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Abstract
The algebraic stability theorem for persistence modules is a central result in the theory
of stability for persistent homology. We introduce a new proof technique which we
use to prove a stability theorem for n-dimensional rectangle decomposable persistence
modules up to a constant 2n − 1 that generalizes the algebraic stability theorem, and
give an example showing that the bound cannot be improved for n = 2. We then apply
the technique to prove stability for block decomposable modules, from which novel
results for zigzag modules and Reeb graphs follow. These results are improvements
on weaker bounds in previous work, and the bounds we obtain are optimal.

Keywords Persistent homology · Stability · Multiparameter persistence · Reeb
graphs · Zigzag modules
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1 Introduction

The main goal of this paper is to study stability of persistence modules and the conse-
quences it has for other common objects studied in topological data analysis (TDA).
For us, a persistence module is a functor M : P → vec, where P is a poset category,
often P = R

n , and vec is the category of finite dimensional vector spaces over a fixed
field k. We might say ‘P-module’ to emphasize the poset, or just ‘module’. Explicitly,
this is a set of finite dimensional vector spaces Mp over a fixed field k and linear
transformations Mp → Mq for p ≤ q ∈ P .
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One can measure the distance between persistence modules by the interleaving
distance dI. Under certain assumptions, persistence modules can be decomposed into
direct sums of interval modules1, which are particularly simple and well behaved. For
n = 1, all persistence modules decompose into interval modules [19], and interval
modules are in bijection with the intervals over R, so a decomposition into interval
modules gives an appealingpresentationof amoduleM as amultisetB(M)of intervals
called a barcode. The bottleneck distance dB is a distance on barcodes which can be
defined combinatorially, as opposed to the algebraic definition of the interleaving
distance.

The algebraic stability theorem (AST) is a fundamental theorem in TDA stating
that dI(M, N ) = dB(B(M),B(N )), or dI = dB for short, holds for R-modules M
and N [3,15,16,18]. In TDA, data often take the form of a function f : X → R, where
X is a topological space. For instance, a data set might be a finite set of points S ⊂ R

n ,
in which case one can define f (x) as the distance from x to the closest point in S.
Let M f be the R-module given by M f (a) = Hi ( f −1((−∞, a])). It is easy to show
that dI(M f , Mg) ≤ ‖ f − g‖∞ for f , g : X → R. This means that a consequence of
the algebraic stability theorem is that small perturbations of a function lead to small
changes in the resulting barcode, justifying calling dI = dB a stability theorem.

Other commonly studied objects in TDA are zigzag modules, interlevel set per-
sistence modules, and Reeb graphs. Zigzag modules are ZZ-modules, where ZZ is
isomorphic to the infinite poset

• • • •

• • •

. . .. . .

These modules have been of interest to the TDA community for more than a decade
[5,11,13], and have been used to study flocking behaviour of animals [23]. Zigzag
modules are closely related to interlevel set persistence, which is the study of how
the topology of f −1([a, b]) changes with a and b, where f : X → R, as above. This
connection is explained in Sect. 3.

Given a function f : X → R, the Reeb graph f̄ : (X/∼) → R is defined by letting
x ∼ y for x and y in the same connected component of f −1({a}) for some a ∈ R. Thus,
the Reeb graph keeps track of how the connected components of the level set f −1({a})
merge, split, and are born and die as a changes. Introduced by Georges Reeb [26], it
has been applied to visualization and graphics [22,24,27,30], and its approximation
Mapper [29] has proven very useful; for instance, it has been used to identify a new
subgroup of breast cancers [25] and study biomolecular folding pathways [31].

One can define dI and dB also for zigzag modules and Reeb graphs, and whether an
analogue of AST holds here is a highly relevant question which has been explored in
previous work. The best known bounds until nowwere dB ≤ 5dI/2 for zigzagmodules

1 Our definition of an interval is different from the definition in order theory as a set of the form {p ∈ P |
a ≤ p ≤ b} for some a, b ∈ P . If P = R

n , this will instead be a special case of a rectangle for us.
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and dB ≤ 5dI for Reeb graphs, where the latter is an improvement on the constant 9
from [4]. These bounds were proven by Botnan and Lesnick [11] through the result
dB ≤ 5dI/2 for block decomposable modules, which are a class of interval decompos-
ableR

2-modules. In Sect. 3, we explain how stability of zigzag modules, interlevel set
persistence, and Reeb graphs follows from stability of block decomposable modules.

R
n-modules with n ≥ 2, often called multiparameter modules, are important in

their own right. Adding a density parameter is helpful when studying data sets with
outliers and tendrils [12], and sometimes data are naturally equipped with several
parameters. Unfortunately, R

n-modules do not have a nice invariant like the barcode
of an R-module [14].

We introduce a new method for proving stability that is versatile and simple com-
pared to earlier methods, and that in some cases gives stronger results. We first apply
the method in Sect. 4, where we prove Theorem 4.3, which implies

Theorem Let M and N be rectangle decomposable R
n-modules. Then we have

dB(B(M),B(N )) ≤ (2n − 1)dI(M, N ).

These are modules that decompose into intervals of the form I1 × · · · × In , where
Ii is an interval over R for each i . This is a generalization of the algebraic stability
theorem for R-modules, which is the case n = 1, while for n ≥ 2, the result is new.
Our proof is more combinatorial in nature than the previous proofs for AST. In Sect. 5,
we give an example showing that the bound is optimal for n = 2, which also disproves
a conjecture made in an earlier version of [11] claiming that dB(M, N ) = dI(M, N )

holds for all n-dimensional interval decomposable modules M and N whose barcodes
only contain convex intervals. It is an open question if the bound can be improved for
n ≥ 3.

An arbitrary R
n-module coming from a data set will usually not be rectangle (or

even interval) decomposable, though rectangle decomposable modules do arise from
interlevel set persistence in the case n = 2 [5,13]. Still, the interleaving distance is
certainly of interest, and our work reveals some phenomena that can help our under-
standing of that subject. Indeed, the ideas in this paper were important ingredients in
the recent proof of the NP-hardness of computing dI [7], which we discuss in Sect. 6.
Using the same method, we then prove Theorem 4.12, which gives

Theorem Let M and N be free modules. Then dB(B(M),B(N )) ≤ (n−1)dI(M, N ).

Free modules are a special case of rectangle decomposable modules. In practice,
multiparameter modules are often given as the cokernel of a morphism F1 → F2 of
free modules.

Applying elements from the previous theorems and still using the same method,
we show Theorem 4.18, which gives

Theorem Let M and N be block decomposable modules. Then dB(B(M),B(N )) =
dI(M, N ).

This improves on the mentioned best known bound of dB ≤ 5dI/2 (dB ≥ dI is
trivial), and our proof is simpler and less technical. It follows that dB = dI holds for
zigzag modules and dB ≤ 2dI holds for Reeb graphs, which is optimal. These are also
improvements on the best known bounds. The precise statements are given in Sect. 3.
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There we also show how this theorem is used in the proof of Theorem 3.7 by Cochoy
and Oudot [17], which is a generalization of a known stability result for interlevel set
persistence.

2 PersistenceModules, Interleavings, andMatchings

In this section we introduce notation and definitions that we will use throughout the
paper. Let k be a field that stays fixed throughout the text, and let vec be the category
of finite dimensional vector spaces over k. We identify a poset with its poset category,
which has the elements of the poset as objects, a single morphism p → q if p ≤ q
and no morphism if p � q.

Definition 2.1 Let P be a poset category. A P-persistence module is a functor P →
vec.

If the choice of poset is obvious from the context,weusuallywrite ‘persistencemodule’
or just ‘module’ instead of ‘P-persistence module’.

For a persistence module M , p≤q∈ P , M(p) is denoted by Mp and M(p → q) by
φM (p, q). We refer to the morphisms φM (p, q) as the internal morphisms of M .
M being a functor implies φM (p, p) = idMp and φM (q, r) ◦ φM (p, q) = φM (p, r).
Because persistencemodules are defined as functors, they automatically assemble into
a category where the morphisms are natural transformations. This category is denoted
by P-mod. Let f : M → N be a morphism between persistence modules. Such an f
consists of a morphism associated to each p ∈ P , and these morphisms are denoted
by f p. Because f is a natural transformation, we have φN (p, q)◦ f p = fq ◦φM (p, q)

for all p ≤ q.

Definition 2.2 An interval is a non-empty subset I ⊂ P that satisfies the following:

– If p, q ∈ I and p ≤ r ≤ q, then r ∈ I .
– If p, q ∈ I , then there exist p1, p2, . . . , p2m ∈ I for some m ∈ N such that

p ≤ p1 ≥ p2 ≤ · · · ≥ p2m ≤ q.

We refer to the last point as the connectivity axiom for intervals.

Definition 2.3 An interval persistencemodule or intervalmodule is a persistencemod-
ule M that satisfies the following: for some interval I , Mp = k for p ∈ I and Mp = 0
otherwise, and φM (p, q) = idk for points p ≤ q in I . We use the notation I

I for the
interval module with I as its underlying interval.

