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Abstract: A Gap-based Measurement of Nonlinearity (GMoN) is proposed to set up a criterion for multi-model 

decomposition (MMD) of nonlinear systems. Then a self-balanced multi-model decomposition (SBMMD) 

approach based on GMoN is put forward for both SISO and MIMO nonlinear systems. Provided an initial value of 

the threshold and a step-length, a nonlinear system can be automatically partitioned into balanced subsystems: All 

the subregions have similar GMoNs that are approximated to the final threshold value. Based on the balanced 

model bank, a balanced multi-model model predictive control (BMMPC) is designed. SISO and MIMO nonlinear 

systems have been analyzed and synthesized by the proposed SBMMD and BMMPC. It is confirmed that the 

SBMMD results in a more balanced model bank than other methods. Closed-loop simulations illustrate that the 

BMMPC has improved closed-loop performance compared to multi-model model predictive controllers (MMPCs) 

based on less unbalanced model banks. The balanced decomposition helps the BMMPC to achieve consistently 

good performance in the whole wide operating space.
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1 Introduction 

Model predictive control (MPC) has been the most successful advanced control technology 

and has been widely applied in process control because it has superior performance to traditional 

control methods. Besides, MPC provides a convenient architecture for dealing with multivariable 

control. However, for a nonlinear chemical system with a wide operating range that exhibits 

strong nonlinearity, the control performance of a linear MPC controller may degrade. Although 

nonlinear MPC has been developed for years, it usually includes a nonlinear optimization problem 

which involves complex and heavy computation [1]. Moreover, it is difficult for control operators 

to implement a nonlinear MPC. In recent years, the multi-model predictive control method 

(MMPC), which integrates the merits of the multi-model control approach (MMCA) and MPC, 

has attracted much attention in controlling nonlinear chemical processes [1-9]. On one hand, the 

MMPC transforms a complex nonlinear control task into several classical linear ones; while on the 

other hand, both hard and soft constraints can be directly integrated into the goal function [9].

As well as the MMCA, the MMPC also includes multi-model decomposition (MMD), local 

controller design (LCD), and combination. MMD is the first and most important [10, 11]. 

Traditionally, there are mainly three kinds of multi-model decomposition methods [10]: 1) 

decomposition according to the physical elements, 2) decomposition according to the physical and 

chemical phenomena, and 3) decomposition according to the operating levels. However, these 

traditional methods have a common disadvantage: they are reliant on experience or previous 
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knowledge too much [12], making the MMD of a nonlinear system complicated and unsystematic, 

as the acquisition of experience and previous knowledge may be complicated.

In the past ten years, some systematic decomposition methods have been put forward to 

enhance efficiency [1, 11-18]. Especially the gap metric, which was used to quantify the distance 

of two linear systems [19, 20], has been employed to decompose a nonlinear system into 

subsystems. For example, Galan et al. [11] made use of the gap metric to get a simplified model 

set for approximating a nonlinear system. Tan et al. [13] made an extension to Galan’s method 

and proposed a decomposition method which connected the selection of sub-models to the H  

loop shaping local controller design. Hosseini et al. [14] developed a multiple-model-set 

identification method based on the H-gap metric. Du et al. [15] proposed a method to determine 

the minimal number of linear sub-models for approximating a nonlinear system based on the gap 

metric. Later in 2013, Du et al.[12] extended their method to MIMO nonlinear systems and 

developed an MMD method based on gap metric. In 2014, the gap metric and the stability 

margin were employed to perform the MMD and LCD simultaneously, and later the idea was 

extended to MMPC of MIMO nonlinear systems [1]. In 2017, the gap metric was used to 

formulate a control-relevant nonlinearity measure (CRNM) method, and an integrated MMCA 

based on CRNM was proposed, in which local controllers were designed during the division of 

the nonlinear systems [17]. In [18], a state-space partition method integrated with an optimal 

control method proposed for hybrid nonlinear systems. And some researchers have introduced 

the network theory into control field and proposed some systematical decomposition methods for 

large-scale complex processes. For example, in [19], Daoutidis et al. proposed a systematical 

decomposition method based on community detection. They analyzed the interaction among 

variables (inputs, states, and outputs) and constraints, partitioned the variables and constraints 

into groups, and decompose the processes into subsystems. And then distributed MPC is 

designed based on the subsystems for the large-scale systems. A distributed MPC based on 

community detection decomposition reduces the computational time and has fewer 

communication requirements, and good resilience to faults [20]. Later in [21], they proposed a 

systematic method to decompose the integrated scheduling and dynamic optimization problem 

using the community detection. And the resulted optimization can be solved faster than the 

original monolithic complex problem. In [22], Zavala et al. proposed an overlapping Schwarz 

decomposition method for network systems or systems that can be modeled by Graph. The 

method has better convergence performance than alternating direction method of multipliers and 

Jacobi/Gauss-Seidel for some types of systems [23].

The above methods made improvement on the traditional methods. Dependency on 

experience and previous knowledge was reduced, and the efficiency of decomposition was raised. 

Besides, the closed-loop performance was improved because of better local model selection. 

However, there still exist some drawbacks in the above MMD methods. For example, the 

community detection decomposition methods and overlapping Schwarz decomposition method 

are designed for large-scale processes with lots of variables and constraints but a limited 

operating range. Based on these decompositions, decentralized control is employed. Here in our 

work, we focus on the nonlinear systems with a wide operating range, for which MMCA is 

employed to design a controller. For the above gap-metric-based methods, either a definite 

threshold value is necessary [11-15, 18] or local controller design is involved in the MMD 

process [16-18]. When local controller design is involved, the decomposition process becomes 



complex as tuning of a controller’s parameters is not trivial. If the MMD needs a definite 

threshold value, repetitive trials and tests are needed before a proper threshold value is obtained, 

which makes the MMD complicated and less efficient. Besides, there is no criterion to test 

whether the decomposition result is good or bad before an open-loop model validation (OLMV) 

[12, 14, 15] or a closed-loop control simulation (CLCS) [11, 13, 16-18] is made. However, 

neither the OLMV nor the CLCS is trivial. What’s more, these tests are done afterward. If the 

decomposition is not satisfactory, the decomposition process has to be done at least once again, 

which makes the division process rather complex. In addition to these drawbacks, there is one 

more disadvantage in the existent MMD methods. It is that the division is unbalanced some 

subregions are too narrow and others are too wide. In other words, the nonlinearity of the 

considered system in some subregions is much bigger than in others. These shortcomings may 

have a bad influence on the subsequent local and global controller design. Since the nonlinear 

system in different subregions has different degrees of nonlinearity, the local controllers usually 

have different performances in dynamics, stability and robustness. After weighted summation, 

the resulted multi-model controller may have an unbalanced performance in different subregions. 

