
1 

 

Analytical and numerical approaches to modelling severe plastic deformation 

 

Alexei Vinogradov1 and Yuri Estrin2,3,4  

1Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology - NTNU, 

7491 Trondheim, Norway 

2Department of Materials Science and Engineering, Monash University, Clayton VIC3800, Australia 

3Department of Mechanical Engineering, The University of Western Australia, Nedlands WA 6009, Australia 

4Laboratory of Hybrid Nanostructured Materials, NUST “MISIS”, 119049 Moscow, Russia 

Severe plastic deformation (SPD) has established itself as a potent means of producing bulk ultrafine 

grained and nanostructured materials. It has given rise to burgeoning research that has become an 

integral part of the present day materials science. This research has received a broad coverage in 

literature, and several recent publications (including reviews in Progress in Materials Science) provide a 

very good introduction to the history, the current status, and the potential applications of SPD 

technologies. There is one aspect of SPD-related research, though, which despite its great importance 

has not been covered by any substantive review, viz. the modelling and simulation work. Due to the 

complexity of SPD processing and the specificity of material behaviour at the extremely large strains 

involved, analytical and computational studies have been indispensable for process design, parameter 

optimisation, and the prediction of the microstructures and properties of the ultrafine grained materials 

produced. They have also provided a better understanding of the physical mechanisms underlying SPD 

and the mechanical response of the materials that underwent this kind of processing. The pertinent 

literature is vast and often difficult to navigate. The present article addresses this aspect of SPD and 

provides a commented exposé of a modelling and numerical simulation toolkit that has been, or can 

potentially be, applied in the context of severe plastic deformation.  
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1. Introduction 

Deformation-induced microstructure refinement down to submicron range has come to the fore in 

the past decades as a promising strategy for design of novel metallic materials with superior properties. 

A group of materials processing methods, which enable such extreme microstructure refinement by 

virtue of plastic deformation to very large strains hardly achievable with traditional metal forming 

operations, are commonly referred to as severe plastic deformation (SPD) techniques [1]. Not only do 

these techniques give rise to a radical improvement of the properties of metals and alloys by producing 

microstructures with exceptionally small grain size, but they also provide an interesting test bed for 

validation of models for large strains. Details of the SPD processing methods, the microstructures they 

produce, and the ensuing properties of the processed materials can be found in several comprehensive 

surveys [1-4]. The complexity of the physical mechanisms underlying the microstructure development 

under severe plastic deformation and the large number of the processing parameters that may affect 

this development and the ensuing properties of the processed materials make it necessary to rely on 

mathematical modelling of SPD.  Given the relatively young age of the area of SPD technologies, the 

literature on the modelling of SPD processes is astonishingly vast and sometimes difficult to navigate. 

With the diversity of the arsenal of modelling approaches available for numerical simulation of severe 

plastic deformation in mind, we would like to take the reader on a ‘guided tour’ through this extensive 

literature. The relative advantages and weaknesses of the various modelling techniques will be 

considered and commented on. By no means do we see this overview as a collection of juxtaposed 

modelling tools for a numerical simulation practitioner. It is rather intended as an informative 

introduction for researchers embarking on modelling of SPD, while also providing in-depth insights into 

the matter for the more experienced readers. 

SPD techniques, which go back to the pioneering work by Bridgman [5], combine severe shear 

deformation with high hydrostatic pressure, which is now known to lead to extreme grain refinement, 



4 

 

down to a deep submicron range.  The importance of grain size as a pre-eminent characteristic of the 

microstructure has long been recognized [1, 4, 6, 7]. Pronounced strengthening achievable through grain 

refinement is commonly associated with the well-known Hall–Petch relation whose origin has been 

reviewed on many occasions. A recent comprehensive review by Armstrong [8, 9] and a new physical re-

interpretation of this relation by Langer [10] are particularly noteworthy. Originally employed to 

describe the empirical scaling of the yield stress with the inverse square root of the average grain size of 

iron-based materials, this relation has provided a general framework for many strengthening strategies 

employing the increasing fraction of grain boundaries as a core element in both a ‘top-down’ and a 

‘bottom-up’ approach to synthesis of novel materials [11-14]. It has also served as a touchstone in 

testing the soundness of models devised to rationalise the grain size dependence of the mechanical 

response of polycrystalline materials [15-19].  

Grain refinement is undoubtedly pivotal to the enhanced mechanical performance of SPD 

manufactured material [1, 2, 4, 9], and understanding the various mechanisms that may give rise to the 

Hall-Petch relation is a formidable task. The abundance of grain boundaries in ultrafine-grained (UFG) 

materials is certainly one of the key features defining their mechanical behaviour, and such mechanisms 

as the formation of dislocation pile-ups [20] or the activation of Frank-Read dislocation sources at grain 

boundaries [21, 22] do give rise to the Hall-Petch relation. Such direct grain boundary strengthening 

mechanisms are not sole contributors to strength of UFG materials, though. Indirect effects entering the 

flow stress through the influence of grain boundaries on the dislocation density evolution (dislocation 

hardening) [4, 23] can be equally significant, if not even more important. This has been demonstrated in 

numerous publications, see e.g. [24-31]. Recently Starink [32] has re-visited this subject and summarised 

the findings by showing that in many SPD processed metals and alloys the dislocation strengthening is 

the predominant strengthening mechanism and that it gives rise to the same kind of Hall-Petch 

dependence, 1/2~ d  (where is the flow stress and d is the average grain size), as the direct grain 
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boundary strengthening. Hence, the description of strain hardening of SPD-processed ultrafine grained 

materials can be based on the time proven modelling approaches involving dislocation density 

evolution. 

Although extraordinarily high strains are imparted onto a workpiece during SPD processing, the 

overall behaviour of the material can still be described in terms of the general laws of solid mechanics 

and the theory of plasticity.  In a recent essay, Osakada [33] presented an overview of plasticity in 

relation to the analysis of metal forming. McDowell [34] also reviewed the research trends in metal 

plasticity in a historical retrospective. He highlighted two transformational trends which have moved 

and developed the subject in new directions in the not-so-remote past: (i) the use of potent high 

resolution characterisation tools capable of measuring attributes of microstructures directly related to 

plastic flow (such as crystallographic orientation and misorientation between adjacent domains, 

grain/phase size and shape distribution, dislocation density, etc.), and (ii) development of computational 

modelling and simulation tools that address inelastic deformation phenomena over a broad range of 

length scales - from the atomistic to the macroscopic ones. A historical overview of one of the most 

popular severe plastic deformation techniques, high pressure torsion, from its inception in the work by 

Bridgman [5] to the late 1980s was published by Edalati et al. [35]. 

Metal plasticity is fundamentally associated with nucleation, migration and interaction of a 

broad variety of crystal lattice defects with different dimensionality, such as vacancies, dislocations, 

grain or interphase boundaries, as well as voids and pores. With dislocations being the principal carriers 

of plasticity in most cases, the dislocation theory constitutes a basis for understanding the evolution of 

microstructure during plastic flow. The classical treatises written by such nestors of the dislocation 

theory as A. Cottrell, T. Mura, J.P. Hirth, J. Lothe, J. Friedel, and F.N.R. Nabarro [36-40] provide an in-

depth introduction to dislocations. Contemporary work based on discrete dislocation dynamics 
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addresses the issue of dislocation structure formation and evolution more directly, utilising the basics of 

dislocation theory in a sophisticated computational framework (cf. [41]). 

The picture of plasticity drawn schematically in Figure 1 is very multifaceted and requires 

viewing from various angles and at different length scales. So do modelling and computational 

simulations, as demonstrated convincingly in the “Handbook of Materials Modeling” edited by S. Yip 

[42]. A good  introduction to the key theoretical concepts underlying multiscale modelling of materials 

from atomistic simulations to continuum mechanics and thermodynamics was presented by Tadmor and 

Miller [43, 44].  Models represented in Figure 1 operate at various length scales and microstructure 

levels. They involve dynamics of individual atoms (as described by ab-initio quantum mechanics and 

molecular dynamics [45-47]), linear elasticity based theory of discrete dislocations [48, 49] and 

disclinations [50]. Dislocations may form pile-ups at the boundaries [38] or organise themselves into 

spatially ordered patterns or substructures [41, 51-54] within individual grains, heterogeneous flow of 

aggregates of crystallites (polycrystal plasticity [55, 56]), and, finally, collective effects at large scale 

(macroscopic theory of plasticity [57, 58]). At an intermediate scale of continuously distributed 

dislocation density, dislocation patterning was considered in terms of the reaction-diffusion approach 

[54, 59-64].  

Ideally, research into the mechanical behaviour of solids should be done by progressing from 

left to right in Figure 1, a model at a smaller scale informing that at the next level of the length-scale 

hierarchy. In practice, however, this ‘hand-shake’ of the models does not necessarily occur, as 

historically the models targeting the various scales were developed independently from each other and 

mostly in the opposite direction – from right to left. Current efforts are focused on multiscale modelling 

bridging different length scales with their distinctly different and often disparate ‘languages’. Early 

approaches to multiscale modelling were presented in [65-67]. Excellent, more recent accounts of 
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computational modelling incorporating different length scales in plasticity offer a comprehensive picture 

of the state-of-the-art in this area [41, 68-78]. 

Although theories at larger length scales attempt to subjugate the smaller scale phenomena into 

‘effective’ properties or ‘constitutive rules,’ macroscopic phenomena associated with large strains 

ultimately depend on the details of smaller scale processes.  The number of degrees of freedom 

associated with a mathematical description at each scale decreases for the same volume of material as 

one progresses from left to right in Figure 1. This reduction of the number of the degrees of freedom for 

a given material volume with ascending level of hierarchy is a fundamental goal of multiscale modelling. 

Information necessary to calibrate model parameters can flow bottom–up, top–down, or in both 

directions. An alternative approach is the so called concurrent multiscale modelling, which is the 

opposite of the hierarchical one in that a larger length scale model does not subjugate a smaller scale 

one [71, 79]. Rather, the models (commonly just two of them) are treated in parallel and bridging occurs 

by using matching procedures in some overlapping domain [71]. In this way, some length scales may be 

skipped and, for example, continuum level simulations can be coupled directly to the atomistic scale 

ones.  Another useful concept is quasi-continuous modelling, in which atomistic simulations are carried 

out in a region of interest, which is embedded in a medium modelled as a continuum [80]. A most up-to-

date summary of multiscale materials modelling defining the model taxonomy and outlining the 

conceptual and computational challenges can be found in [81].  
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Figure 1. Hierarchy of length scales in metal plasticity ranging from atomic (dislocation cores) to dislocation 
patterns to multiple grains to macroscopic scale.  A major gap in multiscale modelling and simulation lies 
between the scales of atomistic simulations and dislocation pattern modelling. Attempts to close this gap by 
discrete dislocation simulations play an increasingly greater role but phenomenological statistical theories are 
still predominant (from [34], reproduced with permission). 

Representing the top of the hierarchical pyramid, solid mechanics is the most popular 

instrument for obtaining both analytical and numerical solutions for the mechanical behaviour of a 

workpiece subjected to SPD processing.  Solid mechanics nowadays is a mature theory comprising the 

governing physical laws, sets of computational techniques, and numerical methods for virtually all scales 

shown in Figure 1 that can be used to predict the response of a solid to mechanical loading. 

Fundamentals of solid mechanics can be found in many excellent textbooks, e.g. [56, 82-86], 

systematically covering all aspects of modern approaches from theoretical background and basic 

mathematical principles to practical implementation of finite element codes.     

Choosing the right modelling approach, which determines the governing equations to describe 

the material behaviour under specific loading conditions, is crucial for setting up a solid mechanics 

calculation.  The toolbox developed in solid mechanics includes a variety of conceptual models with 

specific applications listed below, and this is by no means an exhaustive list.  

1.       Linear elasticity [87] is an important tool for describing small deformations of a polycrystalline 

material subjected to loads that are much smaller than the material’s macroscopic yield stress, e.g. 

during very high cycle fatigue. Mechanics of elasticity is of crucial significance for the theory of defects 
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such as dislocations or disclinations in solids [88]. Despite its fundamental importance, it is often 

neglected in simulations of metal forming and large deformations at macroscopic scale [89]. It is, 

however, an appreciated instrument in discrete dislocation dynamics simulations owing to the 

applicability of the elasticity theory to describing the dislocation stress and strain fields outside of the 

dislocation core. 

 2.      Viscoelastic models [90], which include the Maxwell model, the Kelvin-Voigt model, and 

the Standard Linear Solid Model, are widely used to predict the response of materials that exhibit both 

viscous and elastic behaviour under different loading conditions. Elastic and viscous components are 

represented by linear combinations of springs and dashpots, respectively. Depending on the 

arrangements of these elements resulting in different rheological equations, these models have enabled 

a description of the behaviour of materials under creep or stress relaxation conditions. Such models are 

well suited for materials which exhibit a strongly rate dependent behaviour and are therefore most 

widely used in simulation of the mechanical response of polymers. For example, Zaïri et al. [91] have 

calculated the plastic response of a polymer during equal channel angular pressing at room temperature 

with different extrusion velocities, friction conditions and die geometry. This group of models has 

limited applicability to metals and will not be considered in the present review. Interested readers are 

referred to [90]. 

 3.      Rate independent plasticity represents a wide class of models describing the deformation 

response of solids loaded above their yield point up to large strains.  The simplest model is that of a rigid 

elastic-perfectly plastic solid that deforms elastically at stresses below the yield point and then flows 

plastically at a constant stress if a constant strain rate is applied.  An elastic-perfectly plastic solid thus 

exhibits a sharp transition from perfectly elastic to perfectly plastic deformation when the yield stress is 

reached. Such models are often used to calculate the forces on tools in metal forming, for example 

during equal channel angular pressing (ECAP) or high pressure torsion (HPT), cf. [92]. More realistic 
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models involve strain hardening in some way [93]. The models of this kind are used in simulation of 

plasticity at large strains and of low cycle fatigue behaviour under fairly large strain amplitudes. Finally, 

the most sophisticated plasticity models attempt to track the microstructure development in the 

plastically deforming metal.  This group of models are popular in metal forming simulations, particularly 

simulations of SPD, as will be discussed in the next sections.   

4.      Viscoplasticity is similar in structure to rate independent plasticity, but it accounts for the strain 

rate dependence of the flow stress, which commonly tends to increase with increasing strain rate, 

particularly under dynamic loading [94]. For example, Anand [95] developed a model for the elastic–

viscoplastic response of ductile single crystals deforming by crystallographic slip. Numerical simulation 

of the deformation response of face centred cubic (FCC) polycrystalline materials was conducted by 

assigning a finite element to each crystallite under the assumption of initially isotropic crystallographic 

texture. The simulation results were shown to be in good agreement with experiment on copper.  This 

refers both to the strain hardening behaviour, which was found to be anisotropic, and to the evolution 

of crystallographic texture.  An example illustrating an excellent agreement between experimental 

observations of texture evolution during deformation to large strains by simple shear and theoretical 

predictions [96] provided by the self-consistent viscoplastic polycrystal plasticity model backed by a 

dislocation density based strain hardening model is shown in Figure 2. The details of these modelling 

efforts will be considered in the following sections.  
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Figure 2. Comparison of simulated crystallographic texture for simple shear during ECAP processing of pure 
copper to different numbers of passes (from 1 to 3) via Route A assuming no rotation of the billet between the 
passes (adapted from [96], reproduced with permission).  

 

In their finite element computations, Acharya and Beaudoin [97] predicted grain size dependent strain 

hardening behaviour of FCC and BCC polycrystals at relatively small strains of 2–30% by applying a 

viscoplasticity model (see also [98, 99]). At the individual grain level, isotropic Voce-type hardening was 

assumed. To account for the material’s resistance to plastic flow, lattice incompatibility associated with 

the presence of lattice dislocations was introduced in a continuum description. Although the 

constitutive model for dislocation density evolution did not include the grain size explicitly, its effect on 

the plastic flow was considered by analysing the results of modelling of the mechanical response of FCC 

nickel and BCC HY-100 steel. An inverse relationship between the flow stress and the grain diameter was 

found. The predicted strain hardening behaviour of polycrystalline nickel with a grain size below 100 m 

agreed well with the experimental data of Narutani and Takamura [100]. A transition to Stage IV 

hardening following saturation of the Voce-type response inherent in Stage III hardening was found to 

be governed by a build-up of crystal lattice incompatibility due to dislocation storage. This constitutive 

model was further extended to include temperature and strain rate effects [101, 102]. 
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 7.      The crystal plasticity method has evolved recently as a framework integrating the extensive 

knowledge gained from experimental and theoretical studies of single crystal deformation, atomistic 

fundamentals of dislocations, and continuum mechanics of deforming solids.  In crystal plasticity 

models, this knowledge of the physics of the deformation processes at different length scales [69, 103] 

is incorporated in the computational tools of continuum mechanics [84, 85, 104]. This approach was 

reviewed by Roters et al. [78] in a comprehensive monograph dedicated to diverse aspects of the plastic 

behaviour of crystalline solids. Crystal plasticity starts with a premise that crystals are mechanically 

anisotropic and therefore the instantaneous and time-dependent deformation of crystalline aggregates 

is an innately non-homogeneous process, which depends on the direction of the mechanical loads and 

geometrical constraints imposed.  Macroscopically directional properties of a polycrystal arise when the 

orientation distribution of the grains, which is commonly characterised by crystallographic texture, is 

non-random.  Quantitative prediction of crystallographic texture evolution during SPD that would 

account for concurrent grain refinement is therefore one of the major tasks for crystal plasticity 

implementations in simulations of SPD processes [94, 105, 106]. Most current models of texture 

evolution under severe plastic deformation do not consider this continual variation of the grain 

population – with some exceptions ([107, 108]) that will be discussed below.   

8.      Strain Gradient Plasticity is a kind of hybrid approach motivated by advances in dislocation 

mechanics since the 1990s. Classical plasticity theories do not account for non-local effects and fail to 

predict strain localisation or deformation microstructures with a distinct pattern of spatially arranged 

dislocations with a well-defined length scale [109]. Unlike conventional constitutive models, strain 

gradient plasticity is capable of accounting for non-local effects on the deformation behaviour and 

strength of polycrystalline aggregates [17, 110, 111].  The approach by Fleck and Hutchinson [112, 113] 

has advanced the concept in which an explicit distinction is made between dislocations stored during 

uniform straining (statistically stored dislocations) and those necessitated by gradients of strain. The 
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latter are referred to as geometrically-necessary dislocations (GNDs) first introduced by Nye [114].  

GNDs develop from inhomogeneities of plastic flow due to loading conditions, texture, second phases, 

etc. to accommodate lattice misorientations. A main drawback of most strain gradient plasticity theories 

is that the so-called internal length scale entering gradient plasticity formulations is vaguely defined. 

Being introduced as a phenomenological variable, it serves as a ‘free’ parameter that is to be 

determined from experimental data by appropriate fitting procedures. Numerous attempts to establish 

a relationship between the internal length scale and the microstructure were reviewed by Zhang and 

Aifantis [115]. In the studies referenced therein, this parameter has been associated with the dislocation 

source length, average dislocation spacing, size of pile-ups at grain boundaries or interfaces, grain size, 

width of slip zones, or specimen size. Despite all efforts, the physical origin of the internal length scale is 

still a matter of debate, however.  

9.       Discrete Dislocation Plasticity (DDP) is a theory originating from the recognition that plastic flow in 

crystalline metals arises primarily from the collective motion of large numbers of dislocations. It 

emerged as a computational technique tracking the nucleation, motion and annihilation of individual 

dislocations interacting with each other in a solid under load [41, 48, 52, 116-119]. 

10.    Atomistic models are seeing a booming development owing to a rise in the available computation 

power on one hand and the advancement of fundamental quantum-mechanical concepts enabling ab-

initio calculations of realistic interatomic potentials and elastic constants on the other hand. In this 

approach phenomenological stress-strain relations are replaced with a direct calculation of the stress-

strain response using atomic scale simulations.  A most recent example of such fully dynamic atomistic 

simulations of single-crystal plasticity was provided by Zepeda-Ruiz et al. [120] for a specific case of a 

BCC metal tantalum. Macroscopic stress-strain curves were calculated from these atomistic simulations 

directly, avoiding multiscale modelling. 



14 

 

 In what follows, we shall give an overview of the available modelling techniques – both 

analytical and numerical. On that basis we shall discuss the salient results they have delivered and 

eventually single out the approaches that in our view are most suitable in the context of modelling of 

severe plastic deformation.  

 2. Modelling severe plastic deformation 

Great expectations are being put in achieving superior mechanical properties of bulk 

nanostructured and ultrafine-grained materials manufactured by SPD. Despite a steady growth of the 

research area of SPD and the promise it offers, an overly cautious attitude towards this group of 

processing techniques prevailed in metal forming industry until recently. Various barriers on the way of 

SPD processing from laboratory to shop floor include real technological challenges, such as the need for 

upscaling the processes and making them continuous or semi-continuous. Some examples of processing 

routes of this kind, which promise successful transfer to industry scale manufacturing [121-125] were 

given in the recent reviews [1, 4, 126]. 

Regardless of the specifics of the processing schedule used, the microstructures and the 

mechanical properties of the deformed materials are governed by the degree of plastic deformation 

(although not by it alone). Therefore, understanding the stress and strain development in a workpiece is 

pivotal for efficient and sound SPD process design. The primary factors governing the efficacy of SPD 

processing for microstructure refinement have long been understood and highlighted in many 

publications. In the case of ECAP, which is illustrated schematically in Figure 3, these include the die 

channel shape and dimensions, the angle between the entrance and exit channels, the inner and outer 

corner radii, the coefficient of friction, the strain path (or processing route), and the processing 

parameters, such as back pressure, ram speed, and temperature. The intrinsic material properties of the 

billet have, of course, a decisive influence on the processability by ECAP and the ensuing material 
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properties, as well. The significance of all these process and material variables cannot be overestimated. 

A huge body of experimental data was summarised in recent reviews [4, 126, 127]. Medeiros et al. [128] 

performed a variance analysis based on the central composite factorial design to quantify the relevance 

of processing parameters to the ECAP load and the effective plastic strain. From the statistical analysis of 

variance (ANOVA), the ECAP parameters affecting the load the most can be ranked in the following 

order of importance: (1) the coefficient of friction, (2) the die channel angle, (3) the outer fillet radius, 

(4) the inner fillet radius, and (5) the ram velocity. Also, with regard to the equivalent plastic strain the 

ranked order of significance of the affecting parameters was determined to be as follows: (1) the die 

channel angle, (2) the inner fillet radius, and (3) the outer fillet radius. However, despite substantial 

efforts none of the experimental research aiming at characterising the processing factors and their roles 

in the properties of a final product can claim to be comprehensive.  As a matter of fact, the assessment 

of all these factors in their entirety requires enormous experimental efforts. Indeed, if one were to limit 

oneself to just the most important factors and to aim at characterising the effect of, say, two channel 

shapes, two different cross-section sizes, five different friction conditions (corresponding, for example, 

to different lubricants, the quality of the die wall machining, or the die design), five different materials, 

four most common strain paths (A, B, C and Bc, see [2] for the definition of the ECAP routes), three 

different pressing velocities, three levels of back pressure, and three different temperatures, one would 

need to perform over 10,000 pressings followed by microstructure characterisation and mechanical 

testing. Therefore, the use of modelling tools in either  mechanistic analytical formulations, cf. [129-

133], or finite element analysis [84-86, 134] is indispensable for optimisation of the processing schemes 

and conditions for a given material in a cost- and time-effective way. Of course, the mathematical 

models discussed in the previous section, particularly the analytical models, provide useful insights in 

the deformation behaviour. However, while providing the analytically tractable and elegant solutions, 

these models commonly oversimplify the processing conditions and provide estimates of average 
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equivalent strains across the workpiece. As such, they do not account for strain and stress 

inhomogeneity, which inevitably occurs during SPD processing. Therefore, the analytical solutions are 

not capable of simulating a real SPD process in sufficient detail. Nowadays, it is the finite element 

method (FEM) based modelling that plays a crucial role in understanding, critical assessment and 

optimisation of the existing SPD processes, visualisation of strain distributions across the sample, and 

prediction of the mechanical properties of the processed material. They are also invaluable in 

developing new SPD processes by enabling virtual process simulations prior to committing to the use of 

expensive tooling and machinery.   

 In this section we look at the ways in which FEM was applied to the simulations of an archetypal 

SPD process – equal channel angular pressing (Figure 3) – arguably the most commonly used technique in 

the context of SPD processing. Further SPD methods will be considered in subsequent sections, 

particularly in Section 5. 

