
Received November 29, 2021, accepted December 26, 2021, date of publication December 30, 2021,
date of current version January 12, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3139767

Electronic Navigational Charts for Visualization,
Simulation, and Autonomous Ship Control
SIMON BLINDHEIM , (Member, IEEE), AND TOR ARNE JOHANSEN , (Senior Member, IEEE)
Centre for Autonomous Marine Operations and Systems, Department of Engineering Cybernetics, Norwegian University of Science and Technology (NTNU),
7491 Trondheim, Norway

Corresponding author: Simon Blindheim (simon.blindheim@ntnu.no)

This work was supported in part by the Online Risk Management and Risk Control for Autonomous Ships (ORCAS) Project funded by the
Research Council of Norway under Grant 280655, and in part by the Kongsberg Maritime, Det Norske Veritas (DNV), and the Centre for
Autonomous Marine Operations and Systems (AMOS) at NTNU funded by the Research Council of Norway under Grant 223254.

ABSTRACT Autonomous control and high-level decision-making for autonomous ships in complex
environments are largely dependent on real-time navigational data from sensory systems and nautical
charts. Visualization and manipulation of data contained within electronic navigational charts (ENC) or
hydro/geographic information systems (HIS/GIS) is generally handled on the application or operations
level. However, accessible and open-source application programming interfaces (API) for displaying and
managing spatial bathymetry or other related sea-faring data for research and development are scarce. This
work presents an open-source ENC visualization and manipulation API implemented in Python, with heavy
emphasis on accessibility and simplicity. The current version of the package provides tools for displaying
marine polygon data such as ships, ocean depths, reefs, and shallows, using the transverse Mercator
projection. Additionally, polygon- and point-based transformation and calculation methods for application
development based on spatial geometry, path planning and numerical optimal control are implemented.
Usage of the spatial methods are demonstrated by examples involving high-level path or trajectory planning,
optimization, and assisted decision-making for autonomous and remote-controlled ships.

INDEX TERMS Autonomous ships, bathymetry, decision-making, electronic navigational charts
(ENC), geographic information systems (GIS), maps, maritime systems, nautical charts, optimal
control, path planning, polygon data, risk management, sea charts, simulation, trajectory planning,
2D visualization.

I. INTRODUCTION
Electronic navigational charts (ENC) have today become the
digital standard to replace printed navigational charts. Such
formats allow for a range of possibilities with regards to
data handling. However, the task of efficiently showing and
manipulating ENC data has arguably become more challeng-
ing with increased data sizes and degrees of freedom, and
solutions are largely developed on a case-to-case basis. More
specifically, open application programming interfaces (API)
for public use are scarce. Given the limited resources for
polygon-based maritime environments available today, it is
apparent that there is a need for an open-source ENC API for
future research and software development efforts.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen .

A. LITERATURE REVIEW
Active development of increasingly more advanced ENC
has been steadily moving forward, since the emergence
of digitally stored bathymetry data and specifications of
international exchange standards for hydrographic data were
formulated [1]. There are several objectives associated with
the use of ENC; applications related to pure visualization
for navigation purposes, geometric calculations and spatial
data operations, automatic control and decision support for
manned or unmanned operations such as anti-grounding and
obstacle avoidance, safety or risk analysis, and route or
path planning. However, there seems to be a lack of open
API which sufficiently provide necessary and/or convenient
tools for research and development of such systems. Though
recent works have been carried out to specify and solidify
forms of systematization, standardization and classification
of ENC [2]–[5], API solutions for both visualization and

3716 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-9958-2845
https://orcid.org/0000-0001-9440-5989
https://orcid.org/0000-0002-3945-4363


S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

direct spatial ENC data manipulation are still limited. The
following sections present an analysis of some of the relevant
resources available in the literature today.

1) VISUALIZATION
Norms and standards for visualization of two-dimensional
(2D) bathymetry data has been consistent with practices used
for printed navigational charts, and numerous applications
have emerged for various areas, such as pure visualization
of ENC data [6]–[8], radar display imaging [9], [10], three-
dimensional (3D) visualization of bathymetry data [11]–[13],
and even endeavors on virtual or augmented reality [14], [15].
However, visualization of spatial data is merely a tool for
evaluation and affirmation within research and development
on applications for autonomous decision-making or decision
support. Thus, the development of such stand-alone user
applications or API is not sufficient for research and
development within this area, and variations of such solutions
are consequently not considered in this work.

2) DATA EXTRACTION
In order to be able to utilize environment data for autonomous
navigation, it is necessary to make the intrinsic spatial data
contained within the ENC accessible for external applications
through a programmable software interface, in addition
to simultaneous environment visualization and information
display. ENC may as such be utilized as direct data inputs for
active decision support systems [16], and may be formulated
as a vector-based architecture [17] given a spatial point- or
polygon-based database from e.g. surveys [18], [19].

3) PATH PLANNING
Decision support systems using operational parameters
related to mission objectives and spatial hydrographic ENC
data are mainly concerned with path or trajectory planning in
a maritime environment. Path planning in accordance with
mission objectives is a known problem, and as such there
exists a rich collection of research on efficient path planning
for autonomous or unmanned surface vehicles (ASV / USV),
such as long-distance mission planning [20], dynamic or
adaptive re-planning [21], [22], control based on objective
optimization and vector fields [23]–[27], and optimal paths
using the established A* algorithm [28]–[30].

It is noted that path planning in the context of maritime
operations in itself is only a tool commonly used to achieve
higher levels of autonomy. As such, path planning for
this purpose is combined with (sub-)systems for situational
awareness (i.e. structured spatial data and prediction or
simulation capabilities) based on ENC as well as sensor
data, to be used in schemes for decision-making and risk
analysis. However, the results of this research indicate some
of the functionality required of an adequate ENC API. It is
important that objective optimization is facilitated by making
relevant ENC data available to the algorithm, such as depth
values and distance calculations. Moreover, the prevalent
prominence of methods based on vector fields suggests that

it is desirable to include a sufficient range of vector-based
methods in the ENC API, as well as to preserve the ability
for scalable resolutions of the data sets loaded by the system.
If methods based on raster images or spatial grids is used
for decision-making, such grids may be directly constructed
by interpolation between coordinate points through sampling
along the spatial axes.

4) AUTONOMOUS NAVIGATION, RISK & SAFETY
The overarching main objective of autonomous navigation
systems (ANS) or decision support systems is to increase
maritime safety [31], [32] as well as efficiency, with respect
to risks and/or expected cost analyses. Additionally, effective
visualization of important risk factors for humans involved
both during the design, planning and operational phases of
maritime navigation is an integral part in achieving this
goal, further highlighting the need for practical and flexible
ENC API for the purpose of additional information overlay
visualization. Moreover, risk analysis and risk management
of (semi-) autonomous vessels are of increased importance
with the development of unmanned operations [33], [34].
With higher levels of autonomy, the requirements for data
quality and performance demanded by the involved decision-
making systems increase significantly, and as such must be
provided by the underlying ENC API.

5) AUTONOMOUS OBSTACLE & COLLISION AVOIDANCE
Path planning and autonomous obstacle or collision avoid-
ance for complex maritime environments remains a challeng-
ing problem [35]. In order to further advance ANS algorithms
for ASV, decision-making should include considerations
related to environmental disturbances, identification and
dynamic or adaptive planning with respect to static and
dynamic obstacles, COLREG compliance, and utilization of
vessel safety domains [36]. These systems must be highly
flexible and robust, and be able to handle both long-term and
short-term (reactive) planning for obstacle avoidance based
on reliable information, i.e. sensors and detailed bathymetric
ENC data constructed as polygons [37], [38].

Recent example applications include traffic monitoring
with respect to collision detection and risk assessment [39],
obstacle tracking and reactive collision avoidance based on
sensor fusion [40], and the development of adaptive safety
domains for identification of grounding risks [41] and colli-
sion avoidance during vessel interactions (COLREG) [42].
Thus, it is clear that the demand for open and accessible
ENC software and resources for real-time simultaneous
visualization and efficient computation of hydrographic data
is evermore increasing.

6) CURRENT AVAILABLE API SOLUTIONS
In general, web searches for ENC or hydrographical API
yield few relevant results, and there currently exists only
a handful of ENC API today. Moreover, most of these are
proprietary or closed-source, making it exceedingly difficult
to identify individual resources suitable for feature-by-feature

VOLUME 10, 2022 3717



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

comparison between these, general desired API capabil-
ities, and the solution presented in this paper. Due to
this fundamental lack of accessibility and transparency,
such alternatives are inherently considered inadequate for
open research and development. The available open-source
software for ocean mapping is currently varying in quality
and functionality, and no single API is identified as an all-in-
one solution [43].

Pydro [44] is identified as the most promising candidate
solution supporting the International Hydrographic Oraniza-
tion S-57 standard [45]. However, Pydro is not strictly a
pure API for Python programming, but a suite of software
tools built for hydrography and cartography. The software
is focused on enhancing and automating the hydrographic
workflow from data acquisition to hydrographic survey
review and nautical chart compilation [46] which leaves
the work of visualization and high-level data abstraction
to the researcher. Additionally, the application is currently
only supported in Windows, and may not be repackaged or
redistributed due to license restrictions. These are significant
constraints with respect to open research and development,
and Pydro is as such considered unsuitable for this purpose.

The conclusion of the literature review is thus that no
truly open-source API packages or ENC solutions for open
research and development currently exists.

B. PROBLEM & CONTRIBUTION
Unambiguously structured and visualized spatial data are
needed for clear interpretation and efficient computation
in autonomous ENC-based maritime navigation. This work
addresses the research question: How can the research and
development process for autonomous control and decision-
making of autonomous and remote-controlled ships be
improved and made more efficient for future works? It is
proposed that an open-source Python-based API may serve
as a framework and/or a valuable support tool for further
development of hydrographic information systems (HIS),
simulation or control algorithms for ANS based on ENC.