That is to say, in some operating levels, the multi-model controller (MMC) performs well, while 

in other operating levels the MMC performs not well. Therefore, making the nonlinear system in 

each subregion has similar nonlinearity (defined according to a certain criterion) is important for 

improving the closed-loop control performance of a multi-model controller.

To overcome the above mentioned drawbacks, the following goals are taken into 

consideration when performing the MMD of a nonlinear system for the first time in this work:  

(1) To set up a criterion, i.e. the GMoN, for MMD using the gap metric. (2) To further simplify 

the MMD process and make the MMD process as automatic as possible. (3) To make the 

decomposition as balanced as possible in terms of the criterion. Therefore, a self-balanced 

multi-model decomposition (SBMMD) method is put forward in this work. Different from the 

existent MMD methods, in the proposed SBMMD method, a proper threshold value can be found 

via iteration and the multi-model partition of a nonlinear system can be done almost 

automatically. Especially, a criterion based on the GMoN for decomposition is set up, so that 

local models are obtained according to the same criterion, and a balanced decomposition can be 

obtained automatically. Thus a balanced linear model bank is acquired and local MPCs are 

designed on basis of them. The balanced model bank will help to improve the closed-loop 

performance of the global multi-model controller. Because the balanced model bank helps to 

make the local controllers perform similarly, thus their combination can have consistent 

closed-loop performance in the whole operating space. Several nonlinear systems are analyzed 

and synthesized to demonstrate that the proposed methods are effective and helpful.

This paper is organized as follows. Section 2 introduces a measurement of nonlinearity 

based on gap metric, i.e., GMoN (gap-based measurement of nonlinearity) for short. In Section 3, 

an SBMMD method is proposed via two algorithms for SISO and MIMO nonlinear systems, 

respectively. Several nonlinear systems are investigated to illustrate the SBMMD method. In 

Section 4, a BMMPC method is developed based on the proposed balanced decomposition in 

Section 3. In Section 5, closed-loop simulations are present to demonstrate the usefulness and 

effectiveness of the SBMMD and BMMPC, and in Section 6 conclusions are made.

2 Gap metric and GMoN



In this section, the gap metric theory is briefly reviewed and a measurement of nonlinearity 

based on it is proposed in order to set up a criterion for MMD.

2.1 Gap metric

The gap metric between two linear systems P1 and P2 with their normalized right coprime 

factorizations:  and is defined by (1). Details can be found in [24, 25].1
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two directed gaps, and they can be computed by solving two H  optimization problems [25].

The gap metric has a list of merits [11, 13]. First of all, the value of the gap metric is within 

[0, 1], making it more intuitive and suitable than a norm-based metric [25]. Secondly, the gap 

metric is helpful for system analysis and synthesis. When the gap metric between two systems is 

near one, it is difficult to design a linear controller to stabilize them both. Otherwise, when the gap 

is near zero, the two systems have similar dynamics and a linear controller can be found for them 

both. As a result of these properties, the gap metric is employed to define a criterion for MMD in 

the following. 

2.2 Gap-Metric-based Measurement of Nonlinearity (GMoN)

Measurement of nonlinearity, i.e., to measure the nonlinearity degree of a nonlinear system, 

also called nonlinearity measure, is an important concept in nonlinear control systems [26-39]. In 

this work, a GMoN method based on the merits of the gap metric is proposed to set up a criterion 

for MMD for nonlinear systems. For interpreting the concept clearly, the GMoN is defined for 

SISO and MIMO systems separately.

2.2.1 GMoN for SISO nonlinear systems

Consider the nonlinear system represented in (2):

                              (2)
= ( )
=

where x, u, y are the state, control input, and the output variables, respectively.  is the scheduling 

variable(s), and f ( ), g ( ) are nonlinear functions that are differentiable.

Suppose (2) is a SISO nonlinear system in this subsection. Its scheduling variable  is 

chosen according to the principles in [40]. Then the system is gridded by the gap-metric-based 

dichotomy algorithm [12]. Assume n gridding points (GPs)  = [ 1, 2, i …, n] are obtained. 

Then each GP is a steady-state point (SSP) of the system (2). The SSP for i is (x0( i) u0( i) 

y0( i)) := (x0i, u0i, y0i). Then system (2) is linearized and discretized around (x0i, u0i, y0i) with 

sampling interval Ts. The linearized and discretized model Gi is described by:

        i = 1, …, n       (3)  
( + 1) = ( ) + ( )

( ) = ( ) +

where  denotes the state variable;  ( ) = , = , 

; Ai, Bi, Ci, and Di are the linearized and discretized matrix of Gi around (x0i, u0i, =

y0i) of nonlinear system (2) .

Compute the gap metric between every pair of the n linearized models, such that a matrix 

 is acquired. Then the best local linear model (BLLM) G*
 among the n linearized = [ ] ×

models Gi (i = 1, 2, 3, …, n) is selected according to the mix-max principle [17] in (4):



  (4)* = { : 1 ( 1 ( , ))}

The maximal one of the n gap metrics between G* and the n models is defined as the 

gap-based measurement of nonlinearity (GMoN) in the region:

(5)GMoN ( * ) = 1 ( * , )

The above is the definition of the GMoN for SISO nonlinear systems. In the subsequent, the 

GMoN for MIMO systems will be defined.

