+𝑛−1 to replace the innermost
sum. In (5) we switch the order of summation by re-indexing and separate the last
term which is always zero. In the last step we re-index by letting 𝑖 = 𝑗 − 𝑟.

2. The differential 𝑑𝑟 is trivial:

This is now a straightforward computation using the witnesses from the previous
part.

𝑑𝑟([𝑥]𝑟) = 𝑑𝑟([𝑥𝑝]𝑟) =
[

𝑟∑
𝑖=1

𝐷𝑖𝑥𝑝+𝑟−𝑖

]
𝑟

=

[
𝑟∑
𝑖=1

∑
|𝐽 |=𝑟−𝑖

𝐷𝑖ℎ𝐷𝑗1ℎ𝐷𝑗2ℎ · · · ℎ𝐷𝑗𝑘𝑥𝑝

]
𝑟

=

[ ∑
|𝐽 |=𝑟

𝐷𝑗1ℎ𝐷𝑗2ℎ · · · ℎ𝐷𝑗𝑘 𝑥𝑝

]
𝑟

=

[
� 𝜋

∑
|𝐽 |=𝑟

𝐷𝑗1ℎ𝐷𝑗2ℎ · · · ℎ𝐷𝑗𝑘 �︸                          ︷︷                          ︸
=𝐷′

𝑟= 0

𝜋(𝑥)
]
𝑟

= 0.

□

We now prove the second part of theorem 3.0.1.

Proposition 3.0.3. If the spectral sequence associated with a multicomplex 𝑀
degenerates at the first page, then there exists a degeneration data of 𝑀.

Proof. Let (𝜋, �, ℎ) be a deformation retract as in remark 2.1.6 and suppose the
associated spectral sequence degenerates at the first page, i.e.,𝑑𝑟 = 0 and𝐸𝑟 = 𝐻(𝑀)
for 𝑟 ⩾ 1. Now, fix some 𝑟 ⩾ 1 and let 𝑥 represent a class in 𝐻𝑝,𝑞 . Define the
element 𝑥𝑝 := �[𝑥]. The restriction of 𝜋 to coboundaries is zero, so it is sufficient to
show that ∑

|𝐼 |=𝑟
𝐷𝑖1ℎ𝐷𝑖2ℎ · · · ℎ𝐷𝑖𝑘 �[𝑥] ∈ 𝐵𝑝+𝑟,𝑞−𝑟+1

for 𝐷′
𝑟 to vanish.

1. The element 𝑥𝑝 is an 𝑟-cycle:

Since 𝐷0� = 0 we have that 𝐷0𝑥𝑝 = 0. By assumption, 𝑑1 = 0, so 𝐷1𝑥𝑝 ∈ 𝐵𝑝+1,𝑞

and consequently 𝐷′
1[𝑥] = 𝜋𝐷1�[𝑥] = 0. Furthermore, if we define 𝑥𝑝+1 := ℎ𝐷1𝑥𝑝 ,

then𝐷0𝑥𝑝+1+𝐷1𝑥𝑝 = (𝐷0ℎ+id)𝐷1𝑥𝑝 = 0 since𝐷1𝑥𝑝 ∈ 𝐵𝑝+1,𝑞 and𝐷0ℎ |𝐵𝑝+1,𝑞 = − id.
Continuing in this fashion, we prove by induction that 𝑥𝑝 is an 𝑟-cocycle witnessed
by the elements 𝑥𝑝+1, . . . , 𝑥𝑝+𝑟−1 defined as in eq. (8). Suppose 𝑥𝑝 is an 𝑚-cocycle
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witnessed by the elements 𝑥𝑝+1, 𝑥𝑝+2, . . . , 𝑥𝑝+𝑚−1. By assumption, we have that

𝑑𝑚[𝑥𝑝] =
[ ∑

|𝐼 |=𝑚
𝐷𝑖1ℎ𝐷𝑖2ℎ · · · ℎ𝐷𝑖𝑘 𝑥𝑝

]
= 0

andhence the sum lives in𝐵𝑝+𝑚,𝑞−𝑚+1. Using that the restriction of𝐷0ℎ to𝐵𝑝+𝑚,𝑞−𝑚+1

is multiplication by −1 we see that

𝑚∑
𝑖=0

𝐷𝑖𝑥𝑝+𝑚−𝑖 = (𝐷0ℎ + id)︸      ︷︷      ︸
−1+1

∑
|𝐼 |=𝑚

𝐷𝑖1ℎ𝐷𝑖2ℎ · · · ℎ𝐷𝑖𝑘𝑥𝑝 = 0,

which is to say that 𝑥𝑝 is an (𝑚+1)-cocycle witnessed by the elements 𝑥𝑝+1, . . . , 𝑥𝑝+𝑚 .
This completes our inductive argument.

2. The transferred differential 𝐷′
𝑟 = 0 :

Using the witnesses above and the assumption 𝑑𝑟 = 0, we see that

0 = 𝑑𝑟[𝑥𝑝] =
[

𝑟∑
𝑖=1

𝐷𝑖𝑥𝑝+𝑟−𝑖

]
=

[ ∑
|𝐼 |=𝑟

𝐷𝑖1ℎ𝐷𝑖2ℎ · · · ℎ𝐷𝑖𝑘 𝑖[𝑥]
]

or in other words: ∑
|𝐼 |=𝑟

𝐷𝑖1ℎ𝐷𝑖2ℎ · · · ℎ𝐷𝑖𝑘 �[𝑥] ∈ 𝐵𝑝+𝑟,𝑞−𝑟+1.

Hence, 𝐷′
𝑟 = 0 for all 𝑟 ⩾ 1. □

This concludes the proof of theorem 3.0.1. Moreover, the proof shows that it is
enough to consider any deformation retract as in remark 2.1.6. This is not surprising
as any two deformation retracts induce isomorphic multicomplex structures on
cohomology by proposition 2.2.4.

Example 3.0.4. Let 𝑀 be the following multicomplex with 2𝑛 non-zero entries for
some 𝑛 ⩾ 2:
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K K

K K

. . . K

K K

1 (−1)𝑛

1
1

1

1

1
1

The spectral sequence associated with this multicomplex degenerates at the first
page since the only possible non-trivial transferred differential on 𝐻(𝑀) is 𝐷′

𝑛 ,
which is easily computed to be zero (cf. last part of example 2.2.2).
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4 Differentials on later pages

This section establishes the relationship between the transferred differential 𝐷′
2

and the differential 𝑑2 in the spectral sequence. Namely, 𝑑2 agrees with the map
induced by 𝐷′

2 on the 𝐸2-page. Next, we provide an example where 𝐷′
3 = 0, but 𝑑3

is non-trivial. This suggests that there is more to 𝑑3 than just 𝐷′
3. Lastly, we prove

that applying the homotopy transfer theorem repeatedly gives us the differentials
on later pages in the spectral sequence.

Example 4.0.1. In this example, we have that 𝑑2 = 0 in spite of𝐷′
2 being non-trivial.

Consider the following multicomplex 𝑀.

K 𝑎 0 K 𝑐 0

0 K 𝑏 K 𝑑 ⊕ K 𝑒 K 𝑓

𝐷2

𝐷1 𝐷1

𝐷0

𝐷0𝑑 = 0 𝐷0𝑒 = 𝑐 𝐷1𝑏 = 𝑑

𝐷1𝑑 = 0 𝐷1𝑒 = 𝑓 𝐷2𝑎 = 𝑑

Computing cohomology of 𝑀 with respect to 𝐷0 gives us the 𝐸1-page.

K 𝑎 0 0 0

0 K 𝑏 K 𝑑 K 𝑓

The differential 𝑑1 : K 𝑏 → K 𝑑 is an isomorphism as it is the map induced on
cohomology by 𝐷1 : 𝑏 ↦→ 𝑑. The other differential, 𝑑1 : K 𝑑 → K 𝑓 is trivial. This
gives us the following 𝐸2-page.

K 𝑎 0 0 0

0 0 0 K 𝑓

Fordegree reasons,we must have 𝑑2 = 0. The transferred differential𝐷′
2 : K 𝑎 → K 𝑑

is non-trivial as
𝐷′

2[𝑎] = 𝜋(𝐷1ℎ𝐷1𝑎 + 𝐷2𝑎) = 0 + 𝑑 = 𝑑.

But this is okay since 𝑑 represents zero on the 𝐸2-page so the map induced by 𝐷′
2

does agree with 𝑑2.
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In fact, what happened in the above example was not accidental, as the following
proposition shows:

Proposition 4.0.2. The map induced by 𝐷′
2 on the 𝐸2-page is agrees with 𝑑2.

Proof. Let 𝑥 ∈ 𝒵𝑝,𝑞

2 be a 2-cocycle witnessed by 𝑥𝑝+1 ∈ 𝑀𝑝+1,𝑞−1 and let �̃�𝑝+1

denote the projection of 𝑥𝑝+1 onto 𝐵𝑝−1,𝑞 . Since we have 𝐷0�̃�𝑝+1 = 𝐷0𝑥𝑝+1, it
follows that 𝐷0�̃�𝑝+1 + 𝐷1𝑥 = 0. Moreover, because ℎ𝐷0�̃�𝑝+1 = −�̃�𝑝+1 we see
that �̃�𝑝+1 = ℎ𝐷1𝑥. Now, we simply compute 𝑑2 to conclude our proof:

𝑑2[𝑥]2 = [𝐷2𝑥 + 𝐷1�̃�𝑝+1]2 = [𝐷2𝑥 + 𝐷1ℎ𝐷1𝑥]2 = [𝐷′
2[𝑥]]2.