Thus, the purpose of this paper is to provide an
open and user-friendly API package intended for fast and
easy prototyping during software development such that
researchers more quickly may get to work on development
on (autonomous) navigation systems, rather than spending
time on writing basic GIS functionality such as polygon
manipulation or simply displaying a maritime environment.
The package is focused on ease of use and fast prototyping
capabilities through high-level spatial computation of poly-
gon data and flexible visualization methods, and may play
a part in facilitating more productive and targeted research
on the topic of autonomous ships, by allowing the researcher
to concentrate more on other aspects than application
programming of a baseline simulation environment for
testing purposes. Intelligent design of the ENC package may
also lead to significant improvements to computation speeds
for dynamic path planning and simulation.

TABLE 1. Class diagram of the main SeaCharts ENC module in Python.

An overview of the contributions included in the proposed
API is listed in Section II, and shown as implemented class
instance methods in Table 1.

C. SCOPE
Only 2D visualization is considered, in accordance with the
goal of a simple and comprehensible interface. As marine
environments inherently are concerned with depth-related
data and representations, the core objective is thus to visualize
objects and ocean depth through the use of distinctly colored
2D shapes. Moreover, all given coordinates are projected
onto a locally flat plane via the Universal Transverse
Mercator (UTM) coordinate system, subsequently allowing
all polygon or other shape-based operations performed by
the application to assume a flat 2D plane. Significant efforts
in this work are targeted toward the development of clear
and uncomplicated methods for straightforward geometric

3718 VOLUME 10, 2022



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

polygon manipulation and operations for spatial depth data
sets, such as polygon simplification, intersections, unions,
dilution, erosion, convex hulls, and distance and bounding
box calculations. Finally, several example algorithms are
defined and discussed in order to showcase usage of the
implemented methods of the ENC API package, within the
fields of autonomous path planning, collision avoidance, and
online risk management.

D. INSTALLATION & USAGE
Python is chosen as the preferred programming language
for the development of an open-source API for elegant
visualization and straightforward manipulation of spatial
data, given its design philosophywith regard to its readability,
object oriented structure and readily available libraries for
management of GIS resources.

The package is given the name SeaCharts, and may be
installed through the Python Package Index (PyPI) [47] by
executing the command pip install seacharts, making it
readily available through the standard import statements in
Python files within an environment. Interested readers may
find maintained links to the SeaCharts homepage, source
code repository, documentation and usage instructions at
pypi.org/project/seacharts.

E. DESIGN & STRUCTURE
Table 1 presents a class diagram of the main class ENC to
be instantiated by the user, from which all other processes
are initiated. An instance of this main class serves as a
single-point interface, which is initialized by arranging and
encapsulating polygonal features extracted from external Esri
File Geodatabase (FGDB) files as local shapefiles [48].
These files are subsequently read and fed into a private
environment variable containing all available data com-
putation methods, accessed by the user through the top-
level hypsometry attributes (land, shore, seabed) and direct
utilization of geometric operations provided by the Shapely
library [49].

The display variable may if desired be utilized through
the provided class methods to display user-selected spatial
features produced by the environment variable, serially or
in parallel with data computations performed by a possible
third-party navigation or optimization program. Users of the
SeaCharts package are advised to refer to its Readme file
in the maintained repository for detailed usage instructions.
The following sections nevertheless provide an overview of
the currently available API methods and functionality, while
leaving most of the programming-related details to the code
documentation.

II. METHODS
This section presents the main contributions of this work.
The initialization and creation of an ENC interface instance
is firstly described by its data extraction, polygon handling
and feature extraction processes, followed by demonstrations

of most of the user methods available in the API package as
seen in Table 1, at the time of writing.

The constructor of the ENC class is denoted at the top
of the third compartment. Its input arguments are used
during initialization, and will be thoroughly discussed in
Sections II-A, II-B and II-C. Built-in Python types are
denoted in bold.

The methods related to the display are summarized as fol-
lows: The display utility methods, namely the show_display,
refresh_display, close_display and save_image, are used to
show and save images from the interactive display during run-
time. Additional visual configuration settings are available
through the colorbar, dark_mode and fullscreen_mode
methods.

Next, methods for adding (drawing and maintaining
references to) vessels and a controllable interactive ownship
with toggleable hazardous areas within a given horizon are
included through the methods add_vessels, clear_vessels,
add_ownship, remove_ownship and add_hazards.

Lastly, opaque or transparent geometric shape overlays
may be drawn onto the displayed environment through
the draw-methods at the bottom of Table 1. Note that the
draw_polygon method may in general be used to draw any
polygon-based shape, the rest are provided for convenience.

A. DATA EXTRACTION
The API is initialized through the creation of the single
ENC instance, which reads and stores geometric shapes for
both future offline re-reading and dynamic shape handling
during runtime. This section illustrates how the API handles
the data during this initialization process, based on any
combination of the class constructor arguments of Table 1.
For all remaining figures in this paper, the border argument is
set to True in order to produce an encompassing black border
around the image edges, and the multiprocessing variable
is set to False such that environment plotting is dependent
on the running demonstration applications. The verbose
argument may if desired be toggled on for the purpose of
information printing in the terminal during runtime.

The SeaCharts package supports loading and reading
spatial data structured in the FGDB 10.0 format. For
demonstration purposes, the open-source ENC data used
in this work is downloaded from the Norwegian Mapping
Authority, which contains 2D ENC polygons of the coast of
Norway projected in EUREF89 UTM zone 33N. However,
any region of the world may be read and extracted as an ENC,
provided a properly structured FGDB for the area in question
is available.

At the time of writing, the depth data files for Norway
may be downloaded as a whole or divided into specific county
areas. These files are to be placed in a specific folder relative
to the working directory of the Python application such that
the Data module may reach it, as detailed in the SeaCharts
package Readme. Processing of the downloaded FGDB files
is performed during startup when the application is first run,
or if the user has explicitly requested a manual data extraction

VOLUME 10, 2022 3719

https://pypi.org/project/seacharts/


S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

FIGURE 1. Data extraction window hierarchy of the SeaCharts package.

during a subsequent run by setting the new_data argument
value equal to True. During this process, the polygonal or
point data files specified by the files argument (a list of
file names) are loaded into memory and spatially filtered
given a user-specified bounding box calculated from the size
and origin (or center) arguments, as well as the depth bin
groups defined by the depth argument (see Section II-B). The
specified data is subsequently written to shapefiles and stored
in memory for direct access during runtime.

Figure 1 presents a visualization of the intended data
extraction window hierarchy of the SeaCharts package. The
figure shows an example view of the Norwegian counties
Møre og Romsdal and Trøndelagmerged together. The black
border is the abstraction of any (digital) ENC downloaded
or constructed for any given region of the world, and may
contain one or several specific regions of spatial data such
as e.g. countries or municipalities. Next, the yellow rectangle
represents an arbitrary region of extracted depth data from
the downloaded ENC in black, stored as shapefiles on the
system’s hard drive, as well as being available through
the corresponding top-level hypsometry layers of the ENC
class instance. This region may be considerably smaller than
the initial raw data sets, and contains only the optimized
features (Section II-B) selected by the user during the initial
FGDB file extraction phase. The orange rectangle shows
the shape handling subregion or area for which specific
polygon- or point-based computations may be performed
during runtime, e.g. to extract and merge all depth layers
deeper than ten meters in order to construct a (binary) sea-
faring domain feasible for any particular ship. Lastly, the
red rectangle represents a dynamic horizon subregion of
the orange area, which may be used by some external path
planning, collision avoidance, or simulation algorithm. This
area is intended to be dynamic during external algorithm
cycles and e.g. follow the ship(s) in question during a voyage,

such that appropriate domains may be extracted and/or scaled
for feasible optimization or planning given some real-time
requirements and mission objectives. Note that both the
shape handling and dynamic horizon regions may be freely
constructed as any arbitrary polygon based on the application
for which the API is used, and may if desired simply be
identical.

In addition to selecting subregions of spatial data (even
across data set boundaries such as e.g. county borders),
the package explicitly specifies and selects each desired
spatial features or layers to be extracted from the data sets
during initialization through the layers argument containing
a list of valid layer names. If the user of the API is e.g.
only concerned specifically with the seabed depth polygons
included in the depth data set, all other features like docks
or other marine structures are disregarded and filtered out
from the constructed shapefiles. The resulting shapefile data
set read by the application after the initial startup thus only
contains requested data, which allows for faster performance
for dynamic filtering and spatial computing during runtime.
Additional polygonal data optimization or simplifications are
further described in the following sections.

B. POLYGON OPTIMIZATION
Downloaded depth data sets are generally large, and regularly
contain suboptimal numbers of additional polygons due
to region splits produced by some mapping algorithm
or e.g. county boundaries. Thus, the SeaCharts package
performs various standard GIS simplification procedures on
the raw data in order to speed up runtime calculations and
visualization, unless the raw_data argument is set to True.
This process is included and described in this work for
completeness, such that users of the package may become
familiar with common GIS techniques in the context of the
provided API functionality for research and development.

1) POLYGON MERGING
Figure 2 shows a SeaCharts visualization of the raw
polygon data extracted from the downloaded FGDB files
surrounding the Norwegian city of Ålesund (with raw_data
=True), in which polygon edges are white for demonstration
purposes. It is clear that the depth data polygon regions are
divided into orthogonally adjacent subrectangles, creating
situations in which there exists more than one polygon
for any single disjoint body of land, shore, or seabed
depth. In addition to the increased computational complexity
introduced by this data structure, such redundant polygon
definitions may also produce unexpected, undesirable or
potentially incorrect results when performing numerical
spatial operations, e.g. irregularities where only half an island
is included for path planning purposes due to excluded
polygon areas which are not properly intersected with a
dynamic extraction window. Calculation performance during
runtime may thus be increased significantly by merging or
calculating the unions of all orthogonally adjacent polygons

3720 VOLUME 10, 2022



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

FIGURE 2. SeaCharts visualization of raw downloaded polygon data with
depth bins of 5, 10, 20, 50, 100, 200, 350 and 500 m.

with depth data within the same depth bins present in the
extracted data sets.