2.2.2 GMoN for MIMO nonlinear systems

Computation of the GMoN of a MIMO nonlinear system that has multiple scheduling 

variables is much more complicated than a SISO nonlinear system with a single scheduling 

variable. In this subsection, MIMO nonlinear systems with two scheduling variables are 

investigated to illustrate the definition and computation of the GMoN of MIMO systems. Systems 

with more scheduling variables are under research.

In this section, suppose (2) is a MIMO nonlinear system with two scheduling variables  and 

. Let the gridding result be  = [ 1, 2, …, m]  = [ 1, 2, …, n] after gridding using the 

method from [12]. As illustrated in Figure 1, each combination ( i, j) relates to only one SSP in 

the operating range. Define a subsystem G( i, j) around ( i, j) by linearizing the nonlinear 

system (2), where G( i, j) is shorted as G(i, j) for simplicity of notation, i=1,2,…,m, j=1,2,…,n. 

Hence, there are a total of  linearized models. Then calculate the gap metric of every pair ×

of models and a four-dimensional gap metric matrix  is obtained.= [ ] × × ×
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Figure 1. The definition and computation of GMoN for MIMO systems 

As illustrated in Figure 1, suppose the area in the red rectangle is the considered operating 

region. The initial point is ( i0, j0) and the final point is ( i, j). Every combination of i0

i0+1, …, i and j0, j0+1, …, j corresponds to a linearized model. Thus there are a total of (i-i0+1)

(j-j0+1) linearized models in this operating region. Find out the maximal gap related to every 

linearized model in the matrix . For instance, as to the model , (  ) ( 0   ,  0    

define the maximal gap corresponding to G(z, l) as follows:

 (6)
0

0

( )



Thus  is the maximal gap related to model . Then for the (i-i0+1) (j-j0+1)  (  )

linearized models, a max-gap-matrix,  is obtained, and the best local [ ]
( 0 + 1) × ( 0 + 1)

linear model (BLLM) G*
 of this region (i.e., the area in the red rectangle) is selected in the 

following sense:

    (7)= { ( ): = min (min ( ))}

Then the GMoN of the nonlinear system in this operating region is:

 (8)GMoN min (min ( ))

Eqs. (7) and (8) are the definition and computation of the GMoN for a MIMO nonlinear 

system that has two scheduling variables. 

It is noted that the definition and computation of the GMoN is directly related to the 

operating region of the considered nonlinear system. Therefore, once the GMoN of a nonlinear 

system is to be calculated, the operating space should be defined. So it can be called the GMoN of 

the region. As the GMoN is computed based on the BLLM, we also call “the GMoN of the BLLM” 

for simplicity of statement in the following sections. The nonlinearity degree of nonlinear systems 

with more scheduling variables can be measured in the same way with more computational effort. 

According to the implication of the gap metric, if the GMoN of a nonlinear system is bigger than 

0.6, it usually means the system exhibits strong nonlinearity and a linear controller is insufficient 

for it [12].

With the definition and computation of the GMoN, a self-balanced MMD method will be put 

forward for both SISO and MIMO nonlinear systems in Section 3.

3 Self-balanced multi-model decomposition

In this work, a self-balanced decomposition method is proposed using the GMoN as a 

measuring tool to avoid the drawbacks involved in the current gap-based multi-model 

decomposition reviewed in Section 1. The detailed method is summarized into two algorithms for 

SISO and MIMO nonlinear systems, respectively.

3.1 SBMMD Algorithm for SISO nonlinear systems

For a SISO nonlinear system, n linearized models Gi (i = 1, 2,…, n) are set up as in (3) after 

gridding, linearization, and discretization before a gap-matrix  is computed. Then the [ ] ×

self-balanced decomposition algorithm for SISO systems is summarized in Algorithm1.

Algorithm 1: SBMMD for SISO nonlinear systems

S1. Choose an initial value 0 and a step-length .

S2.Set  = 0 and  = 1.

S3. Set i = 1 and m = 0.

S4. If i  n, let j = i and m = m + 1, and go to S5. Otherwise jump to S12.

S5. Choose the BLLM G* in accordance with (9).

 (9){ :min (max ( ( , )))}

S6. Compute the GMoN of the BLLM according to (10).

(10)( ( , ))
S7. If , set j = j + 1 and return to S5. GMoN

S8. Otherwise if , Set j = –  j 1.GMoN >

S9. Update the BLLM using (9).

S10. The BLLM G* is noted as P , and its grid point is noted as OP . Put P  into Queue 

pQ , and OP  into Queue opQ



S11. Let i = j + 1, and return to S4.

S12. If  > 1 and m  > m  - 1, go to S14. Otherwise, go to S13.

S13. Let  =  –  and  =  + 1. And return to S3.

S14. The self-balanced decomposition is completed. The final threshold value is  =  + . 

The nonlinear system is partitioned into m -1 local models, with the local models pQ -1 and 

operating points opQ 1.

Remark 1:  is threshold value of decomposition. Its initial value 0 can be chosen around 

0.6 according to our experience.

Remark 2:  can be chosen between 0.001 and 0.01.

Remark 3:  is the number of iterations and m  is number of sub-models in the th iteration.

Remark 4: From S7-S9 in Algorithm 1, it can be seen that the GMoN is used as the division 

criterion. Only when the GMoN of the operating area is near to, but smaller than, the threshold 

value, the operating area is wide enough to be a subregion. Therefore, it is guaranteed that each 

subregion has a similar GMoN. This is the key to get a balanced decomposition.

Remark 5: In S12-S13, the selection of a proper threshold value is realized through the 

iterative procedure. Once the number of sub-models increases in comparison with the previous 

decomposition, it means the newly added local model has a rather smaller GMoN than others. 

Therefore, it is not balanced, so the algorithm will go back to the previous decomposition. The 

previous decomposition is then the best and balanced one regarding the GMoN.

Since the decomposition is done by using the GMoN as the partition criterion, the nonlinear 

system is decomposed while the decomposition result is tested in terms of the GMoN. Therefore, 

the MMD of a nonlinear system is simplified and improved. When the local models have similar 

GMoNs, it is expected that the local controllers have similar performance. Furthermore, it helps to 

make the multi-model controller have consistent (stability and robustness) performance in the 

whole operating level. 