□

The above proposition will follow as a special case of what is to come. We now
look at an example where 𝐷′

3 vanish but 𝑑3 is non-trivial.

Example 4.0.3. Consider the following multicomplex 𝑀

K 𝑥1 K 𝑦1

K 𝑥2 ⊕ K 𝑥3 K 𝑦2 ⊕ K 𝑦3 ⊕ K 𝑦4

K 𝑥4 ⊕ K 𝑥5 K 𝑦5 ⊕ K 𝑦6

𝐷1

𝐷2

𝐷3

𝐷1
𝐷0

𝐷2

𝐷1

𝐷0

where the differentials are given in the table below.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5

𝐷0 0 𝑦1 0 𝑦2 𝑦3

𝐷1 𝑦1 𝑦2 𝑦3 + 𝑦4 𝑦5 0
𝐷2 −𝑦4 −𝑦5 − 𝑦6 𝑦6 0 0
𝐷3 −2𝑦5 − 𝑦6 0 0 0 0

Taking cohomology with respect to 𝐷0, we compute the 𝐸1-page to be
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K 𝑥1 0

K 𝑥3 K 𝑦4

0 K 𝑦5 ⊕ K 𝑦6

𝑑1

𝑑1

𝑑1

where the differential 𝑑1 is the isomorphism 𝑥3 ↦→ 𝑦4 induced by 𝐷1. Choosing
sections gives us a deformation retract from 𝑀 to the 𝐸1-page which allows us to
compute the transferred differential

𝐷′
3𝑥1 = [𝐷1ℎ𝐷1ℎ𝐷1𝑥1+𝐷2ℎ𝐷1𝑥1+𝐷1ℎ𝐷2𝑥1+𝐷3𝑥1] = [𝑦5+𝑦5+𝑦6+−2𝑦5−𝑦6] = 0.

Passing to the 𝐸2-page, only the generators 𝑥1, 𝑦5 and 𝑦6 survives. It is readily seen
that the total complex Tot𝑀 is (isomorphic to) K5 𝐷−→ K6 where

𝐷 = 𝐷0 + 𝐷1 + 𝐷2 + 𝐷3 =
©«

1 1 0 0 0
0 1 0 1 0
0 0 1 0 1

−1 0 1 0 0
−2 −1 0 1 0
−1 −1 1 0 0

ª®¬.
The differential 𝐷 is injective and hence the cohomology of Tot𝑀 is 0 and K in
degree 0 and 1, respectively. For degree reasons, 𝑑3 is the only possible nontrivial
differential in the spectral sequence and by convergence we must have 𝑑3 ≠ 0. For
demonstration purposes, we compute 𝑑3𝑥1 directly: it is easy to check that the
elements −𝑥2 + 𝑥3 and 𝑥4 − 𝑥5 witness 𝑥1 being a 3-cycle. Consequently, we can
compute 𝑑3𝑥1 = [𝐷3𝑥1 +𝐷2(−𝑥2 + 𝑥3) +𝐷1(𝑥4 − 𝑥5)] = 𝑦6 ≠ 0. The point is that 𝑑3

can be non-trivial even though 𝐷′
3 is trivial and this suggests that there is more

to 𝑑3 than just 𝐷′
3.

Construction 4.0.4. Given a multicomplex (𝑀, 𝐷•) over K, we can always define
another multicomplex ( 1𝑀, 1𝐷•) by letting 1𝑀𝑝,𝑞 := 𝐻2𝑝+𝑞,−𝑝(𝑀) and 1𝐷𝑟 := 𝐷′

𝑟+1.
That is, 1𝑀 is a shifted version of 𝐻(𝑀) with the transferred differentials from the
HTT (theorem 2.2.1). It is clear that 1𝑀 is a multicomplex as we have

∑
𝑝+𝑞=𝑟

1𝐷𝑝
1𝐷𝑞 =

𝑟+1∑
𝑖=1

𝐷′
𝑖𝐷

′
𝑟+2−𝑖 = −𝐷′

0𝐷
′
𝑟+2 − 𝐷′

𝑟+2𝐷
′
0 = 0 for all 𝑟 ⩾ 0.

We apply this very construction on 1𝑀 to obtain another multicomplex ( 2𝑀, 2𝐷•).
In other words, 2𝑀𝑝,𝑞 := 𝐻2𝑝+𝑞,−𝑝( 1𝑀, 1𝐷0) and 2𝐷𝑟 := 1𝐷′

𝑟+1. Continuing in this
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manner, we obtain a family of multicomplexes ( 𝑠𝑀, 𝑠𝐷•) where

𝑠𝑀𝑝,𝑞 := 𝐻2𝑝+𝑞,−𝑝( 𝑠−1𝑀, 𝑠−1𝐷0) and 𝑠𝐷𝑟 := 𝑠−1𝐷′
𝑟+1.

Of course, it is understood that there is a choice of sections involved in each
step, giving rise to a deformation retract. However, the construction above is
independent of choice in the sense that different choices of sections give isomorphic
multicomplexes by proposition 2.2.4.

Let us revisit example 4.0.3 and compute the multicomplexes 𝑠𝑀 and their
differentials.

Example 4.0.5. Let 𝑀 be the multicomplex in example 4.0.3. We get the first
multicomplex 1𝑀 from re-indexing 𝐸1 = 𝐻(𝑀) and computing the transferred
differentials:

K 𝑥1 K 𝑦4

K 𝑥3 K 𝑦5 ⊕ K 𝑦6

1𝐷1

1𝐷0

1𝐷1

𝑥1 𝑥3

1𝐷0 0 𝑦4

1𝐷1 −𝑦4 𝑦6

We have already computed the differential 1𝐷2 = 𝐷′
3 : K 𝑥1 → K 𝑦5 ⊕ K 𝑦6 to

be trivial in example 4.0.3. All higher differentials are trivial by degree reasons.
Computing cohomology with respect to 1𝐷0 and re-indexing we obtain 2𝑀:

K 𝑥1 K 𝑦5 ⊕ K 𝑦6
2𝐷1

The differential 2𝐷0 is trivial and 2𝐷1 = 1𝐷′
2 is computed to be the map 𝑥1 ↦→ 𝑦6.

Since the zeroth differential is trivial, taking cohomology does nothing, and 3𝑀 is
just the multicomplex

K 𝑦5 ⊕ K 𝑦6

K 𝑥1

3𝐷0

with 3𝐷0 : 𝑥1 ↦→ 𝑦6. Note that 𝑑3 = 3𝐷0 by our calculation in example 4.0.3. Lastly,
the multicomplex 4𝑀 is just K 𝑦5 concentrated in a single point. In particular, all
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the differentials will be trivial from this point on and 4𝑀 can be thought of as the
limit term. In the spirit of spectral sequences, let us write 4𝑀 = ∞𝑀.

We write (𝐸•(𝑘𝑀), 𝑘𝑑•) for the spectral sequence associated with the multicom-
plex 𝑘𝑀. The following result relates the spectral sequence (𝐸•(1𝑀), 1𝑑•) to the
spectral sequence 𝐸(𝑀) associated with 𝑀.

Theorem 4.0.6. The spectral sequence associated with 1𝑀 is a shifted version of
the spectral sequence associated with 𝑀 in the sense that

𝐸
𝑝,𝑞
𝑟 (1𝑀) = 𝐸2𝑝+𝑞,−𝑝

𝑟+1 (𝑀) and 1𝑑𝑟 = 𝑑𝑟+1 for all 𝑟 ⩾ 0.

