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Abstract
We study two nonparametric tests of the hypothesis that
a sequence of independent observations is identically
distributed against the alternative that at a single change
point the distribution changes. The tests are based on the
Cramér–von Mises two-sample test computed at every
possible change point. One test uses the largest such
test statistic over all possible change points; the other
averages over all possible change points. Large sam-
ple theory for the average statistic is shown to provide
useful p-values much more quickly than bootstrapping,
particularly in long sequences. Power is analyzed for
contiguous alternatives. The average statistic is shown to
have limiting power larger than its level for such alter-
native sequences. Evidence is presented that this is not
true for the maximal statistic. Asymptotic methods and
bootstrapping are used for constructing the test distribu-
tion. Performance of the tests is checked with a Monte
Carlo power study for various alternative distributions.
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1 INTRODUCTION

Consider a sequence of independent observations X1, … ,Xn. We propose tests of the null hypoth-
esis that the Xi are independent and identically distributed (iid) with unknown continuous
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distribution H against the change point alternative that there is some (unknown) c with 1 ≤ c < n
such that X1, … ,Xc are iid with continuous distribution F and then Xc+1, … ,Xn are iid with
some other continuous distribution G. We will consider tests based on two sample empirical distri-
bution function tests for equality of distribution, focusing on the two-sample Cramér–von Mises
test.

If the time c of the potential change point were specified in advance we could test the hypoth-
esis that F = G = H using any two sample test for equality of two distributions. The two-sample
Cramér–von Mises test is one well-known possibility. Notation may be simpler to read if we used
the shorthand d = n − c. Let

Fc(x) =
1
c

c∑
i=1

1(Xi ≤ x), (1)

be the empirical distribution function of the first c observations and

Gd(x) =
1
d

n∑
i=c+1

1(Xi ≤ x), (2)

be the empirical distribution function of the remaining d observations. The combined empirical
distribution function Hn of the entire sample is

Hn(x) =
cFc(x) + dGd(x)

n
. (3)

The two-sample Cramér–von Mises test of the hypothesis F = G is based on the statistic

Wn(X1, … ,Xn; c) ≡ Wn(c) =
cd
n ∫

∞

−∞
{Fc(x) − Gd(x)}2dHn(x).

For a thorough discussion of this nonparametric test and a simple computing formula in terms of
the ranks of the first c values of X in the whole sample see Anderson (1962). The distribution of the
test statistic does not depend on H under the null hypothesis provided H is a continuous function.

A number of authors have suggested adapting this statistic to the change point problem. See,
for instance, Picard (1985) and Brodsky and Darkhovsky (1993) where the two natural possible
test statistics considered herein are suggested and studied briefly. The first of these tests can be
used both to assess the existence of a change point and to estimate the location of the change if it
exists. The statistic in question is

Wmax,n ≡ max
1≤c≤n−1

Wn(c).

We shall also use Wmax,n to define the estimated change point

ĉn = arg max
1≤c≤n−1

Wn(c);

thus ĉn is the value of c achieving the maximum. (The statistic Wn(c) is discrete and in small
samples there is some modest probability that ĉn will not be unique; this lack of uniqueness plays
no role in the hypothesis testing problem.)
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We prefer, however, the statistic

W n(X1, … ,Xn) = W n ≡ 1
n − 1

n−1∑
c=1

Wn(c).

We offer several potential rationales for our choice:

• In many goodness-of-fit contexts quadratic statistics like ours outperform maximal statistics.
For instance, the Cramér–von Mises goodness-of-fit test is generally more powerful than the
Kolmogorov–Smirnov test; see, for instance, Stephens (1986).

• Quadratic statistics such as we propose often have simpler large sample theory than do maxi-
mal statistics like the Kolmogorov–Smirnov test. Generally speaking the former have limiting
distributions which are linear combination of chi-squares while the latter have limiting laws
which are those of the supremum of a Gaussian process. The actual laws of these suprema are
known only in special cases (although inequalities can often provide useful upper bounds on
p-values).

• The large sample theory in question often provides a more accurate approximation for
quadratic statistics than it does for maximal statistics. For example, see Razali and Yap (2011)
and Büning (2002).

In Section 2 we present large sample distribution theory for W n under the null hypothesis.
We show how to compute p-values based on this large sample theory and demonstrate that the
asymptotic approximations are quite accurate for n ≥ 100.

In Section 3 we discuss large sample behavior of Wmax,n and ĉn. For Wmax,n we do not have
complete large sample theory; instead we present some evidence that a centered and scaled ver-
sion of Wmax,n has a limiting extreme value distribution. We show that ĉn tends, when the null
holds, to occur near c = 1 or near c = n. We also show that, when the null holds, Wmax,n tends to
∞ in probability. Thus complete large sample theory would require some sort of rescaling.

Section 4 presents a short Monte Carlo power study showing that over a range of alternatives
the statistic W n is more powerful than Wmax,n; exceptions occur when the change point occurs
close to the beginning or close to the end of the sequence and sometimes when there is more
than 1 change point. Section 5 presents asymptotic power calculations for W n against contiguous
sequences of alternatives; these permit useful approximations to the power of W n in cases where
the null is not obviously false. By contrast, the limit theory for Wmax,n does not lend itself to easy
power calculations. We conjecture, however, that in the context of the contiguous alternatives of
this section the statistic Wmax,n has the defect that, unlike W n, its power converges to its level as
n → ∞. Also in Section 5, we present some further Monte Carlo studies relevant to contiguous
sequences of alternatives. Finally we present some discussion in Section 7. We give proofs and
evidence for our conjectures in the Appendix.

2 NULL LIMIT THEORY: W n

Suppose that the null hypothesis holds and the X1, … ,Xn are iid with continuous cdf H. Then for
all c we have

Wn(X1, … ,Xn; c) = Wn(H(X1), … ,H(Xn); c).
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Thus in computing distribution theory under the null we may, and will, assume that H
is the uniform distribution; to emphasize the point we let U1,U2, … be an iid sequence
of Uniform random variables; the joint law of (H(X1), … ,H(Xn)) is the same as that of
(U1, … ,Un).

We now describe large sample theory for our statistics based on weak convergence results for
associated processes. We use ⇝ for weak convergence; where necessary we specify the topology
involved more precisely.

Large sample theory for the two sample Cramér–von Mises statistic is well known: if c depends
on n in such a way that c∕n → u ∈ (0, 1) (or even just min{c,n − c} → ∞) then

Wn(c) ⇝
∞∑

j=1

Z2
j

𝜋2j2 ,

where the Zi are iid standard normal; see Anderson (1962, p. 1152). (Notice that the limit law does
not depend on u.). Our statistic has a related limit given as follows.

Theorem 1. As n → ∞ we have, under the null hypothesis,

W n ⇝ W∞ ≡
∞∑

j=1

∞∑
k=1

Z2
jk

j(j + 1)𝜋2k2 , (4)

where the Zjk are iid standard normal.