The definitions up to this point have been valid for all posets P , but we need some
additional structure on P to get a notion of distance between persistence modules,
which is essential to prove stability results. Since we will mostly be working with
R
n-persistence modules, we restrict ourselves to this case from now on. We define

the poset structure on R
n by letting (a1, a2, . . . , an) ≤ (b1, b2, . . . , bn) if and only if

ai ≤ bi for 1 ≤ i ≤ n. For ε ∈ R, we often abuse notation and write ε when we mean
(ε, ε, . . . , ε) ∈ R

n . We call an interval I ⊂ R
n bounded if it is contained in a ball

with finite radius.
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Definition 2.4 For ε ∈ [0,∞), we define the shift functor ( · )(ε) : R
n-mod →

R
n-mod by letting M(ε) be the persistence module with M(ε)p = Mp+ε and

φM(ε)(p, q) = φM (p + ε, q + ε). For morphisms f : M → N , we define
f (ε) : M(ε) → N (ε) by f (ε)p = f p+ε .

Wealso define shift on intervals I by letting I (ε)be the interval forwhich I
I (ε) = I

I (ε).
Define the morphism φM,ε : M → M(ε) by (φM,ε)p = φM (p, p + ε).

Definition 2.5 An ε-interleavingbetweenR
n-modulesM and N is a pair ofmorphisms

f : M → N (ε), g : N → M(ε) such that g(ε) ◦ f = φM,2ε and f (ε) ◦ g = φN ,2ε .

If there exists an ε-interleaving between M and N , then M and N are said to be ε-
interleaved. An interleaving can be viewed as an ‘approximate isomorphism’, and a
0-interleaving is in fact a pair of isomorphisms. We call a module M ε-significant if
φM (p, p + ε) �= 0 for some p, and ε-trivial otherwise. M is 2ε-trivial if and only
if it is ε-interleaved with the zero module. We call an interval I ε-significant if I

I is
ε-significant, and ε-trivial otherwise.

Definition 2.6 We define the interleaving distance dI on persistence modules M and
N by

dI(M, N ) = inf {ε |M and N are ε -interleaved}.

Intuitively, the interleaving distance measures how close the modules are to being
isomorphic. The interleaving distance between two modules might be infinite, and
the interleaving distance between two different, even non-isomorphic modules, might
be zero. Apart from this, dI satisfies the axioms for a metric, so dI is an extended
pseudometric.

Definition 2.7 Suppose M � ⊕
I∈B I

I for a multiset B of intervals. Then we call B
the barcode of M , and write B = B(M). We say that M is interval decomposable.

When we write I �= I ′ for intervals I and I ′ in a barcode, we mean that they are
separate elements of the multiset, not that they necessarily represent different subsets
of R

n .
For R-modules, barcodes and persistence diagrams are equivalent and both com-

monly used; the only difference is that they refer to two different ways of presenting
the intervals: either as multisets of intervals, or as multisets of points in R

2. For
higher-dimensional intervals, however, persistence diagrams become impossible to
draw, while one can still draw pictures analogous to the one-dimensional barcodes.
For this reason we will use the term ‘barcode’.

Since the endomorphism ring of any interval module is isomorphic to k, it follows
from [2, Thm. 1] that for any poset P , if a P-module M is interval decomposable, the
decomposition is unique up to isomorphism. Thus, the barcode is well defined. Any
R-module is interval decomposable [19], but this is not true forR

n-modules in general.
The following is an example of a P-module for a poset P with four points that is not
interval decomposable. A correspondingR

2-module that is not interval decomposable
and is at most two-dimensional at each point can be constructed.
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For multisets A, B, we define a partial bijection as a bijection σ : A′ → B ′ for
some subsets A′ ⊂ A and B ′ ⊂ B, and we write σ : A � B. We write coim σ = A′
and im σ = B ′.

Definition 2.8 Let A and B be multisets of intervals. An ε-matching between A and
B is a partial bijection σ : A � B such that

– all I ∈ A \ coim σ are 2ε-trivial,
– all J ∈ B \ im σ are 2ε-trivial,
– for all I ∈ coim σ , I

I and I
σ(I ) are ε-interleaved.

We can interpret ε-matchings in the context of graph theory. A matching in a graph is
a set of edges in the graph without common vertices, and a matching is said to cover
a set S of vertices if all elements in S are adjacent to an edge in the matching. Let Gε

be the bipartite graph on A � B with an edge between I ∈ A and J ∈ B if I
I and I

J

are ε-interleaved. Then an ε-matching between A and B is a matching in Gε such that
the set of 2ε-significant intervals in A � B is covered.

Definition 2.9 The bottleneck distance dB is defined by

dB(C, D) = inf {ε | there is an ε-matching between C and D}

for multisets C and D of intervals.

We will often abuse notation and write dB(M, N ) meaning dB(B(M),B(N )) for
persistence modules M and N . The inequality dI(M, N ) ≤ dB(M, N ) always holds
whenM and N are interval decomposable, as one can easily construct an ε-interleaving
between M and N given an ε-matching between B(M) and B(N ). For this reason,
we will treat the statements dB ≤ dI and dB = dI as the same.

3 ZigzagModules, Interlevel Set Persistence, and Reeb Graphs

In this section we define block modules and explain how they relate to the stability of
zigzag modules, interlevel set persistence, and Reeb graphs. In particular, we explain
the consequences of our stability result for block decomposable modules.

In the following, R
op is the poset with R as the underlying set and the opposite

order of the standard one. Sending a ∈ R to −a gives an isomorphism between R
op

and R. Z
op is defined similarly. Let U = {(a, b) ∈ R

op × R | a ≤ b}. This is a
subposet of R

2 with a flipped x-axis, but it is also useful to think of it as the poset
of closed intervals (over R) with I ≤ J if I ⊂ J . There is an obvious one-to-one
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Fig. 1 From left to right: the intervals [0, 2]BL, [0, 2)BL, (0, 2]BL, and (0, 2)BL together with the ZZ-
intervals [0, 2], [0, 2), (0, 2], and (0, 2), respectively

correspondence between U-modules and (Rop×R)-modules that are zero at all points
(a, b)with b < a. SinceR

op×R � R
2, we can define interleavings onU-modules via

the usual definition onR
2-modules. Explicitly, the shift functor onU-modules is given

by M(ε)(a,b) = M(a−ε,b+ε), from which the definition of ε-interleaving follows.

We are interested in the following particular subset of U-modules.

Definition 3.1 A block is an interval of one of the following forms, where a, b ∈
R ∪ {±∞}:

[a, b]BL = {(c, d) ∈ U | c ≤ b, d ≥ a}, [a, b)BL = {(c, d) ∈ U | a ≤ d < b},
(a, b]BL = {(c, d) ∈ U | a < c ≤ b}, (a, b)BL = {(c, d) ∈ U | c > a, d < b}.

A block module is an interval module over U supported on a block. A U-module is
block decomposable if it is isomorphic to a direct sum of block modules.

In all but the first case, a ≤ b is necessary for the block to be nonempty. Blocks of
the form [a, b]BL with a > b arise from interlevel set persistence, but not from zigzag
modules or Reeb graphs by the constructions we will describe.

In Sect. 4.3, we prove Theorem 4.18:

Theorem Let M and N be block decomposablemodules. If M and N are δ-interleaved,
there exists a δ-matching between B(M) and B(N ). Thus, dI(M, N ) = dB(M, N ).

The previous best known bound was dI(M, N ) ≤ 5dB(M, N )/2, proved in [11].
In this section, we will explain how stability results for zigzag modules, interlevel

set persistence, and Reeb graphs follow from this result. In the case of zigzag modules
and Reeb graphs, our result strengthens the previously known bounds to where they
cannot be improved. For interlevel set persistence, Theorem 4.18 was an ingredient in
the proof in [17] of a generalization of a known stability result.

3.1 ZigzagModules

A zigzag module is a module over the poset ZZ = {(a, b) ∈ Z
op × Z | a = b or a =

b+ 1}. Like in ordinary 1-parameter persistence, zigzag modules are interval decom-
posable and therefore have well-defined barcodes [9]. It is not hard to see that any
interval over ZZ must be of one of the following forms, where a, b ∈ Z ∪ {±∞}.

[a, b] = {(c, d) ∈ ZZ | c ≤ b, d ≥ a}, [a, b) = {(c, d) ∈ ZZ | a ≤ d < b},
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(a, b] = {(c, d) ∈ ZZ | a < c ≤ b}, (a, b) = {(c, d) ∈ ZZ | c > a, d < b}.

For (a, b) ∈ U, let ZZ|(a,b) be the sub-poset of ZZ containing the elements {(c, d) ∈
ZZ | c ≥ a, d ≤ b}. A zigzag module M gives rise to a U-module U (M) by letting

U (M)(a,b) = colim (ZZ|(a,b)),

and defining the internal morphism φU (M)((a, b), (c, d)) as the induced morphism we
get by the universal property of colimits. For any multiset B of intervals over ZZ, let
U (B) be the multiset of blocks where each interval I in B has been replaced by the
block IBL with the same multiplicity. That is, [a, b] is replaced by [a, b]BL, [a, b) by
[a, b)BL and so on. Figure 1 illustrates how intervals over ZZ give rise to blocks. One
can show the following theorem by observing that U ( · ) preserves direct sums and
that U (II ) = I

IBL for all ZZ-intervals I .