 

Figure 3. Schematic illustration of ECAP showing the channel angle and the corner angle : (a) corner angle  

= 0, (b) corner angle  > 0 and (c)   =90o  , ED, TD and ND denote extrusion, transverse and normal directions , 
respectively (Adapted from [135], reproduced with permission)  
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 2.1 Estimates of equivalent strain during ECAP 

Various analytical calculations [131, 136-142] and numerical finite element simulations were 

used for modelling and prediction of strains induced by ECAP. The models differ in the die geometry 

represented in Figure 3, incorporation of frictional effects, and the techniques used to calculate the 

strain distribution. Sharp corner dies, dies with an external arc of curvature, and round corner dies are 

some of the various geometries employed for ECAP. In the dies with an external arc of curvature, the 

centre of curvature is located at the inner corner of the die. The round corner dies have a fillet at the 

outer corner whose centre of curvature does not lie at the inner corner. Detailed understanding of the 

kinematics of deformation and the effects the die geometry plays in it is crucial for rationalising the 

basic mechanisms that control the grain refinement in the ECAP process.  Eivani and Taheri [141, 142] 

presented the upper-bound solution in which both the friction conditions and the nonlinear strain 

hardening behaviour were considered for a die geometry where only the outer die had a corner 

curvature. The consideration of nonlinear strain hardening of the material in the calculations of the 

ECAP pressure, assuming a frictionless condition, with an outer die corner curvature, was first proposed 

by Alkorta and Gil Sevillano [137]. Their analytical solution was based upon the upper bound theorem 

and provided a good agreement with numerical predictions determined from a plane-strain finite 

element model. Paydar et al. [138] also exploited the upper bound approach to analyse the equal 

channel angular pressing with circular cross-sections of the die and the billet. The expressions for the 

total dissipated power and the applied pressure required for processing were established by considering 

velocity discontinuities and non-zero friction at all surfaces. The model developed predicted an increase 

in size of the deformation zone with increasing friction, similar to Segal’s original model [131]. In a series 

of publications Pérez and Luri [140, 143-148] obtained theoretical expressions for the shear strain 

accounting for all the possible die configurations and including the friction effects for perfectly plastic 

materials. Aiming at optimisation of the die geometry, these authors showed a gain close to 11% in the 
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equivalent plastic strain per pass when the inner radius was 2.67 times larger than the fillet radius of the 

outer die. They also demonstrated that an increase of the inner fillet radius led to a greater equivalent 

plastic strain and higher pressure levels. Building on the recognition that an extended arc curvature has 

a detrimental effect on strain homogeneity in the workpiece during ECAP, Şimşir et al. [149] performed 

an upper bound analysis by FEM and showed that the process performance in terms of the magnitude 

and uniformity of strain can be improved by modifying the shape of the die corner. 

Segal [129, 150, 151] was the first to exploit a widely known slip line field theory for solutions of 

the boundary value problems in mechanics of ECAP.  The slip line kinematic approach simplifies the 

governing equations for plastic solids by making several restrictive assumptions including [83]: (1) plane-

strain deformation, (2) quasi-static loading, (3) isothermal conditions, (4) absence of body forces, and (5) 

idealisation of the material as a rigid-ideally plastic von Mises solid whose mechanical properties are 

characterised by the yield stress in uniaxial tension.  With these assumptions Segal obtained slip line 

field solutions for different ECAP die geometries and friction conditions. For a simple die with sharp 

corners and an angle   between the channels, Figure 3a, the von Mises equivalent strain eq  imposed 

onto a billet per each ECAP pass is given by [129] 

2

23
eq cot

 
  

 
   (1) 

In the case of a die with a round outer corner geometry,  Figure 3b,  which owes its great popularity to 

the simplicity of design and manufacture, the strain is given by the following relation proposed by 

Iwahashi et al. for the frictionless conditions [152]  

 
1

2
2 2 2 23

eq cot cosec
        

       
    

  (2) 

Goforth et al. [153] proposed an alternative formula for the equivalent plastic strain: 
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Alkorta and Gil Sevillano [137] derived the same expression in the upper bound approximation for the 

frictionless die with a curved outer corner, while Milind and Date [154] arrived at Eq. (3) using a 

kinematics based approach.  Aida et al. [155] reconciled the latter two equations and showed that both 

yield the same results at the upper and the lower bounds for the arc angle  =  −π and  = 0, 

respectively, and that they differ by less than 5% under all other conditions for the channel angle   

equal to or exceeding 90˚. Segal’s slip line model assumes that plastic flow in simple shear deformation 

in the 90o sharp corner dies is confined to the plane of intersection between the channels. To avoid this 

limitation, Tóth  et al.  [105, 156] developed an analytical flow line model which they applied – with 

considerable success - to calculating texture evolution under ECAP [96].  In this model a flow line is 

described by the following equation: 

      0  fl fl fln n n

die die died x d y d x       (4) 

where  died is the diameter of the die, 0x  denotes the current position on the flow line, and 
fln  is a free 

parameter describing the flow line shape in Cartesian ( , )x y  coordinates corresponding to the 

rectangular die as illustrated schematically in Figure 3c. The condition  2fln   defines an idealised 

circular flow line; higher 
fln values approximate well the flow pattern arising under different friction 

conditions; in the limiting case of 
fln  , the flow line is simply represented by two straight 

intercepts connected at the shear plane of the die, as in Segal’s model. The experimentally observed 

flow patterns can be approximated by the proposed model very well, as shown in Figure 4. A generalised 

expression for the equivalent von Mises strain per ECAP pass in the 90o   die derived from the model 

reads 
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   (5) 

This equation yields the same total strain, 2 / 3eq  , as Segal’ model for the limit case of
fln  . 

Equation (5) implies that the accumulated strain is uniform across a section of the die, provided 
fln  is 

constant. The latter assumption is quite restrictive and does not have general validity. The flow line 

model proposed by Tóth  et al. predicts a varying deformation field along the flow line in good 

agreement with FE simulations [156]. Using a large 50×50 mm2 ECAP die set-up, Panigrahi et al. [157] 

demonstrated experimentally that the flow line exponent 
fln increases significantly and almost linearly 

from about 6 at the top to about 20 at the bottom side of a billet. This behaviour of 
fln reflects the 

occurrence of a strain gradient in the extended plastic deformation zone, Figure 4. Using the 

experimentally determined 
fln  values, the flow line model [156] correctly predicts the distribution of 

texture components in a billet’s cross-section from top to bottom. A further generalisation of this 

analytical model was provided by Hasani et al. [158], who considered the elliptical  modification of the 

flow line equation, Eq. (4), and used it for modelling the plastic flow and texture evolution in the 

nonequal channel angular pressing, in which process the exit channel has smaller dimensions than the 

entrance channel.  

 Motivated by the same desire to avoid the simplistic representation of the ECAP process as 

sharply localised shear and to account for inhomogeneity of plastic flow in a spread plastic deformation 

zone, Beyerlein and Tomé [159] proposed another form of analytical solutions for the strain and velocity 

gradients tensors as functions of the position in the die and deformation time for three typical 

deformation situations, including ideal localised simple shear, a central fan-shaped plastic deformation 

zone, and a central deformation fan combined with an outer region of rigid rotation. Not only is this 
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analytical model capable of successfully describing texture evolution in the multipass ECAP processing, 

but it also enables a thorough analysis of the deformation kinematics.    

 

Figure 4. Flow pattern in a cross-section of commercially pure aluminum AA 1050 billet deformed by ECAP (a).  
Etching reveals a fan-shaped plastic deformation zone (PDZ) between undeformed and deformed parts in the 
entrance and exit channels, respectively. The experimentally observed flow lines on the TD plane are shown in 

(b); the flow line shape parameter
fln entering the model due to Tóth  et al. [156] calculated for individual flow 

lines is shown on the right. (Adapted from [157], reprinted with permission). 

Analytical modelling was also used to describe HPT processing. The approach goes back to 

Bridgman [35, 160, 161] who, in an idealised way, expressed the velocity field in the specimen (which is 

independent of the torsion angle of the anvil,) as 

 0,z r

r z
V V V

H



     (6) 

 with   the angular velocity, and the von Mises equivalent strain as 

 
3

eq

r

H


    (7) 

In the cylindrical coordinate system  , ,r z used, r is the distance from the specimen axis; H denotes 

the specimen thickness [162, 163]. This type of kinematic model was also used by Khoddam et al. [132]. 

Beygelzimer et al. [164] provided a strict mathematical analysis to identify conditions under which the 

simplified description given by the above equations is valid. Their conclusion was that in the rigid plastic 

formulation, a power-law hardening in a rotation angle interval would lead to self-similar regimes of HPT 



22 

 

if the friction with the lateral wall of the die is not too high. In such an interval, the above mathematical 

description holds. Outside of this interval they break down, and the plasticity problem needs to be 

solved for each value of . This is an important message that should be considered in calculations of the 

HPT process. 

It should be noted that it is customary in the SPD community to use the von Mises equivalent 

strain as a measure of strain, as was also done in deriving the above equations. The ongoing discussion 

in literature on whether it is the von Mises or the Hencky strain [165, 166] that provides the appropriate 

measure of deformation involving simple shear, of which SPD processes are typical examples, was 

reviewed in a recent publication [167]. Based on group theory analysis, it was demonstrated that the 

Hencky equivalent strain does not satisfy group theory properties for simple shear, while the von Mises 

equivalent strain does. This analysis provides a theoretical underpinning for the use of the von Mises 

platform, which is adopted here.  

2.2 Constitutive modelling approaches to simulations of ECAP 

As was emphasised above, the microstructure and the concomitant mechanical properties of 

SPD-manufactured materials show a strong dependence not only on the amount of plastic strain 

imparted to the material but also on the strain path. This is particularly the case for multi-step 

processing schedules where the results depend on the sequence of strain increments associated with 

the processing steps. Substantial modelling efforts have been invested in understanding the strain 

development during various SPD processes. 

ECAP has received most attention in finite element modelling, which has finally led from 

laboratory investigations to technologically relevant ideas of possible upscaling of SPD techniques, and 

we shall dwell on this process in some detail. When a rectangular workpiece is subjected to ECAP under 

isothermal conditions with ideal lubrication, the strain along the direction normal to the flow plane is 
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zero, i.e. plane strain deformation dominates the plastic flow. This justifies a two-dimensional treatment 

of plastic strain distribution over a rectangular billet during ECAP as a first approximation [168]. Owing 

to its simplicity, 2D finite element modelling enjoys the greatest popularity even though the significance 

of boundary conditions at the side walls is admittedly disregarded in the 2D approach. Experimental 

arguments in favour of nearly isothermal condition during ECAP at low processing speed were provided 

by Yamaguchi et al. [169, 170] and Berbon et al. [171], at least for the relatively slow ram velocity of 

0.18 mm/s. An essential input in any FEM simulation that strongly influences the results is a constitutive 

model specifying the response of the material to an applied stress under given conditions, i.e. a 

functional dependence of the flow stress on strain and further variables such as strain rate   and 

temperature T , ( , , )T    . For this purpose, when strain hardening is considered, a Ludwik type 

dependence of the flow stress    on plastic strain 
pl  is assumed, most commonly in the form: 

 n

plK    (8) 

where K and n  are material parameters, which may generally be strain rate and temperature 

dependent and are supposed to be known from a set of experiments, e.g. from uniaxial tensile tests 

performed at different strain rates and temperatures. A variant of this constitutive equation, which 

takes into account the strain rate dependence of stress in a power-law form, is the Ludwik-Hollomon 

equation 

 
*n m

pl plK     (9) 

Here the exponent *m   characterises the strain rate sensitivity of the flow stress and may be 

temperature dependent. Obviously, the validity of the Ludwik or the Ludwik-Hollomon equation implies 

continual increase of stress with strain. Assuming a Ludwik type strain hardening, the Considère 

instability criterion predicts the onset of strain localisation (necking) at a critical strain n n   under 

uniaxial tensile deformation. An excellent critical review on plastic strain localisation in materials has 
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been provided recently by Antolovich and Armstrong [172] with the focus on the influence of the 

microstructure on different scales and loading conditions – temperature and strain rate – on the strain 

hardening behaviour and the appearance of plastic instabilities. The onset of necking limits the validity 

of Eq. (8) to a relatively small strain range below the necking point. Although this type of strain 

hardening law is rather common in solid mechanics, it does not apply to large deformations where the 

stress tends to saturate or even drops with strain. For example, after several ECAP passes the 

microhardness (and thus the strength) tends to saturate [136, 173, 174] or exhibits a maximum and then 

decreases slightly with increasing strain [175, 176]. This apparent breakdown of the Ludwik-Hollomon 

power law may be corrected by using an alternative constitutive law first proposed by Voce [177] as an 

empirical relation between stress and plastic strain pl  (cf. also [178-180]):  

 
)( pl s pl

y s c

exp
   

  

 
  






  (10) 

where 
y  is the yield stress and c  is the quantity that characterises the rate of variation of stress with 

strain towards its saturation level s . The corresponding strain hardening rate /h      is 

expressed as: 
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s

h h




 
  

 

  (11) 

providing a linear stress dependence of the strain hardening rate. Here 0 /s ch    is the strain 

hardening rate extrapolated to zero stress. It is commonly associated with Stage II hardening. Mecking 

and Lücke [181], Kocks [182] and Mecking [183] derived such a linear relation for the tensile stress-strain 

curves of FCC metals by considering the dislocation density evolution. Possible extensions of this 

approach to large strains are discussed in the review paper by Kocks and Mecking [184]; see also [58] for 

an in-depth discussion of the  constitutive strain hardening behaviour at large strains. Unlike the Ludwik-

Hollomon equation, Eq. (10) does account for stress saturation with increasing strain. For this reason, it 
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has been widely used in mechanistic descriptions of large strain deformation.  Chinh et al. [185, 186] 

employed the Voce equation to describe the strain hardening behaviour in ECAP-processed aluminium 

over a broad range of testing temperatures, including both the region of plasticity controlled by 

thermally activated dislocation glide at low temperatures and the diffusion-controlled plasticity regime 

at high temperatures. In an attempt to fit the experimental data, they proposed a different type of the 

constitutive law in the form of 

 0 1 exp

n

pl

c


  



 
    

 
  (12) 

where 0  , 1  , c  and the exponent n are constants which may be used to fit the experimental data. 

Equation (12) fulfils the various requirements on the   vs. 
pl  relation, as it reduces to the Voce-type 

equation when n=1 and its Taylor expansion at small strains gives an equation of the form  

0

n

plK     , which is identical with the Ludwik equation, Eq. (8). The relation expressed by Eq. (8) is 

purely phenomenological. Its deficiency is a lack of an explicit or implicit relation with the microstructure 

and dislocation structure evolution. Being convenient as a mathematical description of the strain 

hardening behaviour of materials, it is often used in FEM codes. However, it is neither capable of 

describing different stages of strain hardening nor can it be easily justified for both small and large strain 

ranges.    

In 1997, Prangnell et al. performed the first 2D plain strain FEM simulation of the ECAP process 

[187] emphasising the significance of friction for the kinematics of plastic flow in the dies with different 

channel geometries.  Friction is undoubtedly of great importance in general metal forming and that is 

why it is routinely included in modern FEM codes [188].  Figure 5 illustrates the flow patterns predicted 

by 2D FEM for different frictional conditions and die configurations. Nearly ideal simple shear was 

predicted in well-lubricated conditions with low friction, whilst non-uniform shearing and a dead-metal 
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zone caused by high friction levels in a simple (static) die was found. These computational results are in 

fair agreement with experiments performed by Segal and co-workers [150, 151, 189]. The role of friction 

in SPD processing was highlighted in many publications [139, 190-199]. The significance of friction for 

ECAP processing was also confirmed by 3D FEM simulations [200]. 

 

Figure 5. Illustration of the flow patterns predicted by 2D FEM for different frictional conditions and die 
configurations: (a),(c) well-controlled shearing facilitated by extremely low friction or a sliding exit channel floor; 
and (b),(d) inefficient, nonuniform shearing and a dead-metal zone caused by high friction levels in a simple 
(static) die. (Here a and b were adapted from [190] and c and d from [196] (reproduced with permission)) 

 

As seen in Figure 3, the channel geometry can be varied by using different values of the channel angle 

[201, 202], or the outer corner angle [139, 192, 193, 198, 203-205], or both [137, 194, 206, 207]. The 

shape of the entry channel can also be made different from that of the exit channel (thus deviating from 

pure ECAP) [208, 209]. The vast majority of FEM simulations were carried out with a view to assess the 

influence of the die geometry, process conditions, and the intrinsic properties of the billet material on 

strain distribution in the ECAP-processed billets. For instance, in a suit of publications Nagasekhar and 

co-authors investigated the influence of tool angles, strain hardening behaviour of the material 

(adopting the Ludwik-Hollomon model) and friction between the billet and die (adopting the Coulomb 

friction law) in 2D plane strain simulations with elastic-plastic material properties of aluminium alloy 

AA1100 [204] and 3D simulations for copper [210] for conventional ECAP as well as ECAP with specific 

channel shapes, such as V-shape [211], T-shape [212] and X-shape die configurations  [213]. The effect 
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of the type of the friction model - Coulomb vs. shear friction - in numerical analysis of the ECAP process 

was considered by Balasundar and Raghu [214]. They demonstrated that the shear friction is preferable 

in FEM codes because the predictions of this model are closer to experimentally observed deformation 

pattern and strain distribution across the processed billet.    

With friction taken into account, it was shown in particular that an optimum in strain 

homogeneity in the sample with a lesser propensity for dead zone formation can be achieved, without 

any detrimental side effects, for the channel angle  = 90° and the outer corner angle   = 10°, cf. also 

[215-217].  A typical simulated flow pattern and the equivalent stress distribution in the deformation 

zone of the billet passing through the die with different values of the channel angle are shown in Figure 

6. As predicted by Segal [131, 151, 189] considering mechanics of a rigid-plastic body in the ECAP 

process, deformation is confined to a thin layer at the plane where the two channels meet. Within that 

layer deformation by simple shear occurs. For strain hardening materials, under the same zero friction 

condition, the deformation zone spreads out through an arc around the crossing plane of the channels 

due to the formation of a dead zone [218, 219]. When both strain hardening and friction are included, 

the shape of the deformation zone changes considerably. With  =0° (cf. Figure 3a), the deformation 

zone is very wide and is no longer in the form of an arc. This strain pattern happens to be closer to the 

computational predictions (clearly observable with deformed mesh in Figure 5a). FEM simulations 

commonly show that with an increase in the outer corner angle, the arc of the deformation zone 

spreads as shown in Figure 6b-d [204, 215, 216, 220]. Hence, by reducing the outer corner angle a 

narrowing of the deformation zone can be achieved.  

To raise the process efficiency and reduce the number of processing steps, ECAP tool designs 

with either U- or S-shape channel configuration were considered. In view of drastically increased loads, 

modelling is essential in assessing the viability of the proposed tool design and its optimisation [195, 

201-203, 208, 220, 221]. 
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Another factor, which has long been identified as a major one in ECAP processing and the 

resultant material properties, is back pressure [129, 131, 150, 222-225].  Back pressure was shown to be 

crucial for enabling uniform simple shear deformation [129],  but it is comparatively rarely considered in 

numerical simulations [137, 193, 196, 197, 203, 226].   

 

Figure 6. Results of FEM simulation showing the effect of the shape of the outer corner on the flow pattern and 

the equivalent von Mises stress distribution in the deformation zone. Simulation performed with =90o and (a) 

=0o, (b)  =10o, (c)  =20o, (d)  =28o.  (Adopted from [204], reproduced with permission.)  

Summarising the outcomes of numerous FEM simulations of ECAP, it can be concluded that the 

strain distribution in the deformed billet is strongly affected by the channel shape, tool angle, friction, 

and back pressure. The strain is most uniform if the deformation zone is as narrow as possible. This is 

best achieved with a sharp die corner and appropriate back-pressure, as was recognised in the original 

work by Segal et al. [129]. Using a slip line model, these authors explicitly formulated the hydrostatic 

pressure condition for “ideal” simple shear deformation with complete filling of the outer die corner, 

which according to them is achieved if the friction between the workpiece and the die walls is negligibly 

small and the operating punch pressure in the inner channel 1p  is related to the back pressure 0p  
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through 1 0 2 cotp p k   , where k  is the material’s shear yield stress. Extending Segal’s approach, 

Lee proposed an upper bound analytical solution taking into account friction during ECAP [227].  If a 

‘razor-blade thin’ deformation zone is formed, the simple shear conditions assumed by Segal et al. [129] 

in deriving Eq. (1) prevail and the magnitude of simple shear the billet undergoes agrees well with the 

predicted values. In all other cases the shear strain is significantly lower than expected from Eq. (1).  This 

is due to a partial bending of the billet, which results in the strain distribution being non-homogeneous 

(by up to 40% across the billet’s width for a 120° die). Equation (1), therefore, corresponds to an upper 

bound that can only be achieved under ideal conditions. It follows from the above analysis that dies 

designed with a smoothed internal corner will certainly promote undesirable bending of the billet and 

reduce its homogeneity, as well as the overall level of shear. 

2.3. Effects of heat generation 

The tool temperature and the heat generation effects during SPD were considered in several 

simulations [135, 190, 193, 195, 197, 219, 228, 229]. DeLo and Semiatin in their early FEM analysis of 

ECAP evaluated the effect of friction in a systematic way. More importantly, beside considering the 

plastic flow behaviour of the workpiece, they accounted for the effects of preheat temperature, heat 

generation due to mechanical work and interfacial heat transfer between the workpiece and the die 

[190]. Since many engineering alloys experience flow softening under hot-working conditions and, 

consequently, are prone to flow localisation, the motivation to perform realistic simulations accounting 

for these effects is very clear and important.  Consideration of heat transfer and of friction between the 

workpiece and the side walls of the tooling required a 3D approach to full analysis of hot ECAP.  Strain 

rate sensitivity of the processed material was included into FEM codes for both two-dimensional and 

three-dimensional non-isothermal models. The heat generation resulting from deformation was 

computed and flow stress data were adjusted in the simulation routines accordingly. The temperature 
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increment T in the deformation zone due to plastic deformation was calculated in a simplified way 

using the adiabatic approximation (see below): 

 
 T

d v

T d
c

 
 


    (13) 

where T is the absolute temperature,  is the flow stress, (henceforth a superposed dot denotes time 

derivative and a bar refers to the average value). The material constants d   and vc  are the mass 

density and specific heat, respectively; T  represents the fraction of mechanical work that is converted 

into heat. The result of a correction for deformation heating in FE simulation is an increased amount of 

flow softening compared to that observed in ‘uncorrected’ compression data [190].   

 Despite the demonstrated efficacy of 3D simulations in modelling heat flow, such simulations 

were less successful than the 2D FEM simulations, Figure 7, in predicting overall deformation and 

equivalent strain contours [190], see also [135]. These difficulties of 3D FEM simulations were attributed 

to problems with mesh density and element behaviour highlighting the challenges in realistic FEM 

simulations. The simple shear deformation concentrated in a narrow band during ECAP requires a very 

fine mesh in the deformation zone and frequent re-meshing which can be more easily implemented in 

2D FEM codes. Consequently, a much greater number of elements, memory and computation time are 

required for an equivalent 3D simulation. This is a technical issue, though, which does not undermine 

the recognition that 3D simulations are more appropriate in principle [146, 195, 198, 228, 230-232]. 
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Figure 7. FEM-predicted grid distortions, temperature contours, and effective strain contours from a 2D 
nonisothermal ECAP simulation of Ti-6Al-4V with flow softening at 985 oC (from [190] reproduced with 
permission)  

 

2.4. Strain localisation during ECAP 

In the absence of heat transfer between the workpiece and tooling, which was tacitly assumed 

in deriving Eq. (13), the tendency to flow localisation was estimated from the flow localisation 

parameter 
S defined as  [191]: 

 

, ,

1 1 1 1
S

T

dT

T d m
  

  


     

          
           

          

 (14) 

It was demonstrated that materials with a high degree of softening and a low strain rate sensitivity m, 

which is defined in the same sense as that in Eq. (9) as  
,

ln / ln
T

m


     , tend to undergo severe 

shear localisation. Flow localisation sets in only if s is positive. Semiatin et al. noted that the 
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development of appreciable strain localisation occurs for S  of 3 at typical cold-working temperatures 

[233] or 5 at hot-working temperatures [234]. 

 Lapovok et al. [235] studied strain localisation during ECAP in terms of a simplified power-law 

constitutive model by considering gradient plasticity. This was done by introducing a second-order 

gradient term associated with the incompatibility stresses between neighbouring grains, giving rise to 

the following expression for the shear stress 
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Here, in accordance with a gradient plasticity model due to Estrin and Mühlhaus [236], the coefficient c  

was assumed to be proportional to the Young’s modulus E and the square of the grain size d:  2c aEd  

(where a  is a constant). The deformation dynamics was modelled using the classical continuity equation 

of solid mechanics: 
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with a shear stress gradient entering on the right-hand side and d  denoting the density of the 

material. Linear stability analysis of the fundamental solution of Eqs.(15) and (16) with /u y     and 

0

t

dt    was performed by introducing small perturbations, in the exponential form 

 0 2 /

0
w

t t i y
e e
   


 , of the fluctuating variables  , ,u    at a time to. The wavelengths 

w  for 

which the growth rate  of the perturbations turns out to be positive were determined in dependence 

on the material properties (including grain size and strain rate sensitivity) and processing conditions 

(strain, strain rate, strain gradient, etc.). These wavelengths define the spatial periodicity of an emerging 

strain localisation pattern. The model was verified for magnesium alloy AZ31 deformed by ECAP at 

250oC with different ram speeds and different back pressure values. The predicted deformation band 
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patterns agreed favourably with the observed ones, including such detail as the shift of the spectrum of 

the preferred wavelengths upon the variation of back-pressure.   

 Although most published FEM calculations assumed the Ludwik-Hollomon or Voce type strain 

hardening behaviour of a material, some simulations were also conducted under the assumption of ideal 

plasticity [198, 206, 208] or viscoplasticity [237]. In some hybrid models, ideal plasticity was considered 

as a limiting case for strain hardening [197, 221] or as a model to be compared with strain hardening 

ones [191, 192, 194]. Two different strain hardening curves for reversed loading (taking place for 180° 

billet rotation between two consecutive passes of ECAP) were used by Figueiredo et al. [238]. Three 

different kinds of hypothetical material stress-strain behaviour, typical of those encountered in cold and 

hot working, were investigated by Semiatin et al.  [191]: (i) Ludwik-Hollomon type strain hardening, (ii) 

rigid-perfectly plastic response, and (iii) strain softening response, cf. Figure 8 where the deformation 

curves are shown for these three situations.  