The theorem is a consequence, as usual, of a suitable weak convergence result which we now
present; the Gaussian process limit we derive is mentioned in Picard (1985, p. 843); the specific
weights in Theorem 1 do not seem to have been previously described.

We begin by defining the partial sum empirical process, van der Vaart and Wellner (1996,
p. 225), for (s, t) ∈ [0, 1]2, by

Zn(s, t) =
1√
n

∑
1≤i≤ns

{1(Ui ≤ t) − t} . (5)

Our statistic can be described in terms of this process. Notice that

Fc(t) =
√

n
c

Zn(c∕n, t) + t,

and that

Gd(t) =
√

n
d

{Zn(1, t) − Zn(c∕n, t)} + t.

Thus

Fc(t) − Gd(t) =
√

n
{

Zn(c∕n, t)
c

−
Zn(1, t) − Zn(c∕n, t)

d

}
.

We now define a process Wn(s, t) for 0 < s < 1 and 0 ≤ t ≤ 1 by
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Wn(s, t) =
√

s(1 − s)
{

Zn(s, t)
s

− Zn(1, t) − Zn(s, t)
1 − s

}
= Zn(s, t) − sZn(1, t)√

s(1 − s)
. (6)

For given c our two-sample test statistic is given by

Wn(c) = ∫
1

0
{Wn(c∕n, t)}2 dHn(t).

The processes Zn and Wn have well-known weak limits given in the following theorem. Details
can be found at van der Vaart and Wellner (1996, p. 226). The weak convergence results happen
either in 𝓁∞([0, 1]2) or in 𝓁∞,loc((0, 1) × [0, 1]). The latter space is the set of all functions on T =
(0, 1) × [0, 1] which are uniformly bounded on every compact subset of T; the space is endowed
with the topology of uniform convergence on compacts. This is a special case of the space denoted
by 𝓁∞(T1,T2, …) in van der Vaart and Wellner (1996, pp. 43–44); for us the subsets Tk of T may
be taken to be Tk = [𝜖k, 1 − 𝜖k] × [0, 1] for some sequence 1∕2 > 𝜖1 > 𝜖2 > … which decreases to
0. It will prove useful in some of our proofs to introduce the notation

Bn(s, t) = Zn(s, t) − sZn(1, t).

Theorem 2. Under the null hypothesis:

1. As n → ∞,

Zn ⇝ Z∞,

in 𝓁∞([0, 1]2) where Z∞ is a tight mean 0 Gaussian Process with continuous sample paths and
covariance function

𝜌Z(s, t; s′, t′) = s ∧ s′𝜓(t, t′),

where 𝜓(t, t′) = t ∧ t′ − tt′;
2. As n → ∞,

Bn ⇝ B∞,

in 𝓁∞([0, 1]2) where B∞ is the tight mean 0 Gaussian Process defined for 0 ≤ s, t ≤ 1 by

B∞(s, t) = Z∞(s, t) − sZ∞(1, t).

The process B∞ has continuous sample paths and covariance function

𝜌B(s, t; s′, t′) = 𝜓(s, s′)𝜓(t, t′).

3. As n → ∞,

Wn ⇝ W∞,

in 𝓁∞,loc((0, 1) × [0, 1]) where for 0 < 1 < 1 and 0 ≤ t ≤ 1, we have
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W∞(s, t) =
B(s, t)√
s(1 − s)

.

The process W∞ is a mean 0 Gaussian Process with covariance function

𝜌W (s, t; s′, t′) = 𝜒(s, s′)𝜓(t, t′),

where

𝜒(s, s′) = 𝜓(s, s′)√
s(1 − s)s′(1 − s′)

. (7)

The restriction of W∞ to a compact K ⊂ (0, 1) × [0, 1] is tight in 𝓁∞(K).

The process B is called a Brownian pillow by some writers or a four-side tied down Brow-
nian motion; see, for instance Zhang (2014) or McKeague and Sun (1996). The process Z is a
Blum-Kiefer-Rosenblatt process; see Blum et al. (1961).

We now record well-known facts about the eigenvalues of the covariance 𝜌W . The covariance
kernel 𝜓 is that of a Brownian Bridge. It has eigenvalues of the form 1∕(𝜋2k2) for k = 1, 2, …
with corresponding orthonormal eigenfunctions f𝜓,k(u) =

√
2 sin(𝜋ku). The covariance kernel

𝜒 arises in the study of the Anderson–Darling goodness-of-fit test. It has eigenvalues of the
form 1∕{j(j + 1)} for j = 1, 2, … . The corresponding orthonormal eigenfunctions are associated
Legendre functions. The jth eigenfunction is

f𝜒,j(u) = 2

√
2j + 1
j(j + 1)

√
s(1 − s)qj(2s − 1),

where the qj are polynomials of degree j − 1 defined recursively as follows:

q1(u) = 1, q2(u) = 3u,

and for j ≥ 2

qj+1(u) =
1
j
{
(2j + 1)uqj(u) − (j + 1)qj−1(u)

}
.

The covariance function 𝜌W is the tensor product of 𝜒 and 𝜓 . It follows that the eigenvalues of
𝜌W consist of all possible products

𝜆jk = 1
j(j + 1)𝜋2k2 , (8)

with corresponding eigenfunctions

f𝜒,j(s)f𝜓,k(t).

The expansion (4) in Theorem 1 is then Parseval’s identity with
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Zjk = ∫
1

0 ∫
1

0
W(s, t)f𝜒,j(s)f𝜓,k(t) ds dt.

2.1 Numerical work

The distribution of W∞ can be computed numerically to provide approximate, asymptotically
valid, p-values. Our desired approximation to the p-value is

P(W n > wobs) ≈ P(W∞ > wobs),

where wobs is the value of W n observed in the data. In practice, we truncate the infinite sum in (4)
defining W∞, retaining the terms with the largest values of 𝜆jk, and replace the neglected terms
by their expected value. So we write

W∞ = W∞,M + T∞,M

=
∑

jk≤M
𝜆jkZ2

jk +
∑

jk>M
𝜆jkZ2

jk.

We then approximate TM,∞ by its expected value:

𝜇M ≡ ∑
jk>M

𝜆jkE
(

Z2
jk

)
=

∑
jk>M

𝜆jk.

Since the mean of W∞ is ∑
j,k
𝜆jk = 1

6
,

the mean of TM,∞ may be computed by

1
6
−

∑
jk≤M

𝜆jk.

Our approximation becomes

P(W n > wobs) ≈ P(W M,∞ + 𝜇M > wobs).

The latter quantity may now be computed by using numerical Fourier inversion following
Imhof (1961). The R package CompQuadForm (see Duchesne & de Micheaux, 2010) imple-
ments this computation in the function imhof; we use this software in our numerical work
below retaining the 1024 largest eigenvalues and adjusting the mean for truncation as described
above.