Theorem 3.2 If M is a zigzag module, then U (M) is block decomposable and
B(U (M)) = U (B(M)).

Thus, we can define the interleaving and bottleneck distances between zigzagmodules
by letting dI(M, N ) = dI(U (M),U (N )) and dB(M, N ) = dB(U (M),U (N )). Then
Theorem 4.18 immediately implies stability for zigzag modules:

Theorem 3.3 Let M and N be zigzag modules. If U (M) and U (N ) are δ-interleaved,
there is a δ-matching between their barcodes. Thus, dI(M, N ) = dB(M, N ).

Like for block decomposable modules, this is an improvement on the previous bound
of dB(M, N ) ≤ 5dI(M, N )/2 [11].

3.2 Interlevel Set Persistence

Given a topological space X and a continuous function f : X → R, we define a
U-module M f

n by M f
n (a, b) = Hn( f −1([a, b])), where the internal morphisms are

induced by inclusions. When f is sufficiently nice, we can study the stability of the
interlevel set persistence of f via M f

n . Let XI = f −1(I ) for subsets I ⊂ R.

Definition 3.4 We say that (X , f ) is of Morse type if the homology of X{t} is finitely
generated for every t ∈ R and there are real numbers a1 < a2 < . . . < am such that
for all I = (ai , ai+1), there is a Y and a homeomorphism h : Y × I → XI such that
f ◦h is the projection onto I , and h extends to a continuous function h̄ : Y × Ī → X Ī .
Here, Ī is the closure of I , i ranges from 0 tom, and we let a0 = −∞ and am+1 = ∞.

The numbers ai are to be understood as the critical values of f . Picking values−∞ <

s0 < a1 < s1 < · · · < sm−1 < am < sm < ∞ and defining X
j
i = f −1([si , s j ]),

Carlsson et al. [13] consider the sequence

Hn(X) : Hn(X
0
0) → Hn(X

1
0) ← Hn(X

1
1) → · · ·

← Hn(X
m−1
m−1) → Hn(X

m
m−1) ← Hn(X

m
m).
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We will view this as a persistence module living over the poset

S = {(si , s j ) | (i = j or i = j − 1) and 0 ≤ i, j ≤ m} ⊂ R
op × R.

S is isomorphic to a (finite, connected) subposet P of ZZ via an isomorphism ι.
Thus, we can consider a zigzag module Z supported on P such that Hn(X) = Z ◦ ι,
decompose Z into interval modules, and pull the decomposition back along ι to get an
interval decomposition of Hn(X). This means that Hn(X) is interval decomposable,
so the barcode B(Hn(X)) is well defined. We borrow the following notation from
Carlsson et al., which covers all the intervals that can appear inB(Hn(X)):

[ai , a j ] = {(sc, sd) | c < j, d ≥ i}, [ai , a j ) = {(sc, sd) | i ≤ d < j},
(ai , a j ] = {(sc, sd) | i ≤ c < j}, (ai , a j ) = {(sc, sd) | c ≥ i, d < j}.

By definition, Hn(X) is simply the restriction of M f
n to the subposet S. Carlsson et

al. also consider a larger diagram which consists of the vector spaces Hn(X
j
i ) for

0 ≤ i ≤ j ≤ m with maps Hn(X
j
i ) → Hn(X

l
k) induced by the inclusions X

j
i ↪→ X

l
k

whenever k ≤ i and j ≤ l. This is in fact a discrete version of M f
n , and carries exactly

the same information as long as we remember the ai : Let M be the U-module given
by M(a,b) = Hn(X

j
i ) for ai < a ≤ ai+1 and a j ≤ b < a j+1, and internal morphisms

equal to the relevant morphisms Hn(X
j
i ) → Hn(X

l
k). Then M ∼= M f

n .
Using what they call the Mayer–Vietoris Diamond Principle, Carlsson et al. were

able to prove part (i) of the following theorem, determining M f
n (or rather the discrete

version just mentioned) using only Hn(X) and Hn−1(X). The principle is very similar
to how a zigzag module M gives rise to a block decomposable moduleU (M), though
here we also get blocks of the form [a, b]BL with a > b. These blocks are not detected
by Hn(X), but arise from Hn−1(X) through a dimension shift. Cochoy and Oudot
[17] proved part (ii) with help from a result by Botnan and Crawley-Boevey [10],
generalizing (i) by relaxing the assumptions on f . A function f : X → R is pfd
(pointwise finite dimensional) if it is continuous (but not necessarily of Morse type)
and Hn( f −1((a, b))) is finite dimensional for all a, b, n.

Theorem 3.5 [10,13,17]

(i) If f is of Morse type, then M f
n is block decomposable and its barcode consists of

the following:

– a block [ai , a j ]BL for each [ai , a j ] inB(Hn(X)),
– a block [a j , ai ]BL for each (ai , a j ) inB(Hn−1(X)),
– a block [ai , a j )BL for each [ai , a j ) inB(Hn(X)),
– a block (ai , a j ]BL for each (ai , a j ] inB(Hn(X)),
– a block (ai , a j )BL for each (ai , a j ) inB(Hn(X)).

(ii) If f is pfd, there is a block decomposable module M such that dI(M, M f
n ) = 0.

The reason for the indirect phrasing of part (ii) is that Cochoy and Oudot work with
inverse images of open intervals instead of closed, which gives a module that is not
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isomorphic toM f
n , though the interleaving distance from it is 0. This is not a significant

problem, however, as we can define B(M f
n ) as B(M) for M as in (ii).

If M is a block decomposable module, we will find it convenient to use the notation
Bdiag(M) for the barcode we get by intersecting the intervals in B(M) with the

diagonal and projecting this to R. We call Bdiag(M
f
n ) the nth level set barcode. This

has the following stability property:

Theorem 3.6 [13] Let f , g : X → R be of Morse type. Then

dB(Bdiag(M
f
n ),Bdiag(M

g
n )) ≤ ‖ f − g‖∞,

where ‖ f − g‖∞ = supx∈X | f (x) − g(x)|.
Theorem 3.5 allows us to ask if there is an analogue of level set stability for interlevel
set persistence by considering block decomposable modules. Botnan and Lesnick give
an affirmative answer for f of Morse type. The result was generalized to pfd functions
in [17], applying a result of [10] and our Theorem 4.18:

Theorem 3.7 [17] Let f , g : X → R be pfd. Then

dB(M f
n , Mg

n ) ≤ ‖ f − g‖∞.

Proof If ε > ‖ f − g‖∞, we have inclusions

f −1([a, b]) ↪→ g−1([a − ε, b + ε]) ↪→ f −1([a − 2ε, b + 2ε])

andvice versa. These induce an ε-interleaving betweenM f
n andMg

n , sodI(M
f
n , Mg

n ) ≤
‖ f − g‖∞. By results from [10,17], M f

n and Mg
n are block decomposable, and by

Theorem 4.18, dB(M f
n , Mg

n ) = dI(M
f
n , Mg

n ). ��

3.3 Reeb Graphs

Given a continuous function f : X → R of Morse type with locally path-connected
level sets f −1(x), let R f be the quotient space X/∼, where x ∼ y if x and y are in the
same connected component of f −1(r) for some r ∈ R. We get a function f̃ : R f → R

induced by f . The Reeb graph of (X , f ) is the pair (R f , f̃ ). Alternatively, one can
define a Reeb graph directly as a pair (R, f ) such that R is a finite topological graph
(a compact triangulable space of dimension at most 1), f : R → R is continuous and
of Morse type, and the level sets are discrete. By this definition, the Reeb graph of
(X , f ) as above is indeed a Reeb graph. We sometimes abuse notation and refer to R
as a Reeb graph without explicitly mentioning f .

De Silva et al. [28] show that an equivalent way of viewing a Reeb graph (R, f )
is as a functor CR : U → Set given by CR(a, b) = π0( f −1([a, b])) and morphisms
CR(a, b) → CR(c, d) induced by inclusions of sets, which in their language is a
cosheaf. Strictly speaking, theyworkwith open intervals instead of closed, but this does
not matter for the distances wewill discuss.We think ofCR as a set-valued persistence
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module over U. Shift, interleaving, and the interleaving distance are defined in exactly
the same way as for persistence modules with values in vec. Using these cosheaves,
de Silva et al. are also able to describe interleavings in a geometrically intuitive way
as level-preserving maps between Reeb graphs. We will not need this description, so
we skip the details and invite the interested reader to study [28].

Though the interleaving distance is well defined, we cannot talk about decompo-
sitions into direct sums of interval modules when we are working over Set. To avoid
this problem, let CR

vec be the U-module (with values in vec) such that CR
vec(a, b) has

CR(a, b) as a basis, and the internal morphisms are determined by the basis maps
given by CR . The level sets are finite since H0(X) is finitely generated, so the vector
spaces are finite dimensional. CR

vec is simply the zeroth homology interlevel set per-
sistence module of (R, f ), so as above, it decomposes into block modules; see Fig. 2.
Applying Theorem 4.18 and observing that an ε-interleaving between CR and CR′

representing Reeb graphs (R, f ) and (R′, f ′) induces an ε-interleaving between CR
vec

and CR′
vec, we get

dB(CR
vec,C

R′
vec) = dI(C

R
vec,C

R′
vec) ≤ dI(C

R,CR′
).