In the next section, the proposed Algorithm 1 will be applied to two SISO nonlinear systems 

to illustrate its effectiveness.

3.2 SISO Case studies

In this section, two different continuous stirred tank reactor (CSTR) systems are modeled by 

the self-balanced decomposition method, and comparisons have been made with other 

decomposition methods.

3.2.1 An exothermic CSTR (eCSTR)

Consider an eCSTR, where an irreversible, first-order reaction takes place [11]. The 

nonlinear dynamics of the eCSTR process are in (11):

    (11)

 

1 = 1 + (1 - 1)exp
2

1 + 2
                           

2 = 2 + (1 - 1)exp
2

1 + 2
+ ( 2)

= 2                                                                                   

where the state x1 is the dimensionless reagent conversion; the state x2 is reactor temperature; and 

the input u is the coolant temperature. All the variables are dimensionless. The values of the 

parameters in (11) are Da = 0.072,  = 20, B = 8, and  = 0.3. 

As seen in Figure 2, the eCSTR exhibits strong output multiplicity. y is selected as the 



scheduling variable as it reflects the system’s nonlinearity, where  is the entire { | [0,6)}

operating range. Applying the gridding algorithm [12] to the eCSTR, 58 GPs are resulted to grid 

the eCSTR process, as shown in Figure 2. 
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Figure 2. Gridding result of the eCSTR with 58 GPs

For the 58 GPs, 58 linearized models are built and the  gap-matrix is computed. 58 × 58

Then P10 is chosen as the BLLM according to (4) and the GMoN according to (5) is:

 GMoN ( 10) = 0.7971

Since , the eCSTR is strongly nonlinear, and a linear controller is insufficient 0.7971 > 0.5

in the whole operating space. Applying the proposed balanced multi-model decomposition method, 

Algorithm 1with 0 =0.6 and  = 0.01, to the eCSTR system, the partition result is in Table 1 with 

the final threshold value as  = 0.52. The eCSTR system is decomposed into three submodels. 

Three submodels are the best for multi-model control of the eCSTR system considering both 

control performance and computational effort [16,17].

Table 1 Self-balanced multi-model decomposition of the eCSTR 

Subregion 1st 2nd 3rd 

Linearized models 1 17 18 42 43 58

Operating point of BLLM 

([x1, x2]’, u) 

11st 

([0.1809,1.1875]’, 

0.3214)

22nd

([0.6183,3.6875]’, 

-0.509)

50th 

([0.755,4.625]’, 

-0.0907)

Subrange 0  y <1.5625 1.5625 CA <4.125 4.125  CA <6

GMoN 0.5054 0.5180 0.5112

Table 1 is interpreted as follows: the 1st to 17th grid points are classified into the 1st subregion; 

the operating point (OP) for the 1st subregion is the 11th GP: ([x1, x2]’, u) = ([0.1809, 1.1875]’, 

0.3214); and the operating space of the 1st subregion is {y|0  y < 1.5625}.  The GMoN of the 1st 

subregion is GMoN1 = 0.5054. The 18th to 42nd grid points belong to the 2nd subregion with the 

22nd grid point ([x1, x2]’, u) = ([0.6183, 3.6875]’, -0.509) as its OP, the subrange is {y |1.5625  y 

< 4.125}, and GMoN2 = 0.5180. The 3rd subregion includes the linearized models 43-58; and the 



OP is ([x1, x2]’, u) = ([0.755, 4.625]’, -0.0907); and it covers the space {y |4.125  y <6}, and 

GMoN3 = 0.5112. We note that the three subregions have similar values of the GMoN, and the 

decomposition is balanced in terms of the GMoN. 

The matrices for the BLLMs are listed as follows:

, , , ,A1 =
1.2209    0.1612

1.7670   0.0104 B1 =
0

0.3 C1 = [1 0]  D1 = [0]

, , , ,A2 =
2.6199    0.4408

12.9592    2.2263 B2 =
0

0.3 C2 = [1 0]  D2 = [0]

, , , .A3 =
4.0810    0.4980

24.6480    2.6840 B3 =
0

0.3 C3 = [1 0]  D3 = [0]

In subsequent sections, local MPCs are designed using these parameters.

For comparison, the GMoNs of the local regions of the same eCSTR process in [15] are 

computed: GMoN1 = 0.5610; GMoN2 = 0.5922; GMoN3 = 0.3610.

The GMoNs of the subregions of eCSTR process in [17] can be found in Table 13 in [17]. 

They are: GMoN1=0.6780; GMoN2=0.4332; GMoN3=0.5249.

It is clearly seen that the decomposition in Table 1 is the most balanced for the eCSTR 

process in terms of the GMoN. All of the 3 subregions have similar GMoNs approximating the 

final threshold of 0.52. However, GMoN3 of the 3rd subregion in [15] is much smaller than the 

other two, and also smaller than the threshold value of 0.6. In [17], the eCSTR is partitioned using 

an integrated MMD algorithm. The GMoNs are less balanced, too.

3.2.2 An isothermal CSTR (iCSTR)

Consider an iCSTR, where a first-order irreversible reaction takes place [13]. The system is 

described by (12).

 (12)
A

= A + ( A A)

where CA, u are the state and input, respectively, and the constants are CAi = 1.0 and kr = 0.028 

min .

It has been pointed out that the iCSTR is strongly nonlinear [17] as seen from the static 

equilibrium curve which has an almost 90-degree change in the output direction. Here the GMoN 

is applied to the iCSTR to measure its nonlinearity.