Proof. We suppress the indices for clarity. The case where 𝑟 = 0 holds by con-
struction as 𝐸0(1𝑀) = 1𝑀 = 𝐻(𝑀) = 𝐸1(𝑀) and 1𝑑0 = 1𝐷0 = 𝐷′

1 = 𝑑1. Conse-
quently, 𝐸1(1𝑀) = 𝐸2(𝑀) and the equality 1𝑑1 = 𝑑2 follows from proposition 4.0.2.
We now assume 𝐸𝑟(1𝑀) = 𝐸𝑟+1(𝑀) for some 𝑟 ⩾ 0 and show that 1𝑑𝑟 = 𝑑𝑟+1.
This will imply that 𝐸𝑟+1(1𝑀) = 𝐸𝑟+2(𝑀) so we can conclude by induction. Let 𝑥𝑝
represent a cycle in 𝐸𝑟(1𝑀) witnessed by the family {[𝑥𝑝+𝑖]}𝑖=1,2,...,𝑟−1. Define the
elements

�̂�𝑝+𝑖 :=
𝑖∑

𝑛=0

∑
|𝐽 |=𝑛

ℎ𝐷𝑗1ℎ · · · ℎ𝐷𝑗𝑘 �[𝑥𝑝+𝑖−𝑛]

= �[𝑥𝑝+𝑖] + ℎ ©«𝐷1�[𝑥𝑝+𝑖−1] + (𝐷1ℎ𝐷1 + 𝐷2)�[𝑥𝑝+𝑖−2] + · · · +
∑
|𝐽 |=𝑖

𝐷𝑗1ℎ · · · ℎ𝐷𝑗𝑘 �[𝑥𝑝]
ª®¬

for 𝑖 = 1, 2, . . . , 𝑟 − 1, 𝑟 where we set [𝑥𝑝+𝑟] := 0. Next, we prove that the fam-
ily {�̂�𝑝+𝑖}𝑖=1,...,𝑟 defines witnesses for �̂�𝑝 := �[𝑥𝑝] being an (𝑟 + 1)-cycle in 𝐸𝑟+1(𝑀).
We have that

𝑛∑
𝑖=0

1𝐷 𝑖[𝑥𝑝+𝑛−𝑖] = 0 for 𝑛 = 1, 2, . . . , 𝑟 − 1 (10)

and we want to show that

𝑛∑
𝑖=0

𝐷𝑖 �̂�𝑝+𝑛−𝑖 = 0 for 𝑛 = 1, 2, . . . , 𝑟 (11)

since these are precisely the relations required, by definition of 𝒵𝑟+1(𝑀). We verify
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eq. (11) by induction. In the base case, we will use that 1𝐷0[𝑥𝑝] = 0 and 𝐷0� = 0:

𝐷0�̂�𝑝+1 + 𝐷1𝑥𝑝 = 𝐷0�[𝑥𝑝+1] + 𝐷0ℎ𝐷1�[𝑥𝑝] + 𝐷1�[𝑥𝑝] = (𝐷0ℎ + id)𝐷1�[𝑥𝑝]
= (�𝜋 − ℎ𝐷0)𝐷1�[𝑥𝑝] = � 1𝐷0[𝑥𝑝] + ℎ𝐷1𝐷0�[𝑥𝑝] = 0.

For the induction step, assume

𝑘∑
𝑖=0

𝐷𝑖 �̂�𝑝+𝑘−𝑖 = 0 for 𝑘 = 1, 2, . . . , 𝑛 − 1. (12)

Using the induction hypothesis and eq. (10), we show that the relation above also
holds in the case 𝑘 = 𝑛. The required verification is an exercise in the manipulation
of sums.

𝑛∑
𝑖=0

𝐷𝑖 �̂�𝑝+𝑛−𝑖 = (𝐷0ℎ + id)
𝑛∑
𝑖=1

∑
|𝐽 |=𝑖

𝐷𝑗1ℎ𝐷𝑗2ℎ · · · ℎ𝐷𝑗𝑘 �[𝑥𝑝+𝑛−𝑖]

= (�𝜋 − ℎ𝐷0)
𝑛∑
𝑖=1

∑
|𝐽 |=𝑖

𝐷𝑗1ℎ𝐷𝑗2ℎ · · · ℎ𝐷𝑗𝑘 �[𝑥𝑝+𝑛−𝑖]

= �
𝑛∑
𝑖=1

𝐷′
𝑖[𝑥𝑝+𝑛−𝑖] + ℎ

𝑛∑
𝑖=1

∑
|𝐽 |=𝑖

(−𝐷0𝐷𝑗1)ℎ𝐷𝑗2ℎ · · · ℎ𝐷𝑗𝑘 �[𝑥𝑝+𝑛−𝑖]

= �
𝑛−1∑
𝑖=0

1𝐷 𝑖[𝑥𝑝+𝑛−1−𝑖]︸                ︷︷                ︸
=0 by eq. (10)

+ℎ
∑

𝑛⩾𝑖⩾𝑠⩾𝑙⩾1
𝐷𝑙𝐷𝑠−𝑙

∑
|𝐽 |=𝑖−𝑠

ℎ𝐷𝑗1ℎ · · · ℎ𝐷𝑗𝑘 �[𝑥𝑝+𝑛−𝑖]

= ℎ

𝑛−1∑
𝑖=1

𝐷𝑖(𝐷0ℎ + id)
𝑛−𝑖∑
𝑙=1

∑
|𝐽 |=𝑙

𝐷𝑗1ℎ · · · ℎ𝐷𝑗𝑘 �[𝑥𝑝+𝑛−𝑖−𝑗]

= ℎ

𝑛−1∑
𝑖=1

𝐷𝑖

𝑛−𝑖∑
𝑗=0

𝐷𝑗 �̂�𝑝+(𝑛−𝑖)−𝑗︸             ︷︷             ︸
=0 by eq. (12)

= 0.

Using the witnesses {�̂�𝑝+𝑖}𝑖=1,2,...,𝑟 and the fact that [�̂�𝑝]𝑟+1 = [𝑥𝑝]𝑟+1 (which follows
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from corollary 1.2.16), we see that 𝑑𝑟+1 and 1𝑑𝑟 agree.

𝑑𝑟+1[𝑥𝑝] =
[
𝑟+1∑
𝑖=1

𝐷𝑖 �̂�𝑝+𝑟+1−𝑖

]
=


𝑟∑
𝑖=1

∑
|𝐽 |=𝑖+1

𝐷𝑗1ℎ𝐷𝑗2ℎ · · · ℎ𝐷𝑗𝑘 �[𝑥𝑝+𝑟−𝑖]


=

[
𝑟∑
𝑖=1

𝐷′
𝑖+1[𝑥𝑝+𝑟−𝑖]

]
=

[
𝑟∑
𝑖=1

1𝐷 𝑖[𝑥𝑝+𝑟−𝑖]
]
=

1𝑑𝑟[𝑥𝑝].

Here the outer brackets denote the equivalence class in 𝐸𝑟(1𝑀) = 𝐸𝑟+1(𝑀). □

The following picture illustrates the re-indexing when going from 𝐸1 = 𝐻(𝑀)
to 1𝑀:

•
(𝑝,𝑞)

•
(𝑝+1,𝑞)

•
(𝑝+2,𝑞−1)

•
(𝑝+𝑟,𝑞+1−𝑟)

•
(−𝑞,2𝑞+𝑝+1)

•
(−𝑞,2𝑞+𝑝)

•
(−𝑞+1,2𝑞+𝑝)

•
(𝑝+(𝑟−1),2𝑞+𝑝−(𝑟−2))

𝐷′
1

𝐷′
2

𝐷′
𝑟

1𝐷𝑟=𝐷
′
𝑟+1

1𝐷0
1𝐷1

1𝐷𝑟−1

We now get the following corollary which gives us an alternative approach to
computing the spectral sequence associated with a multicomplex (𝑀, 𝐷•):

Corollary 4.0.7. We have

𝐸
𝑝,𝑞
𝑟 = 𝑟𝑀𝑝−𝑟𝑛, 𝑞+𝑟𝑛 and 𝑑𝑟 =

𝑟𝐷0

for every 𝑟 ⩾ 1 where 𝑛 = 𝑝 + 𝑞.

Proof. From theorem 4.0.6, we have that 𝐸𝑟(1𝑀) = 𝐸𝑟+1(𝑀) for every 𝑟 ⩾ 0. Since
we obtain 𝑠𝑀 from 𝑠−1𝑀 in exactly the same way as we obtain 1𝑀 from 𝑀 we can
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conclude that

𝑟𝑀 = 𝐸0(𝑟𝑀) = 𝐸1(𝑟−1𝑀) = 𝐸2(𝑟−2𝑀) = · · · = 𝐸𝑟−1(1𝑀) = 𝐸𝑟(𝑀).

Similarly, for the differentials, we get

𝑟𝐷0 =
𝑟𝑑0 =

𝑟−1𝑑1 =
𝑟−2𝑑2 = · · · = 1𝑑𝑟−1 = 𝑑𝑟 .

□

It is immediate to see that theorem 3.0.1 follows as a corollary of theorem 4.0.6. Even
better, we now have a more general result characterising 𝑘-th-page degeneracy:

Corollary 4.0.8. The spectral sequence associated with a multicomplex 𝑀 degen-
erates at the 𝑘-th page if and only if 𝑘𝐷𝑟 = 0 for all 𝑟 ⩾ 0.

Proof. The spectral sequence 𝐸(𝑀) degenerates at the 𝑘-th page ⇐⇒ 𝑑𝑟 = 0
for all 𝑟 ⩾ 𝑘 ⇐⇒ The spectral sequence 𝐸(𝑘−1𝑀) degenerates at the first
page (by corollary 4.0.7) ⇐⇒ For all 𝑟 ⩾ 0, we have 0 = 𝑘−1𝐷′

𝑟+1 = 𝑘𝐷𝑟 (by
theorem 3.0.1). □

Example 4.0.9. Let us try to recover the differentials in the spectral sequence
associated with a double complex using corollary 4.0.7. To keep things simple, let
us first consider a 3-cycle 𝑥. Recall that by the classification of double complexes
(see, for example, [Ste21]), 𝑥 has to be on the top of a zig-zag like the one below
with differentials ±1.