Figure 3 presents the result after performing the Shapely
operation unary_union on the region from Figure 2. Notice
how the polygons of large areas across the white rectangular
divisions have been merged together, such that no continuous
regions of the same depths are split. Each seabed polygon is
constructed such that it fully envelops any and all polygons
with depths deeper than its depth value, that it might contain.
Thus, the total area of all polygons of depths between e.g.
5 m and 10 m will consequently be larger than the total
area of all seabed layers deeper than 10 m. Note that this
behavior is specific to the SeaCharts package, and is chosen
as such with the purpose of intuitive alternative views during
visualization - e.g. to toggle off deeper depth layers such
that the remaining encompassing and more shallow layers
are still complete. All land polygons are however entirely
contained within the complete set of shore polygons, for the
analogous inverse reason. This layer structure facilitates an
intuitive and effortless lookup interface with respect to the
fundamental question of identifying which areas are safe,
hazardous or simply impassable for any given ship to navigate
within. If e.g. the maximum draft of a ship is 5 m, it is thus
straightforward to simply extract the full seabed layer of e.g.
7 m including an additional safety depth margin.

In addition to the merged regional shapes, there are fewer
different values of depth polygons shown in the resulting
environment in Figure 3 compared to the original downloaded
data in Figure 2 due to the user-specified depth bins,
i.e. ranges for which each depth measurement is grouped
and separated by, through the depths argument list of
integers. This feature may serve as another flexible layer of

FIGURE 3. Polygon merging with depth bins of 10, 50, 100, 200, 300 m.

data management for further computation optimization, e.g.
by disregarding depth range resolutions outside the scope
of a path planning problem. In Figure 3, depths of 5 m,
20 m and deeper than 300 m were disregarded, such that the
deeper Sulafjorden regions shown in dark blue in the bottom
are consolidated into a region of a larger range of depth
values. Notice however how the different resolutions present
in the original raw data may produce polygon artifacts at the
boundaries between the resolution partitions, e.g. along the
southern coast of the Sula island/peninsula, marked by a red
rectangle: The gradually deeper depth contours in Figure 2
reveals a noticeable resolution discrepancy edge where two
depth bins are merged into one. These unavoidable artifacts
emerge from the use of several different spatial resolutions in
the downloaded data set, and should be treated with care.

2) POLYGON SIMPLIFICATION
The next step of the polygon optimization process is to
simplify the topology of the polygon edges and vertices. This
operation is provided by the Shapely method simplify, which
removes vertices and edges from the polygon that are within
the distance defined by the optional tolerance initialization
argument. The resulting polygon may have a significantly
reduced number of vertices, and consequently may reduce the
time complexity of the spatial algorithms performed on the
polygon data significantly. Moreover, the geometric shapes
may be further simplified by buffering (dilating or eroding)
all polygons by providing the optional buffer argument.
Figure 4 presents an oversimplification example of the

same Ålesund fjord area from the previous section, show-
casing why the simplification of the polygons must be
performed with care. If the tolerance distance is too large,
the polygons may become significantly distorted and thus

VOLUME 10, 2022 3721



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

FIGURE 4. Polygon simplification example with a tolerance of 300 m.

no longer sufficiently represent the real-life obstacles in the
environment.

Additionally, oversimplification may lead to some artifact
regions not being covered by a depth polygon (as seen in
white). These areas inherently have no ocean depth data
associated with them, introducing irregularities and holes
in the spatial data which are not easily fixed. Thus, the
tolerance distance given to the simplification method is
during the rest of this work set to be smaller than the
width of the ship used for demonstration purposes, such
that the topology of any polygon is guaranteed to be of the
same or a higher resolution than the ship navigating the
environment. This facilitates faster computation on shapes
with lower counts of vertices and edges, while simultaneously
keeping the resolution within reasonable bounds for the
example applications demonstrated later in this paper. Lastly,
the Shapely method simplify also provides the option
preserve_topology, and is in this work set to true in order
to avoid polygonal deformation.

C. FEATURE SELECTION
In this section, the data extraction hierarchy mentioned in
Section II-A will be discussed in more detail. By selecting
specific regions for the extraction of depth data (the yellow
rectangle of Figure 1), the package may filter out any
unnecessary regions from the full ENC data set, such that only
the points and polygons of the area of interest are constructed
and stored as local shapefiles. An example extraction view
of such an area is presented in Figure 5, showing a
square region of Ålesund smaller than the region presented
in Figures 2, 3 and 4.

Next, one may isolate an even smaller shape handling
subregion (in Figure 5 shown as the white square defined
by some coordinates provided by the user) after reading the

FIGURE 5. Bounded shape handling and dynamic horizon example.

shapefiles to memory during runtime, and perform spatial
operations on these points or polygons. Furthermore, if the
package is used by e.g. an ANS, it may construct another
artificial extraction window or dynamic horizon polygon
defined by e.g. the pink disk as in Figure 5, or any other
shapes like rectangles or general polygons. This dynamic
region may subsequently be utilized to isolate all features of
interest within the horizon such as e.g. grounding obstacles or
nearby vessels for collision avoidance efforts, using methods
provided by the SeaCharts package or the Shapely library
directly.

The white square is intersected with all of the data points
located within it, effectively filtering out all features not
inside the rotated square. Here, the polygon merging and
seabed range consolidation methods (i.e. the user-specified
depth ranges from Section II-B) may be used as a filtering
technique to extract ‘‘safe’’ or feasible sea-faring regions for
any ship, given user-specified parameters such as a minimum
allowed seabed depth e.g. based on the maximum draft of the
ship in question. For this purpose, the seabed polygon layer
of e.g. 10 m contains any region of the processed data sets
that are deeper than 10 m, by construction.
Inversely, all areas of insufficient depths may be calculated

by taking the spatial difference (Shapely) between the white
square polygon and the seabed layer, yielding the inverted
shallower areas in red within which all depths are less than
10 m. Thus, both the dark green and lighter green land
and shore polygons, as well as all seabed depths down to
10 m, are merged together and shown as red polygons in this
example. The exterior boundary of the horizon disk around
the ship of Figure 5 has an excessively small radius of 1 km,
for demonstration purposes only. The interior of the disk is
calculated by performing the Shapely operation intersection
on the horizon disk polygon and the red polygons, resulting
in the isolated pink overlay separated from the red.

3722 VOLUME 10, 2022



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

FIGURE 6. Inverted bounded minimum depth region transformation.

An important detail to note in this example is how the
selection of the 10 m seabed effectively closes off both of
the narrow straits between the individual islands of Ålesund,
northwest and northeast of the vessel. This is indeed the
expected and desired result, given that both passages are not
continuously deeper than the selected seabed layer. As such,
appropriate depth bins or depth filters must be selected
with care and thorough consideration, based on the possible
consequences for any given navigation application.

D. BOUNDED DEPTH REGIONS
Extracted regions of arbitrary shape may be transformed into
non-convex or convex regions for path or trajectory planning
algorithms, by intersecting the polygon of a bounded region
– like e.g. a rectangular view window – with any polygon of
interest within it.

Figure 6 demonstrates a variation of such an application,
based on the white square region from Figure 5. A new single
polygon is constructed by the traversable open water area
around the ship within the square with depths deeper than
10 m, using the Shapely methods mentioned in Section II-C.
The problem is thus inverted from being based on an
open environment with many land polygons, into utilizing
a closed environment consisting of a single ocean polygon
with islands represented as its inner holes. This transformed
topology is inherently finite and bounded by its construction,
and may be more feasible for use in autonomous navigation
or path planning algorithms. Several overlapping or joined
sets of these smaller bounded areas may subsequently be
used to calculate subpaths from intermediate points along
a larger route, possibly yielding significantly faster solver
performances than global techniques.

This inverted topology may furthermore be used to
facilitate methods for local path planning or risk analysis
through distance-based artificial potential fields (APF) [23],

FIGURE 7. Distance-based grounding risk topology example.

[50], in which e.g. the distance from the ship to the nearest
shore may be used to indicate risk levels during transit.

An example plot of a rasterized and distance-based risk
topology is presented in Figure 7, based on the traversable
polygon in Figure 6. Notice how the resolution of the point
samples providing the base for the risk contours is lowered
and exaggerated in this example for demonstration purposes.
This lowering of spatial resolution may alongside with other
techniques be used as a tool to facilitate faster performance.
Points of higher risk closer to the shoreline or the interior
and exterior boundaries of the traversable polygon are shown
in red, and points far away from any boundary are given
shades of blue. The gray area outside of the polygon is
non-traversable land or seabed with insufficient depth. This
type of plot may be useful for visualization of distance-
based navigation algorithms, or to define constraints and cost
functions in optimization techniques performed by external
programs. Such rasterized data points may additionally be
used directly as an alternative to the vectorized polygon data
stored in the shapefiles, but is currently not a supported
feature at the time of writing.

E. FEATURES VISUALIZATION
This section presents an introductory overview of the visual-
ization methods currently supported by the SeaCharts pack-
age. All figures are produced by utilizing the show_display,
refresh_display, close_display during testing, and saving
the resulting images through the save_image method in an
appropriate image format.

1) VESSELS PLOTTING
To visualize the environment, the user firstly creates an
instance of the SeaCharts main class. This class must be
instantiated by defining an origin or center coordinate pair

VOLUME 10, 2022 3723



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

FIGURE 8. Example plots of various vessels in different colors.

(easting and northing) as well as the bounding box size in
meters, specifying any region of interest. After the environ-
ment polygon data produced from depth measurements are
displayed, other features such as vessels and other physical
structures along with abstract entities such as path references,
pointer arrows, enclosing circles or area overlays of interest
may be visualized on top.

A magnified view of the Ålesund region from Figures 2-7
is presented in Figure 8, showing a simplistic scene produced
and displayed by merely selecting a desired ENC region
and plotting a collection of various vessels in different
colors within the environment using the add_vessels and
clear_vessels methods. This is considered the main feature
of the package.

Furthermore, the procedure for plotting each ship position
is designed such that the Display may be created and
run in parallel with the main calling process by setting
the multiprocessing initialization argument equal to True,
in order to update the visualization plot in real time. This
separate process repeatedly reads the CSV file containing
all coordinate pairs, heading angles and color names as well
as other options for each single ship plot to be displayed in
the environment. Thus, the normally convoluted operation of
visualizing ships in a maritime environment is reduced to
writing (or removing) a collection of values to a plain file
during runtime.