First of all, the iCSTR process is gridded via the dichotomy method [12] and 19 GPs is 

obtained as shown in Figure 3. Then the iCSTR system is linearized and discretized around the 19 

gridding points and 19 linearized models are acquired. Calculating the gap-matrix and getting the 

BLLM model, the GMoN is obtained as follows.
GMoN ( 10) = 0.7551

Since , a linear control is unable to control the iCSTR in the entire operating 0.7551 > 0.5

region. Applying Algorithm 1 to the iCSTR with 0 = 0.6 and  = 0.01, the decomposition result is 

in Table 2 with . If 0 = 0.5 is used instead of 0.6, the decomposition result is the same as = 0.46

in Table 2. Therefore, the SBMMD algorithm is not sensitive to the initial value of the threshold.



0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

Figure 3. Gridding of iCSTR with 19 GPs 

Table 2 Self-balanced multi-model decomposition of the iCSTR 

Subregion 1st 2nd

Linearized models 1 9 10 19

Operating point of BLLM (CA, u) 
5th

(0.6187, 0.0454)

14th

(0.8817, 0.2087)

Subrange 0 CA <0.804 0.804 CA <1

GMoN 0.4536 0.4439

As is shown in Table 2, the iCSTR system is decomposed into two submodels. Two 

submodels are the best for multi-model control of the iCSTR system considering both control 

performance and computational effort [16,17].

The decomposition in Table 2 is balanced as the two local models have similar GMoNs that 

are close to the final threshold of 0.46. The state-space model matrices for the BLLMs are listed as 

follows:

, , , ,A1 = 0.0734 B1 = 0.3813 C1 = 1  D1 = 0

, , , .A2 = 0.2367 B2 = 0.1183 C2 = 1  D2 = 0

For comparison, the GMoNs of the local regions in [15] are shown here.

GMoN1 = 0.5902;  GMoN2 = 0.2985;

And in [17], the GMoNs of the two local regions are:

GMoN1 = 0.6527;  GMoN2 = 0.1785;

Therefore, the decomposition in Table 2 is the most balanced of the three. Besides, the 

proposed decomposition is carried out almost automatically while the other methods may need 

repetitive tuning of parameters or re-decomposition several times before a satisfactory result is 

obtained. Moreover no OLMV/CLCS tests are needed afterward since the proposed self-balanced 

decomposition using the GMoN as a criterion during the decomposition process.

Simulations in section 5 will demonstrate that the balanced decomposition helps to improve 

the closed-loop performance and make our BMMPC has consistent performance in the whole 

operating space.



3.3 Algorithm for MIMO nonlinear systems with two scheduling variables

A total of  linearized models are built after gridding, linearization, and discretization ×

for a MIMO system with two scheduling variables  and , where a four-dimensional matrix 

 is computed. Then the SBMMD for MIMO systems is summarized in [ ] × × ×

Algorithm 2.

Algorithm 2: SBMMD for MIMO nonlinear systems

Sm1. Select an initial distance level 0 and a step-length 

Sm2. Let  = 0 and  = 1.
Sm3. Let i0 = 1, j0 = 1, m  = 0, , and 0vflag .0hflag

Sm4. Set i = i0, j = j0, G0 = G(i0, j0),

Sm5. For , set , and go to Sm6. Otherwise jump to Sm12.  = +1

i

j
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Figure 4. SBMMD for MIMO nonlinear systems

Sm6. Horizontal direction: Let i = i + 1, and the crossover GPs in the dotted line in Figure 4 

is added into the current subregion. Then there are a total of (i-i0+1) (j-j0+1) GPs for all of the 

combination of i0 i0+1, …, i, and j0, j0+1, …, j. Choose the BLLM G* according to (7) and 

compute the GMoN according to (8).

If , let i = i – 1.>

If , or , let .> mi 1hflag

Sm7. (1) If  and , jump to Sm8.0hflag 0vflag

(2) If 0hflag  and , jump to Sm6.1vflag

(3) If  and 0vflag , jump to Sm8.1hflag

(4) If  and 1vflag , jump to Sm10.1hflag

Sm8. Vertical direction: Let j = j + 1, and the (i-i0+1) (j-j0+1) crossover GPs in the dashed 

line in Figure 4 are moved into the current subregion. Choose the BLLM G* according to (7) and 

compute the GMoN according to (8).

If , let . > j = j 1

If  or , let .> j > 1vflag



Sm9. (1) If 0hflag  and 0vflag , jump to Sm6.

(2) If 0hflag  and 1vflag , jump to Sm6.

(3) If 1hflag  and 0vflag , jump to Sm8.

(4) If 1hflag  and 1vflag , jump to Sm10.

Sm10. The BLLM G* is denoted as P , and its GP is denoted as OP . Put P  into Queue 

pQ , and OP  into Queue opQ
Sm11. Select a new beginning point, a vertex of the previous subregions. Set 0hflag  and 

0vflag , and go back to Sm4.

Sm12. If  > 1 and m  > m  - 1, go to Sm14. Otherwise, go to Sm13.

Sm13. Set =  and  =  + 1, and return to Sm4.   

Sm14. The self-balanced decomposition is completed. Finally = . The nonlinear    +  

system is partion into m -1 subsystems. And model bank is pQ -1 and operating points are opQ 1.

Remark 6: Note that the horizontal division is done first whenever it is possible. Only when 

the horizontal division is done, the vertical division is started.

Remark 7: Note that in our method, the subregions are rectangles for the simplicity of the 

MMD algorithm and the regularity of the shapes of the subreigons.

Remark 8: From the above description, it is clear that the main features of the proposed 

SBMMD lie in two aspects. (1)Use the GMoN as a criterion, and make each local subregion have 

similar values of the GMoN. Thus a balanced partition is resulting. Therefore, lack of partition 

criterion, result test after decomposition, and unbalanced decomposition are avoided. (2)Use an 

iterative procedure to get a proper threshold value for partition, so an initial threshold and a 

step-length are enough. Repetitive trials and complex parameter tuning are then avoided. In short, 

the drawbacks of the current decomposition methods are reduced.

3.4 An MIMO CSTR process

Consider a constant volume mCSTR cooled by a single coolant stream, where an 

irreversible, exothermic reaction, A B, takes place [1]. Its mathematical model is given in (13).