𝑥 ∈ • •

• •

• •

𝐷0
𝐷1

By corollary 4.0.7 we have

𝑑3 = 3𝐷0 = 𝜋2
2𝐷1�2 = 𝜋2𝜋1(1𝐷1ℎ1

1𝐷1 + 1𝐷2)�1�2
= 𝜋2𝜋1(𝐷′

2ℎ1𝐷
′
2 + 𝐷′

3)�1�2 = [𝐷′
2ℎ1𝐷

′
2]3 + [𝐷′

3]3 = [𝐷′
3]3.

The term 𝐷′
2ℎ1𝐷

′
2 is zero because the cohomology of the zig-zag with respect

to 𝐷0 is zero everywhere but in the start and end points as we see in the following
picture:
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• 0

0 0

0 •
An identical argument can be carried out for arbitrary 𝑟-cycles. That is, the only term
in 𝑟𝐷0 which does not factor through zero, is the term 𝜋𝑟−1𝜋𝑟−2 · · ·𝜋1𝐷

′
𝑟 �1�2 · · · �𝑟−1

which is exactly the map induced by 𝐷′
𝑟 on the 𝐸𝑟-page. Consequently, we have

recovered proposition 2.3.1 as a corollary of corollary 4.0.7.
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Appendix A Multicomplexes as homotopy algebras

This section is a brief comment on how multicomplexes fit into the general theory
of operads. In this section, we aim to show that double complexes correspond
to algebras over the operad D of dual numbers and that multicomplexes are
the algebras over some operad M . This corresponds to theorem A.1.1 and theo-
rem A.2.2, respectively. We then show that M is in fact equal to a certain operad
which will be denoted D∞ called the Koszul resolution of D . This is the content
of theorem A.3.1. It turns out that we do not need to go much into details about
operads as remark A.0.2 allows us to stay in the setting of (co)algebras.

We restrict ourselves to non-symmetric dg-operads, which are operads in the
(symmetric monoidal) category of cochain complexes of graded vector spaces.
Consequently, we allow dg-algebras and dg-modules to be bigraded. For example,
if 𝐴 is a dg-algebra and 𝑀 is a dg-module over 𝐴, we require the action to
respect the grading, i.e., 𝐴𝑝,𝑞 ·𝑀𝑝′,𝑞′ ⩽ 𝑀𝑝+𝑝′,𝑞+𝑞′. Moreover, if 𝑥 is an element of
bidegre (𝑝, 𝑞)we denote the total degree of 𝑥 by |𝑥 | = 𝑝+𝑞. The main references used
here are [LV12] and [Val14] with grading conventions adapted to our situation.

Definition A.0.1. A (non-symmetric dg-) operad P is a family {P(𝑛)}𝑛∈N of cochain
complexes with an element 𝐼 ∈ P(1) and composite maps

𝛾𝑖1 ,𝑖2 ,...,𝑖𝑘 : P(𝑘) ⊗ P(𝑖1) ⊗ P(𝑖2) ⊗ · · · ⊗ P(𝑖𝑘) → P(𝑖1 + 𝑖2 + · · · + 𝑖𝑘)

satisfying certain unital and associativity axioms.

An operad P with P(𝑛) = 0 for all 𝑛 ≠ 1 is said to be of arity 1. Such operads
encode operations with exactly one input and one output. This is the case with
double complexes and multicomplexes when considering the maps 𝐷𝑟 as the
operations.

Remark A.0.2. If P is an operad of arity 1, then 𝛾1 : P(1) ⊗ P(1) → P(1) is the
only composite map which can be non-trivial. Now, let 𝒫 be a dg-algebra with
multiplication � and unit 1𝒫 . We see that the operads of arity 1 are the same as
dg-algebras under the identification

𝒫 ↔ P(1) � ↔ 𝛾1 𝐼 ↔ 1𝒫 .

Furthermore, as remarked in [LV12, p. 551], an algebra over an operad P of arity 1
is the same as a dg-module over 𝒫. Consequently, we can more or less restrict our
focus to the algebras defining the operads of interest. In general, operads of arity 1
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in some category C corresponds to monoids in C .

A.1 The operad of dual numbers

Let 𝒟 = K[𝜖] (with the relation 𝜖2 = 0) denote the dual numbers over K considered
as a dg-algebra with trivial differential 𝜕 = 0, the generator 1 in bidegree (0, 0)
and the generator 𝜖 in bidegree (1, 0). If (𝑀, 𝐷0) is a cochain complex of graded
vector spaces with 𝐷0 : 𝑀•,𝑞 → 𝑀•,𝑞+1, then making 𝑀 into a double complex
is the same as specifying a linear map 𝐷1 : 𝑀𝑝,• → 𝑀𝑝+1,• such that 𝐷1𝐷1 = 0
and 𝐷1𝐷0 + 𝐷0𝐷1 = 0. Making 𝑀 into a 𝒟-module is the same as specifying an
action of 𝜖 that is compatible with the differential 𝐷0 in the sense that the graded
Leibniz rule holds:

𝐷0(𝜖𝑥) = 𝜕(𝜖)𝑥 + (−1)|𝜖 |𝜖𝐷0𝑥 = −𝜖𝐷0𝑥 for all 𝑥 ∈ 𝑀.

If we identify 𝐷1 with multiplication by 𝜖, then 𝐷1𝐷1 = 𝜖2 = 0 and the Leibniz
rule becomes 𝐷0𝐷1 +𝐷1𝐷0 = 0. In other words, 𝒟-modules are the same thing as
double complexes over K. We summarise the above discussion in the following
theorem:

Theorem A.1.1. The category of D-algebras, where D is the operad of arity 1
defined by D(1) := 𝒟, is equivalent to the category of double complexes.

A.2 The operad encoding multicomplexes

Let ℳ be the dg-algebra defined as follows: For 𝑝 ⩾ 0 and 𝑞 ⩽ 0, we define

ℳ𝑝,𝑞 =
⊕

K 𝛿𝑖1𝛿𝑖2 · · · 𝛿𝑖𝑘

where we take the sum over multi-indices of length 𝑘 = 𝑝 + 𝑞 which sums to 𝑝.
We equip ℳ with the differential 𝜕 : ℳ𝑝,𝑞 → ℳ𝑝,𝑞+1 defined on generators by

𝜕(𝛿𝑛) = −
𝑛−1∑
𝑖=1

(−1)𝑖𝛿𝑖𝛿𝑛−𝑖 .

In other words, ℳ is the non-commutative polynomial algebra in the vari-
ables {𝛿𝑖}𝑖⩾1 equipped with the differential 𝜕 and a suitable grading. As an
algebra, ℳ is clearly generated by the elements 𝛿1, 𝛿2, . . .. Observe that each basis
element in ℳ𝑝,𝑞 (as a vector space) is determined by some partition of the integer 𝑝
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of length 𝑝 + 𝑞. Multiplication is just concatenation:

(𝛿𝑖1 · · · 𝛿𝑖𝑘 )(𝛿𝑖𝑘+1 · · · 𝛿𝑖𝑘+𝑙 ) = 𝛿𝑖1 · · · 𝛿𝑖𝑘+𝑙 .

To see that the multiplication respects the grading on ℳ, suppose (𝑖1, 𝑖2, . . . , 𝑖𝑝+𝑞)
and (𝑗1, 𝑗2, . . . , 𝑗𝑝′+𝑞′) are partitions of 𝑝 and 𝑝′ respectively. Then the parti-
tion (𝑖1, . . . , 𝑖𝑝+𝑞 , 𝑗1, . . . , 𝑗𝑝′+𝑞′) is of length (𝑝 + 𝑝′) + (𝑞 + 𝑞′) and sums to 𝑝 + 𝑝′ so
the product ends up in ℳ𝑝+𝑝′,𝑞+𝑞′. The dimension in degree (𝑝, 𝑞) can be seen to
be dimK ℳ𝑝,𝑞 =

(𝑝−1
−𝑞

)
. The following picture shows the basis elements of ℳ in

the different degrees:

𝑞\𝑝 (0) (1) (2) (3) (4) · · ·

(0) 1 𝛿1 𝛿1𝛿1 𝛿1𝛿1𝛿1 𝛿1𝛿1𝛿1𝛿1 · · ·

(−1) 𝛿2 𝛿1𝛿2, 𝛿2𝛿1 𝛿1𝛿1𝛿2, 𝛿1𝛿2𝛿1, 𝛿2𝛿1𝛿1 · · ·

(−2) 𝛿3 𝛿1𝛿3, 𝛿2𝛿2, 𝛿3𝛿1 · · ·

(−3) 𝛿4 · · ·

...
. . .

𝜕

Figure 1: The grading on ℳ.

Remark A.2.1. When defining double complexes one has the choice between
requiring either commutative squares, or anti-commutative squares. That is, we
can choose to have 𝐷1𝐷0 − 𝐷0𝐷1 = 0 or 𝐷1𝐷0 + 𝐷0𝐷1 = 0. The choice does not
matter in the sense that we get equivalent categories either way. The same is true
for multicomplexes where we can replace∑

𝑝+𝑞=𝑛
𝐷𝑝𝐷𝑞 = 0 by the relation

∑
𝑝+𝑞=𝑛

(−1)𝑝𝐷𝑝𝐷𝑞 = 0

and obtain equivalent categories. In this case, one will also have to introduce signs
in the definition of morphisms.