We have evaluated the quality of our asymptotic approximation to the null distribution of W n
in a small Monte Carlo study. Since this distribution does not depend on H when the null hypoth-
esis holds we generated N = 100,000 samples of size n = 100, 200, 500. Figure 1 shows a Q-Q plot
for these 100,000 values for n = 100 to check the uniformity of their distribution. Specifically, we
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F I G U R E 1 Ordered p-values simulated under the null hypothesis for sample size n = 100 and plotted
against uniform quantiles for 100,000 iid Monte Carlo samples from a continuous distribution. The blue line is
the uniform cumulative distribution function; exact p-values have a uniform distribution. The graph shows this
approximation is extremely good [Colour figure can be viewed at wileyonlinelibrary.com]

plot the order statistics against the uniform plotting points 1∕(N + 1), … ,N∕(N + 1). Our asymp-
totic approximation is clearly excellent; the same pattern is observed for all the larger values of n
we tried.

3 NULL DISTRIBUTION: Wmax,n AND ĉn

We do not have complete large sample distribution theory for Wmax,n. The statistic Wmax,n is more
challenging to analyze because the weak convergence result in Theorem 2 asserts convergence
in 𝓁∞,loc((0, 1) × [0, 1]) and the supremum norm is not necessarily finite even for a continuous
function belonging to 𝓁∞,loc((0, 1) × [0, 1]). Our proof of Theorem 1 shows that our statistic, W n, is
a continuous functional on a subset of 𝓁loc

∞ ((0, 1) × [0, 1]) to which sample paths of W∞ are almost
sure to belong. We are not able to establish the corresponding result for Wmax,n. Traditionally this
problem has been handled either by fixing a small 𝜖 > 0 and redefining Wmax,n by maximizing only
over {c ∶ 𝜖 ≤ c∕n ≤ 1 − 𝜖} or by careful analysis of the behavior of the process and the test statistic
for c∕n close to 0 or to 1. For instance, Jaeschke (1979) considers a weighted Kolmogorov–Smirnov
test for the uniform distribution and shows that the supremum of the weighted empirical process
has, after suitable normalization, an extreme value distribution. We conjecture that this happens
here, too.

http://wileyonlinelibrary.com
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Conjecture 1. There are constants an and bn with an and bn both going to ∞ such that

Wmax,n − bn

an
⇝ E,

where E is an extreme value random variable with

P(E ≤ x) = exp{− exp(−x)}.

There are several motivations for the conjecture. The first lies in the analogy cited to Jaeschke’s
work. Jaeschke (1979) shows that the supremum over [0, 1] of the usual empirical process divided
by its pointwise SD, namely,

sup
0≤x≤1

√
n(Fn(x) − F(x))√
F(x)(1 − F(x))

,

is achieved near x=0 or near x = 1. He then uses this and the behavior of a similarly scaled
Brownian Bridge to deduce the extreme value limit.

We examined Wmax,n in a small Monte Carlo study. First, for various values of n we examined
plots of the order statistics, Y(i), i = 1, … ,M, of the values of Wmax,n computed from M = 100,000
Monte Carlo samples of size n against the quantiles −log(−log(i∕(M + 1))) of the extreme value
distribution. It will be seen in Figure 2 that the plot is quite linear; we note, moreover, that about
90% of the 100,000 plotted points actually touch the line in the figure. We have used ordinary least
squares to add a line in blue whose slope and intercept would lead to reasonable values for the
parameters an and bn for this value of n.
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F I G U R E 2 Quantile-quantile plot of the P-values for Wmax,nn using M = 100,000 Monte Carlo samples
under the null hypothesis against quantiles for the standard extreme value distribution. The ith order statistic of
the 100,000 P-values is plotted against −log(−log(i∕(M + 1))). The blue line was fitted using ordinary least squares
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 3 Histograms of values of estimated change points for sample sizes n = 100 on the left and
n = 500 on the right. The null hypothesis is true and 100,000 samples were used for each histogram. The x-axis
shows ĉ∕n and the y-axis is a probability density scale. We have used one bin for each possible value of ĉn. The
two figures have the same scales on each axis. Horizontal lines at height 1 (blue) and 0.5 (red) are provided to
help see the extent to which the distribution on the right is more concentrated around 0 and 1 than the
distribution on the left [Colour figure can be viewed at wileyonlinelibrary.com]

We then looked at the law of ĉn in a similar Monte Carlo study. We generated 100,000 sam-
ples of size 100 and 500 from the null hypothesis. In Figure 3 we plot histograms of the value ĉ
which maximizes Wn(c) over 1 ≤ c ≤ n − 1. Observe that as the sample size grows the histogram
concentrates near 0 and 1 (though the convergence is slow). We prove in the Appendix:

Proposition 1. Under the null hypothesis we have:

min
{

ĉ
n
,

n − ĉ
n

}
→ 0 in probability; (9)

and

ĉ∕n ⇝ Bernoulli(0.5); (10)

and

Wmax,n → +∞ in probability. (11)

The last assertion implies that any asymptotic limit law for Wmax,n will require recentering
or rescaling or both. For some evidence concerning how slow this convergence is, we record in
Table 3 the mean and SD of Wmax,n for various values of n, based on M = 100,000 Monte Carlo
samples for each case. It will be seen that both the mean and the SDs are rising slowly. The Monte
Carlo SE in the mean is 3 or 4 in the fourth digit, roughly, so the observed differences are real,
though they are, of course, small.

http://wileyonlinelibrary.com
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The following table displays the mean and SD of Wmax,n for various sample sizes n based on
M = 100,000 null hypothesis samples.

n = 10 n = 50 n = 100 n = 200 n = 500
Mean 0.373 0.487 0.529 0.565 0.610

SD 0.145 0.208 0.225 0.234 0.245

We have not pursued the task of proving a limit theorem for Wmax,n; it may be worth quoting
from Jaeschke (1979) who says the convergence rate to the extreme value law is so slow that “we
would not encourage anyone to use the confidence intervals based on the asymptotic analysis.”
We ourselves use Monte Carlo critical points in the studies which follow.

4 MONTE CARLO POWER STUDY

We undertook a variety of Monte Carlo simulation studies to compare the power of W n to that of
Wmax. In Table 1 we show the percentage of samples rejected in 10,000 trials by the two methods
at the levels 𝛼 = 0.05 and 𝛼 = 0.1. We consider samples of size n ∈ {20, 50, 100}. In each case we
used Monte Carlo critical values based on 100,000 Monte Carlo samples. Powers for W using our
asymptotic approximation are very similar.

In one experiment recorded in the table we generated data from the Gamma distributions
where the parameters change at c = n∕2. In another experiment we change from the Gamma
distribution to the Normal distribution at c = n∕2; in this case neither the mean nor the variance
changes. While our tests are designed to detect single change points we have included two trials
in which there are three segments which change between various Gamma distributions. One
changes from shape 1, scale 2 to shape 2, scale 1 at the 40% point and then to shape 0.5, scale 4
at the 60% point. All three of these have the same mean. The other changes from shape 1, scale
2 to shape 2, scale 3, and back to shape 1, scale 2; the changes happen after 30% and then 70% of
the data. Finally we present two experiments with samples from the normal distribution; in one
the mean changes at c = n∕2 and in the other the SD changes at the same point. In all these trials
the parameter values in the distributions in a given segment do not change as the sample size
changes; this may be compared with the further Monte Carlo results in Section 5.