2) INFORMATION PRESENTATION
In addition to simply showing vessels in the environment,
supplementary information overlays may be added to the plot
in order to present various aspects of e.g. vessel(s) risks,
intent, planning, predictions, or other relevant factors like
weather conditions or mission objectives. For this purpose,

several basic shape-based visualization methods have been
added to the package. Specifically, it is possible to add
lines, arrows, paths, circles, rectangles and any other general
polygon shape on top of the environment plot through the
collection of draw methods of Table 1. Various adjustment
options are available to these methods. These will however
not be noted in detail in this work, and the user is referred to
the maintained repository Readme and code documentation
for updated versions of all available input arguments for each
function. An example demonstration of these are shown in
Figure 9.
Centered in the middle, a clock-like structure of various

elements is plotted for the purpose of demonstration. Behind
the rotated and semi-transparent rectangle in blue, a yellow
disk is drawn with a dashed edge, which again encompasses
another smaller green circle. The difference in border
style and the non-filled interior color of the smaller circle
highlights the flexibility of the available plotting variations,
and is possible to adjust similarly for all shapes. Likewise,
the pair of two-part straight lines in white and magenta are
showing the different variations of straight line segments. The
thickness of all bordering edges of shapes as well as for lines
may be chosen by the user, as is readily apparent from the
large plotted arrow in orange. For this shape, the size of the
arrow head may be adjusted as well.

Next, there are additionally shown three groups of
polygonal overlays in Figure 9. The lighter land and shore
polygons of a single island due north in Ålesund is simply
a polygon overlay of white transparent color to highlight a
region of interest. In the middle of the fjord to the southwest,
a cyan shape has the contours of a seabed polygon with a
minimum depth of 100 m and a maximum depth of 200 m,
given the user-specified depth bins for this example. Thus,
this shape outlines an area for which the depth measurements
of the ocean are within 100 and 200 meters (assuming the
collected data are valid). More interestingly, the group of red
isles to the southeast are intersected with the large square
with pink dashed edges, once more using the intersection
method of the Shapely library. These shapes contain areas for
which the depth is more shallow than 10 m, and are shown
with red solid boundaries in addition to a semi-transparent
interior color. Note how the demonstration shows that the user
may select any subset of shapes resulting from an intersection
(or any other spatial operation), as not all of the areas
with the same depth within the pink square are highlighted
in red.

The optional colorbar to the right of the environment plot is
enabled by calling the colorbar method, and shows how the
colors of the land, shore, and seabed polygons correspond to
the depthmeasurements as grouped by the defined depth bins.
The dark green is simply all land polygons with a height of
0 meters and above relative to the mean sea level, as indicated
by the upwards triangle shape. The lighter green is however
chosen to represent all data polygons labeled as shore in
the downloaded data sets, and is denoted as a value range
between 0 m and 1 m on the depth bar legend. The seabed

3724 VOLUME 10, 2022



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

FIGURE 9. Example demonstration of various available shapes and overlays, including a depth bar legend.

depths in blue are intuitively increasing in color intensity
in a downward direction, down to the darkest depth at the
bottom. As indicated by the legend shape, the bottom layer
(here at 300 m) also contains all depth measurements larger,
or deeper, than its value. Note however that the depths of
the color legend are not required to be present in the drawn
environment, and is only dependent on the user-specified
depth bins, for consistency.

Lastly, Figure 10 shows the same environment plot with a
bounding box window equal to the pink square of Figure 9,
with no colorbar added and dark mode toggled on by calling
the dark_modemethod. This optional darker viewmay aid in
providing starker contrasts for the color of the informational
shapes and vessels, as well as complying with the established
industry standard for e.g. vessel and environment plotting on
commercial ship bridges during the night. Thus, this mode
remains activated for all remaining figures in this work for
increased readability.

3) PLANNED PATHS
Path plotting is an essential tool for visualizing navigation
and ship routes within an environment. Figure 11 presents
an example demonstration of a coarse planned path shown
in a dashed white line. The start position of a single vessel is
displayed in green, and the target destination (before docking)
is added as a pink disk. These straight line segments and
supplementary shapes may readily visualize a vessel route
e.g. given by defined mission objectives or other subsequent
and automated path planning schemes. Moreover, a simple

FIGURE 10. Example demonstration of a square dark mode view.

arrow pointing from the vessel’s start position and to its target
crosses a land mass or island located in between, highlighted
in red. Additional visualizations such as these may be used
to communicate to the viewer e.g. how a path planning
algorithm (Section III-E) performs or utilizes available data
resources during execution, like in this example.

VOLUME 10, 2022 3725



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

FIGURE 11. Example demonstration of path plotting and additional
overlays.

III. EXAMPLE USAGE
The following sections present example demonstrations of
various API usage within contexts for which the SeaCharts
package is intended. The example usages include plotting
of trajectories (trails) and simulations of target vessels,
visualization of points of interest, intent, and safety domains,
utilizing the interactive capabilities of the API for fast
ad hoc prototyping, line of sight calculation, and example
applications within the fields of collision avoidance, path
planning, online risk analysis, and optimal control.

A. TRAJECTORIES & TRAILS
For the rest of this work, a particular area along the coast
of Norway is used for demonstration purposes, in order to
highlight the capabilities of the SeaCharts package. Figure 12
shows an example view of a fjord area northwest of the ferry
dock ofHalsa, at the border between the Norwegian counties
Møre og Romsdal and Trøndelag. For example, an interesting
scenario is path or trajectory planning on each side of the
small isle group shown in the middle of the image, with
regard to risk analysis and energy consumption optimization
purposes.

Figure 13 shows an example visualization of three different
ship trajectories with the same origin, in the environment
presented in Figure 12. Each color represents a separate
trajectory, and are as the other shapes made semi-transparent
in order to more easily distinguish between overlapping
trajectories, and to make the temporal aspects of each
ship path more discernible if vessel polygons overlap. The
original planned path for all vessels is represented as green
lines with circular waypoints through the isles strait. This
straightforward usage provides the user with a basis for
plotting of vessel trajectories, which may be useful for risk
analysis or more advanced optimization visualization.

FIGURE 12. Vessel mission area example (Google Maps - satellite view).

FIGURE 13. Example plot of three overlapping vessel trajectories.

Another natural application of the package is to show
several different types of alternative paths or trajectories for
a single ship, such as future predictions or past trails of ship
poses. Figure 14 presents a visualization of a planned ship
path with power blackout simulations at regular intervals.
In the environment plot, yellow ship poses are shown along a
green pre-planned path with waypoints given as discs. Note
that in contrast to the ship trajectories of Figure 13, these
ship poses are not produced by simulation of a ship dynamics
model, and are generated simply by discretizing the planned
path and calculating the appropriate ship heading between
each intermediate interval along the path using trigonometry.

3726 VOLUME 10, 2022



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

FIGURE 14. Pre-planned path example with wind disturbance
simulations.

It is thus apparent that the package is not dependent on any
past or future (accumulating) inputs for plotting, and may
be used quite flexibly for visualization of a large selection
of various objectives or information of interest at any time
instant during the program cycle.

The ship trajectories in orange are however in this example
computed by setting the ship velocity to zero at each
intermediate waypoint, and iteratively calculating the next
ship pose given a simple ship dynamics model, including a
wind disturbance force driving the ship westward e.g. as a
result of power blackout or machinery failure. The wind
direction and velocity are given in the bottom right corner. All
ship poses intersecting with seabed polygons of depths less
than 5 m are in this example given a red color, for illustrative
purposes. This combined visualization of both pre-planned
and simulated paths are shown in a single demonstrative
display, to further showcase the capabilities of the package.

B. CONTROL & SIMULATION
For planning and/or control applications that require reduced
complexity, the user may wish to display information accord-
ingly. Figure 15 presents a simple environment in which ship
poses are replaced by a single dashed line denoting a planned
path, along with overlapping red disc overlays with various
diameters. Such environment plots may be useful for fast
prototyping or simple problem formulations, and are readily
available by the provided package methods. The red overlays
may e.g. represent abstract circular grounding obstacles for
proof-of-concept planning algorithm research [51], allowing
for simple radius-based proximity calculations and faster
algorithm computations.

For more advanced usage, Figure 16 presents a snapshot
of a larger temporal simulation run exported as the graphics

FIGURE 15. Simple vessel path example with danger area disks.

FIGURE 16. Visualization example with red local danger areas and yellow
arrows of minimum distances to observable grounding obstacles.

interchange format (GIF), showcasing how the spatial
operations provided by the Shapely package may be used
to visualize dangerous or hazardous areas calculated based
on a dynamic horizon radius around the ship. The horizon
is shown as a white disk with a radius of 1.5 km around
the cyan pose of the ship, and represents the red dynamic
extraction window from Figure 1. Similarly to the pink disk
of Figure 5, the horizon is also here made excessively small
for demonstration purposes only.

The red regions shown inside the disk are generated by
first taking the intersection between the circular horizon and

VOLUME 10, 2022 3727



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

FIGURE 17. Vessel safety domains visualization within ownship horizon
in orange, land obstacles in red and yellow distance arrows.

all areas with depths less than the maximum ship draft of
5 m, adding a spatial safety buffer of 30 m, and extracting
the convex hull from each resulting polygon. This is done to
demonstrate that the principle of which areas are considered
hazardous or impassable is entirely decided by the user.

A green arrow is shown pointing to a target location along
some route through the strait. Moreover, the yellow arrows
pointing from the ship center to the closest point on each
grounding obstacle are calculated by the Shapely method
nearest_points. Notice however that there is no yellow arrow
pointing toward the smallest red shape, as that polygon is not
labeled ‘‘observable’’ by the ship as a result of the larger red
polygon between them. This may be verified in a user-defined
algorithm by e.g. utilizing the Shapely method intersects on
each present obstacle shape with respect to the straight line
of sight between the ship and any other obstacle.

C. COLLISION AVOIDANCE
In addition to the concepts related to anti-grounding
described in previous sections, a user may also visualize how
an autonomous or controlled ship perceives and/or interacts
with other vessels within its vicinity. Figure 17 demonstrates
how the positions and headings of nearby vessels are used
to construct safety domains [41] for each corresponding
vessel pose based on given proportional parameters and
an ownship horizon. Here, the red overlays highlight only
physical landmasses disregarding seabed depths, and the
yellow arrows are pointing toward all safety domains of any
nearby vessel within the horizon. Notice how in this example
the safety domains of each vessel shown in orange are scaled
with its own velocity vector by some factor. Thus, the distant
ship in pink has its safety domain polygon visible within the
ownship horizon due to a significantly high velocity.