    (13)
( ) = [ 0 - ( )] - 0 ( )

- ( )                                                            

( ) = [ 0 - ( )] + 1 ( )
- ( ) + 2 ( ) 1 -

-
3

( )
[ 0 - ( )]

The input variables of the system are q and qc, and the output variables are CA and T. The 

parameters in (13) are given in [1]. The ranges of the variables are [95,150], [60,110], 

.A [0.02, 0.15], and [430,490]

It is pointed out in [1] that the mCSTR operates in a wide range and a linear controller is 

insufficient for it in the entire operating range. Therefore, the proposed GMoN will be applied to 

the mCSTR process to compute its nonlinearity level, and the self-balanced decomposition 

Algorithm 2 will be employed to partition it into linear local models. Then MMPC is designed 

based on the models in Section 5.

For the mCSTR system, the pair (q, qc) captures the system’s nonlinearity at equilibrium. 

Thus q and qc are chosen as scheduling variables. Using the dichotomy method [12], the gridding 

results of the mCSTR process are shown in Figure 5 and Figure 6. The GPs in q direction are 33 

GPs, and in qc direction there are 24 GPs.
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Figure 6. Gridding of mCSTR (T) 

Based on the gridding result, the GMoN of the mCSTR system is computed according to (7) 

and (8).

GMoN = 0.6917

Since it is larger than 0.6, this mCSTR process exhibits strong nonlinearity. We apply the 

proposed Algorithm 2 to this mCSTR with 0 = 0.6 and step-length  = 0.01. The decomposition 

is shown in Figure 7. Details of the decomposition are summarized in Table 3. The mCSTR 

system is decomposed into three submodels. Three submodels are the best for multi-model control 

of the mCSTR system considering both control performance and computational effort [1, 12].

Table 3 Self-balanced multi-model decomposition of the mCSTR with final threshold  = 0.5

Subregion 1st 2nd 3rd 

Linearized models 
H:1 18

V:1 17

H:18 33

V: 1 24

H:1 18

V: 17 24



Operating point 

of BLLM (CA, T, q, qc) 

OP1 (11,10)

(0.09658,438.47

95.895,100)

OP2 (18,12)

 (0.092869,440.48,

101.88,102.5)

OP3 (9,18)

(0.126,432.67, 

95.215,106.25 )

Subrange
95  < 101.9
60  < 105.6

101.9  < 150
60  < 105.6

95  < 101.9
105.6  < 110

GMoN 0.4800 0.4985 0.4458[0.4897]

In Table 3, “H: 1 18”means, in the horizontal direction, i.e. the 1st-18th gridding points of q. 

And “V: 1 17”means, in the vertical direction, i.e. the 1st-17th gridding points of qc. The other 

contexts in Table 3 are interpreted similarly as Table 1. The systematic matrixes of three BLLMs 

are omitted for brevity.
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104.5(21)

Figure 7. Self-balanced decomposition result of the mCSTR process

In the self-balanced decomposition Algorithm 2, first subregion I is produced, then subregion 

II, and finally subregion III. Subregion III includes: H: 1 21, V: 17 24, and the corresponding 

GMoN is 0.4897. There is an overlap between subregion III and subregion II. So subregion III is 

adjusted manually to make each subregion distinct rectangle. The area covered by the dotted line 

in subregion II. MIMO nonlinear systems are much more complex than SISO nonlinear systems, 

and manual operations might be needed to aid the decomposition.  

For comparison, the GMoNs of the local regions in [12] are GMoN1=0.3688, 

GMoN2=0.4215, GMoN3=0.4624, and in [1] they are GMoN1=0.4800, GMoN2=0.4985, 

GMoN3=0.3200.

Thus it can be seen that the decomposition in Table 3 is the most balanced. Moreover, the 

proposed decomposition is the simplest to implement since no repetitive tests of the threshold 

value or CLCS / OLMV tests are involved as a result of the use of GMoN.

3.5 A five-state MIMO non-isothermal biochemical reactor (fCSTR)

Consider a five-state MIMO control of a non-isothermal biochemical reactor [41-42]. Its 

mathematical model is given in (14).



    (14)

1

= 01 - ( 01 + 1) 1 -
0

4 2
2 1 

+ 1
                                                  

2

 =  02 - ( 01 + 1) 2                                                                              

3

= -( 01 + 1) 3 +
0

4 2
2 1 

+ 1
                                                              

4

= [ 01 01 ( 01 + 1) 4] ( 4 5) +
0

4 2
2 1 

+ 1

5

= 2( 02 5) + ( 4 5)                                                      

= [ 3      4]                                                                                                             

The constants in Eq.(14) are given in [41-42]. The states are x1, x2, x3, x4, x5; the inputs are u1, 

u2; and the outputs are x3, x4 (y1 = x3, y2 = x4). The inputs capture the system’s nonlinearity at 

equilibrium and they are chosen as scheduling variables.

Applying the dichotomy method [12] to the fCSTR process, the gridding results are shown 

in Figure 8 and Figure 9. The GPs in u1 direction are 54 GPs, and in u2 direction there are 6 GPs.
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Based on the gridding result, the GMoN of the fCSTR system is computed according to (7) 

and (8).

GMoN = 0.9785

Since it is larger than 0.6, we apply the proposed Algorithm 2 to this fCSTR with 0 = 0.6 

and step-length  = 0.01. The decomposition is shown in Figure 10. Details of the decomposition 

are summarized in Table 4.
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Figure 10. Self-balanced decomposition result of the fCSTR process

Table 4 Self-balanced multi-model decomposition of the fCSTR with final threshold  = 0.55

Subregion 1st 2nd 3rd 

Linearized models 
H:1 15

V:1 6

H:16 35

V: 1 6

H:36 47

V: 1 6

Operating point 

of BLLM (x,u) 

OP1 (5,1)

([9.6, 0.21, 4.2, 301.73,

301.65]’, [0.003; 0.1])

OP2 (23,5)

 ([0.76,0.69,11.2,313.9,

313.6]’, [0.0098;0.2])

OP3 (43,5)

([0.42,1.0,11.4,307.6

307.2]’, [0.015;0.4] )



Subrange
0.002 1 < 0.0075

0.1 2 < 0.5
0.0075 1 < 0.012

0.1 2 < 0.5
0.012 1 < 0.016

0.1 2 < 0.5

GMoN 0.5458 0.5369 0.5278

As can be seen in Table 4, the decomposition of the fCSTR system is balanced with respect 

to GMoN. If the MMD methods in [12] [1] are used to decompose the fCSTR process, we also get 

three subregions. And the GMoNs are: GMoN1=0.4277, GMoN2=0.4365, GMoN3=0.5212, and 

GMoN1=0.5436 GMoN2=0.5471, GMoN3=0.4213.