We would like to have a similar statement for level set barcodes, though we have
to be a little careful, as for 2ε < b − a < 4ε, I

(a,b)BL is ε-interleaved with the
zero module, while the R-module I

(a,b) is not. This causes dB(B(CR
vec),B(CR′

vec))

and dB(Bdiag(CR
vec),Bdiag(CR′

vec)) to disagree by a factor of up to two. Still, it is
straightforward to check that an ε-matching between B(CR

vec) and B(CR′
vec) induces

a 2ε-matching between Bdiag(CR
vec) and Bdiag(CR′

vec). Thus,

dB(Bdiag(C
R
vec),Bdiag(C

R′
vec)) ≤ 2dB(CR

vec,C
R′
vec).

Summing up the preceding paragraphs, we get

Theorem 3.8 Let (R, f ) and (R′, f ′) be Reeb graphs. Then the following inequalities
hold:

dB(CR
vec,C

R′
vec) ≤ dI(C

R,CR′
),

dB(Bdiag(C
R
vec),Bdiag(C

R′
vec)) ≤ 2dI(C

R,CR′
).

The previous best known bounds were 5/2 for the first inequality and 5 for the second
[11]. De Silva et al. observe that if f , f ′ : X → R give rise to Reeb graphs R and R′,
then dI(CR,CR′

) ≤ ‖ f − f ′‖∞ follows almost immediately from the definitions.
This justifies calling Theorem 3.8 a stability result in the same way as for the classic
algebraic stability theorem.

The following simple example shows that neither inequality in the theorem can be
improved:

Example 3.9 Let R be the line segment from (0,−2) to (0, 2) in R
2, R′ the circle of

radius 2 centered at the origin, and f and f ′ the projections to the second coordinate.
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x = y

•

11

10

8

7

6

5

4

2

1

0

Fig. 2 A Reeb graph (R, f ) with f illustrated as a height function on the right, CR on the left,
darker shades of grey meaning larger cardinality. The intersection of R and the red strip is f −1([5, 6]),
which has two connected components. Thus, |CR

(5,6)| = 2, shown by the dot. We can easily read off

B(CR
vec) = {[0, 11]BL, [1, 2)BL, (4, 7)BL, (8, 10]BL} from the figure, which also gives us the level set

barcodeBdiag(C
R
vec) = {[0, 11], [1, 2), (4, 7), (8, 10]}

Then

dI(C
R,CR′

) = 1, dB(CR
vec,C

R′
vec) = 1, dB(Bdiag(C

R
vec),Bdiag(C

R′
vec)) = 2.

We leave the verification of the equalities to the reader.

4 Higher-Dimensional Stability

The algebraic stability theorem states that an ε-interleaving between R-modules M
and N induces an ε-matching between B(M) and B(N ), implying dI(M, N ) =
dB(M, N ). The purpose of this section is to prove similar results for R

n-modules. Our
first result, Theorem 4.3, is a generalization of AST. There already exist several proofs
of AST [3,15,16,18], but our approach has ideas that are applicable to more than just
R-modules.

Theorem 4.3 is the most technically challenging application of our proof method,
and the proof demonstrates very well exactly when our method works and when it
fails. The lesson to take home is that the method gives a bound dB ≤ cdI with some
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Fig. 3 Three rectangles, where the left and middle rectangles are of the same type (unbounded downwards),
while the last is of a different type (unbounded upwards and to the right). Assuming that it contains its
boundary, the rightmost rectangle is also an example of a free interval, which we will define in Sect. 4.2

c that increases with the freedom we have in defining the intervals we consider. One
needs 2n coordinates to define an n-dimensional (hyper)rectangle, which gives the
constant 2n − 1 in the theorem.

4.1 Rectangle Decomposable Modules

For any interval I ⊂ R
n , let Ii denote its projection onto the i th coordinate.

Definition 4.1 A rectangle is an interval of the form R = R1 × R2 × · · · × Rn .

Two rectangles R and S are of the same type if Ri \ Si and Si \ Ri are bounded for
every i . For n = 1, we have four types of rectangles:

– intervals of finite length,
– intervals of the form (a,∞) or [a,∞),
– intervals of the form (−∞, a) or (−∞, a],
– (−∞,∞),

for some a ∈ R. We see that for n ≥ 1, rectangles R and S are of the same type if Ri

and Si are of the same type for all 1 ≤ i ≤ n. Examples of 2-dimensional rectangles
are given in Fig. 3.

In [16], decorated numberswere introduced. These are endpoints of intervals ‘dec-
orated’ with a plus or minus sign depending on whether the endpoints are included in
the interval or not. Let R = R ∪ {−∞,∞}. A decorated number is of the form a+
or a−, where a ∈ R. (The decorated numbers −∞− and ∞+ are never used, as no
interval contains points at infinity, but it does not matter whether we include these two
points in the definition.) The notation is as follows for a, b ∈ R:

– I = (a+, b+) if I = (a, b],
– I = (a+, b−) if I = (a, b),
– I = (a−, b+) if I = [a, b],
– I = (a−, b−) if I = [a, b).

We define decorated points in n dimensions for n ≥ 1 as tuples a = (a1, a2, . . . , an),
where all the ai ’s are decorated numbers. For an n-dimensional rectangle R and dec-
orated points (a1, a2, . . . , an) and (b1, b2, . . . , bn), we write R = ((a1, a2, . . . , an),
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(b1, b2, . . . , bn)) if Ri = (ai , bi ) for all i . We define minR and maxR as the deco-
rated points for which R = (minR,maxR). We write a∗ for decorated numbers with
unspecified ‘decoration’, so a∗ is either a+ or a−.

There is a total order on the decorated numbers given by a∗ < b∗ for a < b, and
a− < a+ for all a, b ∈ R. This induces a poset structure on decorated n-dimensional
points given by (a1, a2, . . . , an) ≤ (b1, b2, . . . , bn) if ai ≤ bi for all i . We can
also add decorated numbers and real numbers by letting a+ + x = (a + x)+ and
a− + x = (a + x)− for a ∈ R, x ∈ R. We add n-dimensional decorated points and
n-tuples of real numbers coordinatewise.

Definition 4.2 Let M be an R
n-module. If R is a rectangle and M � I

R , M is a
rectangle module. If M is interval decomposable and all I ∈ B(M) are rectangles,
M is rectangle decomposable.

Our goal is to prove the following theorem:

Theorem 4.3 Let M = ⊕
I∈B(M) I

I and N = ⊕
J∈B(N ) I

J be rectangle decompos-
able R

n-modules. If M and N are δ-interleaved, there exists a (2n − 1)δ-matching
between B(M) and B(N ). Thus, dB(M, N ) ≤ (2n − 1)dI(M, N ).

We prove the theorem by a mix of combinatorial, geometric, and algebraic arguments.
First we show that it is enough to prove the theorem under the assumption that all the
rectangles in B(M) and B(N ) are of the same type. Then we define a real-valued
function α on the set of rectangles which in a sense measures, in the case n = 2, how
far ‘up and to the right’ a rectangle is. There is a preorder≤α associated to α. The idea
behind ≤α is that if there is a nonzero morphism χ : I

I → I
J (ε) and I ≤α J , then I

and J have to be close to each other. Finding pairs of intervals in B(M) and B(N )

that are close is exactly what we need to construct a (2n−1)δ-matching. Lemmas 4.7
and 4.8 say that such morphisms behave nicely in a precise sense that we will exploit
when we prove Lemma 4.9. If we remove the conditions mentioning ≤α , Lemmas 4.7
and 4.8 are not even close to being true, so one of the main points in the proof of
Lemma 4.9 is that we must exclude the cases that are not covered by Lemmas 4.7 and
4.8. We do this by proving that a certain matrix is upper triangular, where the ‘bad
cases’ correspond to the elements above the diagonal and the ‘good cases’ correspond
to elements on and below the diagonal.

Lemma 4.9 is what ties together the geometric and combinatorial parts of the
proof of Theorem 4.3. While we prove Lemma 4.9 by geometric arguments, by Hall’s
marriage theorem the lemma is equivalent to a statement about matchings between
B(M) andB(N ). We have to do some combinatorics to get exactly the statement we
need, namely that there is a (2n − 1)δ-matching between B(M) and B(N ), and we
do this after stating Lemma 4.9.

Fix 0 ≤ δ ∈ R. Assume that M and N are δ-interleaved, with interleav-
ing morphisms f : M → N (δ) and g : N → M(δ). Recall that this means that
g(δ) ◦ f = φM,2δ and f (δ) ◦ g = φN ,2δ . For any I ∈ B(M), we have a canon-

ical injection I
I ιI−→ M and projection M

πI−→ I
I , and likewise, we have canonical

morphisms I
J ιJ−→ N and N

πJ−→ I
J for J ∈ B(N ). We define

f I ,J = πJ (δ) ◦ f ◦ ιI : I
I → I

J (δ),
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gJ ,I = πI (δ) ◦ g ◦ ιJ : I
J → I

I (δ).