FIGURE 18. Interactive ownship visualization with alternative safety
domains for vessels within a sector-based horizon.

Another example demonstration of vessel safety domains
with respect to collision avoidance is presented in Figure 18,
serving as a base of discussion for the following section. The
user is referred to the SeaCharts Readme for further usage
details.

D. INTERACTIVE MODE
In addition to the shape plotting methods described in
the previous section, the SeaCharts package also includes
two interactive programs; ownship and path plotting.
Figures 18 and 19 show example plots during such interactive
sessions.

1) CONTROLLABLE OWNSHIP
In order to easily plan around or estimate the outcome
of various scenarios of interest, the user may activate a
controllable ownship to move around in the environment
using keyboard keystrokes. Figure 18 exchanges the circular
ownship horizon of Figure 17 for a larger ownship domain
split into sectors, based on the concept of navigational lights.
Here, the safety domain polygons of nearby vessels are of
constant size, and are colored according to their orientation
with respect to the cyan ownship.

The diamond-like ship horizon polygon is constructed in
a fashion similar to the principles of a vessel’s navigation
lights, split into seven subregions according to the orientation
of the navigation lights on the vessel: The starboard side has
two regions in green and lighter green respectively from the
forward axis of the ship and to the 112.5◦ mark, and the
red regions are similarly mirrored on the opposite port side.
In white, the aft direction is split into three such that one
may differentiate between objects located within the different
subregions relative to the heading of the ship.

3728 VOLUME 10, 2022



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

FIGURE 19. Interactive ownship and paths visualization, with original
waypoints in yellow and a less crude path shown in pink.

The orange triangles denote the closest point of any
selected type of polygon located in each subregion, if it exists.
In this example, the user has chosen the seabed layer with
10 m depths. All seabed, land, or shore polygons with depths
less than 10 m within the horizon diamond of transparent
white are consequently highlighted in tints of green, red and
white according to their corresponding subregion color. Thus,
there are exactly seven arrows (two overlapping) pointing
toward each of the identified regions of different navigation
light colors, calculated and stored in a simple CSV file
during runtime. The application or user in question is at
liberty to freely decide how these closest polygon points
are to be utilized for further interpretation. The ownship,
arrow triangles, nearby vessels and horizon hazards may all
be toggled off and hidden from the environment, if desired.
Additionally, the size and proportions of the vessel horizon
and hazardous depth filter may be dynamically adjusted
during the interactive session by using keyboard keys.

2) PATH DRAWING AND MANIPULATION
Figure 19 presents another snapshot of an interactive session.
Here, two independent examples of planned paths are
drawn between the same ownship and nearby vessels from
Figure 18. One may view the larger yellow path as the coarse
ship path planned for the ship through the isle strait, for which
four separate waypoints are given. These waypoints may be
decided or planned as a subset of a larger mission objective
from port to port, expanding further into the environment at
either side. The denoted waypoints demonstrated in Figure 19
are part of a subplanning problem constrained within the
environment shown, with the ownship horizon and hazards
toggled off for clarity.

Algorithm 1 PlanRoutes
Input: grounding obstacles G, safety distance 1ds,

start point σ , end point χ
Output: binary tree R of alternative routes from σ to χ
procedure PlanRoutes(G, σ, χ )

H ← convex hulls of all polygons in G
I ← dilate H by 1ds
J ← spatial unions of all polygons in I
K ← convex hulls of unions J
ρ ← straight line segment from σ to χ
R← new tree of line nodes with root ρ
while ∃P ∈ K intersects ∃ρ ∈ R do

P← largest intersecting polygon
ρ ← remove intersecting line from R
V ← visible vertices of P
3, 0← group V into left and right wrt. ρ
λ, γ ← vertices of 3 and 0 farthest from ρ

δ← start point of ρ
α1,2← linear line segments from δ to χ via λ
β1,2← linear line segments from δ to χ via γ
R← add α1,2 and β1,2 as new line nodes

end while
end procedure

The smoother path in pink may furthermore show how
mission control or the autonomous planner aims to follow the
main yellow path, in which the time intervals are shorter and
the resulting trajectory has a higher resolution. Based on some
given operational costs or thresholds, an algorithm may e.g.
produce a more detailed and smooth path compared to the
coarse main path for a given part of a larger route. Notice
how the path in pink attempts to avoid the safety domain
of the blue vessel (as shown in Figure 18), creating another
significant deviation from the intended path.

The path waypoints for both colors created by the user
during the interactive mode are stored in CSV files, and
the package may conversely plot paths given by an external
program through simple reading of these files. Additionally,
the user is able to both move and delete existing path points at
any location by appropriate mouse and keyboard commands,
allowing for flexible makeshift planning during testing or
programming of e.g. ANS.

E. PATH PLANNING
In addition to makeshift planning or prototyping during
interactive sessions, the user may also want to display or
showcase autonomous path planning e.g. produced by an
ANS during or after simulations. Thus, an example path
planning algorithm as well as examples of information
visualization is presented in this section.

For demonstration purposes, a simple path planning
algorithm for constructing a tree of possible route alternatives
between twowaypoints is presented in Algorithm 1. Note that
it is not intended to be a complete path planning algorithm,

VOLUME 10, 2022 3729



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

FIGURE 20. Two overlapping polygons from the set of polygons I , which
overlap the initial straight line route ρ between start point σ and end
point χ .

but is merely included in this work to showcase example
usage of a selection of SeaCharts methods. The algorithm
is given a set of grounding obstacle polygons G, a safety
distance1ds, an initial starting waypoint σ , and a single end
target waypoint χ to which a path with several potential route
alternatives is to be planned. The grounding obstacles Gmay
be any two-dimensional polygons of arbitrary shape with any
optional depth(s) of interest, and is defined by the user as an
input to the algorithm. Similarly, the start point σ may be any
point e.g. along a route or the current position of a vessel, the
end point χ may be any user-selected target point, and1ds is
defined as any desired buffer distance.

Figure 20 shows an example in which a vessel intends to
navigate around a collection of smaller isles, i.e. the set of
grounding obstacles G. The start point σ is represented by
the vessel hull in cyan, and the end point χ is denoted by the
yellow disk. The initial route path ρ intersecting G is shown
as a yellow line from σ to χ . In this example, G is defined by
extracting all nearby areas of seabed depths <10 m, which
consists of the union of all dark gray island masses as well as
the light blue ocean polygons sharing at least one edge with
(and fully encompassing) the land masses.

An initialization phase of six steps sets up the algorithm
before the main loop is initiated, and consists of the
following: The convex hulls H of all polygons in G are
computed by accessing the Shapely property convex_hull,
and the resulting new set of polygons H are subsequently
dilated by the safety distance 1ds (here defined as 50 m),
using the Shapely method buffer to produce the polygon set
of I . In Figure 20, the pink overlay is isolated by selecting all
(in this case two) polygons of I that intersect the initial route
line segment ρ, for the purpose of visualization only.

FIGURE 21. Main loop step visualization of the path planning algorithm.

The next step calculates the spatial unions J of all polygons
in I using the Shapely method unary_union, such that any
overlapping polygons are merged. The convex hulls K of J
are lastly computed similarly to the first step, yielding the
final set of polygons to be used in the main loop. This is
done to potentially save a significant number of subsequent
algorithm iterations, by reducing the number of considered
polygons and disregarding all non-convex areas contained
within or between the dilated (larger) obstacle polygons of
I . The only such polygon in K intersecting ρ is shown as
the pink region in Figure 21, demonstrating how the group
of isles is reduced to a single convex polygon. Lastly, the
initial straight line segment ρ (shown as the yellow line in
Figures 20 and 21) is defined by the start point σ and the end
point χ , and a new binary tree R with ρ as its root node is
created.

After initialization, the main loop of the algorithm
identifies the largest (if any) polygon P ∈ K that intersects
with any line segment ρ ∈ R and extracts all visible vertices
V of P, filtered as described in Section III-F. Next, these
vertices are split into two sets of left and right (3 and 0,
respectively) based on their positions with respect to the line
segment ρ. These are shown in Figure 21, given the colors
red (port) and green (starboard), respectively. This grouping
is computed by constructing a triangular polygon between
σ , χ and each vertex, in that order. If the resulting polygon
is counter-clockwise oriented (asserted using the Shapely
method object.is_ccw), the vertex is located on the left side
of ρ, and vice versa.

The vertices with the maximum distance from ρ in each
group (shown in Figure 21 as cyan perpendicular arrows
from ρ to each respective vertex) are selected as the new
intermediate route waypoints λ and γ , i.e. the minimum
distance required to circumnavigate the visible part of the

3730 VOLUME 10, 2022



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

FIGURE 22. Path planning end result visualization of two alternative
routes.

obstacle P at each iteration. These waypoints are used to
construct two separate splines of straight lines α and β

consisting of two linear line segments each, from σ to χ via
λ and γ .

These new line segments are subsequently added to the
root node of the R tree, leaving two new leaf nodes of line
segments sharing the same end target point at χ . If any of
the line segments in the resulting tree intersects with any
polygonP ofK , this process is repeated for that particular line
segment, potentially creating more branching nodes along its
respective route alternative.

Note that redundant further branching along one side
of the obstacle is prevented by the fact that all vertex
candidates in that special case are sorted into the same
3 or 0 set. The end result of the algorithm for the
demonstrative example case is presented in Figure 22,
in which two route alternatives in red and green have been
constructed with several intermediate waypoints, generated
by repeated iterations of the main loop of the algorithm.
These path alternatives may subsequently be used by other
navigational optimization schemes, e.g. to select the optimal
path with respect to resource consumption or time. Thus,
several relevant methods and visualization capabilities of the
SeaCharts package is demonstrated.

F. VISIBILITY-BASED ENCLOSING CIRCLES
Throughout development of various applications such as
ANS, simplifications may be implemented in order to
facilitate faster computation. Advanced shapes such as
polygons with many vertices or irregular forms can be
transformed into circular approximations, such that only a
single point in space along with a radius can be used for rapid
spatial calculations in an otherwise complex environment.