Suppose that (𝑀, 𝐷0) is a dg-module over ℳ. The action of ℳ is determined by
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how the generators act on 𝑀. In addition, the action has to satisfy the Leibniz rule

𝐷0(𝛿𝑛 · 𝑥) = 𝜕(𝛿𝑛) · 𝑥 + (−1)|𝛿𝑛 |𝛿𝑛𝐷0(𝑥)

= −
𝑛−1∑
𝑖=1

(−1)𝑖𝛿𝑖𝛿𝑛−𝑖 · 𝑥 + (−1)1−𝑛𝛿𝑛𝐷0(𝑥).

If we let 𝐷𝑛 : 𝑀 → 𝑀 denote multiplication by 𝛿𝑛 , then the Leibniz rule can be
rewritten as ∑

𝑝+𝑞=𝑛
(−1)𝑝𝐷𝑝𝐷𝑞 = 𝐷0𝐷𝑛 − 𝐷1𝐷𝑛−1 + ... + (−1)𝑛𝐷𝑛𝐷0 = 0.

In other words, ℳ-modules are precisely multicomplexes by remark A.2.1. Let
us denote by M the operad of arity 1 with M (1) = ℳ. This time, we need to
be a bit more careful when specifying the morphisms of M -algebras. We define
the morphisms to be the analogue to the morphisms of multicomplexes given in
definition 1.2.3. In other words, we require

�̃�0 𝑓𝑛 + 𝛿1 𝑓𝑛−1 + +𝛿2 𝑓𝑛−2 + · · · + 𝛿𝑛 𝑓0 = 𝑓𝑛𝐷0 + 𝑓𝑛−1𝛿
1 + 𝑓𝑛−2𝛿

2 + · · · 𝑓0𝛿𝑛

to hold for all 𝑛 ⩾ 0. Note that this requirement is weaker than having morphisms
of dg-modules. We conclude this section by summarising everything into the
following theorem:

Theorem A.2.2. The category of M -algebras (with morphisms defined as above)
is equivalent to the category of multicomplexes.

A.3 Multicomplexes are homotopy double complexes

We now want to introduce the notion of a homotopy algebra over an operad. To
do this in its full generality, one have to introduce the Koszul dual cooperad P ¡

of a quadratic operad P and the cobar construction ΩC on a cooperad C . One
then proceeds to define the Koszul resolution P∞ := ΩP ¡ of P . By definition, a
homotopy P-algebra is an algebra over the Koszul resolution P∞ of P . Recall that
we will only be working with operads of arity 1, so we can restrict our attention
to the setting of (co)algebras. The precise definitions of the aforementioned
constructions for (co)algebras will be given later throughout this section. Loday
and Vallette [LV12] serves as a comprehensive reference for the general setting
of Koszul operads and homotopy algebras over these. The rest of this section is
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dedicated to proving the following theorem:

Theorem A.3.1. Multicomplexes are homotopy double complexes in the sense
that M = D∞.

We will prove theorem A.3.1 by computing the Koszul resolution D∞ on the level
of (co)algebras. That is, we first realise the algebra of dual numbers D(1) = 𝒟 as
a quadratic algebra and compute its Koszul dual coalgebra 𝒟¡. In the last step,
we compute the cobar construction 𝐷∞ := Ω𝒟¡. This defines the operad D∞ by
remark A.0.2.

The tensor (co)algebra

Let 𝑉 be a graded vector space over K. We form the tensor vector space (or tensor
module) over 𝑉 , denoted 𝑇(𝑉), by letting 𝑇(𝑉)𝑛 := 𝑉⊗𝑛 . The tensor algebra over 𝑉
is 𝑇(𝑉) together with multiplication defined by the concatenation of tensors:

(𝑣1 ⊗ · · · ⊗ 𝑣𝑘) · (𝑣𝑘+1 ⊗ · · · ⊗ 𝑣𝑘+𝑙) := 𝑣1 ⊗ · · · ⊗ 𝑣𝑘+𝑙 .

We can also equip 𝑇(𝑉) with a comultiplication Δ : 𝑇(𝑉) → 𝑇(𝑉) ⊗ 𝑇(𝑉) given by
deconcatenation of tensors to obtain the tensor coalgebra denoted by 𝑇𝑐(𝑉).

Δ(𝑣1𝑣2 · · · 𝑣𝑘) :=
𝑛∑
𝑖=0

𝑣1 · · · 𝑣𝑖 ⊗ 𝑣𝑖+1 · · · 𝑣𝑛 and Δ(1) := 1 ⊗ 1.

Remark A.3.2. The product and coproduct defined above are not compatible in
the sense that we can not consider 𝑇(𝑉) as a bialgebra with this definition of the
coproduct.

We equip the tensor coalgebra with counit 𝜖 : 𝑣 ↦→ 0 and it is coaugmented by
the inclusion of K into degree 0. In general, given a coalgebra 𝐶 with counit 𝜖
and coaugmented by 𝑢, we have that ker 𝜖 → 𝐶 → K splits since 𝜖𝑢 = id
and hence 𝐶 = ker 𝜖 ⊕ K. We define �̄� := ker 𝜖 and equip �̄� with the reduced
coproduct Δ̄(𝑥) := Δ(𝑥) − 1 ⊗ 𝑥 − 𝑥 ⊗ 1. For the tensor coalgebra, the reduced
coproduct is

Δ̄(𝑣1 · · · 𝑣𝑛) :=
𝑛−1∑
𝑖=1

𝑣1 · · · 𝑣𝑖 ⊗ 𝑣𝑖+1 · · · 𝑣𝑛 .

Example A.3.3. If 𝑉 = K 𝑥1 ⊕ K 𝑥2 ⊕ · · · ⊕ K 𝑥𝑛 , then 𝑇(𝑉) = K
〈
𝑥1, 𝑥2, . . . , 𝑥𝑛

〉
,

the non-commutative (for 𝑛 ⩾ 2) polynomial algebra in 𝑛 variables. Similarly,
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if 𝑉 =
⊕

𝑖⩾1 K 𝑥𝑖 , then 𝑇(𝑉) is the non-commutative polynomial algebra in
infinitely many variables.

Some conventions

Given two cochain complexes 𝑉 and 𝑊 of graded vector spaces, we define the
tensor product 𝑉 ⊗𝑊 as follows:

(𝑉 ⊗𝑊)𝑛 :=
⊕
𝑝+𝑞=𝑛

𝑉𝑝 ⊗K𝑊
𝑞 and 𝑑𝑉⊗𝑊 (𝑣 ⊗𝑤) := 𝑑𝑉(𝑣) ⊗𝑤+(−1)|𝑣 |𝑣 ⊗ 𝑑𝑊 (𝑤).

Let K 𝑠 denote the graded vector space generated by the element 𝑠 in degree −1.
If 𝑉 is a graded vector space, define the suspension of 𝑉 to be the graded vector
space 𝑠𝑉 := K 𝑠 ⊗ 𝑉 . Similarly, we let K 𝑠−1 be the graded vector space generated
by the element 𝑠−1 in degree 1 and define the desuspension of 𝑉 to be the graded
vector space 𝑠−1𝑉 := K 𝑠−1 ⊗ 𝑉 . Clearly, we have that (𝑠𝑉)𝑛 = K 𝑠 ⊗ 𝑉𝑛−1 and
similarly (𝑠−1𝑉)𝑛 = K 𝑠 ⊗ 𝑉𝑛+1. Thus, this is nothing but the usual suspension
functor with the addition of a bookkeeping variable 𝑠. If 𝑉 is a cochain complex
of graded vector spaces, i.e. 𝑉 has a differential, we see that 𝑑𝑠𝑉 = −𝑠𝑑𝑉 . Note that
our convention fits the setting of cohomological grading and therefore is opposite
to the one used in [LV12]. The natural symmetry isomorphism 𝜏 : 𝑉 ⊗𝑊 →𝑊 ⊗𝑉
is given by

𝑣𝑤 ↦→ (−1)|𝑤 | |𝑣 |𝑤𝑣 for 𝑣 ∈ 𝑉, 𝑤 ∈𝑊.

In other words, the cost of permuting two elements in a product is a sign. This is
known as the Koszul sign convention.

Quadratic (co)algebras

A quadratic data is a pair (𝑉, 𝑅) where𝑉 is a graded vector space and 𝑅 is a graded
subspace of 𝑉 ⊗ 𝑉 . Given a quadratic data, we can associate with it an algebra.
The quadratic algebra 𝐴(𝑉, 𝑅) associated to a quadratic data (𝑉, 𝑅) is defined as

𝐴(𝑉, 𝑅) := 𝑇(𝑉)/(𝑅)

where (𝑅) is the ideal generated by 𝑅. Explicitly, 𝐴(𝑉, 𝑅) can be described as
follows:

𝐴(𝑉, 𝑅) = K ·1 ⊕ 𝑉 ⊕ 𝑉⊗2/𝑅 ⊕ · · · ⊕ ©«𝑉⊗𝑛/
∑

𝑖+𝑗+2=𝑛
𝑉⊗𝑖 ⊗ 𝑅 ⊗ 𝑉⊗ 𝑗ª®¬ ⊕ · · · .