 

 Figure 8. Deformation curves used in isothermal FEM simulations with different strain hardening models [191] 
(reproduced with permission). 

Using similar assumptions, Kim [239] simulated plastic flow in a strain hardening material (with 1100Al 

taken as an exemplary case) and a nearly perfect elastic-plastic material (6061Al-T6). It was found, 

Figure 9a and b, that a larger corner gap is formed in the material with a higher strain hardening rate 
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because the softer outside part of the workpiece in the deforming region flows faster in a strain 

hardening material than in a non-hardening one. The results of these simulations are in good agreement 

with experimental data presented by Segal [189], Figure 9c and d.  Besides, Kim demonstrated that the 

corner gap formation reduces the strain in the outside region of the workpiece, increases the strain in 

the inside region, and diminishes the average strain. A computational result already mentioned above 

and well-supported experimentally is that the strain distribution in a workpiece with a larger die corner 

gap becomes more non-homogeneous. 

 

 

Figure 9.  FEM-predicted grid distortions for (a) a strain hardening material (1100Al) and (b) a nearly perfectly 
plastic material (6061Al-T6) (adapted from [239], reprinted with permission). (c) and (d) represent experimental 

data for a  = 90° and  =0° die showing a distortion of the coordinate grid for a strain hardening material 
and non- strain hardening material, respectively (adopted from Segal [189], reproduced with permission). 

 

SPD processability of hard-to-deform materials was addressed in an experimental study 

accompanied with FEM modelling by Semiatin et al. [240, 241]. They investigated the deformation 

behaviour of commercial purity (CP) titanium (grade 2) and AISI 4340 steel during ECAP at temperatures 

between 25 °C and 325 °C and nominal strain rates between 0.002 and 2.0 s-1. CP titanium underwent 

segmented failure under all conditions except at low strain rates and high temperatures, while 4340 

steel deformed uniformly except at the highest temperature and greatest strain rate, at which condition 

it also exhibited segmented failure. CP Ti was found particularly susceptible to shear localisation during 
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ECAP; uniform flow occurred only at high temperatures and low strain rates. By contrast, 4340 steel 

exhibited uniform deformation under all conditions, apart from the high temperature and high strain 

rate case mentioned. Observed shear banding and shear failure were interpreted in terms of the 

tendency for strain concentration as quantified by the flow localisation parameter
S introduced in Eq. 

(14). Viscoplastic modelling and FE simulations were applied to elucidate failure modes under non-

uniform plastic flow during non-isothermal ECAP and the model predictions were found to be in good 

agreement with the experimental findings. Based on the understanding of the effect of material 

properties on the tendency for flow localisation supported by both FEM calculations and experiments, 

Semiatin et al. proposed countermeasures to inhibit non-uniformity of plastic flow during ECAP [240, 

241]. Localised shear banding was also found by very recent FEM simulations of ECAP of AA6060 using a 

phenomenological constitutive model that included both isotropic and kinematic hardening [242]. The 

preponderant role of the latter in strain localisation under ECAP was highlighted by the authors.    

Extreme grain refinement of metals usually involves multiple ECAP passes [2, 3, 126, 243]. Such 

processing can follow various strain paths, for which the strain hardening behaviour of the material 

being deformed may be different [2, 4, 129, 136, 150, 152, 244, 245]. Although accounting for plastic 

anisotropy is essential for accurate simulations of large plastic deformations during metal forming 

processes, the strain path effects are relatively rarely considered in FEM modelling [246-249]. Rather, a 

universal equivalent stress vs. equivalent strain curve of the material is employed for all processing 

steps. An example is multiple pass deformatin by route A ECAP considered by Rosochowski [203]. This 

approach was modified by Figueiredo et al. [238] who presented a methodology of FEM analysis for 

two-pass ECAP processing of copper following route C, which involves a strain reversal. The 

consideration of strain path effects changed the final strain distribution in the material and led to a 

lower ram force in the second pass compared with the results based on a universal stress–strain curve 

for all passes. Mahallawy et al. [237] applied a 3D rigid-viscoplastic finite element analysis to Al–Cu 
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alloys for ECAP following routes A and Bc. Experimental and FEM results were found to be in agreement, 

both showing that route A leads to greater strain homogeneity across the workpiece than route Bc. 

Strain localisation and tensile stresses lead to fracture, which was simulated in the works cited above 

[190, 191, 250].  Strain rate sensitive material models were considered by several groups [191, 217, 228, 

230].  In particular, Kim et al. [220] showed that the strain rate decreases with the channel angle and the 

die corner angle. The magnitude of the corner angle was found to exert a much stronger effect on the 

strain pattern than that of the channel angle, owing to an expansion of the deformation zone and 

reduced deformation time caused by an increase in the corner angle. 

Finite element analysis that included the Gurson model of damage was carried out by Lee et al. 

[251] to rationalize the densification behaviour and the elimination of residual porosity in the aluminium 

alloy 6061 matrix containing SiC particles by ECAP. Damage models were also included in the simulations 

of the ECAP processing by Lapovok [252]. The evolution of damage (porosity) in cast Al6061 alloy was 

successfully predicted in terms of a stress index, which represents the ratio of hydrostatic pressure to 

equivalent shear stress. 

Simulations using models that account for microstructure in the context of FEM analysis are 

scarce. In reference [253], strain distribution results were used to obtain the textures developed during 

ECAP. A dislocation-based strain hardening model due to Tóth  et al. [254, 255] was implemented in a 

finite element code which enabled the dislocation cell size evolution in copper to be predicted [256]. In 

a companion paper, texture evolution was calculated using the same modelling frame [257]. The model 

was also successfully used in simulations of the response to ECAP processing of Al [256] and IF steel 

[258]. Most recently, this model was also used for simulations of ECAP deformation of Cu and Al 

alongside two other dislocation-density based models [259], and the benefits of the model by Estrin et 

al. [255] were highlighted. Although stress and reaction forces are routinely available from FEM 
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simulations, only a few workers used these results to evaluate material behaviour, tool pressure, and 

the process force under severe plastic deformation [192, 203, 210, 217, 228, 260]. The consequent and 

successful use of the dislocation density based models in FE simulations of severe plastic deformation by 

the research group of Hyoung Seop Kim (see, for instance, [261, 262]) should be mentioned, but this is 

an exception rather than the rule.  

As mentioned above, most of ECAP simulations used a two-dimensional model assuming plane 

strain, which had obvious benefits in terms of the cost of re-meshing and computational time in general. 

However, for billets with a circular or rectangular cross-section in situations when friction and heat 

effects are significant, three-dimensional simulation is more appropriate, as shown in several 

publications [146, 195, 198, 228, 230-232]. 

As the microstructure evolves and gets refined with increasing strain, conventional FEM codes 

face the mentioned necessity of re-meshing and the associated difficulties with precision and efficiency, 

especially in handling large deformations. To minimise this mesh dependency problem, the finite volume 

method (FVM) was proposed and used successfully, for example, in multi-pass ECAP simulations [198, 

228, 230, 263]. Another problem which grows ever more challenging in the conventional computational 

methods such as finite element or finite volume analysis is the problem of simulation of nucleation and 

propagation of discontinuities such as cracks during SPD processing.  In most cases, these techniques 

cannot handle such behaviour because of their strong reliance on the mesh. Consequently, their 

inherent structure is not well suited to dealing with discontinuities which do not coincide with the 

original mesh lines. Re-meshing in each step of the simulation to keep the mesh lines coincident with 

the discontinuities throughout the simulation inevitably introduces many computational problems.  

A group of numerical techniques which aim at addressing the re-meshing problem in many FEM 

simulations is represented by the so-called mesh-free or meshless methods.  A variety of these 
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techniques has emerged and developed to a highly matured state in the past two or three decades 

[264].  Originating from particle hydrodynamics and gas dynamics, they rely on the nodes (particles or 

points), not on lines (or meshes). The application of these methods to simulation of SPD processes is still 

scarce, but a few successful examples of application of a rigid-plastic/viscoplastic element free Galerkin 

method to simulate the plastic flow during ECAP are encouraging [265, 266]. The most popular mesh-

free methods are smoothed particle hydrodynamics (SPH) [267, 268] and the material point method 

(MPM) [269]. Such models do not suffer from the problem of large mesh deformation and the necessity 

of re-meshing common to FE models in a Lagrangian framework, or the difficulty of tracing the 

material’s history in the Eulerian formulation. Studies of ECAP processing by both SPH [270] and MPM 

[271] showed the efficacy of these methods and the consistency of the results obtained by the meshless 

techniques and the FE analysis.  

From the above discussion it is evident that the shape of the deformation zone, strain 

homogeneity and ultimately the microstructure evolution in the deformed samples are affected by 

several factors. These include the intrinsic material properties, particularly strain hardening behaviour, 

the die design, friction, and processing parameters, such as back pressure, ram speed, and temperature.  

Being reasonable as a first approximation, the 2D FEM simulations assuming plain strain conditions have 

obvious limitations when (i) very large plastic deformations are involved, (ii) the shape of the billet is 

other that rectangular, (iii) friction effects are of concern, and (iv) heat effects cannot be neglected. 

Thus, for realistic simulations 3D FEM is the computational tool of choice [228, 272]. 

Because of the significance of ECAP among the SPD processing technologies, its simulations have 

been considered in this section at length. FEM simulations of SPD processes other than ECAP are less 

numerous, while being similar to those of ECAP in essence.  Some of them will be considered in Section 

5.  
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2.5. Strain rate and temperature effects during ECAP 

Microstructural evolution during SPD involves a plethora of mutually interacting mechanisms, 

including dislocation glide, recovery by dislocation annihilation, and possibly recrystallisation and grain 

growth. These are chiefly thermally activated processes and, as such, they are strongly influenced by 

two extrinsic variables – strain rate and temperature, which are often interrelated through 

thermomechanical coupling.  In what follows we examine the significance of these two variables in 

modelling of SPD processing in some detail. 

Estimates for strain rate during ECAP 

Berbon et al. [171] showed that the microstructure of pure Al and an Al-1% Mg alloy processed 

by ECAP is dependent on the pressing speed. There have been several attempts to estimate the strain 

rate using different modelling approaches. Semiatin et al. [191] evaluated the strain rate in the ECAP 

process by FEM modelling, though only roughly because of the coarse mesh size they used.  Assuming 

the die geometry shown in Figure 3b, Kim [135, 220] provided simplified estimates of the average strain 

rate. The results were then compared with the accurate 3D FEM analysis performed in isothermal 

conditions corresponding to low ram velocities.  

The average deformation time during ECAP can be defined in a first order approximation as the 

dwell time of the material within the localised deformation zone in the geometry shown in Figure 3b as: 
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Medeiros et al. [273] provided a more detailed derivation of the dwell time. The resultant values for t  

they obtained are quite similar to those estimated by Kim [135], however.  By combining Eq. (2) for the 

strain and Eq. (17) for the deformation time, a strain rate equation for ECAP is obtained: 
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The analytical calculations according to Eq. (18) were found to be in good agreement with the results of 

FEM modelling, as shown in Figure 10. 

 The analytical mechanistic approaches to deformation histories during ECAP processing 

developed by Tóth  et al. [156] and Beyerlein and Tomé [159] are quite appealing in that they allow for 

explicit calculation of velocity gradients and associated strain rate tensor components. Using the flow 

line representation given by Eq.(4), Tóth  et al. derived the following transparent expressions for the 

strain rate 
ij  components accounting for the curvature of the flow lines and the size of the die: 
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(with u  denoting the ram speed).  

For the equivalent (von Mises ) strain rate it follows  
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The strain rate profile along a flow line predicted by Eqs.(19) is shown in Figure 11 as a function of the 

angular position of the flow line, defined in Figure 4.  The model predicts a significant increase of the 

strain rate along the symmetry plane of the die and the distribution of the strain rates appears more 

pointed for larger 
fln  . Considering that the 

fln  values increase nearly monotonically from top to 

bottom, the model correctly captures the inhomogeneity of the strain rate distribution in the ECAP 

billet. Furthermore, at variance with Segal’s original model, Eqs.(19) shows that the shear strain 
xy  is 

non zero.  
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Figure 10. Average strain rate as a function of the corner angle  . Straight lines represent the results 
obtained from Eq. (12) for two values of the channel angle  . The circles correspond to the data for 
the following combinations of the angles: (A) = 90°,  =7°; (B) =90°,  = 45°; (C) =90°, 

=90°; (D) =135°,  =40° and (E) = 135°,  =45°. The ram speed to die diameter ratio  / dieu d  

was set at 0.0033 s−1. (After [135], reprinted with permission)  

 

 

Figure 11. Strain rate profile (solid lines) along a flow line for ECAP deformation for 
fln =6.  An excellent 

agreement with the results of FEM simulations (symbols) is seen. (From[96], see also  [156] for results 
with other nfl values; reprinted with permission).    
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Estimates for temperature effects during SPD  

While the strain rate can easily be calculated and modelled numerically from simple geometry 

and kinematics considerations, the picture is more complicated with regard to the thermal effects, 

which require careful approximations to be made.   

Since the mechanical properties of engineering materials are temperature dependent, estimates 

of the deformation-induced temperature rise are important for determining a material's response and 

microstructure formation. Two thermal conditions, which determine the temperature field in a billet, 

are naturally distinguished in attempts to interpret and model experimental results.  In one extreme 

case, the heat generated within the deformation zone as a result of energy dissipation there is efficiently 

removed from the deformation zone either to an external ‘thermal bath’ or directly to the bulk of a 

massive billet. The temperature rise in this case, which is referred to as the isothermal one, is negligible 

and the deformation temperature is adequately represented by the initial temperature. In the other 

extreme, when adiabatic conditions prevail, say at very high strain rates, the temperature can rise 

appreciably. As an example, in a structural HY-100 steel deformed dynamically at a strain rate of 1.4 

×103 s-1 the maximum temperatures measured by Marchand and Duffy [274] during localised shear band 

formation was as high as 460±50 oC. The real thermal conditions during most metal forming operations, 

including SPD processing, usually lie between these two extremes.  The average strain rates within the 

deormation zone during SPD processing do not exceed 0.2-1 s-1 (and usually are much lower), as can be 

estimated or typical deformation conditions using Eq. (18). For this strain rate range, the adiabatic 

conditions are hardly fulfilled and the deformation, even in shear bands that are sometimes observed 

during SPD, cannot be commonly regarded as adiabatic.  

The most widely used, although not always adequately argued, approach towards modelling 

deformation-induced thermal effects and energy storage during microstructure evolution is based on a 

simplest energy balance analysis that follows from the first law of classical thermodynamics. The energy 
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balance approach has been comprehensively reviewed by Bever et al. [275] and more recently by 

Stainier [276]. It states that the elementary mechanical work dA  done by the external forces is split 

into an increment of heat, dQ , and an increment of the internal energy of the system, dU : 

 dA dQ dU    (21) 

Here the kinetic energy of the plastically deforming body has been ignored. It should also be born in 

mind that the mechanical work is generally path-dependent and thus the elementary increments of 

work and heat are represented by incomplete differentials.  For simplicity, we retain the symbol d to 

denote the differential in all terms in Eq. (21). A portion eldW  of the total mechanical work dA

expended on a deforming solid is elastic and recoverable, while the remainder - the plastic work 
pldW - 

is irrecoverable. The latter is mostly, but not entirely, converted into heat dQ . The part of the plastic 

work that is not converted into heat represents the stored energy of mechanical work dU . This energy 

is stored in the crystal lattice defects created in the course of plastic deformation. Disregarding the 

elastic part, Eq. (21) can thus be re-written as 

 
pldW dQ dU    (22) 

Taylor, together with Farren and Quinney, [277, 278] were the first to perform a series of experiments 

on the latent energy remaining stored in copper after cold working. Without specifying microstructural 

mechanisms for energy storage and strain hardening, which were unknown at that time, they concluded 

that "the fact that the absorption of latent energy and the increase in strength with increasing strain 

both cease when the same amount of cold work has been applied suggests that the strength of pure 

metals may depend only on the amount of cold work, which is latent in them." Bever et al. [275] and 

Benzerga et al. [279] emphasised that the partitioning of the plastic work into heat generation and 

energy storage is of interest in a wide range of contexts. The defect structure in a cold worked ductile 

metal, particularly in a severely deformed one, is generally metastable so that, with time, it evolves so as 
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to reduce its stored energy.  In this sense, the stored energy of cold work plays a significant role in 

driving “static” recovery and recrystallisation in polycrystalline metals [280, 281]. Particularly, it has 

been shown that pure FCC metals such as copper or aluminium are prone to relatively quick 

recrystallisation after SPD [282, 283]. For example, high purity (5N) Cu subjected to eight passes of route 

Bc ECAP recovered completely to the conventional coarse grain state after one year storage at ambient 

temperature.  Knowledge of the fraction of the mechanical work converted to heat is essential for 

prediction of thermomechanical coupling phenomena such as thermal softening that promotes plastic 

instabilities [284, 285], including necking and shear banding. Thermomechanical coupling plays a critical 

role in selection of the deformation mode prevalent in rapid SPD processes, such as machining and 

projectile penetration where the adiabatic approximation is well justified [286]. The popular constitutive 

relations for high strain rate deformation proposed by Johnson and Cook [287] from purely mechanistic 

considerations and by Zerilli and Armstrong [288], who included the grain size dependence of stress and 

dislocation-based effects of strain hardening, strain-rate hardening, and thermal softening, provide the 

necessary thermomechanical coupling. Furthermore, since the stored energy is associated with the 

internal stress state of the material, it has a direct connection with the occurrence of the Bauschinger 

effect. Indeed, the large energy stored in the material during SPD results in a pronounced Bauschinger 

effect observed under cyclic loading in many ECAP-manufactured ultrafine grained materials, including 

Cu, Ti, Ni, Fe-Ni, and Al-Mg-Sc alloys, etc. [289, 290]. Because of the importance of the stored energy of 

cold work for many physical phenomena in deformed materials, there is a large literature aimed at its 

experimental determination, see, e.g., [275, 291-294]. The stored energy of cold work in metals is 

associated with the production and evolution of a variety of crystal lattice defects including, primarily, 

lattice dislocations and grain or sub-grain boundaries, as well as twins and stacking faults. The rate of 

accumulation of stored energy varies with strain and strain rate, and its magnitude can usually be 
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related to stress. Thus, the evolution of the stored energy in a material is intimately connected with the 

evolution of its defect structure.  

As stated above, a number of assumptions are often made for the analysis of the energy balance 

of a deforming solid to be tractable analytically. These simplifying assumptions usually include an 

additive decomposition of a strain increment into an elastic and a plastic part, a relation between stress 

and elastic strain adopted from isotropic linear thermoelasticity, and the use of the linear Fourier heat 

conduction law. Under these assumptions, the first law of thermodynamics is reduced, for the case of 

uniaxial loading, to the following form [292] (see also [295] for details of the derivation of this equation 

and the underlying assumptions): 
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with the total heat flux rate on the left-hand side and the elastic strain el and the plastic strain 
pl

being functions of the coordinate x and time t. The material constants  , T , and E  are the thermal 

conductivity, thermal expansion coefficient, and Young's modulus, respectively. Equation (23) implies 

that the heat removal from the deformation zone is controlled by heat conduction in the material, 

rather than heat exchange with the environment through the specimen surface, which is assumed to be 

flat. In the opposite case when the latter process is the slower of the two, the last term in Eq. (23) 

should be replaced with  0)(2 /h R T T , where 0T  is the ambient temperature, h  is the heat 

exchange coefficient, and R  is the radius of the specimen (assumed to be cylindrical) [296]. In this case, 

deformation-induced temperature increment in steady state reads 
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There is a consensus that most of the energy of plastic deformation, 
plW , yet not all of it, is converted to 

heat.  The conversion coefficient, i.e. the fraction of the plastic energy rate /T plQ W  , is material 

and process specific, but it can typically be set at about 0.9 [278]. The limitations on the applicability of 

this equation, e.g. those associated with the assumed constancy of the material parameters vc ,   and 

T , were discussed by Tsagrakis and Aifantis [297] in connection with  a gradient thermo-viscoplasticity 

model for adiabatic shear banding.   

The deformation-induced heat release can cause microstructural changes and affect the 

microstructure evolution, e.g. through the temperature-dependent parameters governing the 

dislocation recovery rate (see section 3.2).   

The increment in plastic work per unit volume during deformation can be expressed as 

 
pldW dt   (25) 

and the integral plastic work per unit volume is obtained as plW dt d     . In the case of SPD 

processes, this energy per pass is quite large. Referring to ECAP of a material with a yield stress σy of, 

say, 300 MPa and a strain per ECAP pass of ε ≈ 1, Korn et al. [298] provided and estimate 
plW ≈ 3 × 106 

J·m-3, or 0.3 J·g-1, which is a considerable figure (although the latent heat of fusion for copper is still 

three orders of magnitude higher).  A mathematically more rigorous solution for the power dissipated 

during ECAP process in different regions of the die was obtained by Paydar et al. [138] based on the 

upper-bound theory.  To attain ultimate grain size reduction, SPD processing is usually performed at as 

low homologous temperature as possible, say, at ambient temperature, which is roughly 0.3Tm, (where 

Tm is the melting temperature) for such metallic materials as Al, Cu, Ni, or Fe.  Due to generation of a 

significant density of dislocations in a deforming body at this temperature, SPD triggers a sequence of 

structural transformations that convert a random distribution of dislocations to bundles, dislocation 

cells with low misorientation angles across their boundaries, and eventually  - and most importantly - to 



47 

 

highly refined and highly misoriented grain structures [299-307]. This chain of processes leads inevitably 

to a progressive increase in flow stress and an ensuing rise in the rate of energy dissipation for SPD 

processing at low homologous temperatures [169]. With regard to the question of how seriously the 

grain size distribution is affected by the heat developed during ECAP, Korn et al. [298] highlighted three 

most significant factors: 1) the maximum temperature attained locally in the shear deformation zone 

during ECAP, 2) the time an element of material spent at the site of this maximum temperature, and 3) 

the rate of decay of temperature during cooling of the ECAP-processed billet.   

Only few direct measurements and indirect estimations of temperature changes during SPD 

processing were reported. These were summarised recently by Zhilyaev et al. [308]. For example, 

Yamaguchi et al. [169] used thermocouples embedded in billets and measured temperature increments 

of 25–30 oC during an ECAP pass in initially annealed pure aluminium. Zhilyaev et al. [309] gave an 

estimate of 140 oC for the temperature rise during HPT of an as-cast Na-added Al-7 wt% Si alloy from 

indirect evidence, based on the observed changes in precipitate distributions. Shear plane temperatures 

as high as the melting temperature Tm were reported for plane strain machining under certain process 

conditions [310]. 

Frictional losses in the ECAP process are a further source of heat compounding the deformation-

induced heat release. Kim [311] considered the friction-related heat generation as an additive term on 

the left-hand side of Eq. (23) and used a simple Newtonian viscous friction model as an approximation 

under well lubricated conditions. In this case, the rate of heat flux generated by friction between the die 

walls and the workpiece is proportional to the normal stress sf and the relative velocity u  between the 

bodies in contact.  The respective differential is given by 

  / 3f s fdq f du m du    (26) 
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where 
fm is the coefficient of friction.  Ignoring the contribution from the thermoelastic effect and all 

temperature gradients within the main deformation zone (i.e. dropping the second and the third terms 

on the right-hand side of Eq.(23)) reduces the energy balance to an elementary relation between 

average quantities: 

  0.5 / 3d v T pl f A A Tc V T V m uS t S h T t            (27) 

Here V is the volume of the main deformation zone and AS   its surface area. The dwell time t is given 

by Eq. (17). In writing the first term on the right-hand side it was tacitly assumed that during ECAP the 

stress saturates quickly to a level represented by . The factor 0.5 in the second term stems from the 

assumed equipartitioning of the friction heat between the workpiece and the die. The third term 

accounts for the heat transfer from the workpiece (considered to be heated adiabatically) to the die.  

The coefficient hT, which is proportional to the thermal conductivity describes the efficiency of this 

heat transfer. Accordingly, the following simple relation provides an estimate for the temperature 

increment T  in the shear deformation zone: 
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From the geometrical considerations the volume and the surface area of the primary deformation zone 

are    2 3/ 4 / 2dieV d    and   2 2 / 2A dieS d   , respectively, with 
died  denoting the 

diameter of the die. Using this simple analytical formula, with AS  and V  estimated for / 4   and 

/ 2  , employing Eq. (2) for the plastic strain 
pl , and taking 

T =0.9, 
fm =0.2 (a typical value for 

cold forming of metals with conventional lubricants), and hT = 2×103  W·m-2 ·K-1,  Kim [311]  obtained a 

fair agreement between the calculated values of T  and the experimental results of Yamaguchi et al. 

[169] for Al and Al-Mg alloys deformed by ECAP with different ram speeds u , Figure 12. 
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Figure 12. Comparison of the calculated and experimental temperature increments during ECAP of Al-based 
materials (u=18 mm/s or 0.18 mm/s) (after [311], reproduced with permission).  

 

Figure 13.  FEM simulation of the temperature distribution in a Cu billet during ECAP, computed with hT = 2 × 103  
Wm-2 K-1. The figures show the effect of the ram speed u : a) u = 1mm·s-1, b) u = 10 mm·s-1 (after [298], 
reproduced with permission). 
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Figure 14. Summary of the results of FEM simulations of the maximum temperature Tmax in the shear 
deformation zone and temperature Tend at the deformed end of a Cu billet, plotted as a function of the ram 
speed u for two different values of the heat transfer coefficient (hT =2×103 W·m-2 ·K-1 and hT =105  W·m-2 ·K-1) 
(adopted from [298], reproduced with permission). 