It will be seen that, except for very small samples, when there is a single change point the
test using W n has better power than Wmax,n unless the change point is near the one end or the
other of the series. Since it is also far faster to compute p-values for W n using the highly accurate
asymptotic law we recommend W n over Wmax,n except if one has a priori (i.e., of course, before
looking at the data) reason to expect the change to be near one end or the other. At the same time
we observe that the procedure is specifically designed to choose between 1 change point and no
change points and not to estimate and find multiple change points. In particular, for one of the
alternatives in Table 1 with 2 change points the statistic Wmax,n is usually more sensitive than W n.
The last alternative demonstrates that when the change happens in the end of the sample, test
statistic Wmax,n performs better in detecting it.

The results presented here show how the powers grow with sample size when the two distri-
butions are fixed. More Monte Carlo power calculations are presented in Section 6 below with a
focus on contiguous alternatives.
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T A B L E 1 Powers (percentage) from various alternative distributions and significance levels 0.1
and 0.05. Critical points were calculated with 100,000 and Powers by 10,000 Monte Carlo simulations.
The notation Gamma(𝛼, 𝛽) indicates sampling from a Gamma distribution with shape 𝛼 and scale 𝛽.
The parameters in the normal distribution are mean and variance. The exponential distribution
parameter is the mean

𝜶 = 0.1 𝜶 = 0.05

Alternative Sample size Wmax W n Wmax W n

X1, … ,X0.5n ∼ Gamma(1, 2), n = 20 47.9 50.7 35.0 37.5

X0.5n+1, … ,Xn ∼ Gamma(2, 2) n = 50 82.3 85.7 73.9 77.4

n = 100 98.3 98.9 96.3 96.9

X1, … ,X0.5n ∼ Gamma(1, 2), n = 20 12.9 13.7 6.9 7.2

X0.5n+1, … ,Xn ∼  (2, 2) n = 50 16.1 19.2 9.0 11.2

n = 100 22.1 31.2 13.7 19.0

X1, … ,X0.4n ∼ Gamma(1, 2), n = 20 17.5 16.5 10.0 9.2

X0.4n+1, … ,X0.6n ∼ Gamma(2, 1) n = 50 24.6 25.5 15.5 15.9

X0.6n+1, … ,Xn ∼ Gamma(0.5, 4) n = 100 38.3 42.8 27.3 28.5

X1, … ,X0.3n ∼ Gamma(1, 2), n = 20 29.0 20.6 15.8 7.9

X0.3n+1, … ,X0.7n ∼ Gamma(2, 3) n = 50 72.3 71.6 54.4 48.1

X0.7n+1, … ,Xn ∼ Gamma(1, 2) n = 100 98.3 98.6 94.1 94.6

X1, … ,X0.5n ∼  (0, 1), n = 20 18.2 22.0 10.8 11.3

X0.5n+1, … ,Xn ∼  (0, 3) n = 50 29.6 56.0 17.0 33.0

n = 100 66.3 93.4 45.0 81.2

X1, … ,X0.9n ∼ Exp(1), n = 20 15.3 16.2 9.9 11.2

X0.9n+1, … ,Xn ∼ Exp(5) n = 50 57.4 41.4 42.5 26.1

n = 100 95.9 80.2 90.4 56.5

5 POWER: CONTIGUOUS ALTERNATIVES

We now compute approximate distribution theory for W n when the null hypothesis is false and
the extent of the change at the change point is big enough to be detectable but not obvious; that
is, we study situations where the best possible power in large samples stays away from 1. To do
so we consider a sequence of alternatives indexed by n and assume that these alternatives are
contiguous to a sequence for which the null hypothesis of no change holds. To be specific our null
hypothesis sequence will have Xi iid for 1 ≤ i ≤ n with density hn and cdf Hn. For the alternative
we suppose that there is a value c0 such that for 1 ≤ i ≤ c0, the Xi are iid with density fn and that
for c0 + 1 ≤ i ≤ n the Xi are iid with density gn. All of fn, gn, hn, and the true change point c0,n may
depend on n. Under the null hypothesis the joint density of X1, … ,Xn is

f0n(x1, … , xn) =
n∏

i=1
hn(xi).
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Under the alternative the joint density becomes

f1n(x1, … , xn) =
c0,n∏
i=1

fn(xi)
n∏

c0,n+1
gn(xi).

The log-likelihood ratio of these two is

Λn = ln
{

f1,n(X1, … ,Xn)∕f0n(X1, … ,Xn)
}

=
c0,n∑
i=1

ln {fn(Xi)∕hn(Xi)} +
n∑

i=c0,n+1
ln {gn(Xi)∕hn(Xi)} .

The sequence of alternatives f1n is contiguous to the null sequence f0n if, computing under the
null hypothesis, we have

Λn ⇝ N(−𝜏2∕2, 𝜏2), (12)

for some 0 ≤ 𝜏 < ∞. If we define Ui = Hn(Xi) then under the null hypothesis the Ui are iid Uni-
form[0,1]. Under the alternative U1, … ,Uc0,n are iid with density f̃ n(u) = fn(H−1

n (u))∕hn
(

H−1
n (u)

)
while Uc0,n+1, … ,Un are iid with density g̃n(u) = gn(H−1(u))∕hn

(
H−1

n (u)
)
. The likelihood ratio

becomes

Λ̃n =
c0,n∑
i=1

ln
{

f̃ n(Ui)
}
+

n∑
i=c0,n+1

ln
{

g̃n(Ui)
}
.

Theorem 3. Assume
A1 There are two functions 𝜙f and 𝜙g in L2[0, 1] such that

lim
n→∞

√
n(f̃ n − 1) = 𝜙f ,

and

lim
n→∞

√
n(g̃n − 1) = 𝜙g,

in L2[0, 1].
A2 There is a u ∈ (0, 1) such that

lim
n→∞

c0,n

n
= u.

Then as n → ∞ we have, under the sequence of alternative hypotheses specified by fn, gn,
and c0,n,

1. The log-likelihood ratio satisfies

Λn = Sn + oP(1) ⇝ N(−𝜏2∕2, 𝜏2),
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where

Sn =
c0∑

i=1
𝜙f (Ui)∕

√
n +

n∑
i=c0+1

𝜙g(Ui)∕
√

n, (13)

and

𝜏2 = u∫
1

0
𝜙2

f (t) dt + (1 − u)∫
1

0
𝜙2

g(t) dt.

2. The process Wn converges weakly in𝓁∞,loc((0, 1) × [0, 1]) to a Gaussian process with continuous
sample paths, covariance 𝜌, and mean

𝜇(s, t) = 𝜇𝜒 (s)𝜇𝜓 (t),

where

𝜇𝜒 (s) =
√

s(1 − s)
{1 − u

1 − s
1(s ≤ u) + u

s
1(s > u)

}
,

and

𝜇𝜓 (t) =
[
E
{
𝜙f (U)1(U ≤ t)

}
− E

{
𝜙g(U)1(U ≤ t)

}]
.