This may be useful for formulating convex constraints and
optimization costs.

Extending this further, any complicated environment may
be closely approximated through disjoint or overlapping
sets of circles or disks of various desired resolutions.
Consequently, it may be useful to demonstrate an approxi-
mation technique for simplifying polygons into circles, using
available methods of the SeaChart package.

Figure 23 presents the results of the example algo-
rithm EnclosingCircles, which calculates local polygon
approximation circles analogous to the concept of minimal
enclosing circles, based only on the currently visible
shoreline from any given ship position.

Algorithm 2 outlines an overview of the construction of
the visibility-based enclosing circles. Similarly to solving
the smallest-circle or minimal enclosing circle problem, the
algorithm attempts to construct an enclosing circle that spans
all of the visible vertices of a grounding obstacle (i.e. island or
land) polygon within a relatively small horizon circle around
the ship, such that the overlap between the area of the open
water seen from the center of the ship and the constructed
circle is minimized. Inversely, the open water seen between
the ship and the constructed circle is maximized, such that
there is minimal discrepancy between the constructed circle
and its enveloped polygon. This is based on the assumption
that the enclosing circles should map to its original polygon
most accurately along the shoreline closest to the ship,
as viewed by the perspective of the onboard navigator. Thus,
for short term obstacle avoidance purposes, only the imme-
diate surrounding grounding obstacles are acknowledged,
disregarding unnecessary considerations of land masses
hidden behind obstacles the ship might potentially hit if
moving in any straight line from its current position.

Algorithm 2 EnclosingCircles
Input: grounding obstacles G, horizon disk D,

ship center s, distance buffer 1d
Output: enclosing circles C of obstacles as seen from ship
procedure EnclosingCircles(G,D, s,1d)

C ← ∅
I ← spatial intersection of G and D
for all P ∈ I do

K ← ∅
H ← convex hull of P
V ← remove nonvisible vertices from H
for all combinations of v1, v2, v3 ∈ V do

b1← perpendicular bisector of line v1-v2
b2← perpendicular bisector of line v2-v3
p← intersection point of b1 and b2
r ← distance between p and v2 + 1d
c← circle with center point p and radius r
K ← candidate circle c

end for
C ←max(K ) w.r.t. open water*

end for
end procedure

*area of unobstructed water between ship and circle

VOLUME 10, 2022 3731



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

FIGURE 23. End result demonstration of overlapping visibility-based enclosing circles.

Figure 24 presents a diagram showing some of the
variables from Algorithm 2 for an example of a single non-
convex grounding obstacle ∈ G. The algorithm is firstly
initialized by intersecting all grounding obstacles (land and
shore polygons in this example) with the dynamic horizon
disk D, producing a new set of polygons I . In Figure 24,
the resulting example polygon is shown in red color,
in which the original grounding obstacle with eight vertices
is intentionally clipped by the horizon disk D (here shown as
a quadrant) in dashed lines. In Figure 23, however, the entire
environment is chosen as the horizon given to the algorithm.
In the main loop, each polygon P is used as a basis to compute
its individual enclosing circle.

In order to reduce the number of vertices for further
computations, the convex hull H of P is calculated – concave
crevices or pockets of any polygon are ignored for high-level
navigation purposes. The resulting polygon may be identified
as the union of the red and orange regions in Figure 24. Thus,
it is immediately clear why all polygons are trimmed along
the horizon boundary. In a situation in which there exists
e.g. a land mass significantly encompassing the current ship
position such that the vessel is located within a non-convex
crevice, the convex hull of this polygon would remove the
feasible navigation area of interest in its entirety.

Moving forward, only visible vertices V of H are
considered, in accordance with the principle of disregarding

FIGURE 24. Diagram of the construction of perpendicular bisectors in
Algorithm 2, with open water* shown in green, I in red, H as the union of
red and orange, and the resulting enclosing circle c in blue.

all obstacle topology hidden behind the closest shoreline
in any direction from the ship center s. The visibility of
each vertex is readily examined by asserting that the line

3732 VOLUME 10, 2022



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

FIGURE 25. End result demonstration of filtered visibility-based enclosing circles and field of view visualization.

constructed from s to the vertex in question does not intersect
the interior of H , not including its exterior (boundary). In the
simple example in Figure 24, the only visible vertices are
v1, v2, and v3 exactly. The secondary inner loop repeats the
final steps of the procedure for any combination of three
vertices from V , i.e. all possible ways to construct two lines
from three visible obstacle vertices.

Next, perpendicular bisectors b1,2 for both visible vertex
lines between v1 and v2, and v2 and v3, respectively, are
calculated. By definition, b1,2 are perpendicular lines passing
through themidpoint of the pair-wise vertex lines, and as such
are extended in each direction with respect to the original
environment scope. Thus, the intersection point p between
b1 and b2 is in general computable, unless the vertex lines are
parallel. If this occurs, the candidate is silently disregarded.

Lastly, a candidate circle c is constructed from the
intersection point p as its center point, and the radius r of
c is set equal to the distance from p to v2 plus the given input
distance buffer1d . All of the enclosing circles constructed by
the inner loop are stored in a set of circle candidatesK , which
is ultimately sorted by the area of open water left between
the ship and the obstacle by each c (shown in green). The
more open water is still remaining between the ship and the
constructed circle, the more accurate the circle approximates
the obstacle boundary shape given the perspective of the ship
at the current time instant. The circle with the maximum

area of unobstructed water between the ship and itself is thus
added to the set of enclosing circles C .

The results of Algorithm 2 may be verified in the example
demonstrations displayed in Figures 23 and 25, with different
reference points as ship centers. In Figure 23, the convex hulls
of each polygon considered in Algorithm 2 are shown in red,
and the end result enclosing C are shown in yellow. Green
polygons highlight the visible ‘‘open water’’ between each
red convex hull and the ship center, i.e. the water surface
between all visible shorelines as seen from the ship. It is
clear that every vertex of visible land or obstructed water is
strictly contained within the horizon disk D, and that each
obstruction polygon is assigned exactly one enclosing circle.
Note however that the entirety of the convex hull of each
grounding obstacle need not be fully enclosed by the resulting
circle, as is slightly discernible on the second small isle from
thewest boundary of the environment. Using thismethod, any
radial sector around the ship not covered in green or yellow is
in effect considered completely open water, given the specific
horizon and ship center given.

This intuitive interpretation and visibility classification
may also be useful for field of view procedures, e.g.
simulating radar images of a ship’s surrounding environment.
By identifying all visible shoreline edges within the horizon,
one may construct and apply radar-based techniques to a
separate layer of the simulated environment for additional

VOLUME 10, 2022 3733



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

Algorithm 3ModelPredictiveControl
Input: ownship state x0, grounding obstacles G
Output: simulated ship trajectory along planned path

procedureModelPredictiveControl(x0,G)
d(x, g)← Shapely distance-to-polygons method
f (x)← formulate risk cost function using d(x, g)
xs← x0
while not arrived and risk < threshold do

5← construct new NLP using f (xs)
s← optimal solution of solved 5
u← first control step of s
xs← apply u to simulate next ownship state

end while
end procedure

situational awareness and decision-making algorithms.
Figure 25 shows an example visualization in which a different
reference ship center is used to produce a filtered view of the
resulting enclosing circles and open waters according to the
principle of sight lines, further demonstrating the capabilities
of the SeaCharts package.

Here, all minor circles fully encompassed in or located
behind other circles are disregarded, and the polygons
of visible open waters in green are merged and adjusted
appropriately, producing the ship’s field of view with respect
to nearby obstacles. Notice how the circle of the large land
mass to the east has changed considerably given the relocated
reference point, and that the small group of isles to the west
are hidden behind the yellow circles to the north of the plot.

Furthermore, the green open water polygons once again
serve as the optimization objective for the end results of
Algorithm 2. In Figure 25, only the resulting green region is
considered unobstructed or navigable waters. Thismetric is in
this work selected on the premise that only the visible exterior
of any nearby polygons is considered e.g. with respect to
reactive anti-grounding or collision avoidance, and that any
circular boundary completely covering an irregular shoreline
should minimize its overlap with otherwise unobstructed
open water. The effects of this area maximization are
considered adequately sufficient, by comparison of the red
polygons against the constructed enclosing circles within the
horizon.

G. DYNAMIC RISK OPTIMIZATION
Research on autonomous ships involve (online) risk analysis
with respect to anti-grounding and collision avoidance. In this
section, the package methods established in the previous
sections are further demonstrated by a numerical gradient-
based ANS. The example application utilizes functionality
and attributes of the SeaCharts package to construct an
optimal control problem (OCP), transform it into a nonlinear
program (NLP) and repeatedly solve it during runtime.
Algorithm 3 presents a simplified overview of the main
ANS procedure for demonstration purposes, based on model
predictive control (MPC).

FIGURE 26. Distance-based risk gradient vectors visualization.

FIGURE 27. Wind disturbance scalar products visualization.

A grounding risk cost function (recall Figure 7) is
formulated mathematically as f (x) where x is a state vector,
based on the Shapely distance method applied to all nearby
grounding obstacles G. The distance function is denoted as
d(x, g), where g ∈ G is each individual grounding obstacle
polygon within the horizon. Additional mission constraints
and risk thresholds for emergency management [51] is
considered outside the scope of this discussion.

In this work, f (x) =
∑

g γ · exp(−
d(x,g)
λ

) + w(x, g)
where γ and λ are tuning parameters. This form is chosen
to scale an abstract measure of grounding risk cost by
the distance to all grounding obstacles such that the risk

3734 VOLUME 10, 2022



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

gradient is exponentially larger closer to land. w(x, g) is an
additional wind disturbance cost to be discussed later. In the
environment plot of Figure 26, subsequent ship poses of a
simulated ship trajectory are shown in yellow.

The colored arrows attached to each ship pose are visual
representations of the risk gradients produced by each
respective obstacle polygon on each side of the ship path. The
direction of each arrow at every time interval is equal to the
direction of the unit vector from the closest point of an obsta-
cle polygon and to the center of the ship. The magnitude or
length of each arrow increases closer to land due to the inverse
exponential scaling, and may as such aid in demonstrating the
effects of the risk-based anti-grounding costs for autonomous
control.