52



The quadratic algebra 𝐴(𝑉, 𝑅) is universal among quotient algebras of 𝑇(𝑉) with
respect to the property that the composition

𝑅 ↩→ 𝑇(𝑉)↠ 𝐴′

is zero. In other words, it is the cokernel of the inclusion of (𝑅). Some familiar
examples of quadratic algebras include:

R A(V,R)
0 Tensor algebra 𝑇(𝑉)

< 𝑣𝑤 − 𝑤𝑣 > Symmetric algebra 𝑆(𝑉)
< 𝑣2 > Exterior algebra Λ(𝑉)

In particular, if 𝑉 is the one-dimensional vector space generated by 𝜖 in degree 0
and 𝑅 =< 𝜖2 >= 𝑉 ⊗ 𝑉 , then 𝐴(𝑉, 𝑅) is the dual numbers 𝒟 = K ⊕ K 𝜖.

There is also a way to associate a coalgebra to any given quadratic data. Define
the quadratic coalgebra 𝐶(𝑉, 𝑅) to be the sub-coalgebra of 𝑇𝑐(𝑉) which is universal
among the sub-coalgebras 𝐶′ such that the composition

𝐶′ ↩→ 𝑇𝑐(𝑉)↠ 𝑉⊗2/𝑅

is zero. That is, any such map factors uniquely through 𝐶(𝑉, 𝑅). The coalge-
bra structure on 𝐶(𝑉, 𝑅) is the restriction of the one on 𝑇𝑐(𝑉). The quadratic
coalgebra 𝐶(𝑉, 𝑅) can be described explicitly as follows:

𝐶(𝑉, 𝑅) = K ·1 ⊕ 𝑉 ⊕ 𝑅 ⊕ · · · ⊕ ©«
⋂

𝑖+𝑗+2=𝑛
𝑉⊗𝑖 ⊗ 𝑅 ⊗ 𝑉⊗ 𝑗ª®¬ ⊕ · · · .

Endowed with the trivial differential, 𝐶(𝑉, 𝑅) is a differential graded coalgebra.

The Koszul dual coalgebra

Given a quadratic data (𝑉, 𝑅), we define the Koszul dual coalgebra𝐴¡ of the quadratic
algebra 𝐴 = 𝐴(𝑉, 𝑅) to be 𝐴¡ := 𝐶(𝑠𝑉, 𝑠2𝑅). Here, the notation 𝑠2𝑅 denotes the
image of 𝑅 under the map 𝑉 ⊗ 𝑉 → 𝑠𝑉 ⊗ 𝑠𝑉, 𝑣 ⊗ 𝑤 ↦→ 𝑠𝑣 ⊗ 𝑠𝑤.

Again,consider the graded vector space𝑉 generated by 𝜖 in degree 0 so that𝐴(𝑉, 𝑅)
is the dual numbers. Let 𝛿 := 𝑠𝜖 be the generator of 𝑠𝑉 in degree −1 and
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write 𝛿𝑛 = 𝛿 ⊗ · · · ⊗ 𝛿︸       ︷︷       ︸
𝑛-times

. The Koszul dual coalgebra of 𝒟 is then easily seen to be

𝒟¡ = 𝐶(𝑠𝑉, 𝑠2𝑅) = 𝐶(K 𝛿,K 𝛿2) = K 1 ⊕ K 𝛿 ⊕ K 𝛿2 ⊕ · · · = 𝑇𝑐(𝛿)

with coproduct Δ : 𝒟¡ → 𝒟¡ ⊗ 𝒟¡ being

Δ(𝛿𝑛) =
𝑛∑
𝑖=0

𝛿𝑖 ⊗ 𝛿𝑛−𝑖 , Δ(1) = 1 ⊗ 1.

The reduced coproduct on �̄�¡ =
⊕

𝑛⩾1 K 𝛿𝑛 is given by Δ̄(𝛿𝑛) = ∑𝑛−1
𝑖=1 𝛿𝑖 ⊗ 𝛿𝑛−𝑖 .

Equipped with trivial differential, (�̄�¡, Δ̄) is a coaugmented dg-coalgebra.

The cobar construction

The cobar construction is a functor Ω from the category of coaugmented dg-
coalgebras to the category of augmented dg-algebras. LetΔ𝑠 : K 𝑠−1 → K 𝑠−1⊗K 𝑠−1

denote the diagonal map 𝑠−1 ↦→ −𝑠−1 ⊗ 𝑠−1. Given a coaugmented dg-coalgebra 𝐶,
we define the map 𝑓 : 𝑠−1�̄� → 𝑠−1�̄� ⊗ 𝑠−1�̄� as the composition

K 𝑠−1 ⊗ �̄� Δ𝑠⊗Δ̄−−−−→ K 𝑠−1 ⊗ K 𝑠−1 ⊗ �̄� ⊗ �̄� id ⊗𝜏⊗id−−−−−−→ K 𝑠−1 ⊗ �̄� ⊗ K 𝑠−1 ⊗ �̄�.

By proposition 1.1.2 in [LV12], 𝑓 has a unique extension to a derivation 𝜕2

on 𝑇(𝑠−1�̄�). Explicitly, the derivation is given as

𝜕2 : 𝑇(𝑠−1�̄�) → 𝑇(𝑠−1�̄�)

𝑣1 · · · 𝑣𝑛 ↦→
𝑛∑
𝑖=1

𝑣1 · · · 𝑓 (𝑣𝑖) · · · 𝑣𝑛 and 𝜕2(1) = 0.

Proposition A.3.4. [LV12, Proposition 2.2.4] The coassociativity of Δ̄ implies that 𝜕2

is a differential on 𝑇(𝑠−1�̄�), i.e., 𝜕2𝜕2 = 0.

Given a coaugmented dg-coalgebra (𝐶,Δ, 𝑑𝐶) we define the cobar construction of 𝐶
to be

Ω𝐶 := (𝑇(𝑠−1�̄�), 𝜕 = 𝜕1 + 𝜕2)

where 𝜕1 is the differential induced by 𝑑𝐶 . In particular, if 𝐴 = 𝐴(𝑉, 𝑅) is a
quadratic algebra, then we define 𝐴∞ := Ω𝐴¡ = 𝑇(𝑠−1�̄�¡) and 𝜕 = 𝜕2 since 𝜕1 = 0
by definition. The cobar construction of 𝐶 is given two gradings called the weight
degree and the syzygy degree. In our case where 𝐶 = 𝒟¡, the weight grading
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is given by 𝜔(𝛿𝑖1 · · · 𝛿𝑖𝑘 ) = 𝑖1 + 𝑖2 + · · · + 𝑖𝑘 and the syzygy degree is given
by 𝜎(𝛿𝑖1 · · · 𝛿𝑖𝑘 ) = 𝑘 − 𝜔(𝛿𝑖1 · · · 𝛿𝑖𝑘 ) = 𝑘 − (𝑖1 + 𝑖2 + · · · + 𝑖𝑘). The differential 𝜕

increases the syzygy degree by one. We take the vertical grading to be the syzygy
degree and the horizontal grading to be the weight degree. The differential 𝜕 = 𝜕2

is explicitly computed from Δ̄ to be

𝜕2(𝛿𝑛) = (id ⊗𝜏 ⊗ id)(Δ𝑠 ⊗ Δ)(𝛿𝑛) = −
𝑛−1∑
𝑖=1

(−1)𝑖𝛿𝑖𝛿𝑛−𝑖

where the signs come from the Koszul sign convention. We see that 𝒟∞ = ℳ
which concludes the proof of theorem A.3.1. □

Remark A.3.5. The morphisms we described for M -algebras right before theo-
rem A.2.2 are precisely what is known as ∞-morphisms of P∞-algebras in the
case where P = D .

Remark A.3.6. The homotopy transfer theorem for multicomplexes (theorem 2.2.1)
follows from the homotopy transfer theorem for operads (See theorem 10.3.1
in [LV12]).
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Appendix B Minimal models for multicomplexes

A cochain complex is said to be minimal if its differential is zero. A cochain complex
is acyclic (or exact) if it has trivial cohomology in all degrees. As we already have
seen in proposition 2.1.3, every cochain complex decomposes as a direct sum 𝐾⊕𝐻
with 𝐾 acyclic and 𝐻 minimal. We extend the notions above to multicomplexes in
the following way:

Definition B.0.1. A multicomplex (𝑀, 𝐷•) is called minimal if 𝐷0 = 0 and acyclic if
the underlying cochain complex (𝑀, 𝐷0) is acyclic. If 𝐷𝑟 = 0 for all 𝑟 ⩾ 1, we say
that 𝑀 is trivial.