 

It follows from a comparison of the first and the second terms in the numerator of Eq. (28) that the main 

contribution to ΔT arises from the work of deformation, whereas the heat of friction is almost negligible. 

This result highlights the significance of adiabatic heating in the ECAP deformation process 

unequivocally. 

Korn et al. [298] applied the same procedure to estimate the temperature increment ΔT in the 

case of a copper billet. Assuming a yield stress of 350 MPa (representative for UFG copper [176, 290]) 

and a typical value of ε ≈ 1, and with the same other variables as those used by Kim, the temperature 

rise ΔT was estimated at approximately 64 oC, 89 oC and 94 oC for ECAP speeds of 1mm/s, 5mm/s and 

10mm/s, respectively.  These values correspond to Tmax of 84oC, 109oC and 114oC. They are in fair 

agreement with the values of Tmax obtained by FEM simulation, cf. Figure 13 and Figure 14.   

Temperature increments under HPT are typically less pronounced. Thus, Edalati et al. [229] 

performed FEM modelling of the temperature profiles for aluminium, copper, iron and molybdenum 

subjected to HPT at realistic anvil rotation speeds. In their simulations, slippage and the associated 

friction heat was accounted for. A temperature rise was observed at the early stages of straining which 
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then saturated to steady levels of a few tens of degrees at large strains. The temperature increment was 

found to be higher for harder materials, in reasonable agreement with Eq. (13). For all materials, the 

temperature increase became more significant with increasing processing time, rotation speed, applied 

pressure and the distance from the disc centre. Despite the giant plastic work done during processing by 

HPT, the magnitude of the temperature increments for the selected model metals relative to their 

melting temperatures was not significant, however. It should be noted that these advanced simulations 

render essentially the same conclusions as those drawn by Bridgman in his landmark paper [160].   

The simplistic thermodynamic analysis complemented with FEM simulations has shown that 

depending on the material and process conditions SPD may involve an appreciable temperature 

increase. This is particularly true for ECAP processing. It can thus be concluded that microstructure 

evolution during SPD at low homologous temperatures can be influenced not only by the initial 

processing temperature but also by deformation-induced heating effects.    

Microstructure evolution during SPD in non-isothermal conditions 

Kuhlmann-Wilsdorf [312, 313] has systematically advanced the principles of classic equilibrium 

thermodynamics to the so-called low-energy dislocation structure (LEDS) theory of low temperature 

dislocation-based crystal plasticity.  This theory is essentially based on Taylor's theory of work hardening 

which assumes that the external stress is related to the dislocation structure in a unique way. The 

deformation-induced microstructure is supposed to correspond to a minimum-energy configuration and 

to be in equilibrium at a given applied stress during deformation. 

Although the equilibrium thermodynamics approach propagated by Kuhlmann-Wilsdorf has 

been criticised as one disregarding the dissipative, far-from-equilibrium nature of the deformation 

processes [314], the minimum-energy principle seems to work well in many cases.  It was tacitly 

employed by Zhilyaev et al. [308] who proposed a simple model for grain size evolution under SPD-
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induced adiabatic heating, incorporating the temperature- and rate dependent processes. The following 

basic assumptions were made explicitly or implicitly. (1) The evolution of the mean grain size d  is 

controlled by two competitive processes - grain refinement with increasing strain (or time) and elastic 

energy storage in grain boundaries, leading to grain coarsening that would reduce their free energy: 

 d d d    (29) 

Here the time derivatives d   and d   denote the rate of grain refinement and grain coarsening, 

respectively.  (2) Adiabatic conditions prevail so that the thermoelastic heating term in Eq.(23) is 

negligible compared with the heating due to plastic work. (3) Based on the analysis by Kim [311] and 

Korn et al. [298], the friction effects can be neglected as well, provided the appropriate lubrication 

conditions are fulfilled. Assuming further that most of the part of the plastic work that gets stored in the 

defect structure goes into the free energy of graiboundaries (i.e. neglecting such energy storage 

channels as generation of vacancies and dislocations) Zhilyaev et al. [308] found the following kinetic 

equation for the rate of decrease of the grain size: 
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Here cGB is the fraction of the plastic work stored in the grain boundaries and 𝛾𝐺𝐵 is the grain boundary 

energy per unit area. The driving force for grain growth at a given temperature was considered to be 

controlled by diffusion and the kinetic equation for grain growth with respect to time or strain can be 

written as  
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where   is the atomic volume, w  is the width of the grain boundary and Bk the Boltzmann constant. 

The diffusion coefficient D  is given by 
3

V GB

w
D D D

d
  , where VD   is the bulk diffusivity and GBD   is 
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the grain boundary diffusivity. We note that the first term in D  gives rise to a linear and the second one 

to a parabolic growth law. The overall kinetics of the evolution of the average grain size 𝑑̅ with strain is 

obtained by combining Eqs. (30) and (31): 
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The temperature variation within the sample under the assumed adiabatic conditions is then expressed as  

 
(1 ) (1 )

,
(1 )

GB GB

v v

c cdT dT dT

d c d d c

 


     

 
   


  (33) 

where   is a purely phenomenological coefficient describing heat transfer to the exterior of the 

workpiece (note that it is not identical to hT in Eq. (28)). Equation (33) is a compromise between the 

general heat conduction equation, Eq. (23), and its simplified version, Eq. (28). 

It should be mentioned that Eq. (32) predicts an inverse power-law relation between the flow stress and 

the average grain size in steady state, when 0
d d

d
 , which Pougis et al. [315] refer to as the Derby 

equation. The exponent of 1/3 following from Eq. (32) is different from the one obtained by Pougis et 

al., which was found to be close to 1/2, thus replicating a Hall-Petch type of grain size dependence.    

In their model, Zhilyaev et al. do not restrict themselves to steady state conditions, however. Rather, 

they assume that quite generally, the dependence of the flow stress on the average grain size is 

expressed in terms of the Hall-Petch relation [8]: 

 1/2

0 HPK d      (34) 

Here 0 is a ‘friction’ stress that encompasses the contributions of strengthening effects other than the 

grain size one. The Hall-Petch parameter HPK is generally a strain rate and temperature-dependent 

quantity, which has been interpreted in terms of dislocation processes as a microstructure-sensitive 
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material parameter. Three major groups of models are to me mentioned in this context: (i) the 

historically first group of pile-up models [20], work hardening models [316-318] and grain boundary 

source models [21, 319, 320], which are a natural corollary of the dislocation-based kinetic approach to 

strain hardening considered below. The Hall-Petch relation was also recovered in a study on the grain 

boundary Frank-Read (FR) mechanism [22] where it was noticed that thermally activated operation of 

FR sources, which was earlier invoked to explain the grain size dependence of the strain rate sensitivity 

of the flow stress, is to be ruled out. Gryaznov [321] proposed a generalised form of the Hall-Petch 

relation to extend its applicability to nanostructured materials by accounting for dislocation slip, 

dislocation storage and the influence of disclination-type defects. Armstrong and Rodrigues [322] have 

explained the dependence of HPK on temperature and strain rate (as observed, e.g., in the work cited 

above [100]) by combining the dislocation mechanics-based thermal activation analysis and the 

dislocation pile-up model, which results in the following expression for the Hall-Petch parameter  
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Here M  and SM are the Taylor and Sachs orientation factors, respectively, 0.8d    is a numerical 

constant and C  is the shear stress associated with local obstacles to dislocations. The strain rate and 

temperature dependence of this quantity for FCC metals with relatively high stacking fault energy, e.g. 

for Cu and Ni, is associated with the cross-slip shear stress, and it is this dependence that shows in HPK .  

Since a large body of indirect data provides evidence that in the temperature range (0.1-0.5)Tm the value 

of HPK is only weakly dependent on temperature in FCC metal and alloys, this dependence can be 

ignored in modelling as a first approximation [323]. 

Equations (32)-(34) form a closed set of equations for the evolution of the average grain size and 

temperature during deformation (ECAP in the case considered by Zhilyaev et al.), provided the stress 
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can be considered as a slow variable compared to 𝑑̅ and T. Using this model, various regimes of grain 

size evolution were considered with reference to the magnitude of the parameter  . Of particular 

interest is the case  0   when adiabatic conditions prevail and an initial strain interval of grain 

refinement may be followed by grain coarsening at larger strains. This is illustrated schematically in 

Figure 15, which shows the average grain size as a function of the cumulative strain. The results of 

numerical simulations for pure Cu and Al are shown in Figure 16 where the experimental data points 

and the calculated curves for the strain dependence of the average grain size are plotted. They indicate 

that the original grain size is reduced by a factor of >102 at a strain of 5–6 before it increases slightly 

upon further straining. The results of the simulations are seen to be in fair agreement with the bulk of 

experimental data for the two materials.  

 

Figure 15.  Schematic of the variation of the average grain size (normalised with respect to its initial value 

𝒅̅𝒐) with strain combining grain refinement and grain growth during SPD (from [308], reproduced with 
permission). The solid line corresponds to the resultant grain size. 
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Figure 16. Average grain size as a function of cumulative true strain for copper (a) and aluminium (b). The solid 
lines show the results of numerical simulations (from [308], reproduced with permission)  

Overall, the model developed in [308] shows qualitatively (and even semi-quantitatively) that SPD 

under isothermal conditions should result in a continuous refinement of the grain size. This reflects the 

strengthening effect of grain refinement and a corresponding increase in flow stress as SPD straining 

proceeds. Saturation of grain size refinement reflects a balance between grain refinement due to 

straining and grain growth due to the sample temperature rise associated with deformation-induced 

adiabatic heating.  

Despite some doubts one may have about the validity of the physical argumentation underlying Eq. 

(33) (regarding both the thermodynamics and the kinetics of the processes involved), the advantage of 

this approach is that it allows evaluating the role of the model parameters, particularly the heat 

exchange coefficient   , in the evolution of the grain size during SPD.  Uncertainties and limitations used 

in this modelling approach stem from the simplifications adopted to make the analysis tractable.  
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Although this can be accepted as a first approximation, a more elaborate approach accounting for non-

equilibrium character of virtually all processes underlying the microstructure formation has yet to be 

proposed.  Furthermore, disregarding the role of dislocations in the energy dissipation and storage is 

another oversimplification, and this needs to be rectified within a dislocation based approach. In 

addition, such processes as grain fragmentation under SPD processing are to be included in an explicit 

way, as will be discussed below, in Section 3.2. 

 

3. Microstructure-based phenomenological modelling of severe plastic 

deformation 

 

Microstructure-related constitutive models of strength and plasticity of metals and alloys are 

preferable to purely phenomenological models. Due to their physical foundations, the former are 

usually more economical than most phenomenological models in terms of their architecture and the 

number of adjustable parameters involved. Besides, these parameters have a clear physical 

interpretation. This provides the microstructure-based models with a greater predictive capability, 

particularly with the ability to predict how these parameters depend on the alloy composition of the 

material and its processing history. A reliable foundation for microstructure-related constitutive models 

has been laid by the dislocation theory. Industries as diverse as automotive, aerospace, and electronics 

have been benefiting from the use of integrated computational models which employ dislocation theory 

based approaches [324].  Because of the complexity of the mechanisms underlying dislocation plasticity, 

some unresolved problems with dislocation theory based constitutive modelling still remain, however. 

The words of Cottrell about modelling of strain hardening, who described it some 65 years ago [325] as 

“the first problem to be attempted by dislocation theory and the last to be solved” are still relevant. 
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Due to the progress in constitutive modelling achieved by materials scientists over the last two 

decades, the outlook on its ability to tackle the SPD processing both analytically and computationally is 

optimistic. In this section, we shall be focusing on the microstructure-related modelling ‘toolbox’ 

available for description and prediction of the behaviour of metallic materials under SPD. Process 

optimisation in this area relies more and more on computational modelling. Microstructure-based 

models capturing the physics of the deformation processes, and yet robust enough to be used efficiently 

in finite element codes, are in demand. Here we present modelling approaches that satisfy this demand. 

In our earlier review [326], we provided some insights into the specifics of modelling of SPD processes. 

In the present section we shall discuss a broader range of modelling techniques based on the 

microstructure-based approaches to constitutive modelling. It will also be demonstrated how 

irreversible thermodynamics of plasticity leads to the classical constitutive equations that go back to the 

work of Kocks [182] (see also [23, 184, 327]). More complexity will then be introduced in the 

constitutive equations where it is needed for an adequate description of the detail of severe plastic 

deformation. Examples of calculations of the material behaviour during various SPD processes will then 

be given. Throughout this section, problems that need to be resolved by future model development will 

be identified and discussed. 

An important ingredient of any microstructure model is a reliable description of the dislocation 

density evolution. In the next section, we give an overview of an approach to such a description using 

irreversible thermodynamics to provide a new interpretation of existing semi-phenomenological models.  

3.1. Evolution of dislocation ensembles: an irreversible thermodynamics approach 

The foregoing analyses of the grain size evolution were footed on the first law of classical 

equilibrium thermodynamics.  In reality, however, a plastically deforming solid is an open system 

exchanging energy with its surroundings. Therefore, regarding plastic deformation as a highly dissipative 

process [328] suggests that the irreversible thermodynamics principles formulated by Onsager, 
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Prigogine and Bridgman [329-332]  should be applied as the governing concept. As distinct from 

equilibrium thermodynamics, the second law of thermodynamics of irreversible processes is formulated 

in terms of the entropy production. A concept of fundamental importance in thermodynamics of 

irreversible processes is the notion of a non-equilibrium stationary state, which plays a role analogous to 

that of the equilibrium state in classical equilibrium thermodynamics.  According to the second law, all 

internal processes must terminate when collectively they can no longer produce entropy. A stationary 

state has then been reached and it represents a minimum in the rate of entropy production, which is 

zero. 

Being a highly dissipative process, plastic deformation involves many scales and manifests itself 

in a variety of patterns. Characterising and predicting patterning in the dislocation population that 

accompanies plastic deformation of crystalline solids is a particularly challenging problem addressed in 

numerous publications [60, 333-335]. The patterns may be different with regard to their inner length 

scale or, by contrast, exhibit a scale-free behaviour [328].  

For a system undergoing multiple irreversible processes, the entropy 
id S generated per unit 

volume during a time interval dt is the sum of the individual contributions of all irreversible processes 

involved. This is expressed mathematically as 
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where N is the number of irreversible processes taking place in the system and 
K

id S  is the entropy 

generated due to the Kth process. K

id S  is determined by the dissipated energy per unit volume 
K

disW  

associated with the Kth process  [280]: 
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In Onsager’s theory [329, 330] the rate of entropy production in a thermodynamic system out of 

equilibrium, but where local equilibrium exists, is expressed as the sum of the products of generalized 

forces KX  and their corresponding thermodynamic fluxes kJ for the individual irreversible processes 

involved:  
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Onsager proposed a linear relation between thermodynamic fluxes and the generalised forces in the 

form  ,k ki i ki ikJ L X L L    where kiL  is the matrix of kinetic coefficients, which are independent of 

kJ  and iX . Finding these coefficients is a formidable task. To derive a relation between mutual 

interactions of simultaneous processes in a system, an extremum principle of irreversible 

thermodynamics is usually invoked, e.g. Onsager’s principle of maximum rate of entropy production or 

Prigogine’s principle of minimum rate of entropy production.  

Assuming a local equilibrium in the system, Ziegler [336, 337] proposed a maximum entropy 

production principle to find  k kX J  in the explicit form: if irreversible force iX  is prescribed, then the 

actual flux iJ , which satisfies the condition (36), maximises the entropy production. A similar principle, 

originally proposed by von Mises in the solid mechanics context, appeared in the mathematical theory 

of plasticity developed by Drucker [338], Hill [339] and others in the 1950s. Referred to as the von Mises 

principle of maximum plastic dissipation [340], it states that the total power of plastic deformation per 

unit volume is maximised subject to the yield condition expressed in terms of the stress and strain 

hardening characteristics for a given strain rate.  

  Ghoniem et al. [341] adapted the general irreversible thermodynamics formalism to the discrete 

dislocation dynamics (DDD) modelling framework. Benzerga et al. [279] combined the irreversible 
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thermodynamics with the discrete dislocation dynamics approach, which enabled them to calculate the 

stored energy of cold work for planar single crystals under quasi-static tensile loading.   

A central theme of a series of recent communications by Langer [10, 342, 343] was the need for 

physics-based, nonequilibrium analyses in developing predictive dislocation-based theories of strain 

hardening of polycrystalline materials. He and his co-authors developed a statistical thermodynamic 

dislocation theory, which has then been used for the analysis of the mechanical response of pure copper 

and the effect of grain size on the strain hardening curves. It was proposed that the description of the 

dynamic behaviour of polycrystalline aggregates can be furnished with two main intrinsic variables - the 

total dislocation density and the characteristic temperature  defined for any dislocation configuration 

in the statistical thermodynamic sense as /C CdU dS    with 
CU  and CS  being the energy calculated 

for a given ensemble of dislocations and the corresponding configurational entropy, respectively.  A 

good predictive capability of the elegant theory put forward by Langer will certainly provide a strong 

impetus to further modelling work. 

 The irreversible thermodynamics framework was also used in our treatment of plastic 

deformation [344]. The deforming crystal was considered as an open system evolving towards a steady 

state. The differential of the total entropy flux was presented as i edS d S d S  , where id S  is the 

entropy production term associated with the changes in the inner microstructure (and is always 

positive) and 
ed S  is the term corresponding to heat exchange with the exterior.  Huang et al. [345, 346] 

applied Prigogine’s principles of irreversible thermodynamics [331] to dislocation-based modelling of 

strain hardening. This approach was modified in our work using a composite-like microstructural model, 

in which the dislocation cell interiors and dislocation cell walls are treated as separated ‘phases’ of the 

material. In both models, the elementary entropy production 
id S  during a shear strain increment d  is 
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related to the energy dissipated due to three primary dislocation reactions - generation, motion, and 

annihilation entering the right-hand side of Eq. (38) additively, yielding 
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Here d 
  and d


 are the increments of the total dislocation density associated with dislocation 

production and recovery (annihilation), respectively. (Note that d 
is a negative quantity.) Further 

quantities entering Eq.(39) are the magnitude of the dislocation Burgers vector, b,  the shear modulus, 

G, the resolved shear stress,  , acting in the dislocation glide plane, and the dislocation mean free path,

  . The latter variable scales with the average dislocation spacing as ~ 1   with 

d d d          being the total dislocation density [38].  The dislocation density is the 

principal internal variable that determines the resolved shear stress  , which scales with    according 

to the Taylor relation: 

 Gb     (40) 

Here  is a numerical factor depending on the dislocation arrangement and the mode of deformation 

(typically ~ 0.1-0.4) [184, 314]. The value of  tends to reduce as deformation proceeds and the 

dislocation pattern becomes heterogeneous with increasing lattice misorientations arising from an 

increasing density of GNDs as has been reviewed recently by Mughrabi [347]. A ‘friction stress’, which 

stems from interactions of a gliding dislocation with the Peierls relief and crystal lattice defects other 

than dislocations, can be assumed to be negligible, at least for pure FCC metals after a sufficiently large 

strain, for which reason it has not been included in the last expression. Equation (40) is ubiquitous: 

virtually all conceivable dislocation-dislocation interaction mechanisms lead to this relation (with 

being dependent on the specific mechanism). It is also supported by a huge body of experimental data 

and discrete dislocation dynamics computer simulations [119]. Combining Eqs. (39) and (40) one obtains 

the entropy production term:  
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The entropy flux
еd S is produced by the dissipation of most of the plastic work   

 d  as heat [331] and is given by 
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In terms of the evolution of a dislocation population, strain hardening is seen as a result of the 

competing processes of generation and annihilation of dislocations. The average distance a dislocation 

travels before it gets annihilated (‘the mean free path’) is a key characteristic that governs strain 

hardening. It may be related to the average dislocation spacing or some geometry features of 

microstructure extraneous to the dislocation population. Dislocation patterning is known to start 

developing early on, already after a small strain following the onset of plastic flow, and it obviously 

affects the evolution of the mean free path. Details of these processes are not well understood [348], 

but activation of multiple slip systems is seen as a major factor leading to patterning, cf. [119]. Multiple 

slip systems are activated already in Stage II of strain hardening giving rise to tangled dislocation 

networks, which further evolve to stable dislocation cell configurations. These patterns, which emerge 

as a result of irreversible self-organisation, comprise dislocation-rich ‘cell walls’ separating cell interiors 

that have a lower dislocation density. This kind of structure offers itself to a description in terms of the 

mentioned ‘composite’ model [349, 350] that was employed in our work [344].  

 According to the model [344], dislocation structure is composed of the cell-wall ‘phase’ with the 

volume fraction fw and the cell interior ‘phase’ with the volume fraction fc. Here the subscripts c and w 

stand for cell interiors and cell walls, respectively. Obviously, 1w cf f   holds. Applying a rule of 

mixtures and the Taylor relation, Eq. (40), for each of the two phases, the shear stress   is expressed as 

a weighted sum of the contributions of the two ‘phases’ 
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 w w c c w w c cf f f Gb f Gb            (43) 

and w   and c   are the dislocation densities in the two phases.  

 An empirical fact based on a vast body of experimental evidence, mainly from transmission 

electron microscopy (TEM) work, is that the average dislocation cell size cd  scales inversely with the 

square root of the total dislocation density w w c cf f    . This relation can be expressed [351] as

2/ ca d   , where a  is a proportionality coefficient. A similar scaling relation holds for the dislocation 

density in the cell walls, 2/w w ca d   , where wa  is another proportionality constant. Combining the 

last three equations, one obtains w
c w w

c

a a

f
  


   - a proportionality relation between c  and 

w , which replicates that reported by Mughrabi [349]. Replacing w  with   in Eq. (43), which is 

legitimate due to the condition w c  ,  now leads to the following expression for the shear stress:  
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Accordingly, Eq. (42) can be rewritten as: 
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By combining Eqs. (41) and (45) one obtains 
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  (46) 

As an elementary annihilation event involves two dislocations, the annihilation rate obeys an equation 

for second-order annihilation kinetics: 
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The pre-exponential factor 0 in this equation is of the order of the Debye frequency 
D . The activation 

energy G is associated with that for dislocation climb, which is considered to be the governing 

annihilation mechanism. Hence, G can be identified with the activation energy for self-diffusion. A 

simplifying assumption hidden in Eq. (47) is that annihilation occurs primarily in the cell walls. The 

density w  of participating dislocations was replaced with  . Relating the shear rate to the average 

dislocation glide velocity v  through the Orowan relation b v  , one obtains 
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  (48) 

An equation for the rate of variation of the overall entropy is finally obtained by substituting of Eq. (48) 

in Eq. (46): 
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  (49) 

As seen from Eq. (49), this rate is determined by the instantaneous value of the dislocation density and 

its shear strain derivative. 

The thermodynamic system under consideration evolves to its steady-state. Even though this 

steady-state is a non-equilibrium one, it is defined by the condition 0
dS

d
 , thus yielding: 
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  (50) 

Equation (50) has a familiar form: it recovers the evolution equation for the dislocation density obtained 

by Kocks, Mecking and Estrin (KME) [23, 184, 327, 352] in a semi-phenomenological way: 
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  (51) 
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with the notation 
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  (52) 

The coefficients k0, k1 and k2 of the KME model can now be re-interpreted in terms of the 

parameters of the two-phase model via Eq.(52). The dislocation density evolution model in this 

simplified single internal variable form was presented in a number of publications [184, 352]. It has 

generated a substantial literature, in which the model was further developed, cf. [353-355]. 

In the one-internal-variable approach presented, the variation of the single internal variable, the 

average dislocation density, with strain can be found by integrating Eq. (51). The stress–strain curve in 

the Stage III strain hardening range can then be obtained using Eq. (40). The parameters k1 and k2 

entering these equations can easily be found from strain hardening data [23]. Further aspects of the 

dislocation-density based, one-internal-variable models are discussed in Section 3.2. An adequate 

description of deformation stages beyond Stage III requires the use of a two-internal variable approach 

[255] where the evolution of w and c  is considered in greater detail, cf. Section 3.3.  

Concluding this section, it can be stated that the irreversible thermodynamics approach to 

dislocation-based plasticity of metals leads to a simple description of the dislocation density evolution 

and strain hardening. It recovers the well-known evolution equation of the one-internal-variable KME 

model [23, 182, 184, 327, 356, 357], but redefines the coefficients in that equation.  

3.2. One-internal-variable models 

A seminal model, which has set the scene for microstructure-based plasticity modelling and 

remains influential to the present day, is the Kocks-Mecking model [23, 182, 184, 327] that has been 

mentioned above repeatedly. The model hinges on the idea that the shear stress  is determined by a 

dislocation contribution proportional to the square root of the total dislocation density ρ. This 
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dependence is given by Eq. (40), whose origin in the thermally activated dislocation glide is not obvious 

from the commonly used power-law strain rate dependence of the factor  : 

 

1/

0

m

o 




 
  

 
  (53) 

(Note that the strain rate sensitivity index m   is the inverse of the exponent *m  in the Ludwig-

Hollomon equation (9). The constant 0  represents the athermal resistance to dislocation glide, i.e. the 

strength of dislocation-dislocation interactions at absolute zero temperature. The thermally activated 

character of the dislocation glide [288, 352, 358] is accounted for by the temperature dependent 

parameters m  and 0  . 