Figure 27 shows an alternate view of the same simulation
plot, this time visualizing the wind-related risk gradients
produced by the w(x, g) term of f (x) for a wind disturbance
with velocity equal to 10 m/s and direction equal to 30◦

relative to the North axis. Here, the risk magnitude is
proportional to the (positive only) scalar product between
the wind disturbance vector and the vector from the ship to
each grounding obstacle g, and are similarly to previously
displayed as risk gradients directed away from the grounding
obstacles [51].

Note how the length of the vectors are only significant
when the obstacles are located in an onshore wind direction
relative to the ship position, given the scaling based on the
scalar product between the wind vector and the vector to the
nearest point of an obstacle. Thus, the diminishing vector
arrows defined by the green (starboard) obstacle shown for
the earlier time intervals of the simulation are negligible
and consequently not visible during the later intervals. The
scaling factors used between Figures 26 and 27 are not
proportional to the terms of the cost function utilized by
the ANS, and are adjusted for visual clarity in the example
demonstrations.

H. PATH FOLLOWING
Figure 28 considers a more complex path following example
in order to further demonstrate potential usage of the
visualization tools in the SeaCharts package. Here, the red
ship pose is the initial ship state and the yellow ship poses are
part of a discretized pre-planned path (i.e. before optimization
or simulations) calculated by the ANS given four route
waypoints in green (the last one off-screen), written to the
ship pose file for some time horizon and an appropriate
sampling interval. Similarly to Figure 14 in Section II-E,
the planned ship poses are calculated only by simple
trigonometry as an initialization step (warm start) of theMPC
algorithm, and may as well be valuable to visualize during
algorithm demonstrations.

Another example view of the same environment and
simulation run is shown in Figure 29, in which the past ship
pose trail in white is also shown behind the red ship pose for
the current simulation time step. Notice how the yellow future
predictions in this example have been computed to comply

FIGURE 28. Vessel trajectory initialization along the pre-planned path.

FIGURE 29. Vessel future predictions and past trail during MPC
simulation.

with the dynamics of the ship, as a result of the trajectory
optimization performed by the external ANS. This simple
two-part example highlights the flexibility resulting from the
visualization module of the SeaCharts package not being
dependent on any past or future inputs for plotting of temporal
information, and is considered one of the main contributions
of this work.

The methods discussed above are focused on online
analysis of distance-based risk related to grounding obstacles.
However, it is proposed that the anti-grounding approaches
described in this section may similarly be applied to
collision avoidance e.g. based on vessel safety domains [41],

VOLUME 10, 2022 3735



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

given the general spatial formulations presented and the
methods available to the SeaCharts package [52]. If external
procedures for predicting or measuring velocities and/or
intent of other vessels are included in an ANS, polygon-
based risk analysis techniques for grounding obstacles may
in general be fused with reactive collision avoidance methods
to further enhance the potential of autonomous path and
trajectory planning for autonomous ships.

IV. DISCUSSION
This section sums up some of the limitations and areas of
improvement for the developed API, as well as points that
may provide the basis for future work.

The SeaCharts API is a Python-based package for spatial
visualization and computation, targeted at providing methods
for fast prototyping and efficient research. As this work
presents the very first version of this package, there is vast
potential for improvements. Specifically, the API currently
only supports the UTM coordinate system / map projection
and the FGDB format for spatial data. Moreover, the features
that are inherently loaded by the package are currently
defined to comply with the feature labels defined by the
Norwegian Mapping Authority. Note however that these
labels if desired may be added or replaced directly in the
source code after installation, for any feature names provided
in the FGDB format. Lastly, the installation process may
for some be cumbersome if users attempt to install and use
the package in non-empty (virtual) environments, due to
possible package version mismatches or support conflicts.
The package currently uses the Intel R© oneAPI Math Kernel
Library [53] for Numpy/Scipy, which must be properly
supported by the environment using the API.

Given the current status of the SeaCharts package and the
notes above, it is recommended to continue the development
of the API by improving upon its limitations, as well as
adding new features and interface methods. For instance,
support for the most commonly used coordinate systems or
map projections (such as the equirectangular or plate carrée
projection) may be useful to integrate into the package.
Similarly, support for other file formats for spatial databases
may prove beneficial to many potential users. Another
suggestion for future work is to attempt to streamline the
installation process, e.g. by utilizing the Intel R© Distribution
for Python. Several additional interface methods may also be
added, such as e.g. convenience methods for depth sampling
at any location in the plane, and the possibility to change
the coordinates and size of the bounding box of the ENC
main class during runtime. These are just few of the potential
changes and additions that may be made to the SeaCharts
package, in order to make the API useful and more practical
for researchers and developerswithinmaritime path planning,
optimal control, and obstacle avoidance.

V. CONCLUSION
A shortage of versatile and open-source API with sim-
ple and user-friendly methods for spatial visualization of

maritime environments for research and development has
been observed in the literature. In an attempt to fill
this need, the open-source Python package SeaCharts was
implemented and presented in this paper. The package
includes demonstrated methods for reading and parsing
depth data of known formats, spatial operations for polygon
merging and simplification, user-specified features filtering
and extraction, visualization of environments, vessels and
mission objectives, as well as interface methods for use
by external programs such as autonomous systems using
spatial data for navigation. Additionally, algorithms for
enclosing circle approximations and simplified procedures
for path planning and optimization was presented in order
to demonstrate potential usage of the package. Ultimately,
this API may prove useful for high-level autonomous path
planning, control, obstacle avoidance and simulation in
maritime environments, by facilitating combined usage of
convenient spatial computation and visualization methods for
autonomous navigation.

REFERENCES
[1] B. D. MacRae, R. Stephenson, T. Leadholm, and I. Gonin, ‘‘Digital chart

database conversion into a system electronic navigational chart,’’ Environ.
Res. Inst., Ann Arbor, MI, USA, Tech. Rep. #CC-D-15-92, 1992.

[2] A. Weintrit, ‘‘The electronic chart systems and their classification,’’ Annu.
Navigat., vol. 4, pp. 127–140, Oct. 2001.

[3] A. Weintrit, ‘‘Clarification, systematization and general classification of
electronic chart systems and electronic navigational charts used in marine
navigation. Part 1—Electronic chart systems,’’ Int. J. Mar. Navigat. Saf.
Sea Transp., vol. 12, no. 3, pp. 471–482, 2018.

[4] A. Weintrit, ‘‘Clarification, systematization and general classification of
electronic chart systems and electronic navigational charts used in marine
Navigation. Part 2—Electronic navigational charts,’’ Int. J. Mar. Navigat.
Saf. Sea Transp., vol. 12, no. 4, pp. 769–780, 2018.

[5] A. Palikaris and A. K. Mavraeidopoulos, ‘‘Electronic navigational charts:
International standards and map projections,’’ J. Mar. Sci. Eng., vol. 8,
no. 4, p. 248, Apr. 2020.

[6] M. R. Mahmud, N. Ibrahim, A. A. Rahman, R. Othman, U. Din, and
A. H. Omar, ‘‘The development of a low-cost integrated marine navigation
system for leisure crafts and small boats,’’ Univ. Teknologi Malaysia,
Johor Bahru, Malaysia, Tech. Rep., 2006.

[7] F. Zhu, Y. Zhang, and W. Sang, ‘‘Web marine spatial information service
based on electronic nautical charts,’’ in Proc. 8th ACIS Int. Conf. Softw.
Eng., Artif. Intell., Netw., Parallel/Distrib. Comput. (SNPD), Jul. 2007,
pp. 131–136.

[8] G. Park, D. Park, and S. Park, ‘‘Design and implementation of display
module for electronic navigational chart data,’’ in Proc. Int. Conf. IT
Converg. Secur. (ICITCS), Oct. 2014, pp. 1–3.

[9] A.Weintrit, ‘‘Radar image overlay in ECDIS display versus electronic nav-
igational chart overlay on radar screen,’’ Prace Wydziału Nawigacyjnego,
no. 22, pp. 1–5, Oct. 2008.

[10] M. Waz and K. Naus, ‘‘Electronic Navigational Chart in aid of generation
of multi-dimensional radar display,’’ Int. J. Circuits Electron., vol. 2, p. 4,
Dec. 2017.

[11] K. Naus and A. Makar, ‘‘Conception of spatial presentation of ENC,’’ in
Proc. XIV Int. Sci. Tech. Conf. Navigat. Support Hum. Activity, Gdynia,
Poland, 2004, pp. 1–5.

[12] L. Hui, X. Shengwei, and Z. Yingjun, ‘‘Inland waterway three-dimensional
visualization based on 3D-GIS technology,’’ in Proc. IEEE Int. Conf.
Service Oper. Logistics, Informat., Oct. 2008, pp. 564–568.

[13] T. Liu, D. Zhao, andM. Pan, ‘‘Generating 3D depiction for a future ECDIS
based on digital earth,’’ J. Navigat., vol. 67, no. 6, p. 1049, 2014.

[14] J.-C. Morgère, J.-P. Diguet, and J. Laurent, ‘‘Electronic navigational chart
generator for a marinemobile augmented reality system,’’ inProc. Oceans-
St. John’s, Sep. 2014, pp. 1–9.

3736 VOLUME 10, 2022



S. Blindheim, T. A. Johansen: Electronic Navigational Charts for Visualization, Simulation, and Autonomous Ship Control

[15] M. Lager, E. A. Topp, and J. Malec, ‘‘Remote operation of unmanned
surface vessel through virtual reality low cognitive load approach,’’ in
Proc. 1st Int. Workshop Virtual, Augmented, Mixed Reality, 2018, pp. 1–5.

[16] J. Mkaka and J. Magaj, ‘‘Data extraction from an electronic S-57
standard chart for navigational decision systems,’’ in Proc. Zeszyty
Naukowe/Akademia Morska Szczecinie, 2012, pp. 83–87.

[17] Y. Yu, H. Zhu, L. Yang, and C. Wang, ‘‘Spatial indexing for effective
visualization of vector-based electronic nautical chart,’’ in Proc. Int. Conf.
Ind. Informat.-Comput. Technol., Intell. Technol., Ind. Inf. Integr. (ICIICII),
Dec. 2016, pp. 323–326.