We note that a trivial multicomplex is nothing else than a cochain complex of
graded vector spaces, i.e., it has no higher differentials. It is also evident that
a multicomplex (𝑀, 𝐷•) is minimal and acyclic if and only if 𝑀 is the zero
multicomplex. In this section, we prove the following result from [DSV15] which
is the analogue of proposition 2.1.3 for multicomplexes:

Theorem B.0.2. [DSV15, Theorem 1.6] Every multicomplex 𝑀 can be decomposed
into a direct sum 𝐾 ⊕ 𝐻 where 𝐾 is acyclic trivial and 𝐻 is minimal.

Recall that we can decompose the underlying cochain complex of a multicomplex𝑀
as𝑀𝑝,𝑞 = 𝐾𝑝,𝑞⊕𝐻𝑝,𝑞 where 𝐾𝑝,𝑞 := 𝐵𝑝,𝑞⊕𝐵𝑝,𝑞+1. Moreover, we have a deformation
retract (𝜋, �, ℎ) of (𝑀, 𝐷0) to 𝐻. By the homotopy transfer theorem (theorem 2.2.1)
we can turn𝐻 into a minimal multicomplex (𝐻, 𝐷′

•) using (𝜋, �, ℎ). The differential
on 𝐾 is 𝐷𝐾

0 =
( 0 1

0 0
)
: 𝐾𝑝,𝑞 → 𝐾𝑝,𝑞+1, so clearly 𝐾 is acyclic. By letting 𝐷𝐾

𝑟 = 0 for
all 𝑟 ⩾ 1, we have that (𝐾, 𝐷𝐾

• ) is an acyclic trivial multicomplex. Now, 𝐾 ⊕ 𝐻 is a
multicomplex with differentials 𝐷𝐾⊕𝐻

𝑛 = 𝐷𝐾
𝑛 ⊕𝐷′

𝑛 . In matrix form, the differentials
are

𝐷𝐾⊕𝐻
0 =

( 0 1 0
0 0 0
0 0 0

)
and 𝐷𝐾⊕𝐻

𝑛 =

( 0 0 0
0 0 0
0 0 𝐷′

𝑛

)
for 𝑛 ⩾ 1.

What is left to show is that (𝑀, 𝐷•) and (𝐾 ⊕ 𝐻, 𝐷𝐾⊕𝐻
• ) are isomorphic as multi-

complexes. Define 𝜋0 := 𝜋 and 𝜋𝑛 :=
∑

|𝐼 |=𝑛 𝜋𝐷𝑖1ℎ · · · ℎ𝐷𝑖𝑘 ℎ for 𝑛 ⩾ 1. Similarly,
let 𝑞 : 𝑀 → 𝐾 be the projection to 𝐾 and define 𝑞0 := 𝑞 and 𝑞𝑛 := −𝑞ℎ𝐷𝑛 for 𝑛 ⩾ 1.

Lemma B.0.3. The maps 𝜋∞ = {𝜋𝑛} : 𝑀 → 𝐻 and 𝑞∞ = {𝑞𝑛} : 𝑀 → 𝐾 are
morphisms of multicomplexes.

Proof. For𝜋∞, this is part of the homotopy transfer theorem (theorem 2.2.1). For 𝑞∞,
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we have

𝑛∑
𝑖=0

𝑞𝑖𝐷𝑛−𝑖 = 𝑞𝐷𝑛 + 𝑞ℎ𝐷0𝐷𝑛 and
𝑛∑
𝑖=0

𝐷𝐾
𝑖 𝑞𝑛−𝑖 = 𝐷𝐾

0 𝑞𝑛 = −𝐷𝐾
0 𝑞ℎ𝐷𝑛 .

Multiplying matrices, we see that 𝑞 + 𝑞ℎ𝐷0 = −𝐷𝐾
0 𝑞ℎ and hence 𝑞∞ is a morphism

of multicomplexes. □

Let 𝑓 : 𝑀 → 𝑁 and 𝑔 : 𝑀 → 𝑄 be morphisms of multicomplexes. We define the
sum of 𝑓 and 𝑔 denoted 𝑓 + 𝑔 : 𝑀 → 𝑁 ⊕𝑄 by letting ( 𝑓 + 𝑔)𝑛 = 𝑓𝑛 + 𝑔𝑛 . We claim
that 𝑓 + 𝑔 is a morphism of multicomplexes as it is straightforward to check that

𝑛∑
𝑖=0

( 𝑓 + 𝑔)𝑖𝐷𝑀
𝑛−𝑖 =

𝑛∑
𝑖=0

𝐷
𝑁⊕𝑄
𝑖

( 𝑓 + 𝑔)𝑛−𝑖 holds for all 𝑛 ⩾ 0.

Proof of Theorem B.0.2. Define the map 𝑟 = {𝑟𝑛} : 𝑀 → 𝐾 ⊕ 𝐻 where 𝑟0 := 𝑞 + 𝜋

and
𝑟𝑛 := 𝑞𝑛 + 𝜋𝑛 = −𝑞ℎ𝐷𝑛 +

∑
|𝐼 |=𝑛

𝜋𝐷𝑖1ℎ · · · ℎ𝐷𝑖𝑘 ℎ for 𝑛 ⩾ 1.

By lemma B.0.3, 𝑟 defines a morphism of multicomplexes. Since 𝑟0 is an isomor-
phism of cochain complexes, it follows from proposition 1.2.6 that 𝑟 is invertible. □

Remark B.0.4. The notions of being minimal, acyclic and trivial can be translated
into the more general setting of Koszul operads. Precise definitions and results
can be found in detail in [LV12, Chapter 10.4.2]. In particular, as is remarked
in [DSV15], theorem B.0.2 follows from an application of [LV12, Theorem 10.4.3]
to the operad D of dual numbers.

Example B.0.5. We consider the toy example where 𝑀 is the multicomplex

K K

K K

1

1
1

and compute the multicomplexes 𝐾 and𝐻 such that 𝑀 = 𝐾 ⊕𝐻. The acyclic trivial
multicomplex 𝐾 can be seen to be

0 K ⊕0

0 ⊕ K 0

(
0 1
0 0

)
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The transferred differentials are all trivial, except for 𝐷′
2 which is multiplication

by −1. (We computed this in example 2.2.2.) Thus, the minimal multicomplex 𝐻
looks as follows:

K 0

0 K

−1
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Appendix C Deformations of cochain complexes

If 𝑉 is a vector space over K, we define 𝑉J𝑡K := 𝑉 ⊗K KJ𝑡K. In other words, 𝑉J𝑡K
is the vector space of formal power series with coefficients in 𝑉 . Similarly, we
define 𝑉[𝑡] to be the vector space of polynomials with coefficients in 𝑉 . A formal
deformation of a cochain complex (𝑀, 𝐷0) is a KJ𝑡K-linear map 𝐷 : 𝑀J𝑡K → 𝑀J𝑡K
such that 𝐷2 = 0. In addition, we require that 𝐷 evaluated at 𝑡 = 0 is exactly the
underlying differential 𝐷0. One might think of such deformations as curves in the
"space" of cochain complexes passing through 𝑀 at 𝑡 = 0. We prove the following
theorem later in this section:

Theorem C.0.1. The category DfmK of formal deformations is equivalent to the
category MCK of multicomplexes.

Proposition C.0.2. If 𝑉 and𝑊 are vector spaces over K, then we have an isomor-
phism

HomKJ𝑡K(𝑉J𝑡K,𝑊J𝑡K) �
∏
𝑖⩾0

HomK(𝑉,𝑊).

Proof. Let 𝑓 : 𝑉J𝑡K →𝑊J𝑡K be a KJ𝑡K-linear map. For every 𝑣 in𝑉 , we can write 𝑓 (𝑣)
as a sum 𝑓 (𝑣) = 𝑤0 + 𝑤1𝑡 + 𝑤2𝑡

2 + · · · with coefficients 𝑤0, 𝑤1, . . . in 𝑊 . The
family ( 𝑓𝑖 : 𝑣 ↦→ 𝑤𝑖)𝑖⩾0 defines an element in

∏
𝑖⩾0 HomK(𝑉,𝑊). Conversely, given

a family of linear maps ( 𝑓𝑖)𝑖⩾0, we define 𝑓 : 𝑉J𝑡K → 𝑊J𝑡K to be the map given
by 𝑣 ↦→ 𝑓0(𝑣) + 𝑓1(𝑣)𝑡 + 𝑓2(𝑣)𝑡2 + · · · on 𝑉 . □

Let us introduce the notion of a differential vector space which is nothing more
than a non-graded analogue of (co)chain complexes of vector spaces. We will
introduce the appropriate grading before proving theorem C.0.1.

Definition C.0.3. A differential vector space (𝑉, 𝑑) consists of a vector space 𝑉
together with a square-zero linear map 𝑑 : 𝑉 → 𝑉 . A morphism of differential vector
spaces 𝑓 : (𝑉, 𝑑) → (𝑊, 𝑑′) is a linear map 𝑓 : 𝑉 →𝑊 which commutes with the
differentials.

Definition C.0.4. Let (𝑉, 𝑑) be a differential vector space. A (formal) deformation
of 𝑉 is a KJ𝑡K-linear map 𝐷 : 𝑉J𝑡K → 𝑉J𝑡K which satisfies

𝐷2 = 0 and 𝐷 ≡ 𝑑 (mod (𝑡)).