Lemma 4.4 Let χ : I
I → I

J be a morphism between interval modules. Suppose A =
I ∩ J is an interval. Then, for all a, b ∈ A, χa = χb as k-endomorphisms.

Proof Suppose a ≤ b and a, b ∈ A. Then χb ◦ φII (a, b) = φIJ (a, b) ◦ χa . Since the
φ-morphisms are identities, we get χa = χb as k-endomorphisms. By the connectivity
axiom for intervals, the equality extends to all elements in A. ��
Since the intersection of two rectangles is either empty or a rectangle, we can describe
a morphism between two rectangle modules uniquely as a k-endomorphism if their
underlying rectangles intersect. A k-endomorphism, in turn, is simply multiplication
by a constant.

Lemma 4.5 Let R and S be rectangles. Then there exists a nonzeromorphismχ : I
R →

I
S if and only if minS ≤ minR, maxS ≤ maxR, and R ∩ S �= ∅.
Proof Suppose χa �= 0, which immediately gives a ∈ R ∩ S, and let a ≥ x ∈ R and
a ≤ y ∈ S. We have the following commutative diagram.

I
S
x is not zero, as there is a nonzero morphism factoring through it. Thus, minS ≤ x
and minS ≤ minR . An analogous argument using the square on the right-hand side
gives maxR ≥ maxS .

To prove the converse, define χ by χa = id for a ∈ R ∩ S and χa = 0 otherwise.
This is well defined unless there are a ≤ b such that a ∈ R \ S and b ∈ R ∩ S, or
a ∈ R ∩ S and b ∈ S \ R, which are impossible by the assumptions minS ≤ minR
and maxS ≤ maxR , respectively. ��
This will come in handy when we prove Lemmas 4.6, 4.7, and 4.8.

We define a function w : (B(M) × B(N )) � (B(N ) × B(M)) → k by letting
w(I , J ) = x if f I ,J is given by multiplication by x , and w(I , J ) = 0 if f I ,J is the
zero morphism. w(J , I ) is given by gJ ,I in the same way. With the definition of w,
it is starting to become clear how combinatorics comes into the picture. We can now
construct a bipartite weighted directed graph onB(M)�B(N ) by letting w(I , J ) be
the weight of the edge from I to J . The reader is encouraged to keep this picture in
mind, as a lot of what we do in the rest of the proof can be interpreted as statements
about the structure of this graph.

The following lemma allows us to break up the problem and focus on the compo-
nents of M and N with the same types separately.

Lemma 4.6 Let R and T be rectangles of the same type, and S be a rectangle of a
different type. Then ψχ = 0 for any pair χ : I

R → I
S, ψ : I

S → I
T of morphisms.
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Proof Suppose ψ, χ �= 0. By Lemma 4.5, minR ≥ minS ≥ minT and maxR ≥
maxS ≥ maxT . We get minRi ≥ minSi ≥ minTi and maxRi ≥ maxSi ≥ maxTi for
all i , and it follows that if R and T are of the same type, then S is of the same type as
R and T . ��
Let f ′: M → N (δ) be defined by f ′

I ,J = f I ,J for I ∈ B(M) and J ∈ B(N ) if I
and J are of the same type, and f ′

I ,J = 0 if they are not, and let g′: N → M(δ) be
defined analogously. Here f ′ and g′ are assembled from f ′

I ,J and g′
J ,I the same way

f and g are from f I ,J and gJ ,I . Suppose I , I ′ ∈ B(M). Then we have

∑

J∈B(N )

gJ ,I ′(δ) f I ,J =
∑

J∈B(N )

g′
J ,I ′(δ) f ′

I ,J .

Since ( f , g) is an interleaving, the left-hand side is equal to the composition I
I ιI−→

M
φM,2δ−−−→ M

πI ′−→ I
I ′
, which is zero if I �= I ′. Thus, if I and I ′ are of different types,

the left-hand side is zero, while all the summands on the right-hand side are zero by
definition of f ′ and g′. If I and I ′ are of the same type, the equality follows from
Lemma 4.6. This means that g′(δ) f ′ = g(δ) f . We also have f ′(δ)g′ = f (δ)g, so
f ′ and g′ are δ-interleaving morphisms. In particular, f ′ and g′ are δ-interleaving
morphisms when restricted to the components of M and N of a fixed type. If we can
show that f ′ and g′ induce a (2n−1)δ-matching on each of thementioned components,
we will have proved Theorem 4.3. In other words, we have reduced the problem to
the case where all the intervals inB(M) and B(N ) are of the same type.

For a decorated number a∗, let u(a∗) = a if a �= ±∞ and u(a∗) = 0 otherwise.
Let a = (a1, a2, . . . , an) be a decorated point. We define P(a) to be the number of the
decorated numbers ai decorated with +, and we also define α(a) = ∑

1≤i≤n u(ai ).
What we really want to look at are rectangles and not decorated points by themselves,
so we define P(R) = P(minR) + P(maxR) and α(R) = α(minR) + α(maxR) for
any rectangle R. Let the order ≤α on rectangles be given by R ≤α S if either

– α(R) < α(S), or
– α(R) = α(S) and P(R) ≤ P(S).

This defines a preorder. In other words, it is transitive (R ≤α S ≤α T implies R ≤α T )
and reflexive (R ≤α R for all R). We write R <α S if R ≤α S and not R ≥α S.

The order ≤α is one of the most important ingredients in the proof. The point is
that if there is a nonzero morphism from I

R to I
S(ε) and R ≤α S, then R and S have

to be close to each other. If ε = 0, R and S actually have to be equal. This ‘closeness
property’ is expressed in Lemma 4.7, and is also exploited in Lemma 4.8. Finally,
in the proof of Lemma 4.9, we make sure that we only have to deal with morphisms
gJ ,I ′(δ) ◦ f I ,J for I ≤α I ′ and not I >α I ′, so that our lemmas can be applied.

In Fig. 4 we see two rectangles R = (0, 4) × (0, 4) and S = (2, 5) × (2, 5). There
is no nonzero morphism from I

R to I
S or I

S(1), because minR < minS(ε) for all ε < 2.
This is connected to the fact that α(R) = 8 < 14 = α(S), which can be interpreted to
mean that R is ‘further down and to the left’ than S. The point of including P(R) in
the definition of α is that e.g. (a, b] is a tiny bit ‘further to the right’ than [a, b), and
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Fig. 4 Rectangles R = (0, 4) × (0, 4) (purple), S = (2, 5) × (2, 5) (pink), S(1) = (1, 4) × (1, 4) (dotted
border), and S(2) = (0, 3) × (0, 3) (dotted border)

this is a subtlety that P recognizes, and that matters in the proofs of Lemmas 4.7 and
4.8.

Lemma 4.7 Let R, S, and T be rectangles of the same typewith R ≤α T . Suppose there
are nonzero morphisms χ : I

R → I
S(ε) and ψ : I

S → I
T (ε). Then I

S is (2n − 1)ε-
interleaved with either I

R or I
T .

Proof We must have either R ≤α S or S ≤α T . Let us assume the former; the latter is
the same. Since χ �= 0, it follows from Lemma 4.5 that

(i) minS ≤ minR + ε,
(ii) maxS ≤ maxR + ε.

We can assume that at least one of R and S is (4n − 2)ε-significant, since if not, they
would be (2n − 1)ε-interleaved by zero morphisms. Suppose also

(iii) minR ≤ minS + (2n − 1)ε,
(iv) maxR ≤ maxS + (2n − 1)ε

hold. Assume R is (4n− 2)ε-significant (replacing R by S changes nothing), so there
exists ana such thata, a+(4n−2)ε ∈ R. Thena+(2n−1)ε ∈ S, so byLemma4.5 and
(i)–(iv), there are nonzero morphisms I

R → I
S((2n − 1)ε) and I

S → I
R((2n − 1)ε).

These can be chosen to be the identity where they are nonzero, and then they are
interleaving morphisms.

Therefore, we only need to show (iii) and (iv). It suffices to showminRm ≤ minSm +
(2n−1)ε for an arbitrarym; the max case follows from the same arguments. Suppose
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u(minRm ) ≥ u(minSm ) + (2n − 1)ε. This, (i), and (ii) give

α(S) =
n∑

i=1

u(minSi ) +
n∑

i=1

u(maxSi )

≤ u(minRm ) − (2n − 1)ε +
∑

i �=m

(u(minRi ) + ε) +
n∑

i=1

(u(maxRi ) + ε)

=
n∑

i=1

u(minRi ) +
n∑

i=1

u(maxRi ) = α(R).

Since R ≤α S, we have equality, which means that

– u(minSm ) = u(minRm ) − (2n − 1)ε,
– u(minSi ) = u(minRi ) + ε for i �= m,
– u(maxSi ) = u(maxRi ) + ε for all i .

But then P(minSi ) ≤ P(minRi ) for i �= m and P(maxSi ) ≤ P(maxRi ) for all i
by (i) and (ii), so P(minRm ) ≤ P(minSm ) follows from R ≤α S. Thus, minRm ≤
minSm + (2n − 1)ε. ��
Let C ≥ 4n − 2,

R = [0,C]n, S = [ε,C + ε]n−1 × [−(2n − 1)ε,C + ε],
T = [2ε,C + 2ε]n−1 × [−(4n − 2)ε,C + 2ε].