3. and

W n ⇝ W∞ ≡
∞∑

j=1

∞∑
k=1

(
Zjk + 𝜂j𝜏k

)2

j(j + 1)𝜋2k2 ,

where the Zjk are iid standard normal,

𝜂j = ∫
1

0
𝜇𝜒 (s)fj,𝜒 (s) ds,

and

𝜏k = ∫
1

0
𝜇𝜓 (t)fj,𝜓 (t) dt.

As with the null distribution, this limiting alternative distribution for W n can be computed
using the R package CompQuadForm. As an example we take fn to be standard normal and gn to
be normal with mean 𝜇n and SD 𝜎n. The two parameters are assumed to depend on n in such a
way that √

n𝜇n → 𝛾1 and
√

n(𝜎n − 1) → 𝛾2.

It is convenient to take hn = fn. Under the null the data X1, … ,Xn are iid standard normal. The
functions f̃ n and g̃n are then given by f̃ n ≡ 0 and
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g̃n(u) =
𝜙

{
Φ−1(u)−𝜇n

𝜎n

)
𝜙
{
Φ−1(u)

} .

Under these conditions we may check that condition A1 holds with 𝜙f = 0 and

𝜙g(u) = 𝛾2

[{
Φ−1(u)

}2 − 1
]
+ 𝛾1Φ−1(u).

6 LARGE SAMPLE BEHAVIOR OF Wmax,n

Proposition 1 shows that under the null hypothesis

min
{

ĉn

n
,

n − ĉn

n

}
→ 0,

in probability. By the definition of contiguity this conclusion also holds under any sequence of
contiguous alternatives. This means that, even for data from detectable (but not obvious) alter-
natives, our test statistic Wmax,n usually compares the distribution of a tiny fraction of the data
to that of the vast majority of the data even when the true change point is in the middle of the
sequence. We note, however, that the rate of convergence for this assertion appears from Monte
Carlo work to be quite slow so that the practical impact of the conclusion must be assessed more
carefully.

Lockhart (1991) shows that the statistic studied in Jaeschke (1979) has the property that the
difference between the power and the level of the corresponding test converges to 0 for any
sequence of contiguous alternatives. This motivates us to conjecture:

Conjecture 2. For any sequence of contiguous alternatives the difference between the power and
the level of a test based on Wmax,n goes to 0 as n → ∞.

In the Appendix we provide partial details showing how we would hope to prove our
conjecture, if we could.

Here is some Monte Carlo evidence from a simulation study. In Tables 2 and 3 we study four
alternatives at sample sizes n = 10, 50, 100, 200, 500. For each sample size we draw 10,000 samples
of size n. The first c observations in each sample have some parameter of the form a + b∕

√
n

and the remaining n − c have parameter a. We used the Gamma distribution and the normal
distribution and tried c = 0.5n and c = 0.3n for each distribution. In the Gamma case we tried
changing the shape parameter with a = 1 while holding the scale parameter at 1. The tables show
the expected convergence (although we have not computed the power predicted by our theory in
Section 5).

For the statistic Wmax,n the tables show, in the normal case, the power declining towards
the level (which is 5% here). For the Gamma cases studied here the power is rising but slowly
for distant alternatives (large values of b) and declining very slowly for less distant alterna-
tives (smaller values of b). Our experience in general is that for more distant alternatives
it requires larger (sometimes much larger) sample sizes before the power of Wmax,n begins
to drop.
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T A B L E 2 Powers (percentage) for change from Gamma (shape = 1 + b∕
√

n, scale=1) to Gamma(1,1) at
the indicated breakpoint, n∕2 in the top and 3n∕10 in the bottom. Powers are based on 10,000 samples and
either use Monte Carlo critical points (based on 100,000 samples) or asymptotic critical points as indicated by
‘MC’ or ‘Asym’. All tests are at the level 𝛼 = 0.05

Gamma, shape = 1 + b∕
√

n, break at n∕2

n = 10 n = 50 n = 100 n = 200 n = 500
b = 2 W n MC 11.70 13.96 14.83 14.71 15.91

W n Asym 11.79 13.59 14.61 14.67 15.70

Wmax,n MC 12.13 12.00 12.36 11.41 11.80

b = 3 W n MC 18.50 25.18 26.48 27.74 29.52

W n Asym 18.72 24.73 26.12 27.66 29.25

Wmax,n MC 18.62 22.05 21.84 21.34 21.88

b = 5 W n MC 34.95 52.67 57.39 61.28 65.62

W n Asym 35.26 51.97 57.06 61.18 65.35

Wmax,n MC 35.48 47.60 50.07 52.76 54.46

Gamma, shape = 1 + b∕
√

n, break at 3n∕10

b = 2 W n MC 9.24 11.29 11.73 11.83 13.21

W n Asym 9.42 10.86 11.47 11.79 13.10

Wmax,n MC 10.00 10.60 10.48 9.86 10.37

b = 3 W n MC 13.41 20.04 20.26 21.80 23.15

W n Asym 13.54 19.56 19.92 21.66 22.98

Wmax,n MC 14.81 18.07 17.38 18.00 17.97

b = 5 W n MC 22.42 41.53 45.54 48.59 53.34

W n Asym 22.75 40.87 45.11 48.52 53.07

Wmax,n MC 26.43 39.44 41.36 43.09 45.72

7 DISCUSSION

It is a general principle that procedures with optimal frequency properties are found by searching
among Bayes procedures. It is also generally the case that optimal Bayes procedures involve aver-
aging rather than maximizing. These heuristics motivate considering testing for change points by
using test statistics which are averages over possible change points rather than maxima. In this
paper we have used this heuristic to motivate an average two-sample goodness-of-fit statistic when
we are concerned about general changes in distribution, rather than simple changes in mean,
in a sequence of independent data points. We have shown the resulting test statistic has com-
putable large sample theory which can be used to provide very accurate p-values. Moreover we
have shown that averaging over possible change points is generally more sensitive to alternatives
than maximizing over possible change points.