3.6 Discussion

To eliminate the drawbacks in the current methods and obtain a balanced model bank, a 

self-balanced multi-model decomposition method is proposed for both SISO and MIMO nonlinear 

systems. Two SISO systems and two MIMO systems have been investigated using the proposed 

SBMMD and compared to some former gap-based decomposition methods. It is illustrated that the 

proposed method can be implemented comparatively more easily with less tuning and the 

decomposition result is more balanced in terms of GMoN. Besides, reliance on prior knowledge 

has been decreased as a result of the iterative mechanism, and the balanced decomposition results 

are evident during the decomposition process as the GMoN is used as a division criterion. What is 

more, the division process is implemented almost automatically. 

In the next sections, BMMPCs will be designed based on the balanced decomposition results, 

and closed-loop control simulations will show how the balanced decomposition improves the 

closed-loop performance.

4. BMMPC for nonlinear systems

In this work, the MMPC is designed based on the balanced decomposition and it is thus 

denoted as the balanced MMPC (BMMPC) method to differentiate from other MMPC methods.

4.1 Local MPC design 

After self-balanced multi-model decomposition, a linear model bank is set up with m local 

linear models Pj (j = 1, 2, …, m) to approximate nonlinear system (2). The state-space model of Pj 

is represented by (15).

,  j = 1, 2, …, m   (15)  
( + 1) = ( ) + ( )

( ) = ( ) +

where  is the state; ; Aj, Bj, Cj, = , = , =

and Dj are the linearized and discretized state-space model matrices of Pj around the jth steady 

state point (x0j,u0j, y0j) of system (2) .

A local MPC is designed based on (15) using the following objective function [1]: 

   (16)=
= 1

( + ) +
2

+
1

= 0
+ 2

subject to  

         (17)min ,max

min max

where Qj and Rj denote weighting matrices; Nyj and Nuj denote prediction and control horizons; and 

denotes the reference, j = 1, 2… m. These parameters will be tuned to satisfy the local stability  

and control performance requirements.



Solving the Quadratic Programming (QP) problem [43] formed by (14)-(16) using the QP 

solver in MATLAB, the solution at time instant k is obtained, which guarantees the closed-loop 

stability of local linear system Pi [43]: 

 (18)( ) = ( 1) + ( )

Thus, the control input of MPCj is acquired as in (18).

(19)( ) = ( ) +

4.2 Controller combination of BMMPC

To combine the local MPCs (designed using the balanced models) into a MMPC, namely a 

BMMPC, the weighting method from [44] is employed here.

At time instant k, the scheduling variable is marked as k; the equilibrium point 

corresponding to k is ; and the linearized model of the nonlinear system (2) about , , )

 is noted as Pk. Then at time instant k, the weight for MPCj is computed by (20)., , )

,  j = 1,…, m.         (20)( ) =
(1 , ))

(1 , ))

where  is the gap between Pk and the jth local linear system Pj;  is a tuning , ) 1

parameter; and the summation of the m weights is equal to 1.

Then the BMMPC’s output is computed by (21).

 (21)( ) = ( )

The structure of the proposed BMMPC for nonlinear systems is shown in Figure 11. The 

BMMPC will be implemented to the three CSTRs to illustrate the effectiveness of the proposed 

methods in Section 5.
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Figure 11. BMMPC for nonlinear systems based on the GMoN

5 Simulations

Case 1: The eCSTR process

For the eCSTR process, based on the balanced decomposition result obtained by Algorithm 1, 

three local linear MPCs are tuned separately to satisfy the stability and control performance.  
Namely, Qj, Rj, Nyj, Nuj are selected separately. Then after combination according to Eqs.(19) and 

(20), a BMMPC, denoted as BMMPC1, is obtained for closed-loop simulation in Figure 12. Where 

y1 is the eCSTR system’s output under the proposed BMMPC1, with the control input u1. For 

comparison, two other MMPCs are designed with the same tuning parameters as BMMPC1. 

MMPC2 is designed based on the decomposition from [17], which is a less balanced division. Its 

output and input are denoted as y2 and u2, respectively, in Figure 12. MMPC3 uses the 



decomposition result from [15], which is also a less balanced division, with its output and input 

denoted as y3 and u3 in Figure 12.

The closed-loop performance of the three MMPCs can be clearly seen in Figure 12. As a 

whole, the three MMPCs all perform well, especially for the middle stages. However, at the first 

stage, MMPC3 is not as accurate as others. At the last stage, both MMPC2 and MMPC3 react to the 

change of reference signal slowly while the proposed BMMPC1 is faster and more accurately. In 

order to differentiate the three MMPCs more precisely, their Integrated Absolute Error (IAE) 

values are calculated: IAE1 = 31.2131(for BMMPC1) and IAE2 = 38.9297(for MMPC2), IAE3 = 

39.7322(for MMPC3). The values of the MPC objective functions are: J1 = 22555; J2 = 23517; J3 

= 24231. Hence, BMMPC1 based on a balanced decomposition is better than MMPC2 and 

MMPC3 based on unbalanced model banks. The balanced model bank helps improve the 

closed-loop performance of an MMPC. 
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Figure 12. Closed-loop performance of eCSTR under 3 MMPCs