[18] S. M. Smith, L. Alexander, and A. A. Armstrong, ‘‘The navigation surface:
A new database approach to creating multiple products from high-density
surveys,’’ Int. Hydrographic Rev., vol. 3, no. 2, pp. 1–15, 2002.

[19] M. Wlodarczyk-Sielicka, ‘‘Interpolating bathymetric big data for an
inland mobile navigation system,’’ Inf. Technol. Control, vol. 47, no. 2,
pp. 338–348, Jun. 2018.

[20] B. C. Shah and S. K. Gupta, ‘‘Long-distance path planning for unmanned
surface vehicles in complex marine environment,’’ IEEE J. Ocean. Eng.,
vol. 45, no. 3, pp. 813–830, Jul. 2020.

[21] M. Candeloro, A. M. Lekkas, and A. J. Sørensen, ‘‘A Voronoi-diagram-
based dynamic path-planning system for underactuated marine vessels,’’
Control Eng. Pract., vol. 61, pp. 41–54, Apr. 2017.

[22] T. Wilson and S. B. Williams, ‘‘Adaptive path planning for depth-
constrained bathymetric mapping with an autonomous surface vessel,’’
J. Field Robot., vol. 35, no. 3, pp. 345–358, May 2018.

[23] C. Shi, M. Zhang, and J. Peng, ‘‘Harmonic potential field method for
autonomous ship navigation,’’ in Proc. 7th Int. Conf. ITS Telecommun.,
Jun. 2007, pp. 1–6.

[24] Y. Liu and R. Bucknall, ‘‘Path planning algorithm for unmanned surface
vehicle formations in a practical maritime environment,’’ Ocean Eng.,
vol. 97, pp. 126–144, Mar. 2015.

[25] R. Song, Y. Liu, and R. Bucknall, ‘‘A multi-layered fast marching method
for unmanned surface vehicle path planning in a time-variant maritime
environment,’’ Ocean Eng., vol. 129, no. 1, pp. 301–317, Jan. 2017.

[26] Y. Liu and R. Bucknall, ‘‘Efficient multi-task allocation and path
planning for unmanned surface vehicle in support of ocean operations,’’
Neurocomputing, vol. 275, pp. 1550–1566, Jan. 2018.

[27] Y. Ma, M. Hu, and X. Yan, ‘‘Multi-objective path planning for unmanned
surface vehicle with currents effects,’’ ISA Trans., vol. 75, pp. 137–156,
Apr. 2018.

[28] B. Shah and S. Gupta, ‘‘Speeding up A* search on visibility graphs
defined over quadtrees to enable long distance path planning for unmanned
surface vehicles,’’ in Proc. Int. Conf. Automated Planning Scheduling,
2016, vol. 26, no. 1, pp. 527–535.

[29] Y. Singh, S. Sharma, R. Sutton, D. Hatton, and A. Khan, ‘‘A constrained
A* approach towards optimal path planning for an unmanned surface
vehicle in a maritime environment containing dynamic obstacles and ocean
currents,’’ Ocean Eng., vol. 169, pp. 187–201, Dec. 2018.

[30] R. Song, Y. Liu, and R. Bucknall, ‘‘Smoothed A* algorithm for practical
unmanned surface vehicle path planning,’’ Appl. Oceans Res., vol. 83,
pp. 9–20, 2019.

[31] R. Goralski, C. Ray, and C. Gold, ‘‘Applications and benefits for the
development of cartographic 3D visualization systems in support of
maritime safety,’’ in Proc. Int. Recent ECDIS, E-Navigat. Saf., Mar.
Navigat. Saf. Sea Transp., vol. 77, 2011, pp. 1–5.

[32] X. Gao, S. Shiotani, and H. Makino, ‘‘The study of effective communi-
cation of water depth information for prevention of accidents in marine
traffic,’’ in Proc. 5th Int. Conf. Emerg. Trends Eng. Technol., Nov. 2012,
pp. 265–269.

[33] I. B. Utne, A. J. Sørensen, and I. Schjølberg, ‘‘Risk management of
autonomous marine systems and operations,’’ in Proc. Int. Conf. Offshore
Mech. Arctic Eng., vol. 57663, 2017, pp. 1–5.

[34] O. A. V. Banda, S. Kannos, F. Goerlandt, P. H. van Gelder, M. Bergström,
and P. Kujala, ‘‘A systemic hazard analysis and management process for
the concept design phase of an autonomous vessel,’’ Rel. Eng. Syst. Saf.,
vol. 191, Nov. 2019, Art. no. 106584.

[35] A. Vagale, R. Oucheikh, R. T. Bye, O. L. Osen, and T. I. Fossen,
‘‘Path planning and collision avoidance for autonomous surface vehicles
I: A review,’’ J. Mar. Sci. Technol., vol. 4, pp. 1–15, Jan. 2021.

[36] A. Vagale, R. T. Bye, R. Oucheikh, O. L. Osen, and T. I. Fossen, ‘‘Path
planning and collision avoidance for autonomous surface vehicles II:
A comparative study of algorithms,’’ J. Mar. Sci. Technol., vol. 26, no. 4,
pp. 1307–1323, Dec. 2021.

[37] J. Larson, M. Bruch, and J. Ebken, ‘‘Autonomous navigation and obstacle
avoidance for unmanned surface vehicles,’’ Proc. SPIE Unmanned Syst.
Technol., vol. 6230, Apr. 2006, Art. no. 623007.

[38] M. P. Vitus, S. L. Waslander, and C. J. Tomlin, ‘‘Locally optimal
decomposition for autonomous obstacle avoidance with the tunnel-
MILP algorithm,’’ in Proc. 47th IEEE Conf. Decis. Control, May 2008,
pp. 540–545.

[39] R. Zhen, M. Riveiro, and Y. Jin, ‘‘A novel analytic framework of real-time
multi-vessel collision risk assessment for maritime traffic surveillance,’’
Ocean Eng., vol. 145, pp. 492–501, Nov. 2017.

[40] E. F. Brekke, E. F. Wilthil, B.-O.-H. Eriksen, D. K. M. Kufoalor,
Ø. K. Helgesen, I. B. Hagen, M. Breivik, and T. A. Johansen, ‘‘The autosea
project: Developing closed-loop target tracking and collision avoidance
systems,’’ J. Phys., Conf. Ser., vol. 1357, Oct. 2019, Art. no. 012020.

[41] A. Bakdi, I. K. Glad, E. Vanem, and Ø. Engelhardtsen, ‘‘AIS-based
multiple vessel collision and grounding risk identification based on
adaptive safety domain,’’ J. Mar. Sci. Eng., vol. 8, no. 1, p. 5, Dec. 2019.

[42] J. Zhou, C.Wang, and A. Zhang, ‘‘A COLREGs-based dynamic navigation
safety domain for unmanned surface vehicles: A case study of Dolphin-I,’’
J. Mar. Sci. Eng., vol. 8, no. 4, p. 264, Apr. 2020.

[43] J. M. Cordero and C. Kastrisios, ‘‘Characterizing free and open-source
tools for ocean-mapping,’’ in Proc. ResearchGate, 2020, pp. 1–4.

[44] C. Barry, N. P. H. Branch, S. Legeer, G. Parker, N. A. H. Branch,
and K. VanSant, ‘‘Us office of coast survey’s re-engineered process for
application of hydrographic survey data to NOAA charts,’’ in Proc. 10th
Int. User Group Conf. Educ. Sessions, Nova Scotia, BC, Canada, 2005,
pp. 1–5.

[45] L. Alexander and M. Huet, ‘‘Relationship of marine information overlays
(MIOs) to current/future IHO standards,’’ Int. Hydrographic Org., 2007.

[46] G. Masetti, B. R. Calder, and M. J. Wilson. (2017). Pydro White Paper.
[Online]. Available: https://www.hydroffice.org/manuals/whitepaper.pdf

[47] Python Package Index—PyPI. Accessed: Nov. 29, 2021. [Online].
Available: https://pypi.org/

[48] R. Renger, A. Cimetta, S. Pettygrove, and S. Rogan, ‘‘Geographic
information systems (GIS) as an evaluation tool,’’ Amer. J. Eval., vol. 23,
no. 4, pp. 469–479, 2002.

[49] S. Gillies. (2007). Shapely: Manipulation and Analysis of Geometric
Objects. [Online]. Available: https://github.com/Toblerity/Shapely

[50] P. Wu, S. Xie, H. Liu, M. Li, H. Li, Y. Peng, X. Li, and J. Luo,
‘‘Autonomous obstacle avoidance of an unmanned surface vehicle based
on cooperative manoeuvring,’’ Ind. Robot. Int. J., vol. 44, no. 1, pp. 64–74,
Jan. 2017.

[51] S. Blindheim, S. Gros, and T. A. Johansen, ‘‘Risk-based model predictive
control for autonomous ship emergency management,’’ IFAC-Papers Line,
vol. 53, no. 2, pp. 14524–14531, 2020.

[52] PSB-MPC Collision Avoidance with Anti-Grounding, NTNU ITK,
Trondheim, Norway, 2021.

[53] Intel Corporation. (2021). Intel One API Math Kernel Library. [Online].
Available: https://www.intel.com/content/www/us/en/developer/tools/
oneapi/onemkl.html#gs.gy20fm

SIMON BLINDHEIM (Member, IEEE) received
the M.Sc. degree in engineering cybernetics. He is
currently pursuing the Ph.D. degree in autonomous
risk-based decision-making with the Department
of Engineering Cybernetics, Norwegian Univer-
sity of Science and Technology (NTNU), Norway.
He is also a Researcher at the Department of
Engineering Cybernetics, NTNU.

TOR ARNE JOHANSEN (Senior Member, IEEE)
received the M.Sc. and Ph.D. degrees in engineer-
ing cybernetics from the Norwegian University of
Science and Technology (NTNU), in 1989 and
1994, respectively. He is currently a Professor
at the Department of Engineering Cybernetics,
NTNU. He is also a Key Scientist at the Centre
for Autonomous Marine Operations and Systems
(AMOS), NTNU.

VOLUME 10, 2022 3737