Exceptions to the last conclusion arise when it is suspected a priori that a change might occur
near the end of the interval. In this case one might prefer to modify the statistics to focus more
weight near the ends of the interval. The statistic Wmax,n already focuses substantially on the ends



ERLEMANN et al. 17

T A B L E 3 Powers (percentage) for change from Normal(0,𝜎 = 1 + b∕
√

n) to Normal(0,1) at the
indicated breakpoint, namely, n∕2 in the top and 3n∕10 in the bottom. Powers are based on 10,000 samples
and either use Monte Carlo critical points (based on 100,000 samples) or asymptotic critical points as
indicated by ‘MC’ or ‘Asym’. All tests are at the level 𝛼 = 0.05

Normal, 𝝈 = 1 + b∕
√

n, break at n∕2

n = 10 n = 50 n = 100 n = 200 n = 500
b = 2 W n MC 5.61 5.97 5.65 5.66 5.91

W n Asym 5.69 5.77 5.40 5.61 5.83

Wmax,n MC 6.70 5.72 5.19 4.80 5.25

b = 3 W n MC 6.11 7.04 6.87 6.75 7.40

W n Asym 6.20 6.66 6.66 6.73 7.23

Wmax,n MC 7.67 6.49 5.71 5.36 5.55

b = 5 W n MC 6.76 9.55 11.10 11.32 13.56

W n Asym 6.79 9.24 10.79 11.25 13.33

Wmax,n MC 8.99 7.91 6.99 6.84 6.88

Normal, 𝝈 = 1 + b∕
√

n, break at 0.3n∕10

b = 2 W n MC 6.26 6.49 5.80 5.63 5.76

W n Asym 6.37 6.17 5.63 5.63 5.68

Wmax,n MC 7.12 6.08 5.72 5.22 5.42

b = 3 W n MC 6.91 7.37 6.74 6.41 6.95

W n Asym 7.09 7.10 6.51 6.39 6.80

Wmax,n MC 8.18 7.08 6.29 5.94 5.95

b = 5 W n MC 7.89 9.40 9.92 9.91 11.13

W n Asym 8.09 8.99 9.65 9.79 10.98

Wmax,n MC 9.80 8.96 8.04 7.67 7.19

but the average involved in W n could have weights added which are larger for c near 1 or near
n. We have not tried this though the same sort of large sample theory would apply but with a
different kernel replacing 𝜉 (see (7)); note, however, that the theory would require the new kernel
to be square integrable over the unit square.

It would be natural to investigate, as a referee has suggested, alternative sequences with F
and G fixed and c∕n (or (n − c)∕n) getting smaller with n. We would clearly expect Wmax,n to
outperform W n in such a limit.

The basic idea of averaging proposed here can be used in other contexts. Consider, for instance,
testing for a change in mean. We describe first the unrealistic situation in which the SD is known
and then how to handle estimation of that SD. Suppose X1, … ,Xn are independent and we wish
to test the null hypothesis that they are iid with unknown mean 𝜇 and known SD 𝜎 (which we
take to be 1 for notational convenience) against the alternative that the mean changes after the
data point number c. The usual Z statistic is



18 ERLEMANN et al.

Tc =
(

X1 + · · · + Xc

c
− Xc+1 + · · · + Xn

n − c

)
∕
√

1
c
+ 1

n − c
.

Our proposal would be to use the two sided test

T2 = 1
n − 1

n∑
c=1

T2
c .

This statistic has mean 1 under the hypothesis of no change in mean. Arguments similar to those
in Section 2 show this statistic has the same limiting distribution, under the null, as the well
known Anderson–Darling goodness-of-fit statistic.

In the more reasonable case where the (assumed common) SD is unknown will use the
statistic

T2
s = T2∕s2,

where s2 is some estimate of 𝜎2 which is consistent under the null hypothesis. The sam-
ple SD is one possibility though this can be badly biased under the alternative. An estimate
which is rather less precise but still likely to be quite accurate under the alternative hypothesis
is

s2
1 =

∑n−1
i=1 (Xi+1 − Xi)2

2(n − 1)
.

Notice that under the alternative hypothesis all but one term in this average is an unbiased esti-
mate of 𝜎2; the bias in the estimator is Δ2

𝜇∕(2n) where Δ𝜇 denotes the change in the mean at the
true change point. Under the null the estimate s2

1 is unbiased. The statistic T2
s also has the same

limiting distribution as the well known Anderson–Darling goodness-of-fit statistic when the null
holds.

Other nonparametric goodness of fit tests can be used instead of the Cramér–von Mises test.
For example a Bayesian test Al Labadi et al. (2014), likelihood tests Csörgö and Horváth (1997)
or other two-sample tests Büning (2002). Sample size, the kind of alternative distribution from
which we expect the data to come and the expected index of the change point should likely be
used to choose the best test in any particular context. Finding the asymptotic distribution for
less well-known tests can be difficult. Bootstrapping can be used instead. This deserves further
research.
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We now give the steps in the proof of Theorem 1. Recall the definitions of Fc at (1), Gd at (2),
Hn at (3), Zn at (5), and Wn at (6). For given c the two sample test statistic is given by

Wn(c) = ∫
1

0
{Wn(c∕n, t)}2 dHn(t).

Let 𝜈n be the probability measure on (0, 1) putting mass 1∕(n − 1) on each point of the form c∕n
for 1 ≤ c ≤ n − 1. The statistic W n is then

W n = ∫
1

0 ∫
1

0
{Wn(s, t)}2 dHn(t) d𝜈n(s).

Each step below consists of a statement followed by a detailed proof. In each case the assertions
are intended to hold under the null hypothesis and the assumption that the common distribution
H is continuous.

Step 1: For any sequence cn with 𝜖n ≡ cn∕n → 0 we have{
∫

𝜖n

0
+ ∫

1

1−𝜖n

}
{Wn(c∕n, t)}2 dHn(t)d𝜈n(s)

=
∑cn

i=1Wn(i) +
∑n

i=n+1−cn
Wn(i)

n − 1
→ 0, (A1)

in probability. Under the null hypothesis the mean of Wn(c) is 1∕6 + 1∕(6n); see Anderson (1962,
p. 1150). The expected value of (A1) is thus

2cn

n − 1

(1
6
+ 1

6n

)
→ 0.

Step 2: The integral

W∞ = ∫
1

0 ∫
1

0
W

2(s, t)dt ds,

is almost surely finite. All the variates involved are nonnegative so

E(W∞) = E
(
∫

1

0 ∫
1

0
W

2(s, t)dt ds
)

= ∫
1

0
𝜒(s, s) ds∫

1

0
𝜓(t, t) dt = 1∕6 < ∞.

Step 3: For any sequence 𝜖n tending to 0 as n → ∞ take expectations to see{
∫

𝜖n

0
+ ∫

1

1−𝜖n

}
∫

1

0
W

2(s, t)dt ds → 0 in probability.

Step 4: The tensor product kernel

𝜌 = 𝜒 ⊗ 𝜓(s, t; s′, t′) = 𝜒(s, s′)𝜓(t, t′),

is compact and has eigenvalue-eigenfunction pairs
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𝜆jk = 1
j(j + 1)

1
𝜋2k2 , fjk(s, t) = f𝜒,j(s)f𝜓,k(t),

indexed by j, k each running from 1 to ∞. It follows as usual that the family

Zjk = 1√
𝜆jk ∫

1

0 ∫
1

0
W(s, t)fjk(s, t)dt ds,

defines a family of independent standard normal variables. Parseval’s identity is

∫
1

0 ∫
1

0
W

2(s, t)dt ds =
∞∑

j=1

∞∑
k=1

Z2
jk

j(j + 1)𝜋2k2 .