By proposition C.0.2, we can think of 𝐷 as a family of maps 𝐷0, 𝐷1, 𝐷2, . . . such
that 𝐷(𝑣) = 𝐷0(𝑣) + 𝐷1(𝑣)𝑡 + 𝐷2(𝑣)𝑡2 + · · ·. The condition 𝐷 ≡ 𝑑 (mod (𝑡)) then
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becomes equivalent to having 𝐷0 = 𝑑. The condition 𝐷2 = 0 can be written as
follows:

0 = 𝐷2(𝑣) = 𝐷

(∑
𝑟⩾0

𝐷𝑟(𝑣)𝑡𝑟
)
=

∑
𝑟⩾0

𝐷(𝐷𝑟(𝑣))𝑡𝑟 =
∑
𝑟⩾0

∑
𝑠⩾0

𝐷𝑠𝐷𝑟(𝑣)𝑡𝑟+𝑠 .

By comparing coefficients, we see that 𝐷2 = 0 if and only if

𝑛∑
𝑖=0

𝐷𝑖𝐷𝑛−𝑖 = 0 for all 𝑛 ⩾ 0. (13)

Let (𝑀, 𝐷0) be a cochain complex of graded vector spaces. To comply with our
grading convention, we equip 𝑀J𝑡K with the grading

𝑀J𝑡K𝑝,𝑞 := 𝑀𝑝,𝑞 · 1 ⊕ 𝑀𝑝+1,𝑞−1 · 𝑡 ⊕ · · · ⊕ 𝑀𝑝+𝑛,𝑞−𝑛 · 𝑡𝑛 ⊕ · · · .

That is, every homogeneous element of degree (𝑝, 𝑞) is of the form 𝑓 (𝑡) = ∑
𝑛⩾0 𝑐𝑛𝑡

𝑛

with 𝑐𝑛 ∈ 𝑀𝑝+𝑛,𝑞−𝑛 . In this case, where (𝑀, 𝐷0) is a cochain complex of graded
vector spaces, we define a (formal) deformation 𝐷 of 𝑀 to be a KJ𝑡K-linear map

𝐷 : 𝑀J𝑡K → 𝑀J𝑡K

of degree |𝐷 | = (0, 1) which satisfies the two conditions from definition C.0.4. In
this graded setting, we impose the same boundedness condition on 𝑀 as we did
with multicomplexes. That is, we require that for each 𝑛 there exists an integer 𝑠(𝑛)
such that 𝑀𝑝,𝑛−𝑝 = 0 whenever 𝑝 ⩾ 𝑠(𝑛). Note that this ensures that every formal
deformation 𝐷 is locally finite. We can visualise a deformation 𝐷 as follows:

𝑀J𝑡K𝑝,𝑞+1 𝑀𝑝,𝑞+1 · 1 𝑀𝑝+1,𝑞 · 𝑡 𝑀𝑝+2,𝑞−1 · 𝑡2 𝑀𝑝+3,𝑞−2 · 𝑡3 · · ·

· · ·

𝑀J𝑡K𝑝,𝑞 𝑀𝑝,𝑞 · 1 𝑀𝑝+1,𝑞−1 · 𝑡 𝑀𝑝+2,𝑞−2 · 𝑡2 𝑀𝑝+3,𝑞−3 · 𝑡3 · · ·

𝐷
𝐷1𝑡 𝐷2𝑡2 𝐷3𝑡3

𝐷0

Definition C.0.5. Let𝐷 and𝐷′ be deformations of (𝑉, 𝐷0) and (𝑊, 𝐷′
0) respectively.

1. A morphism 𝑓 : (𝑉, 𝐷) → (𝑊, 𝐷′) of deformations is the data of a KJ𝑡K-linear
map 𝑓 : 𝑉J𝑡K → 𝑊J𝑡K which satisfies 𝐷′ 𝑓 = 𝑓 𝐷. In the graded setting, we
require 𝑓 to have degree 0.

60



2. If 𝑔 : (𝑊, 𝐷′) → (𝑈, 𝐷′′) is a morphism of deformations, we define the
composition 𝑔 𝑓 : (𝑉, 𝐷) → (𝑈, 𝐷′′) by letting (𝑔 𝑓 )(𝑣) := 𝑔( 𝑓 (𝑣)).

Definition C.0.6. The category DfmK consists of objects (𝑀, 𝐷) where 𝐷 is a
deformation of (𝑀, 𝐷0) and with morphisms and composition defined as above.

Let (𝑀, 𝐷0) and (𝑁, 𝐷′
0) be cochain complexes of graded vector spaces and

let 𝑓 : (𝑀, 𝐷) → (𝑁, 𝐷′) be a morphism of deformations. By proposition C.0.2, 𝑓
consists of a family ( 𝑓𝑛)𝑛⩾0 of linear maps 𝑓𝑛 : 𝑀𝑝,𝑞 → 𝑁𝑝+𝑛,𝑞−𝑛 (the degrees of
these maps follow from our grading convention). Furthermore, by 𝐾J𝑡K-linearity,
the requirement 𝐷′ 𝑓 = 𝑓 𝐷 can be rewritten as∑

𝑛⩾0

∑
𝑝+𝑞=𝑛

𝑓𝑞𝐷𝑞 =
∑
𝑛⩾0

∑
𝑝+𝑞=𝑛

𝐷𝑝 𝑓𝑞 . (14)

Proof of Theorem C.0.1. Define the functor𝐹 : DfmK → MCK by (𝑀, 𝐷) ↦→ (𝑀, 𝐷•)
and 𝑓 ↦→ ( 𝑓𝑛)𝑛⩾0. That 𝐹(𝑀) is a multicomplex follows from eq. (13). By comparing
coefficients in eq. (14), we see that 𝐹( 𝑓 ) defines a morphism of multicomplexes.
An inverse 𝐺 : MCK → DfmK to 𝐹 is given by mapping a multicomplex (𝑀, 𝐷•)
to the deformation 𝐷 on (𝑀, 𝐷0) given by 𝐷(𝑣) = ∑

𝑛⩾0 𝐷𝑛(𝑣)𝑡𝑛 . On morphisms,
we let 𝐺( 𝑓 ) be the map defined by 𝐺( 𝑓 )(𝑣) :=

∑
𝑛⩾0 𝑓𝑛(𝑣)𝑡𝑛 . Again, by comparing

coefficients, one can easily see that the given definition of composition in DfmK

ensures that 𝐹 and 𝐺 are indeed functors. □

C.1 Finite order deformations

Replacing KJ𝑡K by the polynomial ring K[𝑡]/(𝑡𝑛+1) in definition C.0.4, we obtain
the notion of 𝑛-th order deformations. To simplify notation, let us write 𝑉[𝑡]/(𝑡𝑛+1)
for the vector space 𝑉 ⊗ K[𝑡]/(𝑡𝑛+1). We adopt the same grading convention as
before when considering deformations of cochain complexes of graded vector
spaces. We now describe the cases where 𝑛 = 0, 1, 2 for a fixed cochain complex of
graded vector spaces.

Example C.1.1 (𝑛 = 0). Since K[𝑡]/(𝑡) = K, a zeroth order deformation of (𝑀, 𝐷0)
is a map 𝐷 : 𝑀 → 𝑀 such that 𝐷(𝑥) = 𝐷0(𝑥) for all 𝑥 ∈ 𝑀. In other words, the
only zeroth order deformation of (𝑀, 𝐷0) is the constant one with 𝐷 = 𝐷0.

Example C.1.2 (𝑛 = 1). Suppose 𝐷 : 𝑀[𝑡]/(𝑡2) → 𝑀[𝑡]/(𝑡2) is a first order de-
formation of 𝑀. That is, for every 𝑥 in 𝑀 we can write 𝐷(𝑥) = 𝐷0(𝑥) + 𝐷1(𝑥)𝑡.
The condition 𝐷2 = 0 is equivalent to having 𝐷0𝐷0 = 0 and 𝐷0𝐷1 + 𝐷1𝐷0 = 0.
The first equation is always true of course. Thus, the first order deformations
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of (𝑀, 𝐷0) are in one-to-one correspondence with linear maps 𝐷1 : 𝑀 → 𝑀

satisfying 𝐷0𝐷1 + 𝐷1𝐷0 = 0. In other words (and symbols),

First order deformations of (𝑀, 𝐷0) �
∏
𝑝∈Z

HomCh K(𝑀𝑝,•, 𝑀𝑝+1,•).

Example C.1.3 (𝑛 = 2). Similarly to the previous example, second-order differen-
tials are determined by two linear maps 𝐷1 and 𝐷2 such that

0 = 𝐷0𝐷0 = 𝐷0𝐷1 + 𝐷1𝐷0 = 𝐷0𝐷2 + 𝐷1𝐷1 + 𝐷2𝐷0 = 𝐷1𝐷2 + 𝐷1𝐷2.

In the spirit of theorem C.0.1 we see that double complexes appear as the second
order deformations 𝐷 = 𝐷0 + 𝐷1𝑡 + 𝐷2𝑡

2 with 𝐷2 = 0 .
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