These satisfy the hypotheses of Lemma 4.7 and dI(IR, I
S) = dI(IS, I

T ) = (2n − 1)ε.
This example shows that the constant 2n − 1 cannot be improved in Lemma 4.7, and
this is the source of the same constant in Theorem 4.3.

Lemma 4.8 Let R, S, and T be rectangles of the same type with R and T 2nε-
significant and α(R) ≤ α(T ). Suppose there are nonzero morphisms χ : I

R → I
S(ε)

and ψ : I
S → I

T (ε). Then ψ(ε) ◦ χ �= 0.

Proof It suffices to show that for any m, maxTm > minRm + 2ε. If this holds, then R
and T (2ε) intersect, and ψ(ε) ◦ χ is nonzero in this intersection.

Assume that χ and ψ are nonzero and that R and T are 2nε-significant. For all i ,
we have

(i) minRi + 2ε ≥ minTi ,
(ii) maxRi + 2ε ≥ maxTi ,
(iii) maxRi > minRi + 2nε,
(iv) maxTi > minTi + 2nε.

(i) and (ii) follow from χ,ψ �= 0, and Lemma 4.5. (iii) and (iv) are consequences of
R and T being 2nε-significant. Pick 1 ≤ m ≤ n. We get

2u(maxTm ) ≥ 2nε + u(minTm ) + u(maxTm )
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= 2nε + α(T ) −
∑

i �=m

(u(minTi ) + u(maxTi ))

≥ 2nε + α(R) −
∑

i �=m

(u(minRi ) + u(maxRi ) + 4ε)

≥ 2nε − (4n − 4)ε + u(minRm ) + u(maxRm )

≥ 2nε − (4n − 4)ε + 2u(minRm ) + 2nε = 2u(minRm ) + 4ε.

Either the inequality u(maxTm ) ≥ u(minRm ) + 2ε is strict, or we get Rm = Tm =
[u(minRm ), u(minRm ) + 2ε]. In both cases we have proven what we wanted. ��
For I ∈ B(M), let

μ(I ) = {J ∈ B(N ) | I
I and I

J are (2n − 1)δ-interleaved}.

In otherwords,μ(I ) contains all the intervals that can bematchedwith I in a (2n−1)δ-
matching. Let I ∈ B(M) be (4n − 2)δ-significant, and pick p ∈ R

n such that
p, p + (4n − 2)δ ∈ I . Then, p + (2n − 1)δ ∈ J for every J ∈ μ(I ). Since M and N
are pointwise finite dimensional, this means that μ(I ) is a finite set. For A ⊂ B(M),
we write μ(A) = ⋃

I∈A μ(I ).

Lemma 4.9 Let A be a subset ofB(M) containing no (4n−2)δ-trivial elements. Then
|A| ≤ |μ(A)|.
Before we prove Lemma 4.9, we show that it implies that there is a (2n−1)δ-matching
between B(M) and B(N ), and thus completes the proof of Theorem 4.3.

Let Gμ be the undirected bipartite graph onB(M) �B(N ) with an edge between
I and J if J ∈ μ(I ). Observe that Gμ is the same as the graph G(2n−1)δ we defined
whenwe gave the graph theoretical definition of an ε-matching (in this case, (2n−1)δ-
matching) in Sect. 2. Following that definition, a (2n− 1)δ-matching is a matching in
Gμ that covers the set of all (4n − 2)δ-significant elements in B(M) and B(N ).

For a subset S of a graph G, let AG(S) be the neighborhood of S in G, that is, the
set of vertices in G that are adjacent to at least one vertex in S. We now apply Hall’s
marriage theorem [21] to bridge the gap between Lemma 4.9 and the statement we
want to prove about matchings.

Theorem 4.10 (Hall’s marriage theorem) Let G be a bipartite graph on X � Y such
that AG({x}) is finite for all x ∈ X. Then the following are equivalent:

– for all X ′ ⊂ X, |X ′| ≤ |AG(X ′)|,
– there exists a matching in G covering X.

One of the two implications is easy, since if |X ′| > |AG(X ′)| for some X ′ ⊂ X , then
there is no matching in G covering X ′. It is the other implication we will use, namely
that the first statement implies the existence of a matching in G covering X .

Letting X be the set of (4n − 2)δ-significant intervals in B(M) and Y be B(N ),
Hall’s theorem and Lemma 4.9 give us a matching σ in the graph Gμ covering all the
(4n − 2)δ-significant elements in B(M). By symmetry, we also have a matching τ
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in Gμ covering all the (4n − 2)δ-significant elements in B(N ). Neither of these is
necessarily a (2n − 1)δ-matching, however, as each of them only guarantees that all
the (4n − 2)-significant intervals in one of the barcodes are matched. We will use σ

and τ to construct a (2n − 1)δ-matching. This construction is similar to one used to
prove the Cantor–Bernstein theorem [1, pp. 110–111].

Let H be the undirected bipartite graph on B(M) � B(N ) for which the set of
edges is the union of the edges in the matchings σ and τ . Let C be a connected
component of H . Suppose the submatching of σ inC does not cover all the (4n−2)δ-
significant elements of C . Then there is a (4n− 2)δ-significant J ∈ C ∩B(N ) that is
not matched by σ . If we view σ and τ as partial bijections σ : B(M) � B(N ) and
τ : B(N ) � B(M), we can write C as {J , τ (J ), σ (τ (J )), τ (σ (τ (J ))), . . . }. Either
this sequence is infinite, or it is finite, in which case the last element is (4n−2)δ-trivial.
In either case, we get that the submatching of τ in C covers all (4n − 2)δ-significant
elements in C .

By this argument, there is a (2n − 1)δ-matching in each connected component
of H . We can piece these together to get a (2n − 1)δ-matching inB(M) �B(N ), so
Lemma 4.9 completes the proof of Theorem 4.3.

Proof of Lemma 4.9 Suppose A is infinite. Each interval in A contains a rational point,
so since M is pointwise finite dimensional, the cardinality of A is at most finite times
countably infinite, which is countable. If |A′| ≤ |μ(A′)| for all finite A′ ⊂ A, |μ(A)|
has no finite upper bound, so it is infinite, which implies |A| ≤ |μ(A)|. Thus, it is
enough to prove the lemma for finite A, and we will assume this for the rest of the
proof.

Because ≤α is a preorder such that all elements are comparable, we can order
A = {I1, I2, . . . , Ir } so that Ii ≤α Ii ′ for all i ≤ i ′. Write μ(A) = {J1, J2, . . . , Js}.
For I ∈ B(M), we have

φII ,2δ = πI (2δ)g(δ) f ιI = πI (2δ)

⎛

⎝
∑

J∈B(N )

gιJπJ

⎞

⎠(δ) f ιI

=
∑

J∈B(N )

πI (2δ)g(δ)ιJ (δ)πJ (δ) f ιI =
∑

J∈B(N )

gJ ,I (δ) f I ,J .

Also,
∑

J∈B(N ) gJ ,I ′(δ) f I ,J = 0 for I �= I ′ ∈ B(M), since φM,2δ is zero between
different components of M . Lemma 4.7 says that if gJ ,I ′(δ) f I ,J �= 0 and I ≤α I ′,
then J is (2n − 1)δ-interleaved with either I or I ′. This means that if i < i ′, then

0 =
∑

J∈B(N )

gJ ,Ii ′ (δ) f Ii ,J =
∑

J∈μ(A)

gJ ,Ii ′ (δ) f Ii ,J , (1)

as gJ ,Ii ′ (δ) f Ii ,J = 0 for all J that are not (2n − 1)δ-interleaved with either Ii or Ii ′ .
Similarly,

φ
I
Ii ,2δ =

∑

J∈B(N )

gJ ,Ii (δ) f Ii ,J =
∑

J∈μ(A)

gJ ,Ii (δ) f Ii ,J . (2)
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Writing this in matrix form, we get

⎡

⎢
⎣

gJ1,I1(δ) . . . gJs ,I1(δ)
...

. . .
...

gJ1,Ir (δ) . . . gJs ,Ir (δ)

⎤

⎥
⎦

⎡

⎢
⎣

f I1,J1 . . . f Ir ,J1
...

. . .
...

f I1,Js . . . f Ir ,Js

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

φ
I
I1 ,2δ ? . . . ?
0 φ

I
I2 ,2δ . . . ?

...
...

. . .
...

0 0 . . . φIIr ,2δ

⎤

⎥
⎥
⎥
⎦

.

That is, on the right-hand sidewe have the internalmorphisms of the Ii on the diagonal,
and 0 below the diagonal.