It is easily recognised [356] that the relation between    and   that follows from Eqs. (40) and 

(53)),   0

1/
/

m

oGb     ,  is equivalent to a physically motivated Arrhenius equation [358], if the 

exponent m is linked to the activation volume aV   for the underlying thermally-activated process:  

   /a Bm V k T   (54) 

This interpretation means that at sufficiently low temperatures m is inversely proportional to the 

absolute temperature T and is much greater than unity, while 0   is temperature independent. This low 

temperature case (roughly below half the melting temperature) corresponds to the dislocation glide 

controlled regime. At sufficiently high temperatures, where dislocation controlled plasticity prevails m 

can be taken to be a constant; an Arrhenius-type temperature dependence then resides in 0  [23, 182, 

184, 327, 356]. 
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In addition to the kinetic equation,  0

1/
/

m

oGb     , a further equation describing the 

evolution of the dislocation density is required. Equation (51) provides a general structure of such an 

evolution equation.  The main microstructure-related quantity in this equation, the dislocation mean free 

path   , can be associated with the average spacing between the dislocations. Alternatively, once a 

dislocation cell structure has been formed,   can be associated with the dislocation cell size. Both 

characteristic lengths are inverse in  , so that the evolution equation for  can be written as  
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kd
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d b
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
    (55) 

The proportionality coefficient 1k  is, of course, different for these two cases, but the mathematical form 

of the evolution equation is the same. As a matter of fact, the transition from a random dislocation 

distribution to a self-organised cell structure can be describes through a suitable ansatz for a strain 

dependence of 1k  .  

Here a historical note is due. While this type of model is commonly associated with the names of 

Kocks and Mecking, some other authors also deserve credit for introducing the dislocation density 

evolution approaches. In particular, a tribute should be paid to Janusz Klepaczko who has been 

developing similar concepts independently [359]. A cognate model was put forward by Malygin [360]. 

Yngve Bergström has also been promoting the use of an evolution equation akin to Eq. (51) in its simplest 

form:  
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  (56) 

considering the case of a constant dislocation mean free path   [361]. Gottstein and Argon [362] have 
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extended Eq. (56) by considering the effect of subgrain boundary motion on the dislocation density 

evolution.   

The dislocation mean free path  in this equation can be governed by obstacles of various kinds at 

which gliding dislocations get immobilised. This is the term through which a lot of physical metallurgy 

can be captured. Thus,  can be determined by the average spacing between non-shearable 

particles, the average distance between twins, the lamellae spacing in a lamellar structure, or the grain 

size, to name just the most common types of obstacles to dislocation glide. The latter case is of 

particular interest in the context of deformation of ultrafine grained materials produced by severe 

plastic deformation. However, identifying  with the average grain size in modelling SPD processing is 

only sensible if the grain size is already saturated and does not vary in the process of deformation or if 

its variation with strain is known or can be modelled [363]. Holmedal [364] has recently redefined the 

mean free slip length enabling a straightforward geometrical interpretation that can be directly 

compared to the grain size. He suggested that the distribution of obstacles in the slip plane can be 

characterised by a fractal dimension so that the athermal storage rate of dislocations in Eq. (56) is 

proportional to 
2FD 

 , which is particularly relevant for fine grained materials (a similar in sense 

assumption was made earlier by Hähner et al. [365] who argued that dislocation cell structures can be 

regarded as self-similar fractals characterised by power-law distributions of cell sizes, thus modifying the 

dislocation storage term in the KME equation. This idea was further promoted by Vinogradov et al. [344] 

who demonstrated the significance of the fractal dimension as an informative index to follow the spatial 

evolution of dislocation structures. With increasing grain size the dependence on the fractal dimension 

becomes weaker and it can be neglected for coarse grained pure metals where the classical 

interpretation of   applies. 
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Examples of successful application of the KME model that employs an evolution equation for the 

dislocation density in the form of  Eq. (51) can be found in [23, 182, 184, 327, 356]. Dalla Torre et al. [176] 

have tested the Kocks-Mecking and Estrin-Mecking model approach in an attempt to fit experimental 

tensile stress-strain curves of commercially pure copper deformed by ECAP to various strains (up to the 

cumulative equivalent strain of 16). As demonstrated, both models are applicable almost equally well, and 

both show an excellent agreement of model predictions with experimental data in Figure 17.  

 

Figure 17. Results of least square fitting of the experimental true stress vs. true strain curve for Cu deformed by 
12 ECAP passes (route Bc) at room temperature to the curves predicted by the Kocks-Mecking and Estrin-
Mecking models (after [176], reproduced with permission)  

 

An important aspect of the mechanical behaviour of UFG materials is their tensile ductility. The one-

internal-variable model turns out to work well in predicting this property. If elongation to failure is 

controlled by the onset of necking, the corresponding necking strain can be calculated with the aid of 

linear stability analysis of Eq. (51), which governs the evolution of the dislocation density [366]. In a 

recent paper [367] we looked at the condition for tensile instability following from the KME model and 

found that for strain-rate insensitive materials (1 0m ) it reduces to the well-known Considère 

criterion (see [172] for a general review of plastic instabilities and their modelling). For non-zero 1 m , 

the instability condition is akin to (yet not identical with) Hart’s criterion. For the case when Eq. (56) 

holds, the tensile instability condition, in its simplified form, can be written as 
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  (57) 

The new acronym ‘BEM’ introduced here refers to the model by Bergström [361] and Estrin & Mecking  

[23], corresponding to 1 0k  , which is most appropriate for the case of small grain size d . (For this 

case, the dislocation mean free path   is identified  with d .) The quantity BEM  denotes the strain 

at the onset of necking and 0  , as above, is a ‘friction’ stress at the onset of plastic flow (i.e. at the 

elastic-plastic transition). In the Kocks and Mecking (KM) formulation, 0 0k   in Eq. (51) , the instability 

criterion reads as 
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  (58) 

The main point made in Ref. [367] is that both conditions, Eqs. (57) and (58), are primarilty determined 

by the dynamic recovery coefficient 2k . Analysis of the stress-strain curves performed by Dalla Torre et 

al. [176] using a non-linear curve fitting has demonstrated that the magnitude of 2k  for  copper 

specimens after ECAP is an order of magnitude larger than for the initial (non-deformed) coarse grained 

material. The role of the dynamic recovery coefficient 2k was evaluated in Ref. [367] for UFG copper 

processed by ECAP to different numbers of passes, up to N = 12 [176, 368]. The experimental data and 

the model predictions were consistent. Both showed an increase in ductility of UFG copper with 

increasing number of ECAP passes. The effect was attributed to the observed decrease of 2k with the 

progress of straining leading to a UFG microstructue with a  large proportion of high-angle grain 

boundaries. In the analysis given in Ref. [367], all model parameters enter the expressions for the onset 

of necking.  Remarkably, only one of them, 2k , appears in the pre-logarithmic factor, while the other 

ones ( 0  , 0k  , and 1k ) enter logarithmically. This becomes obvious from the explicit relations for the 
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necking strain, 0N  , predicted by Yasnikov et al. Ref. [367] for the case when the Kocks-Mecking model 

applies:  
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  (59) 

An equation for the BEM model similar to Eq. (59) in spirit, but more cumbersome mathematically, can 

be found in the original paper [367].  

Thus, quite generally, among all model parameters, 2k is the primary parameter that controls the 

necking strain. This is reflected in the graph for the necking strain 0N   as a function of 2k  shown in 

Figure 18. The graph compiles the experimental data on copper available in literature [176, 369] and in 

the authors’ own database. All data points are seen to fall on the same master curve, which is 

represented by a hyperbola, with good accuracy. An excellent agreement between the observed trends 

and the model predictions is evident. Similar results confirming the veracity of  model predictions were 

reported for UFG copper and 316L austenitic steel [370, 371]. 

In line with the early work [372, 373] and more recent detailed investigations [344, 374-376], 

these results underscore the importance of the dynamic recovery parameter 2k in the evolution of the 

dislocation density towards a steady state and the onset of necking that aborts this development.  The 

experimental value of the phenomenological coefficient 2k   can readily be obtained from uniaxial tensile 

test data, e.g. by using a recipe proposed in [23] (cf. also [366, 367, 370, 377]). Assuming a specific 

microscopic dynamic recovery mechanism, the analytical form of the coefficient  2 2 ,k k T   can also 

be obtained from theory. For example, Huang et al. [378], who modelled plastic deformation of metals 
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in terms of the Friedel-Escaig compact cross-slip mechanism [379], arrived at the following expression 

for the rate of dynamic recovery in FCC metals: 
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Here SFE   denotes the temperature dependent stacking fault energy and A is a numerical constant (of 

the order of unity) for a given temperature.    

With regard to the main object of this review, viz. ultrafine grained materials, it is instructive to 

note that very high values of 2k , on the order of several hundred, were reported for UFG materials 

produced by SPD, for which the KM approach to modelling of strain hardening of Cu [176], Ti [380], Al-

Mg alloy AA5056 [381, 382], and 316L austenitic stainless steel [370] was applied. The predicted trends 

can easily be verified using the experimental data for these materials. 

 

Figure 18. The calculated strain to the onset of necking (solid line) and the experimental data points as a 

function of the dynamic recovery coefficient 2k  for coarse grain (CG) and ultrafine grained (UFG) copper 

processed by ECAP. The calculated curve corresponds to a hyperbolic relation between 0N  and 2k M   , cf. Eq. 

(59). The low tensile ductility of UFG copper after processing is seen to improve with the number of ECAP passes 
(cf. similar diagrams in [367] and [383]). 
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Because of the thermally activated nature of dynamic recovery, the coefficient 2k  is 

temperature and strain rate dependent. This dependence is represented in the form 

    
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  (61) 

The parameter *n  in the exponent  is, like m, much greater than unity [384]. To validate Eq. (61), we 

tested well annealed coarse grained copper and iron polycrystals with approximately the same grain size 

of 200 m.  In the strain rate range from 5×10-4 to 5×10-2 s-1, 2k did obey the 
*1/

2 ~ nk  
 relation. The 

value of n* was found to be about 100, which is close to the exponent m entering the strain rate 

dependence of the flow stress through Eqs. (40) and (53) [184]. Similar results were also obtained for Cu 

tested over a wider range of strain rates from 10-4 to 1 s-1, Figure 19 [184] (cf. Fig. 3 therein). The validity 

of Eq. (61) can thus be regarded as confirmed. 

 

Figure 19. The dependence of the dynamic recovery coefficient k2 on the strain rate for polycrystalline copper 
showing agreement with Eq. (61) (from [366], reprinted with permission, experimental data adopted from [184]) 

 

The differences in the deformation behaviour of FCC and BCC materials stem primarily from 

different crystallography of dislocation glide and cross-slip, as well as from the significance of the 
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double-kink mechanism of dislocation motion in the Peierls relief in BCC metals and alloys that will be 

discussed below. As a result, dislocations in BCC metals show greater propensity to annihilate (cf. the 

thermostatistical analysis of recovery processes in FCC and BCC metals performed in [376] and  [375], 

respectively). This implies that the coefficient 2k  for BCC metals should be higher, which is, indeed, 

observed experimentally. Indeed, as shown in Figure 20 where data for polycrystalline Cu and Fe are 

compared, an excellent agreement with Eq. (59) is found: the smaller 2k , the greater is the uniform 

elongation up to the onset of necking, as given by 0N  . The expected strain rate dependence of 2k  

(Eq.(59), see also [367] and Figure 19), is also confirmed by Figure 20.   

 Obviously, Eq. (55) does not apply when the dislocation mean free path is controlled by 

extraneous obstacles, rather than dislocation-dislocation interactions. The length scale determining 

 can be associated with such microstructural features as twin spacing, particle spacing in dispersion-

hardened materials, lamellae spacing in lamellar materials, etc. In this case, the evolution equation, Eq. 

(55), assumes the form 21d / d / b k        [380, 382, 384], which is mathematically equivalent to 

Eq. (56). For the ultrafine-grained materials, which are of main interest here,   can be identified with 

the average grain size d  or dislocation cell size cd .  

In this case, as well, the onset of necking is governed by the dynamic recovery coefficient 2k . The 

conclusions about the preponderance of 2k  as the control parameter in the instability condition still apply. 

Hence, high 2k  values are responsible for extremely small uniform elongation commonly observed for UFG 

metals [4, 384].  
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Figure 20. Experimentally found relation between the strain to the onset of necking, 0N , and the dynamic 

recovery parameter k2 for pure polycrystalline copper and iron tested at different strain rates indicated on the 
graph.  An excellent agreement with predictions by [366] is noted: the smaller the magnitude of k2 , the greater 

is the uniform elongation as represented by 0N   (from  [366], reprinted with permission)   

 

The significance of the work by Yasnikov et al. [366, 367] is seen in the recognition that the 

Considère condition for necking can be derived from the evolution laws for the dislocation density – the 

governing internal variable of a microstructure-based constitutive model. The explicit form of the 

necking strain predicted on the basis of the Kocks-Mecking dislocation model highlighted the leading 

role of dynamic recovery rate in the onset of necking. By applying this approach to the case of strain rate 

sensitive materials, a modified instability condition, Eq. (58), with an added stabilising term proportional 

to 1/ m , was derived. 

It is remarkable that essentially the same one-internal-variable approach that was considered 

for monotonic deformation turns out to be applicable to describing the material behaviour under cyclic 

loading. As a matter of fact, despite the complexity of the microstructures created by SPD, the cyclic 

behaviour of metals with a resulting UFG microstructure permits a simpler description than in the case 

of conventional coarse-grained poly- or monocrystalline materials. The reason is the absence of 
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dislocation patterning within the UFG structures. Indeed, the characteristic dimensions of the major 

structural elements - grains or dislocation cells - are smaller than the characteristic length scale of 

would-be dislocation structures that would form by self-organisation during cyclic loading. Vinogradov 

et al. [380, 382] suggested that in light of this argument it is sensible to describe the shape of a stable 

hysteresis loop and the cyclic stress–strain curve of UFG materials in terms of the one-internal variable 

approach. Assuming, as above, that the dislocation mean free path   is controlled by the grain (or 

dislocation cell) size, integration of Eq. (51) with 1 0k    and the initial condition 0(0)    yields: 
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Combined with Eq. (31), this relation provides a simple analytical expression for the flow stress as a 

function of strain: 
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where M    is the Taylor factor, which connects the shear-related quantities with the axial ones: 

d Md    and /d d M   . To approximate the cyclic hysteresis loop, Vinogradov et al. [380, 382] 

applied a slightly different variant of the KME model. It reduces to the model  originally proposed by 

Essmann and Mughrabi [372] for dislocation annihilation: 
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Here y  is the ‘annihilation length’ for the dislocation density evolution during stable cyclic 

deformation. It represents a capture radius of a dislocation residing in a grain boundary within which 

trapping of a passing dislocation would occur. The model involves the assumption that mobile 

dislocations generated at a grain boundary pass through the grain and disappear at the opposite grain 
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boundary. This assumption is supported by molecular dynamics simulations [385-388] which 

demonstrated the efficacy of grain boundaries as sources and sinks for dislocations. A similar picture is 

provided by an elaborate analytical dislocation bow-out model for dislocation nucleation at grain 

boundaries in ultra-fine grain materials [320]. It considers the following stages of the process: (i) a 

dislocation is emitted from a grain boundary source, (ii) it bows out between the pinning points located 

at the boundary, (iii) yielding occurs when the dislocation takes a semi-circular shape and (iv) the 

dislocation breaks away from the source and travels across the grain thus producing an increment in 

plastic strain. TEM evidence also suggests that during cyclic loading no dislocation accumulation occurs 

within the fine grains. Indeed, TEM observations did not reveal substantial differences between the 

initial and the post-fatigue structures in pure FCC metals (provided no fatigue-induced dynamic grain 

coarsening occurs [389, 390]). A good agreement of the model predictions and the experimental results 

for  UFG Al-Mg alloy AA5056 [380, 382] and titanium [380, 382] produced by ECAP was found, cf. Figure 

21 and Figure 22. This is surprising in view of the simplifications made. A major simplification was that 

back stresses associated with plastic incompatibility between the two ‘phases’ were not considered. A 

characteristic ascending part of the stable hysteresis loop of the ECAP-processed poly- and 

monocrystalline copper, cf. Figure 21a, is similar to that reported in Refs. [380, 382] for AA5056. An 

excellent agreement between the experimental hysteresis loops and the experimental data fitted by the 

functions given by Eq. (63) or Eq. (64) is remarkable.  

An ideal object for trialling various dislocation-based strain hardening models is a single crystals 

whose crystallographic orientation with respect to the processing tool is well controlled in experiment. 

With this in mind, copper single crystals with a {110} initial crystallographic orientation were pressed 

through a 90o ECAP die [26, 28]) and then subjected to uniaxial push-pull cyclic loading. Figure 21 and 

Figure 22 show the results of these tests. It is seen that during a single ECAP pass no high-angle grain 

boundaries were formed, Figure 22b. The observed microstructure characterised by a well-developed 
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cell structure [391, 392] is consistent with fragmented structures formed at large strains that were 

found by early experimental observations [393, 394]. A very large strengthening effect, which was found 

comparable in magnitude with that for copper polycrystals of the same purity deformed by ECAP under 

the same conditions, was obviously achieved entirely due to dislocation storage in a network of cell 

walls with low angles of misorientation. Not surprisingly is that such dislocation ensembles tend to 

recover during cyclic plastic deformation giving rise to a well-known cyclic softening. The KME model 

correctly captures this phenomenon as well by appropriate setting of initial conditions for the 

dislocation density [380, 382]. Furthermore, the cyclic stress-strain curve characterising the cyclic 

hardening or softening response for conventional polycrystals and fine-grained specimens manufactured 

by SPD can also be approximated by an equation of the same type, cf. Figure 21b. Klemm, Mughrabi and 

Höppel [395, 396] applied essentially the same model for cyclic deformation of UFG nickel processed by 

various SPD techniques. Both groups of researchers arrived at the same, in effect, conclusions. They also 

obtained similar values for the dislocation mean free path entering Eq. (64) explicitly as d and the 

annihilation distance, y, which is contained in 
2k  implicitly. A further example of a successful 

interpretation of the stable cyclic hysteresis loops in terms of the KME approach was reported for UFG 

titanium fabricated under different SPD processing schedules [4, 397]. A reasonably good agreement 

between the model fit and the experimental data was observed, similar to a good accord between 

modelling and experiment found in Refs.[380, 382, 395, 396]. An interesting detail is that in the low 

strain limit, Eq. (63) reduces to 
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which represents the Hall–Petch type strengthening: a 1/2d   dependence of the flow stress at a 

fixed strain is recovered, in agreement with the experimentally observed stress-strain behaviour for 

both monotonic and cyclic modes of deformation and in harmony with a group of strain hardening 
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models of the Hall-Petch relation [316-318]. The fatigue limit of many metals with UFG structure: 

produced by SPD also follows the same trend [380]. 

An approach more rigorous methodologically would require accounting for the composite-like 

structure comprised of dislocation-rich walls and dislocation-depleted cell interior. This would 

encourage invoking two-internal variable models distinguishing between at least two kinds of 

dislocations involved: ‘cell’ and ‘wall’ (or ‘mobile’ and ‘immobile’) dislocations differed by their density 

and mobility, as outlined above. A proper account of back stresses is also a necessary ingredient of any 

model aiming at describing cyclic plastic deformation as has been illustrated in a model by Estrin et al. 

[398] for ordinary polycrystals).  

 

Figure 21. Ascending parts of the stable hysteresis loop of pure 99.96% copper poly- and single-crystals 
subjected to one ECAP pass through a 90o die at ambient temperature. Curve fits by Eq. (63) are shown by solid 
lines. The references to the data used are given in [380, 382]. 
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Figure 22.  Fragments of the cyclic hysteresis loops obtained for a {110} oriented copper single crystal after one 
ECAP pass. Cyclic softening is illustrated by the reduction in the stress amplitude with increasing number of 
cycles; curve fits by Eq.(63) are shown by solid lines (a); the EBSD map (b) and the secondary electron image (c) 
of the same single crystal after the first ECAP pass do not exhibit any high angle grain boundaries; the inset 
shows a (111) pole figure [26, 28] reproduced with permission.  

 

As mentioned above, the quality of the model predictions based on the assumed dislocation 

density evolution expressed by Eq. (51)  is surprisingly good, given that this evolution equation does not 

reflect any specificity of UFG materials. Bouaziz et al. [399] modified this model to provide it with the 

specificity the original one-internal-variable model was lacking. The premise they used was that there 

exists a critical grain size critd   below which no further grain refinement would occur regardless of how 

severe the deformation is (this assumption is well supported by abundant experimental data [400-402], 

cf. Figure 23. They defined this critical quantity as the grain size for which the time for a dislocation to 

traverse a grain is equal to the time it takes the dislocation arriving at the opposite grain boundary to be 

accommodated there. The accommodation was assumed to be furnished by diffusion-controlled 

relaxation processes. The corresponding expression for the critical grain size reads 

1/3

GB
crit

D b
d



 
  
 

  (66) 
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where GBD   is the grain boundary diffusivity. For critd d  , the diffusional relaxation is predominant 

and grain boundaries lose their ability to impede dislocation motion. Obviously, in this case the Hall-

Petch relation loses its validity, as well. In this regime, strain hardening vanishes, too. The critical grain 

size is governed by strain rate and, through the grain boundary diffusivity, temperature. More 

specifically, critd  can be reduced by increasing the strain rate or dropping the temperature. 

 

Figure 23. Size of a structural element in Cu deformed by HPT to giant strains at room temperature as a function of 
equivalent strain (adapted from  [402], reprinted with permission)   

. 

 

To ‘smoothen’ the transition from strain hardening to no-strain-hardening behaviour when the average 

grain size passes through the critd d   ‘watershed’, Bouaziz et al. [399] suggested modifying Eq. (51) in 

the following way: 
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The factor 
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switches off the effect of dislocation storage at grain boundaries for critd d   by eliminating the first 

term on the right-hand side of Eq. (67). This modification of the KME model, whilst retaining all its 

features, including an increase of strain hardening with grain refinement as long as critd d   holds, 

predicts a precipitous decline in the dislocation storage (and hence a loss of strain hardening) once the 

grain size drops below critd  .  

Constitutive modelling of materials with a high Peierls stress 

The constitutive models outlined above tacitly assume that the Peierls stress, which is always 

present in a crystalline material [38], is sufficiently small, which is the case for FCC metals and alloys. 

However, the inherent flexibility of the constitutive modelling allows for easy adaptation to other 

systems where the Peierls barrier for dislocation motion can no longer be neglected, e.g. in body 

centred cubic (BCC) metals. An example was provided in [403], where the strain hardening of ferritic 

steels was modelled. To a first approximation, the Peierls stress 
p   entered Eq. (40) for the flow stress 

as the additive contribution along with the dislocation-related stress:  
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The Peierls stress represents an activation barrier for dislocation motion in the crystal lattice, and as 

such it is temperature and strain rate dependent. This has to be accounted for in the model, along with 

the possible influence of the dislocation density. Considering the thermally-activated kink mechanism 

for the dislocation motion in a BCC lattice, an appropriate relation is obtained for the average 

dislocation velocity entering the Orowan equation for the plastic strain rate as [38]: 



84 

 

 
2 '2 ( / )

expm k k k P mP
D

B B

b bh a F M W L
v

M k T M k T L X

 


  
   

  

  (70) 

Here  ' /k PF M   denotes the Peierls stress dependent energy required to create a kink on a 

dislocation, mW   stands for the activation energy for kink migration along the dislocation line, and ka   

and 
kh   are kink geometry parameters (both are of the order of the Burgers vector b). The parameter 

X  defines the average distance between individual kinks on the dislocation line, which, in thermal 

equilibrium, is given by the equation 

  '2 exp / /k k P BX a F M k T      (71) 

The quantity L  stands for the distance between the pinning points on the dislocation line. In the case 

when the pinning points are associated with dislocation forest junctions, L  scales with the inverse 

square root of the dislocation density, as noticed above. Accordingly, for small dislocation density, when 

L X  holds, the last factor in Eq. (70) reduces to unity and the single kink formation energy enters 

the exponential in Eq. (70) . In the opposite limit case, L X , the last factor in Eq. (70) is given by 

/L X , so that the double kink formation energy turns out to be rate controlling. Using a particular form 

of the stress dependence of the kink formation energy [404] 
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where p is the Peierls shear stress at absolute zero temperature, this model has been successfully 

applied to describing the mechanical behaviour of a TRIP steel with co-existing ferritic and austenitic 

phases [405].  
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Although the above model for high Peierls stress materials represents the strain hardening 

behaviour of conventional coarse-grained BCC materials quite well, the additive form of Eq. (62) is a 

simplification. A more elaborated theory, which does not rely on a simple ‘de-coupling’ of the 

contributions of the localised obstacles and the Peierls relief to the overall stress, was presented in [406, 

407]. Still, the above simplified additive model can be applied to account for differences in the 

deformation behaviour of ultrafine-grained FCC and BCC materials. Specifically, striking differences in 

the strain rate sensitivity of their flow stress [408] can be rationalized in this way. Indeed, for UFG 

materials L may be identified with the grain size d suggesting pinning of dislocations at grain 

boundaries.  

Assuming 𝑑 ≪ 𝑋, Eqs. (70)-(72) yield 
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  (73) 

It is noted that through X , a second single kink formation energy enters the exponential. Hence, the 

total activation energy is controlled by the double kink energy, as distinct from the case of 

 1/2,X min d    , which applies for conventional, coarse-grained materials, for which the 

expression for the strain rate reads 
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  (74) 

By inverting these equations one obtains the following expression for the UFG case 
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For the coarse grain case, the relation between the flow stress and the logarithm of the strain rate reads 
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  (76) 

Here the notation 
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has been introduced. 