Step 5: For each fixed 𝜖 > 0 we have

∫
1−𝜖

𝜖
∫

1

0
W

2
n(s, t)dHn(t) d𝜈n(s) −

1
n − 1

∑
n𝜖<i<n(1−𝜖)

W2
n(i) → 0,

in probability. This is an easy consequence of the fact that for i∕n ≤ s < (i + 1)∕n we have
∫ 1

0 W2
n(s, t)dFn(t) = W2

n(i).
Step 6: For each fixed 𝜖 > 0 we have

∫
1−𝜖

𝜖
∫

1

0
W

2
n(s, t)dHn(t) d𝜈n(s) − ∫

1−𝜖

𝜖
∫

1

0
W

2
n(s, t) dt ds → 0.

Under the null hypothesis Hn converges weakly to the uniform law on the unit interval. Moreover
𝜈n converges weakly to Lebesgue measure on the unit interval. The weak convergence result in
Theorem 2 uses a topology of uniform convergence on compacts such as the set [𝜖, 1 − 𝜖] × [0, 1]
and this implies the desired result.

Step 7: For each fixed 𝜖 > 0 we have

∫
1−𝜖

𝜖
∫

1

0
W

2
n(s, t)dt ds ⇝ ∫

1−𝜖

𝜖
∫

1

0
W

2(s, t) dt ds.

This is a consequence of weak convergence and the continuous mapping theorem.
Step 8: There is a metric d on the set of probability measures on the real line for which the

metric topology is the topology of weak convergence. For each fixed 𝜖 > 0 we have

d
(

(
∫

1−𝜖

𝜖
∫

1

0
W

2
n(s, t)dt ds

)
,

(
∫

1−𝜖

𝜖
∫

1

0
W

2(s, t) dt ds
))

→ 0.

There is then a sequence 𝜖n → 0 so slowly that this convergence continues to hold with 𝜖 replaced
by 𝜖n and so that the convergences in Steps 5 and 6 continue to hold. Notice that by Step 3

d
(

(
∫

1−𝜖n

𝜖n
∫

1

0
W

2(s, t) dt ds
)
,

(
∫

1

0 ∫
1

0
W

2(s, t) dt ds
))

→ 0.

for this sequence.
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Step 9: For the sequence chosen in Step 8 we therefore have

1
n − 1

∑
n𝜖n<i<n(1−𝜖n)

W2
n(i) ⇝ ∫

1

0 ∫
1

0
W

2(s, t) dt ds.

In view of Step 1 we see

W n ⇝ ∫
1

0 ∫
1

0
W

2(s, t) dt ds.

The law of the limit is, by Step 4, that of

∞∑
j=1

∞∑
k=1

Z2
jk

j(j + 1)𝜋2k2 .

This completes the proof of Theorem 1. ▪

Proof of Theorem 3. This is standard so we present only an outline. Conditions A1 and A2 can be
used to prove that under the null

Λn − Sn → 0,

in probability. The Lindeberg Central limit theorem then establishes the first conclusion of the
Theorem. For more detailed arguments in a similar context see Guttorp and Lockhart (1988).
Thus, under the conditions of the theorem the sequence of alternatives is contiguous to a sequence
for which the null holds.

Contiguity implies that tightness under the null sequence extends to tightness under the
alternative sequence; see theorem 3.10.7 in van der Vaart and Wellner (1996, p. 405) which is a
version of LeCam’s Third Lemma. This proves tightness, under the alternative, of the sequence
of processes Wn. Thus we need only compute the limiting finite dimensional distributions under
the alternative sequence. As usual we apply LeCam’s Third Lemma (again similar arguments
are in Guttorp & Lockhart, 1988) to reduce the problem to studying the joint law, under the null
hypothesis, of Λn and the vector (Wn(s1, t1), … ,Wn(sk, tk)) for an arbitrary sequence of time
points t1, … , tk all in [0, 1].

Theorem 2 shows that under the null hypothesis

(Wn(s1, t1), … ,Wn(sk, tk)) ⇝ MVNk(0,RW )

where RW is the k × k matrix with i, jth entry

RWij = 𝜌W (si, ti; sj, tj).

The Lindeberg Central Limit Theorem may now be used to show that the vector

(Sn,Wn(s1, t1), … ,Wn(sk, tk)) ,
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converges in distribution to multivariate normal with mean vector (−𝜏2∕2, 0, … , 0) and variance
covariance matrix of the form [

𝜏2 c⊤

c RW

]
.

The vector c is the limiting covariance which is found, after some algebra, to be

ci = 𝜇(si, ti) = 𝜇𝜒 (si)𝜇𝜓 (ti).

This completes the proof of the second assertion of the Theorem. ▪

The third assertion is standard; see, for example, Guttorp and Lockhart (1988).

Proof of Proposition 1. Fix 0 < 𝛿 < 1∕2 and let An denote the event {𝛿 ≤ ĉ∕n ≤ 1 − 𝛿}. We will
show

lim
n→∞

P(An) = 0.

This will prove (9) in Proposition 1. To this end fix 0 < 𝜖 < 𝛿. Define

Mn = sup
𝛿≤s≤1−𝛿∫

1

0

B2
n(s, t)

s(1 − s)
dt,

and

M′
n(𝜖) = sup

𝜖≤s≤𝛿∫
1

0

B2
n(s, t)

s(1 − s)
dt. (A2)

Then

An ⊂ {M′
n(𝜖) < Mn}.

Weak convergence of Bn to B guarantees that

lim sup
n→∞

P(An) ≤ lim sup
n→∞

P{M′
n(𝜖) < Mn} ≤ P(M′(𝜖) ≤ M),

where

M = sup
𝛿≤s≤1−𝛿∫

1

0

B2(s, t)
s(1 − s)

dt and M′(𝜖) = sup
𝜖<s≤𝛿∫

1

0

B2(s, t)
s(1 − s)

dt.

We claim that

lim
𝜖→0

P(M′(𝜖) ≤ M) = 0. (A3)

This will prove lim supn→∞P(An) = 0 and (9) in Proposition 1.



24 ERLEMANN et al.

Assertion (A3) would follow from a law of the iterated logarithm (as s → 0) for the process

s →
∫ 1

0 B2(s, t) dt
s(1 − s)

.

While we expect such a result to hold we have not tried to prove anything along those lines. We
will establish instead the lower bound

lim sup
s→0 ∫

1

0

𝜋2B2(s, t)
2 log{log(1∕s)}s(1 − s)

dt ≥ 1, (A4)

almost surely which is enough to imply (A3). We enumerate the steps needed:
Step 1: Use the Cauchy–Schwarz inequality to see that

∫
1

0

B2(s, t)
s(1 − s)

dt = ∫
1

0

{Z(s, t) − sZ(1, t)}2

s(1 − s)
dt

≥ ∫
1

0

Z2(s, t)
s(1 − s)

dt + s
1 − s∫

1

0
Z

2(1, t) dt

− 2s
1 − s

√
∫

1

0

B2(s, t)
s(1 − s)

dt∫
1

0
Z2(1, t) dt.

From this we deduce that it is enough to show that

lim sup
s→0 ∫

1

0

𝜋2Z2(s, t)
2 log{log(1∕s)}s

dt ≥ 1 almost surely. (A5)

Step 2: For each s the process t → Z(s, t)∕
√

s is a Brownian Bridge. If we put

W(s) = ∫
1

0

Z2(s, t)
s

dt,

then each W(s) has the same distribution as the limit law of the usual Cramér–von Mises statistic
which is the law of

T ≡
∞∑

j=1
𝜆jZ2

j . (A6)

In this representation the Zj are iid standard normal and the eigenvalues 𝜆j are given, for j =
1, 2, … , by 𝜆j = 1

𝜋2j2 .
Step 3: The process Z has independent increments in s. For 0 < s′ < s the process

t → Z(s, t) − Z(s′, t)√
s − s′

.

has the same law as
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t → Z(s, t)√
s
.