Recall that a morphism between rectangle modules can be identified with a k-
endomorphism, and that in our notation, f I ,J and gJ ,I are given by multiplication
by w(I , J ) and w(J , I ), respectively. For an arbitrary morphism ψ between rectan-
gle modules, we introduce the notation w(ψ) = c if ψ is given by multiplication
by c, and 0 otherwise. A consequence of Lemma 4.8 is that w(gJ ,Ii ′ (δ) f Ii ,J ) =
w(gJ ,Ii ′ )w( f Ii ,J ) = w(J , Ii )w(Ii ′ , J ) whenever Ii ≤α Ii ′ , in particular if i ≤ i ′.
Using (2), we get

1 = w
(
φII ,2δ

) = w

⎛

⎝
∑

J∈μ(A)

gJ ,Ii (δ) f Ii ,J

⎞

⎠ =
∑

J∈μ(A)

w(gJ ,Ii (δ) f Ii ,J )

=
∑

J∈μ(A)

w(J , Ii )w(Ii , J ),

and similarly 0 = ∑
J∈μ(A) w(J , Ii ′)w(Ii , J ) for i ≤ i ′ by (1). Again we can interpret

this as a matrix equation:

⎡

⎢
⎣

w(J1, I1) . . . w(Js, I1)
...

. . .
...

w(J1, Ir ) . . . w(Js, Ir )

⎤

⎥
⎦

⎡

⎢
⎣

w(I1, J1) . . . w(Ir , J1)
...

. . .
...

w(I1, Js) . . . w(Ir , Js)

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

1 ? . . . ?
0 1 . . . ?
...

...
. . .

...

0 0 . . . 1

⎤

⎥
⎥
⎥
⎦

.

That is, the right-hand side is an r ×r upper triangular matrix with 1’s on the diagonal.
The right-hand side has rank |A| and the left-hand side has rank at most |μ(A)|, so
the lemma follows immediately from this equation. ��

4.2 Free Modules

Definition 4.11 A free interval is an interval of the form 〈p〉 := {q | q ≥ p} ⊂ R
n .

For a free interval R, we define minR by R = 〈minR〉. This makes minR an undeco-
rated point, while we have previously defined minI as decorated points, but this does
not matter, as we will not need decorated points in this subsection. We define a free
R
n-module as an interval decomposable module whose barcode only contains free
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intervals. It is easy to see that free intervals are rectangles, so it follows from Theo-
rem 4.3 that dB(M, N ) ≤ (2n − 1)dI(M, N ) for free modules M, N . But because of
the geometry of free modules, this result can be strengthened.

Theorem 4.12 Let M and N be free δ-interleaved R
n-modules with n ≥ 2. Then

there is a (n − 1)δ-matching between B(M) and B(N ). Thus, dB(M, N ) ≤
(n − 1) dI(M, N ).

Using a different method, Botnan and Lesnick [11] proved this for n = 2. For n ≥ 3,
the result is new.

We already did most of the work while proving Theorem 4.3, and there are some
obvious simplifications. Firstly, free intervals are ε-significant for all ε ≥ 0. Secondly,
for all nonzero f : I

R → I
S and g : I

S → I
T with R, S, T free, g f is nonzero. For

I ∈ B(M), define ν(I ) = {J ∈ B(N ) | I and J are (n − 1)δ -interleaved}. By the
arguments in the proof of Theorem 4.3, we only need to prove Lemma 4.9 with μ

replaced by ν. Lemmas 4.7 and 4.8 still hold for free modules, but we need to sharpen
Lemma 4.7.

Lemma 4.13 Let R, S, and T be free intervals with R ≤α T . Suppose there are
morphisms 0 �= f : I

R → I
S(ε) and 0 �= g : I

S → I
T (ε). Then I

S is (n − 1)ε-inter-
leaved with either I

R or I
T .

Proof WehaveminS ≤ minR+ε. Suppose I
R and I

S are not (n−1)ε-interleaved. Then
minS + (n − 1)ε � minR so, for some m, we must have minSm < minRm − (n − 1)ε.
We get

α(S) =
n∑

i=1

minSi < minRm − (n − 1)ε +
∑

i �=m

(minRi + ε) =
n∑

i=1

minRi = α(R).

We can also prove that α(T ) < α(S) if I
S and I

T are not (n − 1)ε-interleaved, so we
have α(T ) < α(R), a contradiction. ��

4.3 Block Decomposable Modules

Next, we consider block decomposable modules, which we are interested in because
of their relation to zigzag modules, interlevel set stability, and Reeb graphs, explained
in Sect. 3. Let R

2+ = {(x, y) ∈ R
2 | x + y ≥ 0}.

Definition 4.14 A triangle is a nonempty set of the form {(x, y)∈R
2+ | x < a, y < b}

for some (a, b) ∈ (R ∪ {∞})2 with a + b > 0.

Thus, a triangle by this definition is a right triangle with a vertical and a horizontal
edge and the hypothenus on the diagonal x = −y as its boundary. For a triangle T as
above, we write maxT = (a, b). Note that we treat maxT as an undecorated point, like
minR in the previous subsection. If T is bounded, maxT is the maximal element in the
closure of T , as illustrated in Fig. 5. A triangle decomposable module is an interval
decomposable R

2-module whose barcode only contains triangles.

123



114 Discrete & Computational Geometry (2021) 66:92–121

Fig. 5 A bounded triangle T

Wewill focus on proving stability for open blocks, i.e., blocks of the form (a, b)BL,
as this is the only case where an optimal constant has not been obtained in previous
work. If we consider blocks to be subsets of R

op × R instead of U, open blocks
correspond to triangles under the isomorphism of posets R

op × R → R
2 flipping the

x-axis. We prefer to consider triangles, as R
2 fits better into the framework we have

built than R
op × R.

Theorem 4.15 Let M and N be triangle decomposable modules. If M and N are δ-
interleaved, there exists a δ-matching between B(M) andB(N ). Thus, dI(M, N ) =
dB(M, N ).

As we did with the rectangles, we can split the triangles into sets of various ‘types’.
We get four different types of triangles T , depending on whether maxT is of the form
(a, b), (∞, b), (a,∞), or (∞,∞) for a, b ∈ R. Now a result analogous to Lemma 4.6
holds, implying that it is enough to show Theorem 4.15 under the assumption that the
barcodes only contain intervals of a single type. The case in which the triangles are
bounded is the hardest one, and the only one we will prove. So from now on, we
assume all triangles to be bounded.

Again, we reuse parts of the proof of Theorem 4.3. For I ∈ B(M), we define

ν(I ) = {J ∈ B(N ) | I
I and I

J are δ -interleaved}.

The discussion aboutHall’s theorem is still valid, soweonly need to prove the analogue
of Lemma 4.9 for ν. FormaxT = (a, b), define α(T ) = a+b. The only things we need
to complete for the proof of the analogue of Lemma 4.9 for triangle decomposable
modules, are the following analogues of Lemmas 4.7 and 4.8:
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Lemma 4.16 Let R, S, and T be triangles with α(R) ≤ α(T ). Suppose there are
morphisms f : I

R → I
S(ε) and g : I

S → I
T (ε) such that g(ε) ◦ f �= 0. Then I

S is
ε-interleaved with either I

R or I
T .

Lemma 4.17 Let R, S, and T be triangles with T 2ε-significant and α(R) ≤ α(T ).
Suppose there are nonzero morphisms f : I

R → I
S(ε) and g : I

S → I
T (ε). Then

g(ε) ◦ f �= 0.

Proof of Lemma 4.16 Suppose I
R and I

S are not ε-interleaved, and write maxR =
(r1, r2) and maxS = (s1, s2). Then maxS � maxR − ε, so s1 < r1 − ε or s2 < r2 − ε.
At the same time, maxR ≥ maxS − ε since f is nonzero, which gives si ≤ ri + ε for
each i . Thus,

α(S) = s1 + s2 < r1 + r2 − ε + ε = α(R).

Assuming that I
S and I

T are not ε-interleaved, either, we also get α(S) > α(T ). Thus
α(R) > α(T ), a contradiction. ��
Proof of Lemma 4.17 We have maxT − ε ≤ maxS and maxS − ε ≤ maxR , so maxT −
2ε ≤ maxR . Because T is 2ε-significant, maxT − 2ε − ε′ ∈ R

2+ for some ε′ > 0.
Combining these facts, we get maxT − 2ε − ε′ ∈ R, so (g(ε) ◦ f )maxT −2ε−ε′ �= 0. ��
Theorem 4.15 implies dB(M, N ) = dI(M, N ) for block decomposable M and N
such that B(M) and B(N ) only have blocks of the form (a, b)BL (so no closed or
half-closed blocks). Our proof technique extends easily to prove the same equality for
all block decomposable M and N . In fact, dB(M, N ) ≤ dI(M, N ) in the case where
all the intervals in the barcodes are of the form [a, b]BL follows from Theorem 4.12
with n = 2 by the correspondence [a, b]BL ↔ 〈(−a, b)〉, while the two cases with
half-open blocks are both essentially the algebraic stability theorem. A variant of
Lemma 4.6 and the discussion following it would allow us to handle all the cases
simultaneously. We omit the details, and anyway the closed and half-open cases are
taken care of in [11]. Thus, either by appealing to previous work for the other cases
or using our own methods, we get

Theorem 4.18 Let M and N be block decomposable modules. If M and N are δ-
interleaved, there exists a δ-matching between B(M) andB(N ). Thus, dI(M, N ) =
dB(M, N ).