A comparison of Eqs. (75) and (76) shows that the strain rate sensitivity of the flow stress, 

/ lnS     , for a body-centred cubic UFG metal is just about one half of that for its coarse-grained 

counterpart (a weak logarithmic dependence of 
*

0  on stress can, of course, be neglected). The above 

considerations provide an alternative to the screw dislocation starvation argument of Cheng et al. [408], 

or, for that matter, may work in concert with it. 

Constitutive modelling of hexagonal materials  

The mechanical response of materials with HCP lattice represent a significant challenge to 

constitutive modelling. Indeed, the scarcity of independent slip systems active in HCP metals at low 

homologous temperatures leads to plastic incompatibilities between the adjacent grains, which need to 

be considered in the model. This can be addressed by introducing the incompatibility-induced back 

stress B  and including it on the right-hand side of Eq. (69) as an additive term, as suggested in [409, 

410]: 
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The kinetic equation describing the evolution of the back stress is written as  
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where the phenomenological parameters introduced have the following meanings: K  , which scales 

with the elastic modulus, represents the rate of linear increase of the incompatibility stress with strain, 

Q   is a temperature dependent parameter which characterises the rate of dynamic relaxation of the 

incompatibility stress, and R  controls the rate of time-driven, diffusion-controlled static relaxation. The 

KME model extended in this way, with a slight modification, was shown to predict the deformation 

behaviour of an HCP alloy Zircaloy-4, including its response to monotonic loading and strain rate jumps  

[409], in an excellent way, cf. Figure 24. 

 

Figure 24. Mechanical behaviour of recrystallised Zircaloy-4 at 470°C: stress-strain curve at constant strain rate 
and strain rate jump testing (a) and creep rate curve at 40 MPa (b). Experimental data and model results are 
represented by open circles and solid lines, respectively [409]. 

 

Inclusion of deformation twinning in the constitutive modelling  

In order to account for twinning in a constitutive description of the hardening behaviour of cubic 

or  hexagonal metals, the dislocation-based model was extended further by Bouaziz et al. [411-413]. 
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They considered the freshly formed twin boundaries bounding the deformation twins as effective 

obstacles to dislocation motion, thus causing a ‘dynamic Hall-Petch effect’ due to grain fragmentation by 

twin lamellae. The model predictions were found to be in good agreement with tensile test results for 

ferritic and austenitic steels. However, Gil Sevillano et al. [414, 415]  questioned this model because it 

only took into account the effect of internal back stresses caused by dislocations in the structure. They 

proposed an alternative model that was built on the assumption that strength of the thin twin lamellae 

represents a significant contribution to the overall strength of the twinned aggregate. The strength of a 

twin lamella was considered to be very large compared to that of the matrix owing to its small 

(nanometre scale) thickness. The twin lamellae thus experience a forward internal stress while the 

matrix is under a back stress - in line with the two-phase ‘composite’ model due to Mughrabi [350]. 

However, this model still awaits experimental verification in terms of the internal stress distribution 

between the twins and the matrix. With regard to HCP metals, a contribution to plastic strain due to 

twinning was included [410] in the way suggested by Bouaziz et al. [416] for low stacking-fault alloys 

(TWIP steels). Following that work, evolution of the twin volume fraction F  was considered as a 

sigmoidal function of strain:  
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The parameter *   controls the rate of growth of F   from an initial value 0F  at the strain onset , at 

which twinning sets in, to a saturation one, F  , reached asymptotically as strain increases. The total 

strain is represented as a sum of two components: the strain due to dislocation glide, g , and that 

produced by twinning  t   . In the differential form this reads as  

 (1 ) g td F d dF       (81) 
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Since twin boundaries can serve as sources of dislocations, the evolution equation for the total 

dislocation density, Eq.  (51), was modified by including an additive twin-induced contribution on the 

right-hand side: 
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Here e   is the twin thickness and md   is the mean grain size.  

For an experimental verification, the above version of the one-internal-variable model was tuned 

for -titanium [410]. Figure 25 represents an example of good agreement between the experimental 

data and calculated deformation curves (including strain rate jump episodes) is shown in It should be 

mentioned that a provision for accounting for small grain-size effects is included in the model through 

the second term on the right-hand side of Eq. (80). Application of the model to UFG titanium and other 

fine-grained HCP metals are thus possible. 
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Figure 25. A comparison between the calculated and the experimental stress-strain curves for -Ti deformed in 
tension at room temperature  [410]. 
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Inclusion of twinning as an important ingredient of constitutive modelling may appear to be less 

relevant in the context of UFG materials, as the role of twinning is reduced upon grain refinement [417, 

418].  However, experimental evidence suggests that twinning does occur in UFG metals with sufficiently 

low stacking-fault energy [419-423] and, even more surprisingly, in high stacking-fault energy materials 

such as aluminium [424] and nickel [425], which do not exhibit twinning under normal testing 

conditions. Thus, twinning should be considered as a possible deformation mode in an extended 

constitutive model for UFG metals. As suggested above, this can be done through an appropriate 

evolution equation for the dislocation density, such as Eq. (82), and an additional equation describing 

the evolution of the twin volume fraction. The common approach suggested in earlier models and 

expressed by Eq. (80) is to consider the variation of F  with strain. In our current thinking, however, this 

evolution is better represented in terms of the variation of F  with stress, rather than strain. The stress-

driven variation of the twin volume fraction was a basis for our recent model [426]. The main 

assumptions of the model can be summarised as follows. (i) As often observed in experiment [420], a 

twin nucleated in a fine grain shoots through the entire grain. Accordingly, its length is dictated by the 

grain size d.  (ii) The average thickness of the nucleated twin, e  , is considered to be grain size 

independent. (iii) The generated twin is assumed to be in equilibrium for which case Friedel’s formula for 

the shear stress for twinning [40] can be applied: 

 
2

G e
s

d
    (83) 

Here s is the amount of shear strain produced by the twin. (iv) Twinning is not considered to be a 

significant contributor to plastic strain. It is activated gradually as the stress rises owing to strain 

hardening due to dislocation glide controlled plasticity. Smaller and smaller grains get engaged in 

twinning with growing stress according to Eq. (83). This gives rise to a continual increase of the twin 

volume fraction. (v) The grain size distribution in the material is described by a function ( )f d  , which in 
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[426] was taken to be log-normal. This form of the distribution function, while not being binding, is 

supported by experimental evidence abundant in literature, see, e.g. [427]. 

Under these assumptions, the growth rate of the twin volume fraction is governed by the rate 

with which the grain population is ‘scanned’ for those grains which are ripe for twinning at a given stress 

level. In terms of the derivative with respect to strain, this relation reads 
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Here   is a parameter that contains as a factor the fraction of grains capable of undergoing twinning, 

which is texture-dependent. Further quantities in Eq. (84) are as follows:     
2

22

M Gse
g f d 


     and 

( )d d   is a function of the current flow stress M   with 𝜏 given by Eq. (83).  

 The model outlined was shown to work very well for the case of a conventional, coarse grained 

material. It was validated by tensile tests, scanning electron microscopy, and acoustic emission 

measurements on Mg alloy ZK60 [426]. Figure 26 demonstrates a very good agreement between modelling 

results and experimental data on the evolution of the twin volume fraction assessed by the advanced 

acoustic emission technique employed. Model verification for UFG materials is yet to be provided. 
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Figure 26. Twinning model verification for Mg alloy ZK60 for two values of the average grain size, dm=73 m and 

17 m (after  [426], reproduced with permission). 

 

3.3. Two-internal-variable models 

As demonstrated in the foregoing sections, it can be considered as established that one-

internal-variable models based on the Kocks-Mecking approach provide a reliable description of 

mechanical response of metals and alloys, especially for low to moderate strains. However, they do not 

account for the occurrence of late stages of strain hardening beyond Stage III [58, 428]. Stages IV and V 

extend well into a range of very large strains pertinent to SPD processing. This calls for more 

sophisticated models that would adequately describe a material’s behaviour at very large strains. Two-

internal-variable models have a better chance to satisfy this expectation, as they possess greater 

flexibility in describing microstructure evolution during SPD processing and the mechanical properties of 

the processed materials [429]. As discussed in Section 3.1, a dislocation cell structure emerged during 

plastic deformation can be seen as a pre-cursor of the final grain structure to be formed at large strains, 

particularly under SPD. Splitting the dislocation population into cell interior and cell wall dislocations 

[254, 255, 350, 430-433] already mentioned above  appears to make more sense in the case of cell-

forming materials than subdividing it into mobile and immobile dislocations, as was done in Refs. [185, 

429, 434]. Our first-hand experience with constitutive models involving two dislocation densities [254, 
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255] gives us confidence that they are well suited for modelling in the SPD realm. These models are 

presented below, along with other models based on similar concepts. 

The underlying assumption is that a dislocation cell structure already exists. The overall share 

stress is then given by a linear combination of two components (cell walls and cell interiors), each of 

them being related to the respective dislocation density ( w  in the walls and 
c   in the interior). The 

key characteristic of the dislocation structure, viz. the average dislocation cell size, cd , is assumed to be 

inversely proportional to the square root of the total dislocation density ρ:     

 /c od K    (85) 

where 
oK  is a constant. This is a safe assumption, which follows from dimensional considerations 

repeatedly proven by TEM observations [351]. Similarly to Eq. (43),  , is given by a weighted sum of 

the dislocation densities in the two ‘phases’ of the material: 

 (1 )w w w cf f       (86) 

There is an obvious relation between the volume fraction of the cell walls,
wf , and the geometrical 

parameters of the cell structure, i.e. the cell size and the wall thickness, w. Regardless of the cell 

morphology,
wf can quite generally be expressed as 

 3 /w cf w d   (87) 

where 
cd  represents the characteristic size of the cells. For instance, for spherical grains it can be 

interpreted as the average sphere diameter, while for cuboidal grains it can be interpreted as the 

average cube size. As seen from Eqs. (85) and (86), the cell size will typically decrease during the 

deformation process, owing to an increase in the dislocation density. His would mean that 
wf is an 

increasing function of strain. Experiment shows an entirely different behaviour, however. In the case of 
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copper deformed to large strain in torsion, 
wf  was found to continuously drop from an initial value 

wof  to a lower saturation value wf  . The variation of 
wf   with the plastic shear strain  is well 

represented by a heuristic equation [254, 255]:  

    exp /w w wo wf f f f         (88) 

 

The rate of decrease of the cell volume fraction described by this equation is determined by a model 

parameter ~ . Considering Eq. (87), the  observed decrease of 
wf  represented by Eq. (88)  can only 

mean that the wall thickness must decrease with strain fast enough to compensate for the decrease in 

the cell size.  This ‘slimming’ of cell walls may be associated with progressive annihilation of dislocations, 

which a random or ‘redundant’ in the cell walls in the sense that they do not contribute to 

misorientation between the cells separated by the walls. We note that the above heuristic relation can 

be replaced by another one, based on the idea that w   should scale with 1/ w . With the ansatz 

1/ ww   one obtains by combining Eqs. (85) and (86):    3 / /w o wf K    . The ratio of the 

dislocation densities in this formula is not a constant, but rather contains wf  . Accordingly, it can be 

regarded as an implicit equation that needs to be solved in order to calculate the variation of the 

volume fraction of cell walls with strain. Within a reasonable range of values of the model parameters, a 

decline of wf   with strain is predicted.  

A practical assumption in applying the two-internal-variable model under consideration is to 

assume that Taylor-type (iso-strain) condition holds for the cell interiors and the cell walls, i.e. that the 

plastic strain in these two ‘phases’ is the same.  A set of coupled differential equations that describe the 

evolution of the dislocation densities in the two ‘phases’ reads 
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In earlier publications [254, 255], a physical interpretation of the various terms in Eqs. (89) and (90) was 

offered. For instance, the loss of cell interior dislocations to the walls is accounted for by the first term 

on the right-hand side of Eq. (89). The concomitant gain in the wall dislocation density is captured by the 

second term in Eq. (90).  Dynamic recovery by dislocation cross-slip in the low-temperature regime 

typical for SPD processing finds its representation in the last term in both equations. Both exponents 

entering the model, m* and *n , can be taken to be inversely proportional to the absolute temperature 

T.  Further model parameters, *, *, and 
*

2k , are considered constant. If dynamic recovery in cell walls 

is controlled by dislocation climb, as assumed by Zehetbauer and co-authors [428, 431, 435], o  in Eq. 

(89)  is no longer a constant. Rather, it is given by an Arrhenius equation. The activation energy in this 

equation is that for self-diffusion; the exponent n* is a constant. In modelling of SPD, whose signature 

feature is a high hydrostatic pressure, the model needs to be modified to include the pressure 

dependence of dynamic recovery by climb [436]. This was done in [222] where an exponential pressure 

dependence of the dynamic recovery term was included in the last term in Eq. (89). With this 

modification, the model was used to elucidate the effect of back pressure on the ECAP processing of an 

Al alloy [222]. 

A further modification of the set of the evolution equations (89) and (90) for the dislocation 

densities in cell forming metals was proposed by Hosseini and Kazeminezhad [437]. Keeping the basic 

assumptions the same as in the general two-internal variable model considered above, their model 

makes a distinction between edge and screw dislocations and divides the whole population of 
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dislocations into three categories: mobile and immobile dislocations in the cell interior and immobile 

dislocations in cell walls. The authors assumed that the recovery in the cell interior occurs by cross-slip 

of screw dislocations while the recovery kinetics in cell walls is governed by climb of edge dislocations. 

The set of the evolution equations for the cell interior and cell wall dislocation densities according to 

Ref. [438] reads as follows: 
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where LD  is the lattice diffusivity, 
cross slipQ 

 is the activation energy for the cross-slip of screw 

dislocations, 'l is the size of a potential site for cross-slip and 
*  and 

* are numerical constants. 

Although this attempt to provide more microscopic details of the recovery process is appealing, the way 

in which recovery was treated in that model is questionable. Indeed, the recovery effects enter both 

equations (91) as static recovery terms, since a factor representing the strain rate is missing in these 

terms. This is radically different from the original equations (89) and (90) where the recovery was 

introduced as a dynamic, strain-rate driven process, which is consistent with the underlying philosophy 

of the KME approach. Despite this deficiency with handling the recovery processes, in their subsequent 

work [438] the same authors demonstrated that their approach is capable of accounting for strain 

softening at large strains - a phenomenon which will be discussed in more detail in Section 5.2. 

The applicability of the model outlined above hinges on the validity of Eq. (85) that establishes a 

relation between the dislocation cell size and the total dislocation density. As mentioned above, this 

scaling relation follows from dimensional considerations and is universally accepted. It is also supported 
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by stochastic modelling of dislocation populations [63]. However, the validity of Eq. (85) for non-steady 

state deformation still awaits a rigorous proof, cf. [4].  

The dislocation-based constitutive modelling based on equations (89) and (90) or their 

modifications were used to account for experimental data over a wide range of strain, including giant 

strain values attained during SPD.  While having many commonalities, the models proposed in literature 

are different in detail of the microscopic mechanisms of dislocation processes considered, cf. early work 

by Argon and Haasen [439] and more recent publications by Nes and Marthinsen [354, 355]. 

For example, to model dislocation density evolution in deformed pure Al, Chinh et al. [185] have 

recently employed a two-internal-variable approach proposed by Kubin and Estrin [284, 429, 434], 

which was originally developed to account for plastic instabilities associated with the Portevin–Le 

Chatelier effect in solid solutions. In this approach, which was not intended specifically for description of 

large deformations, the cellularity of the dislocation structure was not considered. The two dislocation 

densities comprising the total one, m f    , are the densities of mobile ( m ) and forest ( f ) 

dislocations. They obey the following differential equations [434] 
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  (92) 

The individual terms in Eqs. (83) have a transparent physical meaning, as they can be interpreted in 

terms of various dislocation reactions analogous to those underlying Eqs. (89)-(91). What distinguishes 

this set of equations from that given by Eqs. (89) and (90), is that the former is ‘structureless’. While Eqs. 

(92), and (69) do provide an adequate description of the deformation behaviour of metals at small and 

moderate strains (which can be extended to large strains, as done in Figure 27 and Figure 28, they do 

not reflect any development of dislocation cell or grain structure, which is obviously their deficiency.   



98 

 

The two-internal-variable formulation can also be used for modelling high-speed severe deformation 

processes where heat release plays a substantial role. The model has a provision for considering the 

thermomechanical coupling through including a temperature dependence in the exponents m* and n* 

(or the reference strain rates 0  and 0  ), as was done recently in modelling impact deformation [440]. 

 

Figure 27. Experimental data for Al and the calculated stress-strain curve obtained by solving Eqs. (92) and (69) 
(from [185], reprinted with permission).  

 

Figure 28.  The   vs  curve for polycrystalline Al over a wide range of strain calculated by using the 
differentiated Voce equation, Eq. (10). (from [185], reprinted with permission).  

 

The two-internal-variable formulation can also be used for modelling high-speed severe deformation 

processes where heat release plays a substantial role. The model has a provision for considering the 

thermomechanical coupling through including a temperature dependence in the exponents m* and n* 
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(or the reference strain rates 0  and 0  ), as was done recently in modelling impact deformation [440]. 

3.4. Constitutive modelling of multi-phase materials 

The above considerations referred to single-phase materials. Constitutive modelling for multi-

phase materials can b based on the same principles. One can distinguish between two principal cases, as 

can be illustrated for a two-phase material. In the first case, a second phase is represented by small 

dispersed particles and does not have any substantial load-bearing capability, so that stress sharing 

between the phases can be disregarded. The particles then play a ‘passive’ role, constituting obstacles to 

mobile dislocations of the majority phase (‘matrix’).  If, by way of example, the particles are non-

shearable and are to be overcome by moving dislocations via the dislocation bowing-out (Orowan) 

mechanism, they contribute to the flow stress an additive term of the order of the Orowan stress, 

/ /Orowan p pMGb L MGb f R    [441, 442]. Here 
pL  is the average particle spacing, R their radius, 

and 
pf  the volume fraction of the second phase. Similarly, shearable particles add a contribution of the 

order of /sM R bLp   (with s  denoting the surface energy) to the flow stress. There is another, more 

subtle, effect of second-phase particles that enters through the evolution of the dislocation density in 

the dislocation cells, e.g. Eq. (90), as a positive additive storage term inverse in 
pL and also as a 

multiplicative factor in the dynamic recovery term (the last term in that equation) [443]. The latter 

factor accounts for a reduction of the dynamic recovery rate due to the need for a dislocation in contact 

with a particle to be detached from it by a mechanism proposed by Rösler and Arzt [444]. 

 In the opposite case where a second phase does have a sizeable load-bearing capacity, the 

overall stress of a phase mixture encompassing the contributions from all phases has to be calculated. 

The simplest approach is to use a rule of mixtures, whereby the stress of the multi-phase material is 

given by a weighted sum of the constituent phases. The weight factors are taken as the volume fractions 
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of the respective phases, while the stress in a particular phase is calculated using a model for a single-

phase material presented above in Sections 3.1-3.3.  A more sophisticated treatment of the multi-phase 

nature of a material would involve an appropriate homogenisation technique, and the one originally 

proposed by Molinari et al. [445] is believed to be both versatile and reliable [446] [68].  

As a convincing illustration of this approach, Ardeljan et al. [447] have developed a multiscale 

model for anisotropic deformation of multi-phase polycrystalline aggregates to large plastic strains. The 

proposed elasto-plastic strain rate- and temperature-sensitive model is footed on a dislocation-based 

hardening law in the spirit of Eqs. (89) and (90) combined with crystal plasticity-based finite element 

modelling, which bridges the single-crystal and polycrystal mechanical response. The model was 

successfully applied to study the texture evolution and the deformation mechanisms in a HCP-Zr/BCC-

Nb layered composite under severe plastic deformation by accumulative roll bonding. Not only did the 

model predict the texture in both co-deforming materials to very large plastic strains, but it also 

provided an accurate simulation of the tensile behaviour of both constituent phases (HCP-Zr and BCC-

Nb). Figure 29 represents a distribution of local stresses and strains obtained with the full account of the 

evolving dual-phase microstructure, including the variation of dislocation density and crystallographic 

grain reorientation in both constituents during deformation. 

 Thus, it can be concluded that the modelling approaches developed for single-phase materials 

can be extended to multi-phase ones.  
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Figure 29.  Initial FE mesh and deformed FE models of the Zr/Nb composite showing Von Mises stress and equivalent strain 
contours at strain levels indicated in the figures (adapted from [447]). 

 

4. Possible scenarios for grain refinement 

The scenario of grain refinement tacitly assumed in the foregoing section infers that the 

underlying process is the dislocation cell formation followed by cell size evolution according to Eq. (85). 

That is to say, the dislocation cell structure is assumed to be a pre-cursor of the new grain structure that 

develops with accumulation of misorientations across the cell boundaries. Evolution of misorientation 

between the dislocation cells in the process of straining was modelled by Estrin and Kim [448]. They 

considered the growth of the misorientation for low-angle boundaries with the influx of edge 

dislocations, assuming a local disbalance in the density of edge dislocations of opposite sign. A similar 

treatment, yet through a more involved dislocation density model, was proposed by Alexandrov et al. 

[449], who introduced the excess dislocation density in the boundaries. This simplistic consideration of 

the evolution of cell/grain misorientations was further improved by Pantleon [450] and Estrin et al. [451] 

on the basis of a probabilistic approach.  The results of the latter studies account reasonably well for the 

misorientation angles associated with the so called incidental dislocation boundaries [452], but the 

models used do not apply to high-angle (geometrically necessary) grain boundaries [452] whose fraction 
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grows as a result of SPD processing. The Langevin approach leading to a Fokker-Planck equation for the 

distribution of misorientation angles [451, 452] appears to provide a promising frame for modelling the 

evolution of grain misorientations.  

The above scenario is illustrated by Figure 30 [453] that shows the transformation of diffuse cell 

walls to small-angle grain boundaries, which, upon increase in misorientations, are converted to large-

angle ones.  

 

Figure 30. Schematic showing the microstructural evolution during ECAP processing: (a) diffuse low angle 
boundaries dominating after a few (say, two) passes, (b) transition state from low to high angle boundaries (e.g. 
after 8 passes), (c) stabilized microstructure (say, 16 passes). Note that the average grain size (including both 
high and low angle boundaries) stabilises after only a few passes (from [453], reprinted with permission). 

 

In the grain refinement scenario in which the emerging grain structure inherits the length scale 

of the parent dislocation cell structure, there is an obvious limit to the attainable degree of grain 

refinement. Indeed, by combining the expression for the dislocation cell size, Eq. (85), with the Taylor 
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relation, Eq. (40), one arrives at a simple formula for the smallest attainable dislocation cell size 
min

cd   

(i.e. the minimum grain size): 

 
min

c o

theor

G
d K M


   (93) 

This relation shows that for typical values of 𝐾𝑜 of the order of 10, M ≅3, and 𝛼 ≅ 0.5, the achievable 

grain size cannot be smaller than about 100b even for the stress level close to the theoretical strength 

𝜎𝑡ℎ𝑒𝑜𝑟. That is to say, the grain refinement mechanism, in which grain subdivision occurs via the cell 

structure formation and its refinement during straining, cannot bring the average grain size below the 

100 nm mark that defines a nano material. This is consistent with a huge body of experimental evidence 

on grain refinement by severe plastic deformation [4].  While the model predictions with regard to the 

mechanical behaviour and the emerging grain size based on the two-internal-variable model [254, 255] 

have been verified for various materials and SPD processes, there is still a pressing need to improve 

modelling with regard to grain fragmentation. A recently proposed approach [107] offers a a modelling frame 

suitable for a simple description of grain fragmentation in terms of lattice curvature evolution. It was 

suggested [107] that lattice curvature develops within a grain due to kinematic constraints imposed by 

the neighbouring grains. More specifically, the rotation of the crystallographic planes in the grain due to 

dislocation slip was considered to be retarded near the grain boundaries. The grain subdivision was 

associated with the emergence of geometrically necessary dislocations required to accommodate the 

resulting lattice curvature. Agglomeration of these geometrically necessary dislocations to new grain 

boundaries was proposed as the mechanism of fragmentation of a grain. It was suggested that the 

process of grain subdivision into new grains (owing to the occurrence of a zone near the grain 

boundaries where crystallographic plane rotations are inhibited by the grain boundaries and a middle 

part of the grain where they are not) leads to the emergence of a grain population with the grain size of 

d/3. This process of grain subdivision can go on and on leading to multiple generations of grains until the 
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dislocation glide mechanism causing the rotation of crystallographic planes ceases to operate.  As 

mentioned above, this is the case when the grain boundaries no longer act as impenetrable obstacles to 

dislocations, as dislocations arriving at grain boundaries get accommodated there with the aid of grain 

boundary diffusion [399]. This occurs when the grain size drops below a critical level, critd , given by Eq. 

(66), whose estimated magnitude for room temperature deformation amounts to several hundred 

nanometres [4]. Toth et al. [454] also looked at the evolution of the misorientation distribution function 

during severe plastic deformation. The predicted shift of the distribution towards large misorientation angles, 

which was confirmed by experiments on ECAP processing of Cu, was attributed to the shape variation of the 

initial grains, effectively raising the volume fraction of the ‘old’ high angle boundaries. This concept, which is 

at variance with the commonly shared view that new grain boundaries emerging during SPD, acquire large 

misorientations in the process, calls for further investigations.  