Case 2. The iCSTR process

For the iCSTR system, a BMMPC (BMMPC1) is designed based on the balanced 

decomposition result with its input u1 and output Ca1, where the local parameters Qj, Rj, Nyj, Nuj 

are chosen with different values to maximize the control performance. Another MMPC (MMPC2) 

is designed using the decomposition in [15] to make a comparison. The input and output of iCSTR 

under are denoted as u2 and Ca2. A third MMPC (MMPC3) is designed using the decomposition in 

[17] with u3 and Ca3. MMPC2 and MMPC3 are designed with the same tuning parameters as 

BMMPC1

The set-point tracking control responses are shown in Figure 13. As a whole, the three 

MMPCs perform well in the entire operating region: the outputs track the reference fast and 

accurately. With detailed observation, it is seen that Ca3 has bigger overshoots when the set-point 



changes; and during the lower and higher operating levels at the last two stages, BMMPC1 is 

faster than MMPC2 and MMPC3. So the unbalanced MMPCs perform well during the middle 

operating level, but degrade when the set-point goes away from the middle operating level. The 

IAE values of the MMPCs for iCSTR are given to show the difference among the MMPCs. IAE1 

= 0.6771 (for BMMPC1), IAE2 = 2.0876 (for MMPC2) and IAE3 = 1.9023 (for MMPC3). The 

values of the objective functions are: J1 = 93.76; J2 = 100.91; J3 = 156.56. Thus these values 

confirm that the proposed BMMPC is better than common MMPCs.

For this example, it can be concluded that the balanced decomposition makes the local 

controllers have similar performance and further makes the BMMPC have consistently good 

performance. However, for MMPC2 and MMPC3, as the local controllers have quite different 

performance, after combination, the unbalanced MMPCs perform well in some operating region 

while badly in other operating region. Hence the balanced division of the nonlinear system is 

helpful for MMPC of a nonlinear system.
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Figure 13. Closed-loop responses of iCSTR under 3 MMPCs

Case 3. The mCSTR process

In comparison with [12] and [1], the mCSTR system is also decomposed into three 

subregions, but more balanced, since the three subregions have similar GMoN values. Based on 

the balanced model bank in Table 3, three linear MPCs are designed and combined into a 

BMMPC1 for set-point tracking control (see Figures 14-15). For the three linear MPCs, the 

control parameters Qj, Rj, Nyj, Nuj are tuned separately to satisfy the control requirements. The 

outputs of the mCSTR under BMMPC1 are denoted as CA1 and T1, and the inputs are q1 and qc1. 

For comparison, two other MMPCs are designed with the same parameters as BMMPC1. 

MMPC2 is designed based on the division result from [12], for set-point tracking control with 

outputs CA2, T2 and inputs q2, qc2. MMPC3 is designed based on the division result from [1] with 



outputs CA3, T3 and inputs q3, qc3.
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Figure 14. Closed-loop outputs of mCSTR under three MMPCs

Overall, the three MMPCs perform well: tracking the outputs quickly and precisely. After 

close observation, it is seen that CA1 and T1 are more accurate than those of the other two MMPCs, 

although MMPC2 and MMPC3 are slightly faster than BMMPC1 around time = 25min and time = 

50min. On the other hand, BMMPC1 performs much better than the other two at the beginning of 

the simulation. Using the normalized IAE [12], the IAEs of the three MMPCs can be computed: 

IAE1=7.3901, IAE2=9.3589, IAE3= 9.3034. The values of the objective functions are: J1 = [19325; 

311862]; J2 = [19531; 354825]; J3 = [19524; 382325]. Therefore, the proposed BMMPC has 

consistent performance as the balanced decomposition helps improve the closed-loop 

performances.
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Figure 15. Closed-loop inputs of mCSTR under three MMPCs

Case 4. The fCSTR process

Based on the balanced model bank in Table 4, three linear MPCs are designed and combined 

into a BMMPC1 for set-point tracking control (Figures 16-17). The control parameters of the three 

linear MPCs, Qj, Rj, Nyj, Nuj are tuned separately to satisfy the control requirements. The outputs 

of the fCSTR under BMMPC1 are denoted as y11 and y12, and the inputs are u11 and u12. For 

comparison, a nonlinear MPC (NPMC)[45] is designed for set-point tracking control with outputs 

y21, y22 and inputs u21, u22, where the SQP method is used to solve the NMPC problem.

As seen in Figures 16-17, the two pairs of outputs track the set-point signals closely, and the 

two controllers perform both well. However, the BMMPC is slightly faster than the NMPC. 

Besides, y21 and y22 have bigger overshoots than y11 and y12. Using the normalized IAE [12], the 

IAEs are computed: IAE1=11.5073, IAE2=23.8775. The values of the objective functions are: J1 = 

[365812; 58235]; J2 = [373882; 620696]. For the fCSTR system, the reason that the proposed 

BMMPC outperforms the NMPC is partly because the BMMPC is designed based on the balanced 

decomposition and its local MPCs are tuned separately, and partly because the QP solver in the 

MMPC finds the optimal solutions while the SQP may find the suboptimal solutions. 
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6 Conclusions

MMD is an important element for MMPC of nonlinear systems and the MMD result has a 



direct influence on the closed-loop performance. An SBMMD method is proposed based on the 

GMoN for both SISO and MIMO nonlinear systems. Thus a nonlinear system can be partitioned 

into multiple balanced linear sub-models easily without complicated, repetitive parameter tuning. 

The subregions all have smaller GMoNs than the whole region. The decomposition reduces the 

nonlinearity of the subregions, and thus simplifies the local controller design. Besides, the 

balanced decomposition helps make the local controller have more similar performance and 

further improves the closed-loop performance of BMMPC. Four CSTR processes are investigated 

to illustrate the use of the SBMMD and the implementation of the BMMPC. Closed-loop 

simulations demonstrate that the resulted BMMPC has better and more consistent performance 

than common MMPCs. However, when the considered system has three or more scheduling 

variables, the application of the proposed SBMMD will involve much more complicated 

computation. Therefore, improvement of the SBMMD for systems with more than two scheduling 

variables is still under study. Besides, the closed-loop stability of the multi-model approach should 

be further study to get the appropriate number of local models that can guarantee the nonlinear 

system’s stability.
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