5 Counterexamples to a General Algebraic Stability Theorem

Theorem 4.3 gives an upper bound of 2n − 1 on dB/dI for rectangle decomposable
modules, which increases with the dimension. An obvious question is whether it is
possible to improve this, or if the constant 2n − 1 in Theorem 4.3 is optimal. We
know that dB(M, N ) ≥ dI(M, N ) for any M and N whenever the bottleneck distance
is defined, so for n = 1, the constant is optimal. For n > 1, however, it turns out
that the equality dB(M, N ) = dI(M, N ) does not always hold, and the geometry
becomes more complicated when n increases. In Example 5.2, we construct rectangle
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Fig. 6 M and N . I1 and I2 are the light purple squares, I3 is deep purple, and J is pink

decomposable R
2-modules M and N with dB(M, N ) = 3dI(M, N ), showing that

the bound is optimal for n = 2, as well. This is a counterexample to a conjecture
made in a previous version of [11] (Conjecture 8.4 in Paper II of [8]) which claims
that interval decomposable R

n-modules M and N such that B(M) and B(N ) only
contain convex intervals are ε-matched if they are ε-interleaved. As a consequence of
this counterexample, they weakened the conjecture to saying that there are constants
cn depending on n such that dB ≤ cndI for such modules. This problem is still open,
and there are no known counterexamples even if we put all the cn equal to 3.

Before the example with dB(M, N ) = 3dI(M, N ), we give a simpler example
with dB(M, N ) = 2dI(M, N ). These easily generalize to examples with dB(M, N ) =
2dI(M, N ) and dB(M, N ) = 3dI(M, N ) in n dimensions for any n ≥ 2. For instance,
one can replace M and N with M× I n−2 and N × I n−2 for a sufficiently large interval
I to get such examples in n dimensions.

Example 5.1 Let B(M) = {I1, I2, I3}2 and B(N ) = {J }, where

I1 = (−3, 1) × (−1, 3), I2 = (−1, 3) × (−3, 1),

I3 = (−1, 1) × (−1, 1), J = (−2, 2) × (−2, 2).

See Fig. 6. We can define 1-interleaving morphisms f : M → N (1) and g : N →
M(1) by letting w(I1, J ) = w(I2, J ) = w(I3, J ) = w(J , I1) = w(J , I2) = 1 and
w(J , I3) = −1, where w is defined as in the proof of Theorem 4.3. On the other
hand, in any matching between B(M) and B(N ) we have to leave either I1 or I2
unmatched, and they are ε-significant for all ε < 4. In fact, any possible matching
between B(M) and B(N ) is a 2-matching. Thus dI(M, N ) = 1 and dB(M, N ) = 2.

A crucial point is that even though w(I1, J ), w(J , I2), w(I2, J ), and w(J , I1) are
all nonzero, both gJ ,I2 ◦ f I1,J and gJ ,I1 ◦ f I2,J are zero. To do the same with one-
dimensional intervals, we would have to shrink I1 and I2 so much that they were no
longer 2-significant (see Lemma 4.8), and then they would not need to be matched

2 Here we use subscripts to index different intervals, not to indicate projections, as we did earlier.
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Fig. 7 I1, I2, and I3 are the filled pink rectangles, and J1, J2, and J3 are the black rectangles without fill

in a 1-matching. This shows how the geometry of higher dimensions can allow us to
construct examples that would not work in lower dimensions.

Next, we give an example of rectangle decomposable R
2-modules M and N such

that dB(M, N ) = 3dI(M, N ), proving that our upper bound of 2n − 1 is the best
possible for n = 2.

Example 5.2 Let B(M) = {I1, I2, I3} and B(N ) = {J1, J2, J3}, where

I1 = (0, 10) × (1, 11), I2 = (0, 12) × (−1, 11), I3 = (2, 10) × (1, 9),

J1 = (1, 11) × (0, 10), J2 = (1, 9) × (0, 12), J3 = (−1, 11) × (2, 10).

The rectangles in B(M) and B(N ) are shown in Fig. 7. We give an example of
1-interleaving morphisms f and g that we write in matrix form. In the first matrix,
w(Ii , J j ) is in row i , column j . In the second, w(J j , Ii ) is in row j , column i .

f :
⎡

⎣
1 1 1
1 1 0
1 0 1

⎤

⎦ , g :
⎡

⎣
−1 1 1
1 0 −1
1 −1 0

⎤

⎦ .
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This means that M and N are 1-interleaved, but they are not ε-interleaved for any
ε < 1, so dI(M, N ) = 1. The following matrix shows dI(IIi , I

J j ) in position (i, j):

⎡

⎣
1 1 1
1 3 3
1 3 3

⎤

⎦

This is straightforward to check. For instance, the difference between maxI2 =
(12, 11) and maxJ2 = (9, 12) is 3 in the first coordinate, so I2 and J2 are not ε-
interleaved for any ε < 3, and thus, dI(II2 , I

J2) ≥ 3. We see from the table that
any ε-matching with ε < 3 between B(M) and B(N ) has to match both I2 and I3
with J1, which is not possible. Therefore, dB(M, N ) ≥ 3. On the other hand, any
bijection between B(M) and B(N ) is a 3-matching, so dB(M, N ) = 3.

There is a strong connection between n-dimensional rectangle decomposable modules
and 2n-dimensional free modules. This is related to the fact that we need 2n coordi-
nates to determine an n-dimensional rectangle, and also 2n coordinates to determine
a 2n-dimensional free interval. The following example illustrates this connection, as
we simply rearrange the coordinates of minR,maxR for all rectangles R involved in
Example 5.2 to get 4-dimensional free modules with similar properties as in Exam-
ple 5.2.

Example 5.3 Let B(M) = {I1, I2, I3} and B(N ) = {J1, J2, J3}, where

I1 = 〈(0, 1, 10, 11)〉, I2 = 〈(0,−1, 12, 11)〉, I3 = 〈(2, 1, 10, 9)〉,
J1 = 〈(1, 0, 11, 10)〉, J2 = 〈(1, 0, 9, 12)〉, J3 = 〈(−1, 2, 11, 10)〉.

Compare with the intervals Ii and J j in Example 5.2. We have 1-interleaving mor-
phisms defined the same way as in Example 5.2. Just as in that example, we can
deduce that there is nothing better than a 3-matching between B(M) and B(N ), so
dB(M, N ) = 3 and dI(M, N ) = 1.

As a consequence of this example, we get that our upper bound of dB/dI ≤ n − 1 for
free n-dimensional modules cannot be improved for n = 4.

6 Relation to the Complexity of Calculating Interleaving Distance

The interleaving distance between arbitrary persistence modules is on the surface not
easy to compute, as naively trying to construct interleaving morphisms can quickly
lead to a complicated set of equations forwhich it is not clear that one can decide if there
is a solution in polynomial time. For R-modules, however, the interval decomposition
theorem plus the algebraic stability theorem gives us a polynomial time algorithm to
compute dI: decompose the modules into interval modules and find the bottleneck
distance. Since dI = dB, this gives us the interleaving distance. When the barcodes
exist, one can compute the bottleneck distance in polynomial time also in two dimen-
sions [20], but the approach fails for general R

n-modules already at the first step, as
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we do not have a nice decomposition theorem. But in the recent proof that calculating
interleaving distance is NP-hard [7], it is the failure of the second step that is exploited.
Specifically, a set of modules that decompose nicely into interval modules (staircase
modules, to be precise) is constructed, but for these, dI and dB are different. It turns
out that calculating dI for these corresponds to deciding whether certain matrix invert-
ibility problems called constrained invertibility problems (CI problems) defined in [6]
are solvable, which is shown to be NP-hard.

Though rectangle modules are not considered in the NP-hardness proof, they have
similar properties to staircase modules. The only significant difference in this setting
is that in a fixed dimension, rectangle modules are defined by a limited number of
coordinates, or “degrees of freedom”, while there is no such restriction on staircase
modules even in dimension 2. Example 5.2 is essentially a CI problem with a corre-
sponding pair of modules. Importantly, it shows that dI = dB does not hold in general
for modules corresponding to CI problems. This crucial observation, which appeared
first in a preprint of this paper, opened the door to proving NP-hardness of calculating
dI by the approach used in [7].

In [7], it is also shown that c-approximating dI is NP-hard for c < 3, where
an algorithm is said to c-approximate dI if it returns a number in the interval
[dI(M, N ), cdI(M, N )] for any input pair M, N of modules. Whether the approach
by CI problems can be used to prove hardness of c-approximation for c ≥ 3 is closely
related to the question of whether Theorem 4.3 can be strengthened: It can be shown
that if dB(M, N ) ≤ cdI(M, N ) holds for all pairs M, N of rectangle decomposable
modules, the same holds for staircasemodules, and therefore there is a polynomial time
algorithm c-approximating dI for these, meaning that the strategy of going through
CI problems will not give a proof that c-approximation of dI is NP-hard. On the other
hand, if one can find an example of rectangle decomposable modules M and N such
that dB(M, N ) = cdI(M, N ) for c > 3, one might be able to use that to increase the
constant 3 in the approximation hardness result. Thus, there is a strong link between
stability of rectangle decomposable modules and the only successful method so far
known to the author of determining the complexity of computing or approximating
multiparameter interleaving distance.
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