An approach to grain fragmentation associated with the rotation of slip planes was also taken by 

Kratochvíl et al.  [455] who proposed a crystal plasticity based model to describe the material response 

to severe plastic deformation under HPT. Specifically, they assumed uniform deformation by double slip 

in plane-strain and considered the rotations of the slip systems caused by the imposed shear strain. 

They found local variations in the crystal lattice orientation and claimed these variations were 

responsible for microstructure fragmentation. Aoyagi and Shizawa [99] introduced geometrically 

necessary dislocations and geometrically necessary incompatibility tensorial terms corresponding to 

isolated dislocations and dislocation pairs into a strain gradient crystal plasticity model reproducing a 

grain subdivision process at large strains under pure share cold rolling deformation. In their model, new 

grain boundaries with large angles of misorientation were nucleated along the GNBs due to enhanced 

strain gradients associated with dislocation activity at the boundaries, which is in fair agreement with 

experimental observations. In contrast with the ‘mainstream’ notion of the grain subdivision process 

with gradual accumulation of misorientations, Seefeldt et al. [456] modelled the evolution of 
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misorientations across the cell boundaries as a ‘nucleation and growth’ process triggered by disclination 

nuclei randomly induced in the cell walls. In their model, these nuclei represented by dipoles of partial 

disclinations interact with statistically stored dislocations and spread along the walls by capturing 

incoming lattice dislocations, thus increasing the misorientation between the neighbouring cell blocks.  

The above considerations of a grain refinement scenario based on gradual subdivision of the 

grains suggest that there are two limit grain sizes, viz. those given by Eqs. (66) and (85) (or (93)). Grain 

refinement will cease to occur once the greater of the two critical values of the grain size is reached. 

Both are in the range of several hundred nanometers, i.e. slightly above the true nano material range. 

The above scenario of a ‘peaceful’ transformation of dislocation cell structure to a grain structure was 

contrasted by a picture of a more ‘violent’ grain refinement down to nano scale by the so called dynamic 

plastic deformation (DPD) [457], which involves high strain rates and/or low deformation temperature 

(large values of the Zener–Hollomon parameter Z) [4]. The corresponding mechanism of grain 

refinement involves formation of nanotwin bundles [458], which transform to nanograins by 

fragmentation of twin/matrix lamellae due to interaction of twin boundaries with dislocations or shear 

banding. No model of these processes has been offered so far, and this is certainly an area to be 

considered in the future.  

Saturation of grain fragmentation implied by the models discussed cannot be taken for granted, 

and there has been a long-standing discussion in literature on whether there is such a thing as 

‘saturation’. The question is related to that of whether saturation of the flow stress (i.e. asymptotic 

vanishing of strain hardening) occurs at large strains. The latter can be answered affirmatively. Indeed, 

the concepts based on dislocation density evolution do account for the occurrence of late strain 

hardening stages (including Stage IV and beyond) that eventually terminate in saturation of the flow 

stress [167, 255, 431, 459, 460], as do numerous experimental studies, see, e.g. [459-462]. It has been 
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claimed, however, that despite saturation in the intrinsic strain hardening capability of a material, some 

microstructural changes may still occur at very large strains [463], so the question of whether 

microstructural variation would eventually saturate still remains. More specifically, in the context of SPD 

processing, it is of interest to understand whether saturation of grain fragmentation does or does not 

occur. Pippan et al. [462, 464] strongly advocate the notion of saturation and provide convincing 

evidence for that. Moreover, it was shown in their work that the saturated grain structure was not very 

sensitive to strain path chosen (HPT vs. HPT + rolling), which speaks for certain ‘universality’ of 

microstructure development under very large strains. However, substantial differences in the saturated 

microstructure between monotonic and cyclic loading were established. A prominent role of grain 

boundary migration in the scale of the saturated grain size was also highlighted. The relative 

‘universality’ of the grain structure development appears to be at odds with the analysis of Tomé et al. 

[465] who argued that strain hardening behaviour should be strain path dependent. A similar view is 

held by Beygelzimer et al. [167], whose point is that the intrinsic strain hardening derived from 

deformation tests for different strain paths should be different due to differences in texture and in the 

complexity of dislocation slip. At this stage, the issue is not fully resolved and more work is needed to 

establish whether saturation in grain fragmentation under SPD does take place and if so, whether it is 

strain path dependent or not.  

 

5. Numerical simulations of SPD processes 

5.1. FEM simulations of SPD processing 

Literature on FEM simulations of SPD processing is quite substantial. Important contributions to 

this area by the research group of Prof. Hyoung Seop Kim of Postech, Korea – especially in relation to 

modelling of high-pressure torsion and equal channel angular pressing - should be noted. A 
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representative sample of this work can be found in [466]. Further publications in this field have been 

cropping up recently, cf. [467]. Most of them are based on phenomenological constitutive models, as 

represented by a recent publication on HPT modelling by FEM [92]. The authors used an elastic-perfectly 

plastic constitutive model to study the effects of contact friction conditions on the evolution of the 

distributions of the components of the stress tensor and the plastic strain in copper and highlighted 

strong heterogeneity of the plastic strain both along the radius and thickness of the sample within the 

first revolution of the anvils.    

In Section 2.2 we considered simulations of the ECAP process in some details. FEM simulations 

were also applied to a range of other SPD techniques. Thus, ECAP with a rotary-die was considered by 

Yoon et al. [468]. Cyclic extrusion-compression (CEC) was analysed by Rosochowski et al. [469]. High 

pressure torsion (HPT) of disks was considered by Kim [470], Figueiredo et al. [261, 262, 471, 472] and 

Molotnikov et al. [384, 473]. As new SPD technologies and the areas of their possible application keep 

emerging, the significance of FEM methods for quick and efficient design of processing routes and tools 

increases. This has been successfully demonstrated in a recent study of a novel industrially scalable 

extrusion process for curved profiles [474] or a simple shear extrusion process [475-477]. In particular, 

FEM is indispensable in the modelling and simulation of deformation processing under extreme 

conditions such as low temperatures during cryo-SPD processing [478], or very high strain rate 

deformation in the high-speed machining [479] [480, 481]. 

Constrained groove pressing and constrained groove rolling were simulated by Lee and Park 

[482].  Following the FEM simulation-based strategy, new optimized processing schemes different from 

known SPD processes were proposed. For example, Luri et al. [145] offered a modified ECAP die 

configuration while Rosochowski et al. [483] developed an ECAP-like incremental process called 

incremental ECAP (I-ECAP) suitable for continuous processing.  A large body of computational (chiefly 
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FEM-based) work on the SPD process known as twist extrusion and cognate processes has been 

discussed and evaluated in a recent review [484]. A successful exercise in analytical modelling of an 

axisymmetric forward spiral extrusion process [485] – yet another recent variety of SPD processing - 

employed an upper bound approach, developed earlier in the context of twist extrusion modelling [486]. 

Substantial efforts were also put in design and simulation of SPD processing of thin products 

[487, 488], notably thin-walled tubes [315, 489, 490]. A process dubbed tube channel pressing [491] was 

studied by Farshidi and Kazeminezhad [492] by employing FEM simulations. An assessment of a 

prospective Tube Twist Pressing process as a new SPD method for tubular materials by FEM simulations 

was presented by Babaei et al. [493]. All these techniques rely on a combination of large shear 

deformation and high hydrostatic pressure and in that sense they are akin to the ‘mainstream’ SPD 

processes, such as ECAP or HPT. A related technique for manufacturing thin-walled cone-shaped 

products [494] which utilises this kind of imposed conditions, was assessed on the basis of FEM 

simulations.  

These examples of successes with simulation of ‘classical’ and emerging SPD processes 

demonstrate the power of solid mechanics in the analytical and computationally-assisted engineering of 

SPD and the potential of such approaches for future industry scale applications.  

As repeatedly emphasised above, microstructure-based constitutive models have substantial 

advantages over the phenomenological, mechanistic ones, and it is encouraging that this view is 

becoming more and more accepted by the research community. As an example of the application of the 

two-internal-variable model [254, 255] we show the results for ECAP of Al [256], Figure 31. The 

calculated curves representing the evolution of the dislocation cell size and the equivalent stress as a 

function of the cumulative equivalent strain for the ECAP die (which for the channel angle of 90° 
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practically coincides with the number of ECAP passes) are in good agreement with the measured values. 

As discussed above, the emerging grain size was identified with the dislocation cell size.  

 

Figure 31. Refined grain structure of pure Al after four ECAP passes (a); the evolution of the dislocation cell size 
(b) and the variation of equivalent stress with equivalent strain for commercial purity Al (c) [256]. 

 

In several numerical simulation exercises addressing SPD processing, see, e.g. [495], it was 

established that the basic two-internal-variable model [254, 255] provides a potent and robust tool for 

predicting the material behaviour during processing as well as the properties of the processed material. 

For instance, in the above example of ECAP of Al, such aspects as nonuniformity of the microstructure 

produced was studied by finite element simulations [256]. 

The results shown in Figure 32 demonstrate how the cell size distribution (which, as mentioned 

above, is regarded to be tantamount to that of the grain size distribution) across the billet thickness 

progressively becomes more and more uniform with the number of ECAP passes. The average cell size 

(which is to become the average grain size when the cumulative strain is large enough for sufficient cell 

misorientations to develop) tends to saturate with strain at a level of about 800 nm. For other materials 

and with different SPD techniques, significantly smaller values of grain size are achievable [4]. Thus, for 

copper of commercial purity, the average cell/grain size was shown to drop to about 250 nm after eight 
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ECAP passes by Route Bc as illustrated in  Figure 33a  [496]. The concomitantly increasing gain in the 

yield strength with the number of passes seen in Figure 33b is quite impressive.  Figure 33c illustrates a 

similar behaviour of Cu deformed by Route A ECAP as predicted by Tóth  [96] who used the two-

internal-variable cellular model based on Eqs. (89)-(90), which was combined with the flow line model 

[156] discussed above and the self-consistent viscoplastic model in the spirit of the Molinari and Tóth  

approach [497]. Compared to the results shown in Figure 33b, the modelled flow curve is considerably 

more detailed. It also accounts for stress drops due to the inter-pass breaks. 

 

Figure 32. Evolution of the dislocation cell size across an Al billet with the number of ECAP passes. The quantity ŝ 
denotes the distance from the bottom of the billet normalised with respect to the billet thickness [256]. 
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Figure 33. TEM image showing the microstructure of Cu after 8 ECAP passes (a) and  evolution of the yield 
strength of copper as a result of ECAP processing to different numbers of passes via routes Bc (b) and A (c) (after 
[496] (a) and [96] (b), reproduced with permission). 

 

       An example of even more extreme grain refinement is shown in Figure 34, which displays the 

evolution of the calculated dislocation cell size in copper under high-pressure torsion [384] – a process 

discussed above and schematically illustrated in the same figure. For the vertical pressure of 8 GPa the 

cell/grain size attained a saturation value of about 120 nm, in close agreement with experimental data 

included in the diagram. The simulations [384] were based on the two-internal-variable model and 

additionally included a gradient plasticity term. The provision for gradient plasticity [473], which will be 

discussed in Section 7, helps explaining the development of nearly uniform, refined microstructure in an 

inherently non-uniform process such as HPT.  



112 

 

 

Figure 34. Dislocation cell size variation with the cumulative equivalent strain during high-pressure torsion of 
copper (a) [384]. The schematic of the process is shown in (b). 

 

The realisation that the details of the strain hardening behaviour in terms of microstructure 

evolution are important for realistic FEM modelling has motivated a series of studies by Hosseini et al. 

[272, 437, 438, 498-502] in which FEM modelling was based on dislocation density evolution.  They 

exploited  a flow line model originally proposed by Tóth  et al. [156] and extended by Hasani et al. [158] 

which was backed by a two-internal-variable model involving two dislocation densities of the kind 

described in Section 3.3. It was used to investigate the deformation behaviour of Cu and Al in the route 

Bc ECAP process with sharp and curved die corners, Figure 3. The strain and strain rate were obtained 

from the flow line model to inform a modified version of the Estrin-Tóth -Mollinari-Bréchet model [255] 

for the evolution of a cellular microstructure. The predicted characteristics of the microstructure were 

found to be in fair agreement with the commonly reported experimental data: (i) the dislocation density 

for the material pressed in the sharp-corner die was higher than that in the die with a corner curvature; 

(ii) the dislocation density in processed Al was lower than that in processed Cu; (iii) the cell size in the 
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processed Cu was predicted to be smaller than that in the processed Al; and (iv) the sharp-corner die 

produced a finer cell size in both materials than the curved corner die. 

Following the success of this modelling approach, that group of authors incorporated 

constitutive modelling of dislocation hardening into the FEM code which was applied to simulating the 

groove pressing/repetitive corrugation (GPRC) and repetitive corrugation straightening (RCS) processes 

[500].  The set of coupled differential equations for the evolution of the cell interiors and the cell walls 

dislocation densities similar to Eqs. (89) and (90), combined with Eqs. (40), and (86) provide a full 

constitutive description of dislocation behaviour. To apply this constitutive model to SPD processing, the 

cumulative strain and the resolved shear strain rate for a particular process, e.g. ECAP, is required. 

Hosseini and Kazeminezhad [499] calculated these quantities from the flow function results.  

A powerful tool to model the deformation behaviour of polycrystalline materials is polycrystal 

plasticity [68, 94, 503]. A way to incorporate microstructure evolution in the polycrystal plasticity 

framework is by considering the actual active slip systems with their individual slip rates and the 

resolved shear stresses that also vary from one slip system to another. For simplicity, it can be assumed 

that the dislocation cells within a grain are identical and their mechanical response can be characterized 

by a unique common resolved shear strain rate r  . In this didactically simplified way, misorientations 

between cells within a grain are disregarded, while the orientation of each individual grain is considered. 

Assuming the shear resistance is the same for all slip systems, r  is derived as follows [504]: 
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where N is the number of slip systems and 
nr

  denotes the strain rate for the nth slip system. The 
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equivalent (von Mises) strain rate can be calculated via 
2

3
eq ij ij   . 

Embedding the two-internal-variable model based on dislocation density evolution [429] in the 

crystal plasticity framework was considered by Tóth  [96] and Shanthraj and Zikry [505]. Hosseini and 

Kazeminezhad [499] used a similar approach, yet with a specific consideration for the dislocation cell 

structure. The average dislocation densities within the cell interiors and cell walls as well as the total 

dislocation density  calculated by Hosseini and Kazeminezhad [499] are presented in Figure 35.  In 

agreement with general expectations and experimental observations the model predicts a rapid 

increase of dislocation density in both cell interiors and cell walls from 1013 m2 and 1014 m2 to 1.54×1015  

m-2  and 5.11×1015  m-2, respectively, after 6 ECAP passes. Over the following passes, the calculated 

dislocation density in cell walls increases continuously at a low rate and reaches a level of 6.29×1015 m-2  

at the end of pressing. This kind of dislocation density evolution was also predicted for Al by McKenzie et 

al. [222] and reported experimentally by Estrin et al. [473]. In the hybrid model [499] the dislocation 

density in the cell interior reached a maximum and then dropped slightly with the increasing number of 

ECAP passes. This characteristic reduction in the dislocation density in the cell interior was attributed to 

the transformation of cells with low angles of misorientation to fine grains with high angle grain 

boundaries. This trend was confirmed by the experiments carried out for copper severely deformed by 

high pressure torsion by Estrin et al. [473]. 

Modelling of the variation of dislocation density has shown unequivocally that, depending on 

the material, intensive multiplication and storage of dislocations during SPD occurs up to cumulative 

imposed strain of 3 to 4. This finding is in excellent agreement with the most known and well 

documented feature of the SPD processed metals, viz. rapid strain hardening during the first ECAP 
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passes (one to four, depending on the material, tool geometry and processing conditions), followed by 

saturation or even some small, yet noticeable, reduction of hardness and flow stress. 

 

Figure 35.  Calculated evolution of the total dislocation density (a) and corresponding flow stress (b) in Cu and Al 
subjected to different numbers of passes through a sharp-corner and a curved ECAP die (adopted from [498], 
reprinted with permission).  

 

 

Figure 36. Evolution of (a) the fraction of cell walls and (b) strength as a function of the number of passes in the 
model by Hosseini and Kazeminezhad (adopted from Hosseini [499], reprinted with permission). 

 

A dislocation density based crystal plasticity formulation in the spirit of Mughrabi’s cell wall/cell 

interior composite model [350] and a finite-element computational method was used by Tóth  [96]  and 

Rezvanian et al. [506] in conjunction with the dislocation density evolution approach proposed by Nix et 

al. [507] and Estrin et al. [255]. Their aim was to investigate grain subdivision into inhomogeneous 

deformation bands in an aluminium single crystal in cube orientation under large rolling strains. 
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Evolution equations relating to the dislocation densities in cell interiors and cell walls as well as their 

dimensions were formulated in line with the above works and coupled to the multiple-slip crystal 

plasticity formalism. The formation of an inhomogeneous dislocation miscrostructure predicted by 

Rezvanian et al. is illustrated in Figure 37. The computational analysis clearly shows the non-uniformity 

of deformation, with localised deformation bands forming and developing with strain. These bands are 

comprised of two families including relatively wide matrix bands (MBs) and narrow transition bands 

(TBs) separating MBs, which were initiated and evolved across the thickness of the deforming aluminium 

crystal. Analysis of slip systems showed that deformation and structure evolution in the TBs was 

mediated by a combination of four active slip systems with equal activity, while in the MBs two 

dominant slip systems operated. These different combinations of active slip systems resulted in the 

microstructures with distinctly different morphologies. The TBs were shown to have a uniform 

dislocation-cell microstructure, whereas MBs appeared to have a cell block structure with narrower 

dislocation cells. These predictions were found to be in good agreement with experimental 

measurements and observations related to formation and evolution of MBs and TBs in cube-oriented 

single crystals subjected to large strain rolling. The analysis performed in Ref.[506] underscores that 

models based on dislocation density evolution in conjunction with crystal plasticity can successfully 

account for the formation of deformation band patterns under large strain processing.  

FEM tools based on dislocation density modelling were used for numerical simulation of tube 

channel pressing (TCP) [508] - a variant of an SPD technique introduced for production of tubes with 

refined grain structure.  The effects of the processing routes, back pressure, and friction were included 

in the investigation of the deformation behaviour of commercial purity aluminium tubes. Implementing 

a modified Estrin-Tóth -Molinari-Bréchet constitutive model for large strains [255] in an FEM program 

allowed evaluating the mechanical response of the material to TCP deformation in fairly accurate 

agreement with experiment.  
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Figure 37.  Contour maps of the total stored dislocation density (in units of m/m3) at different levels of sheet 
thickness reduction: (a) 0–10%, (b) 10%, (c) 10–20%, (d) 20%, (e) 20–30%, and (f) 30% (from [506], reprinted with 
permission).   

 

Quite generally, strengthening of tubes by severe plastic deformation is attracting a great deal 

of attention due to the importance of tubular products for a broad range of engineering applications. 

FEM simulations provide important assistance in evaluating the behaviour of metallic materials during 

such processes and the mechanical properties of the tubes strengthened by SPD. Particular examples 

include the so called Cone-Cone method (CCM) [494] in which a cone-shaped tube is deformed by 

severe twist under high hydrostatic pressure, and the techniques for producing gradient structures in 

thin-walled cylindrical tubes, such as High Pressure Tube Twisting (HPTT) [315, 509] and High Pressure 

Tube Shearing (HPTS) [489]. An important advantage of the latter technique, which is illustrated 

schematically in Figure 38, is its continuous character, which makes it amenable to large-scale tube 

manufacturing. FEM simulations of this process were conducted using the QForm software [510]. The 

results for low carbon steel are shown in Figure 39. The picture on the left is a snapshot that captures a 

narrow deformation zone (indicated by an arrow) moving along the tube. The picture on the right shows 

the distribution of the equivalent von Mises strain within the tube wall. In the example seen in Figure 
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39, the equivalent strain has a value of about 32 at the outer surface and 16 at the inner surface of the 

tube wall. This gradient of strain does not necessarily translate to a pronounced gradient of 

microstructure characteristics, as even the lower value of strain is large enough for saturation of 

microstructure development to have taken place. Thus, reasonably uniform mechanical characteristics 

can be achieved throughout the entire thickness of the wall. If required, a gradient in hardness and 

strength can be produced for smaller degrees of shear deformation. FEM simulations provide a very 

useful means for fine-tuning the processing parameters for the desired outcome in terms of uniformity 

or deliberately set non-uniformity of microstructure.  

 

Figure 38. High Pressure Tube Shearing: Tube (1) is continuously drawn through the opening between the die (2) 
and a mandrel (3) using draw-bench (4).  Shear strain is imposed within the thickness of the tube wall by 
rotation of either the die (2) or the mandrel (3), or both. (From [489], reproduced with permission) 

 

 

Figure 39. FEM simulation of the room temperature HPTS process for low carbon steel using the QForm software 
(From [489], reproduced with permission) 
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Another SPD process that has been studied at length by FEM simulations is twist extrusion (TE). 

In a series of publications, cf. [511-514], which have been reviewed recently [484], various aspects of TE 

processing, including the role of friction, die geometry, etc. were investigated by FEM in combination 

with experimental studies. In particular, these numerical studies helped identifying the limitations 

associated with the assumption of simple shear that is often made in the TE process modelling.  

SPD techniques commonly target large-scale production of bulk UFG materials. Interesting niche 

applications of SPD processing can be found in manufacturing of parts for microelectronics, micro-

electro-mechanical systems (MEMS), and other miniaturised engineering structures. Rosochowska et al. 

[515] pointed out that successful forming of metallic micro-components requires particularly careful 

design of the processing route using small-scale tooling, especially considering limited handling 

capability. They demonstrated that FEM simulations can be helpful in identifying the best process 

configuration before engaging in expensive experimental trials. Simulations were used to study material 

flow, the required force, and the tool contact stress in micro-extrusion of a single conical pin. Different 

process configurations (forward vs. backward extrusion), tool geometries (pin angles) and material 

models (coarse grained vs. ultrafine grained) were tested to gain a better understanding of the process 

conditions relevant to microforming. Kim and Nam [516] performed a quantitative FEM simulation and 

characterisation of the size effects in microscale coining process of copper where the grain size was 

comparable with the die cavity. In this way, the initial microstructure could be optimised before the 

actual micro-processing. Another successful exercise in FEM modelling of microforming by cup drawing 

was presented in Ref. [517]. 3D FEM simulations were carried out using the ABAQUS software package 

in which the dislocation based constitutive model expressed by Eqs. (89)-(90) was embedded. It was 

demonstrated that the drawing behaviour of metallic materials, particularly the occurrence of a blank 

thickness effect, is captured by the model very well. The occurrence of the size effect was shown to be 

governed by the ratio of the blank thickness to the grain size of the material, as illustrated by Figure 40, 
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which shows the model prediction and the experimental data for the limit drawing ratio.  This quantity is 

defined as the ratio of the largest blank diameter drawn without failure to the punch diameter, and its 

calculated dependence on the ratio of the blank thickness to the grain size shows the right kind of trend 

consistent with experiment. 

 

Figure 40.  The limit drawing ratio as a function of the thickness t to grain size d ratio for a blank of ultrafine 
grained copper (after [517], reproduced with permission).  

 

A metal forming process at microscale, which does not fall in the category of SPD processing in a 

strict sense, yet has a clear relevance to this group of techniques, is filling of vias for microelectronic devices 

by the so called forcefill [518]. In this process, aimed at connecting a metallisation level with another circuit 

level through channels in a semiconducting layer, a metal from a blanket film is forced into the via channels 

by applied pressure. The metal is in solid state and undergoes a large plastic deformation when filling the 

vias that commonly have a submicron diameter. A prediction of the process conditions, in terms of the 

applied pressure and temperature, for efficient via filling with aluminium was made with the aid of FEM 

simulations employing a commercial software package DEFORM 2D in conjunction with a 

phenomenological constitutive model having some dislocation underpinning. A useful map in the pressure-

temperature plane specifying the regions where efficient via filling occurs was calculated on that basis.   
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5.2. Softening at large strains and dynamic recrystallisation 

Coming back to the variation of strength with the cumulative equivalent strain (or the number 

of passes) under ECAP, we should mention that the progressive rise of strength with a trend to 

saturation seen in Figure 33 and accounted for by the two-internal-variable model for copper represents 

only part of the story. Deformation to still larger strains, beyond the range where monotonic rise of 

strength was observed, cf. Figure 33, was reported to result in a decrease in strength of copper [176]. 

This behaviour is illustrated in Figure 41 which shows the results of uniaxial tensile testing of 99.95% 

pure copper by up to 16 passes via ECAP route Bc. After the very first pass through the die, which 

corresponds approximately to a strain of 1, a strong increase in strength with a significant decrease in 

ductility is observed, as shown in Figure 41. With further passes the yield strength 02    and the 

ultimate tensile stress UTS  increase and reach a maximum for the specimens subjected to four ECAP 

passes. This behaviour is similar to that seen in Figure 28 and Figure 33.  With further processing beyond 

four passes, however, both 02  and UTS  drop. This is believed to be associated with development of 

inhomogeneous microstructure, as confirmed by TEM observations and XRD measurements of the width 

of X-ray peak profiles. The total elongation is low (8% to 10%) and remains nearly constant throughout 

all passes. However, as discussed above in connection with Figure 41, the uniform elongation (i.e. the 

strain to the onset of necking) increases with the number of passes from 0.75% to up to 2.5%. 

Qualitatively similar behaviour was observed by Gubicza et al. [27] for several FCC metals, including Ag, 

Al, Au, Cu, and Ni, deformed to different strains.  

As is obvious from Figure 41, we are dealing here with two strain softening effects. The first one 

is a decrease of the yield strength of copper with pre-straining by ECAP for sufficiently large numbers of 

passes. The second one is a decrease of stress with strain after a short stage of initial strain hardening 

under uniaxial tensile deformation of the ECAP-processed material. One possible reason for strain 
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softening during plastic deformation is dynamic recovery and/or dynamic recrystallisation which is 

common at high homologous temperatures and/or large strains [519, 520].  The available explanations 

for the strain softening behaviour observed after severe plastic deformation are diverse and mostly 

qualitative, although considerable progress has been achieved in understanding the microstructural 

factors affecting this trend relating it to recovery and dynamic recrystallisation processes [521-523] . 

Although the processes of interest  - recovery, recrystallisation (and possibly grain growth) - are 

implicitly hidden in the coefficients of the KME model based on dislocation density evolution 

(particularly in the parameters k0 and k2), the dislocation density tends to saturate, but not to decrease, 

with strain in the one-internal-variable model [176, 184, 327, 366, 431, 520, 524, 525].  To account for 

the softening behaviour at large strain, Wei et al. [175] proposed a combined approach where the 

dislocation density evolution in the spirit of the KME model and the Taylor relation for the friction stress 

f are complemented with a softening fraction of the flow stress SX   which can be defined as: 
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Thus, the strain dependence of the flow stress can be expressed as  ( ) ( ) ( )f f s SX          . 

The softening kinetics reflected in the strain dependence of SX   can be described using an Avrami type 

equation [526] or an empirical relation proposed by McQueen et al. [519] and then modified by Oudin et 

al. [527] and Wei et al. [175] to 
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The quantities r and q, together with , which is close to the peak strain, are parameters that govern the 
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softening kinetics and are to be determined by fitting Eq. (95) to the experimental data.  Although a 

satisfactory fit can be obtained for a variety of experimental data, cf. Figure 42, this heuristic approach 

to strain softening behaviour does not claim to be explanatory. While the form of the intuitively chosen 

equations is suggested by the theories of dynamic recrystallisation treated as a phase transformation 

[528-530], this blend of a dislocation-based approach and an empirical one is somewhat artificial.  

Moreover, the parameters entering Eq. (95) are loosely defined and cannot be related directly to 

microstructural characteristics of the material. 

 

Figure 41. Stress–strain curves obtained by uniaxial tensile tests on pure Cu that has been processed by up to 16 
ECAP passes performed at room temperature.  

 

Figure 42.  Dependence of the yield strength of pure copper on the pre-strain produced by different numbers of 
ECAP passes. Adopted from [175] and [176]. 
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Figure 43. Characteristic evolution of the dominant microstructural parameters for copper with the number of 
ECAP passes (from [453], reprinted with permission) 

 

A survey of the existing modelling efforts towards predicting the grain size distribution obtained 

by SPD would be incomplete without a brief remark on the dynamic recrystallisation. Indeed, grain 

refinement during deformation at high homologous temperatures [529, 531, 532] (or very high strain 

rates [533]) is often governed by dynamic recrystallisation (DRX). This phenomenon occurs in a 

deformed material through the nucleation and migration of high-angle grain boundaries that constitute 

a distinct interface between the previously deformed material and the new fine-grained structure. Once 

recrystallisation is triggered, the ensuing microstructural changes will affect the dislocation behaviour in 

the material. The recrystallised microstructure typically comprises residual pre-existing grains with a 

high dislocation density, newly formed fine grains which are initially dislocation-free, and evolving 

subgrains. As the average grain size decreases, the volume fraction of grain boundary area rises.  The 

DRX kinetics is usually described by an S-shaped exponential curve for the time dependence of the 

volume fraction of the recrystallised material: 

  01 exp / DRXn

DRX DRXX K d t       (96) 
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where DRXK   and DRXn   are constants determining the rate of DRX and 0d   is the initial grain size of 

the non-recrystallised material.  With the progress of DRX, the internal boundaries, with their growing 

total area, will reduce the dislocation mobility.  Following this empirical approach, Hallberg et al. [534] 

described the evolution of the average grain size d  from the initial value 0d to the final saturation one, 

fd , as a function of plastic strain 

  0 0 exp
Xn

f X pl pl cd d d d K       
  

  (97) 

with another pair of rate-controlling constants XK  and Xn . Here the McCauley brackets   indicate 

that no recrystallisation will occur until the critical plastic strain pl c  is attained, i.e. until pl pl c  . The 

strain-dependent average grain size d then enters the KME equation for the dislocation density 

evolution, Eq. (51), as  . The FEM simulations of room-temperature ECAP with the die geometry 

defined by 90o   and 20o   showed, Figure 44, that after one pass neither the grain size nor the 

dislocation density are homogeneously distributed in the 20×20×150 mm3 Al billet. Largest deviations 

from homogeneity were observed in the bottom part of the billet.  After the second pass, the 

distribution of both grain size and dislocation density was found to be almost homogeneous. To avoid 

empirical formulations including loosely defined constants DRXK  and DRXn  or XK and Xn , Galindo-

Nava and Rivera-Díaz-del-Castillo [530] developed a thermodynamic approach coupled with classical 

grain nucleation and growth formulations describing the grain size evolution during discontinuous 

dynamic recrystallisation, which can potentially be incorporated in a more rigorous numerical modelling 

framework. With the same motivation, Le and Kochmann [535] proposed a thermodynamically based 

model for the DRX process during SPD, which also provided explicit evolution equations for the grain 

size and the dislocation density. Despite the simplicity of the model, evaluation of these quantities on its 

basis showed reasonable (though still only qualitative) agreement with experimental data.   
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Figure 44. Results showing the average grain size (a) and relative dislocation density (b) distribution across the 
working Al billet during two ECAP passes via route C. (After Hallberg [534], reproduced with permission.) 

 

 

6. Phase mixture modelling of nanocrystalline materials  

The discussion in the foregoing sections made it clear that most SPD processing techniques 

produce an ultrafine grained structure that falls short of being qualified as nanocrystalline one. 

However, modelling of the mechanical behaviour of true nanocrystalline structures – regardless of the 

way in which it has been produced – is of interest in the context of this review. Here we give a brief 

account of a model that is well suited to describe this behaviour. It was first proposed in 2000 [536] and 

was further developed in subsequent work [537-539]. The main features of the model are as follows. 
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The interior of the grains and the grain boundaries are regarded as two separate phases. It is assumed 

that plastic strain rate in the grain boundaries is controlled by diffusion fluxes therein and is given by  
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where GB is the stress within the grain boundaries,  denotes the atomic volume and A  is a constant. 

This equation resembling the familiar Nabarro-Herring creep equation [540, 541] obtained from semi 

quantitative considerations [536] was confirmed by molecular dynamic calculations of Yamakov et al. 

[542] who found the value for the coefficient A  for copper to be approximately 55.5. The plastic strain 

rate in the grain interior (GI) is controlled by an additive combination of dislocation glide and diffusion 

processes of the Nabarro-Herring and Coble type:  
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The Heaviside function  critH d d  in Eq. (100) accounts for the fact that dislocation glide ceases to 

contribute to plastic deformation for grain sizes below critd  defined by Eq. (66). In Eq. (102), w   

denotes the grain boundary thickness, cf. Figure 45. The variation of the dislocation density entering Eq. 

(100) obeys an evolution equation similar to Eq. (56) with   identified with the average grain size d. 
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In the phase-mixture model under consideration, the overall flow stress  is taken as the weighted sum 

of the stresses in the grain interiors and grain boundaries: 

  1 GI GBf f       (103) 

where f is the grain size dependent volume fraction of the grain boundaries.  

As in the two-internal-variable model considered above, the iso-strain assumption is made. 

Accordingly, the strain (and strain rate) in the grain interior and the grain boundaries is taken to be the 

same, as seen in the dashpot-spring diagram in Figure 45, which provides a recipe for the calculation of 

the flow stress described above. The diagram was augmented by a sequential member associated with 

gradient terms [543], which were absent in the original model and will be considered below.  

 

Figure 45. Mechanisms underlying plastic flow in the interior of the grain and the grain boundaries. (a) 
nanocrystalline material with grain size d and grain boundary width w. In the phase mixture model a 
nanocrystalline grain is approximated as being cube-shaped. (b) Rheological interpretation of phase mixture 
model according to Eq. (99) including a gradient effect. Each dashpot represents a viscoplastic mechanism and 
the spring accounts for the gradient effects. (After [543], reproduced with permission) 

 

The phase-mixture model has been quite successful with describing the mechanical response of 

nanocrystalline metals in terms of their strain hardening behaviour and the grain size dependence of the 

yield stress. An example of the calculated diagram truthfully predicting the Hall-Petch dependence of 
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the0.2 proof stress of copper and accounting for the ‘inverse’ Hall-Petch behaviour equally well is given 

in Figure 46. 

 

Figure 46. The grain size dependence of the 0.2 proof stress of nanocrystalline copper calculated using the 
phase-mixture model combined with the elastic-viscoplastic (Taylor-Lin) approach [538]. The experimental data 
by Sanders et al. [544] are shown for comparison. 

 

7. Gradient plasticity for SPD processed materials 

While a lot of effort in SPD research went into developments leading to maximising 

homogeneity of the microstructure of the processed material, there is also great value in processes 

capable of producing non-uniform, gradient microstructures [545]. In the cited work, an excellent 

combination of strength and ductility of interstitial-free steel was achieved by surface mechanical 

attrition treatment (SMAT). This was associated with a microstructure gradient induced by SMAT in a 

near-surface layer of the material. The benefits of gradient structures were also discussed in a recent 

work on strengthening thin walled tubes by a process referred to as continuous high pressure tube 

shearing [489]. Modelling of the mechanical behaviour of such materials calls for new theoretical tools 
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that account for gradient structures. Of special interest in this regard are gradient plasticity models that 

are microstructure-based.  

A physically based model relating higher (second order) gradient terms to plastic strain 

incompatibility between the adjoining grains was proposed by Estrin et al. [236, 473]. The model results 

in an additive second derivative (Laplacian) term in an expression for the flow stress, which is similar in 

structure to that proposed earlier by Aifantis [335], but has the benefit of providing a link between the 

coefficient of this term to the grain size. It was shown [473] to account for homogenisation of 

microstrucure and hardness across a specimen undergoing severe plastic deformation by HPT. 

The role of gradient terms in providing a more uniform strain and enabling a more 

homogeneous strengthening effect of SPD is demonstrated by the measurements of microhardness 

distribution in a specimen deformed by high pressure torsion. By the very nature of deformation by 

torsion, the shear strain produced varies from zero to a maximum value with the radial distance from 

the specimen axis to its rim. However, with the growing twist angle, or the number of revolutions, the 

microstructure and the microhardness were shown to become more and more uniform throughout a 

cross-section of an HPT aluminium specimen [546], cf. Figure 47.  
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Figure 47. Progressive rise of homogeneity of microhardness in an HPT specimen of aluminium with the number 
of turns (after A.P.  Zhilyaev et al. [547]) 

 

This paradox is resolved in terms of the mentioned model by Estrin et al. [473] according to which strain 

gradients act to equalise the dislocation cell size at different locations within the specimen. This is 

associated with progressive equalisation of shear stress across an HPT specimen with the growing 

number of revolutions of the anvil, as illustrated in Figure 48, which shows the variation of the 

cumulative shear strain with the distance from the HPT specimen axis [473]. 

 

Figure 48. Progressive increase of shear strain uniformity in an HPT specimen of copper with the number of anvil 
revolutions as calculated using a gradient plasticity model [473]. 
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Another physically sensible variant of gradient plasticity associates a gradient term with mobile 

dislocation exchange between adjoining regions of the material via dislocation cross slip [284]. Both 

variants of gradient plasticity were considered in the context of localised strain pattern formation in Mg 

alloy AZ31 under ECAP deformation [235]. Susceptibility of ECAP processing to strain localisation, 

particularly due to heat release, was mentioned in Section 2.3, but even without thermomechanical 

coupling, strain localisation may occur, and gradient plasticity is a suitable way to account for it. Using 

linear stability analysis, localised strain patterning in the shear zone of the alloy undergoing ECAP 

deformation was considered for both variants of gradient plasticity theory in conjunction with the two-

internal-variable model [254, 255]. In this kind of analysis, conditions for growth of small periodic 

perturbations of a uniform solution of the constitutive equations with different wave numbers are 

determined. The temporal and spatial variation of the perturbations are represented by a factor 

 exp ηt i x ;  solutions for which the real part of the ‘growth parameter’ η   is positive correspond to 

unstable behaviour. This may be the case for various values of the wave number  . The one with the 

largest magnitude (i.e. max   corresponding to a peak in the dispersion curve ( ) f   )  obviously 

defines the length scale, i.e. the characteristic wave length   2 / max     of the non-uniform strain 

pattern that develops to become predominant. A comparison between the experimentally observed 

wave length of the strain localisation patterns with the calculated dispersion curves in Figure 49, 

demonstrates a very good agreement between the predictions and the measurements done for two 

different back pressure levels used in ECAP processing.   
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Figure 49.  Results of linear stability analysis for strain localisation under ECAP  with back pressure of 130 MPa 
(a) and 260 MPa (b) in magnesium alloy AZ31 [235]. The perturbation growth rate is shown as a function of the 
wave number. The estimated average shear strain rates in the tests are shown for each curve. The diamonds 
correspond to the experimentally observed wave numbers and are placed on theoretical curves for the 
respective strain rates. The vertical dotted line on the left marks the position of the smallest theoretically 
possible wave number, while the short vertical dashed lines on the right mark the largest possible wave 
numbers for the respective strain rates. (After [431], reproduced with permission). 

 

In their model of gradient plasticity, Klusemann et al. [543] went beyond the second gradients 

and extended the phase-mixture model presented in the foregoing section by including a fourth-order 

gradient. They augmented Eq. (103) for the flow stress with gradient terms in the following form: 

    2 2 4 41 2 / 5GB GI g x xf f h l l             (104) 

In the spirit of the Estrin-Mühlhaus model [236], the intrinsic length scale l  can be identified with the 

average grain size; gh  is a numerical parameter whose value controls the magnitude of the gradient 

effects. Dealing with fourth-order gradients, particularly in the context of FE simulations, is 

computationally challenging, but a great benefit of the model is that the fourth-order gradient provides 

a regularisation which results in a stable computational scheme. The analysis based on the model 

permits efficient treatment of patterning, as was shown in the computational exercises in [543]. 
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8. Simulations of synthesis of architectured materials by SPD techniques 

The use of SPD techniques to produce novel hybrid materials heralded as a new paradigm in 

materials design in [548] is seen as an important emerging direction of research in the area of severe 

plastic deformation. Indeed, SPD methods can be employed to engineer hybrid (multi-component) 

materials to a desired inner architecture while simultaneously producing an ultrafine or nanoscale grain 

structure of the components of a hybrid [464, 549]. This approach to fabrication of architectered hybrid 

materials was termed ‘SPD-induced synthesis’ [550, 551]. This nascent area of research is a perfect 

playground for modelling and numerical simulations, as the variants of thinkable inner architectures of 

such hybrid materials are sheer countless. Screening of conceived designs and SPD processes leading to 

hybrids with promising mechanical properties can best be done by numerical simulations, primarily by 

FEM.  

A hybrid design with potentially attractive properties is that with spiral-shaped armour 

embedded in a massive metallic part (‘matrix’).  Bouaziz [552] has shown that by embedding a hard 

spiral-shaped filament in a softer matrix provides the material with enhanced tensile ductility, as the 

armour gives rise to extra strain-hardening thus delaying the onset of necking. This feature offers a 

possibility to alleviate a common drawback of UFG materials processed by SPD, viz. their low strain 

hardening capability and the ensuing low ductility. There are various SPD and cognate techniques by 

which helical armour fibres can be inserted into a massive billet. These include HPT [548], torsion [553], 

twist extrusion [554], screw rolling  [555], and high pressure torsion-extrusion (HPTE) [556] .  

By way of example, we present a schematic showing the fabrication of a hybrid material with 

layered spiral armour architecture [551], Figure 50. SPD-induced synthesis of architectured materials 

illustrated by Figure 50 involves the following steps. Prior to processing by SPD, inclusions in the form of 

fibres, solid particles, or powders are embedded in a workpiece. Controlled material fluxes during the 

SPD process will transform them to produce a desired inner structure of the hybrid material. Knowing 
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this architecture, one can ‘pre-program’ the initial distribution of these embedded objects from the 

targeted final architecture computationally, by solving an inverse problem.  

 

Figure 50. Producing a hybrid material with a spiral layered armour by the HPTE process: (а) initial arrangement 
of straight armour fibres in a billet that is subjected to HPTE processing and (b) simulated and experimental 
spiral layered structure in copper armoured with aluminium.  (Yellow:  Cu matrix; blue: aluminium fibres 
(transformed to spiral sheets by HPTE). (After [551], reproduced with permission.) 

 

An example of such ‘pre-programming’ of the initial configuration of reinforcing fibres to 

produce a desired final architecture is shown in Figure 51 [550]. The SPD process applied is twist 

extrusion (TE). As seen from Figure 51 that represents the results of FEM simulations using the software 

package DEFORM 3D, five TE passes have transformed an initially straight copper fibre inserted in a 

titanium matrix to a helical one. The cumulative strain involved in the process is high enough to impart 

submicron-scale grain structure on both copper and titanium. In this way, the targeted spiral 

architecture is achieved with a simultaneous strengthening of both constituents of the hybrid material 

due to extreme grain refinement.  
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Figure 51. Shape transformation of an inclined straight fibre corresponding to the initial configuration of copper 
fibres within a titanium matrix (a) to a spiral one (b) after five TE passes (after [550] reproduced with 
permission). 

 

With the computational tools available, there are practically no limits to the complexity of the 

targeted inner architecture of a hybrid material. An example of ‘pre-programming’ the initial embedded 

structure to obtain a hyperboloid final structure is shown in Figure 52 [550]. On the fabrication side, new 

additive manufacturing technologies make it possible to produce initial structures with a pre-

programmed geometry that may be required for forming hybrid materials with virtually any desired 

inner architecture. Additional compaction and healing of possible defects in an additively manufactured 

preform provided by SPD are an extra benefit of this processing strategy.  

 

Figure 52. Simulated twist extrusion-based process of fabrication of a hybrid material: (a) ‘pre-programmed’ 
billet for obtaining the final hyperboloid structure (b) by four TE passes (simulation by DEFORM 3D, [550].)  
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9. Texture evolution during SPD processing 

The radical grain refinement effect of severe plastic deformation should not be considered in 

isolation from the variation in the crystallographic texture it may cause. Indeed, the strengthening effect 

of grain refinement may be negated by unfavourable texture. Hence, predicting texture evolution is an 

important goal of modelling of SPD processes. That is why already in early work dedicated to simulations 

of SPD processes of FCC metals, texture evolution was calculated alongside grain refinement. This is 

exemplified by the work of Baik et al. [257] who employed the dislocation density-based strain 

hardening model expressed by Eqs. (92) with some modifications [255]. The deformation history 

calculated by 2D FEM simulation with ABAQUS software was combined with the full constraint Taylor 

model to compute textures produced by ECAP. A good agreement with the measured textures was 

achieved. This may appear somewhat surprising, as the model used did not consider grain subdivision 

that occurs during SPD processing. 

An excellent overview of literature on SPD-induced texture development (specifically, for the 

ECAP process) was provided by Beyerlein and Tóth  [94]. At the time the Beyerlein-Tóth  report was 

written, the effect of grain subdivision was not considered in texture simulations associated with severe 

plastic deformation. Inclusion of the grain subdivision effect in terms of the model [454] described 

above improved the agreement between the calculated and the experimental texture emerging under 

SPD processing [108]. Figure 53 shows the results of FEM simulations of texture in the form of a {100} 

pole figure for micro-extrusion of copper [557] vis-à-vis an experimental pole figure. The simulations 

were based on polycrystal plasticity modelling (the viscoplastic self-consistent (VPSC) approach) and did 

include grain subdivision. A good agreement between the computational results and the experimentally 

measured texture is a testimony to the potential crystal plasticity modelling has in the context of SPD 

processing – of course, if the grain structure evolution is included in the texture calculations, which 

entails updating of the grain population throughout the simulation process.   
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The viscoplastic self-consistent approach mentioned above is a powerful computational 

technique that permits simultaneous tracing of strain hardening and texture development. It was 

developed by Molinari et al. [445]  and further elaborated for anisotropic materials by Lebensohn and 

Tomé  [558]. In this approach the behaviour of a polycrystalline aggregate is related to the behaviour of 

a representative ensemble of monocrystalline grains. The components of the local stress   and strain 

rate   tensors in a particular grain are considered to be different from the corresponding macroscopic 

quantities   and E   . The problem is reduced to the calculation of microscopic stresses and strain 

rates for each grain with explicit account of possible active slip systems. The volume average of these 

quantities determines the mechanical response of the polycrystalline aggregate. The problem of strain 

compatibility and stress equilibrium is solved by allowing some local relaxations of both quantities, while 

keeping their averages equal to their respective macroscopic values. A particular grain is considered as 

an Eshelby-type inclusion embedded in an equivalent homogeneous medium, whose behaviour is 

expressed in terms of the volume-weighted average over the ensemble of grains. This yields a relation 

between the local and the macroscopic quantities in the general form  

  ij ij ijkl kl klE M       (105) 

 

where  M  is the interaction tensor and   is a constant which parametrises the interaction between 

an individual grain and the homogeneous equivalent medium, covering the special cases of 0   for 

the upper-bound model corresponding to homogenous strain (Taylor limit), 1   for the tangent self-

consistent model, and      for the lower-bound corresponding to homogeneous stress (Sachs limit).  

A constitutive description of slip on multiple slip systems at the level of a grain can be furnished 

in terms of the dislocation density evolution models of the kind presented in Section 3.3. The complexity 
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of the problem stems from the need to introduce dislocation densities for each slip system and to 

consider interactions between dislocations of the different slip systems. This is challenging, but not 

impossible, as was demonstrated in the mentioned review by by Beyerlein and Tóth  [94]. Recently, 

Ayoub et al. [559] modified the crystal plasticity approach to incorporate the grain boundary sliding 

mechanism and also account for grain subdivision. Their model provided an accurate prediction of 

texture evolution and the mechanical response of the magnesium alloy AZ31B at different temperatures 

and strain rates. 

 

                   .: 

Figure 53 Experimental (left) and predicted (right) {100} pole figure for micro-extruded UFG copper. Isolevels 
shown are 1.2, 2.0, 2.5, 3.0, 3.5, 4, 8, 12, 20, 30; also shown is the texture intensity in terms of the multiples of 
random distribution (MRD) (after [557], reproduced with permission). 

 

It is believed that crystal plasticity modelling, which has been championed by Lebensohn and 

Tomé, cf., e.g. [558], and advanced by Molinari and Tóth  [96, 497, 560], Skrotzki et al. [561], Beyerlein 

and Tóth  [94], Horstemeyer et al. [562], Roters et al. [78], and others, offers the most suitable platform 

for texture simulations for polycrystalline materials. This applies to modelling of the SPD processes and 

the mechanical properties of ultrafine-grained materials produced by SPD technology. As mentioned 

above, in numerical simulations of the SPD processes their specifics, notably progressive grain 

fragmentation, needs to be accounted for by updating the representative grain population. 
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Conclusion 

In this article, we attempted to overview the extensive literature on the modelling and 

computational aspects of severe plastic deformation processing. Starting from phenomenological 

models common in solid mechanics, we took the reader through the various modelling approaches. 

Certainly, our preferred taste for mechanism-related and microstructure based models was obvious in 

this exposé. We hope to have convinced the reader that this type of modelling has substantial benefits 

over the more phenomenological approaches that are still common in solid mechanics literature. The 

entirety of the models available provide a useful toolkit for both analytical work and numerical 

simulations, which can be employed ‘on demand’, depending on the specifics of the SPD-related 

problem to be solved and the detail to which the microstructu information is required. Examples of the 

use of these modelling approaches to particular SPD processes were given and practical advice on the 

suitability of one or the other model was offered.  

 If, from the various elements presented in this overview, we were to construct an ‘ideal’ model 

to predict the material behaviour and the load on the tooling in a given SPD process, along with the 

microstructure, texture, and the mechanical properties of the processed material under subsequent 

service conditions, our model of choice would be as follows. We would certainly opt for a crystal 

plasticity model of the Lebensohn-Tomé kind [94, 563], but would include a provision for grain 

subdivision as proposed in Ref. [557]. The description of strain hardening for individual slip systems of a 

crystallite would be motivated by a two-internal-variable model presented in Section 3.3. Such a model 

would have sufficient flexibility to monitor the microstructure and texture development, yet would be 

robust enough to be handled within a commercial FEM code with a facility for implementing a 

constitutive material model through a user interface. If no microstructural detail is needed for a 

particular application, a simple phenomenological constitutive description, such as the Voce [177], 
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Johnson-Cook [287], or Armstrong-Zerilli [288] model, can be used instead. We would certainly advise 

against the use of oversimplified models of the Ludwik or Ludwik-Hollomon type, as they do not capture 

the essential feature of large strain processing, viz. a trend to stress saturation. Regardless of the choice 

of constitutive model, our preference would definitely be for a full 3D FEM simulation. 

It is hoped that through this paper we helped eliminating a blind spot in the review literature on 

severe plastic deformation, provided the reader with a compendium of suitable modelling tools, and 

offered an outlook on possible future directions of analytical and computational work on SPD modelling. 
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