Step 4: Now fix r < 1 to be chosen later. Define sn = rn for n = 0, 1, … . Put

Wn = ∫
1

0

Z2(sn, t)
sn

dt,

and

W∗
n = ∫

1

0

{Z(sn, t) − Z(sn+1, t)}2

sn − sn+1
dt.

All of these variables have the law of W(s) described above.
Step 5: Fix 𝜖 > 0. The function

f (r) =
√

1 − r
√

1 − 𝜖∕2 −
√

r
√

1 + 𝜖∕2, (A7)

has the property that f 2(0) = 1 − 𝜖∕2. Choose r so small that f 2(r) = 1 − 𝜖. Let An be the event
W∗

n > 2(1 − 𝜖∕2)𝜆1 log(log(1∕sn)) and Bn be the event Wn+1 ≤ 2(1 + 𝜖∕2)𝜆1 log(log(1∕sn)). Then
for this choice of r

(a) The event that An occurs infinitely often (i.o.) has probability 1.
(b) The event that Bn occurs for all large n has probability 1.
(c) So the event An ∩ Bn i.o. has probability 1.

Step 6: On the event An ∩ Bn we have Wn ≥ 2(1 − 𝜖)𝜆1 log(log(1∕sn)) so that this event occurs
infinitely often. This establishes (A5).

It remains to finish Step 5 by verifying that (a), (b), and (c) of that step all hold. By construction
the events An;n ≥ 1 are independent. Moreover, with T as defined in (A6) we have T > 𝜆1Z2

1.
Therefore

P(An) = P(T > 2(1 − 𝜖)𝜆1 log(log(1∕sn))
≥ P(Z2

1 > 2(1 − 𝜖) log(log(1∕sn)))

= 2P
{

Z1 >
√

2(1 − 𝜖) log(log(1∕sn))
}
.

We can then use Mill’s inequalities for the tail of the normal distribution to show that for all n
sufficiently large

P(An) ≥ exp
[
−(1 − 𝜖∕2)

{
log(n) + log(log(1∕r))

}]√
(1 − 𝜖∕2)𝜋

{
log(n) + log(log(1∕r))

} .

Summing over n we get +∞. The converse to Borel–Cantelli (for independent events) then proves
assertion (a) of Step 5.

For event B we claim
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∑
n

P(Bc
n) =

∑
n

P
{

T > 2(1 + 𝜖)𝜆1 log(log(1∕sn))
}
< ∞,

which would prove statement (b) in Step 5. We use a version of Chernoff’s bound. The moment
generating function of T is, for all t < 1∕(2𝜆1),

MT(t) =
∏
k≥1

1√
1 − 2𝜆kt

.

Markov’s inequality then shows that for all such t we have

P(T > 𝜆1x) ≤ M(t) exp(−t𝜆1x).

Take logs to get

log(P(T > 𝜆1x)) ≤ −1
2

log(1 − 2𝜆1t) − t𝜆1x − 1
2
∑
k≥2

log(1 − 2𝜆kt). (A8)

Choose t to minimize the first two terms of (A8). The minimum occurs at

t = t(x) = x − 1
2𝜆1x

.

Evaluating (A8) at t(x) and using 𝜆k∕𝜆1 = 1∕k2 we get the inequality

log(P(T > 𝜆1x)) ≤ log(x)
2

− x − 1
2

−
∑
k≥2

log{1 − (1 − 1∕x)∕k2}.

Careful analysis of the right-hand size of this inequality shows that for

xn = 2(1 + 𝜖∕2)
{

log(n) + log(log(1∕r))
}
,

we have ∑
n

P(Bc
n) < ∞.

Assertion (b) of Step 5 follows by the Borel–Cantelli Lemma.
Finally we check assertion (c) of step 5. Straightforward algebra shows that

Wn = (1 − r)W∗
n + rWn+1 +

2
√

sn(sn − sn+1)
sn ∫

1

0

Z(sn+1, t)√
sn+1

. (A9)

Apply the Cauchy–Schwarz inequality to the final integral in (A9) to see that

Wn ≥ (1 − r)W∗
n + rWn+1 − 2

√
r(1 − r)W∗

n Wn+1 (A10)

=
(√

(1 − r)W∗
n −

√
rWn+1

)2
. (A11)
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On the event An ∩ Bn the quantity inside parentheses in (A10) is at least

√
(1 − r)2(1 − 𝜖) log(log(1∕sn)) −

√
r ⋅ 2(1 + 𝜖) log(log(1∕sn)

= f (r)
√

2 log(log(1∕sn)),

where f (r) is defined at (A7). For the value of r chosen at the start of step 5 we then find that on
An ∩ Bn we have

Wn > 2(1 − 𝜖) log(log(1∕sn)).

This finishes the proof of Assertion (9) of Proposition 1. Assertion (10) follows by symmetry. The
argument leading to (A12) shows that there is a sequence 𝜖n tending to 0 for which M′

n(𝜖n) →
∞ in probability where M′

n(𝜖) is defined at (A2). This is enough to prove Assertion (11) of
Proposition 1. ▪

A.1 Evidence for Conjectures 1 and 2
For 𝜖 > 0 we define

In(𝜖) = {c ∶ 1 ≤ c ≤ n𝜖 or 1 ≤ n − c ≤ n𝜖}.

Proposition 1 establishes that there is a sequence 𝜖n ↘ 0 such

lim
n→∞

P(ĉn ∈ In(𝜖n)) = 1.

Thus

P
[
Wmax,n = max{Wn(c) ∶ c ∈ In(𝜖n)}

]
→ 1. (A12)

We now outline the steps in our strategy for proving the conjecture before giving some
evidence for each step.

Step 1: There are constants an and bn and a random variable V such that

anWmax,n − bn ⇝ V ,

and V has a continuous limit distribution.
Step 2: So

an max{Wn(c) ∶ c ∈ In(𝜖n)} − bn ⇝ V .

Step 3: There are random variables W̃ n(c) such that under the null hypothesis

an max{|Wn(c) − W̃ n(c)| ∶ c ∈ In(𝜖n)} → 0,

and such that for each c ∈ In(𝜖n) the variable W̃ n(c) is measurable with respect to the 𝜎 field
generated by Xc, c ∈ In(𝜖n). To be specific we define, for c < n∕2,
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W̃ n(c) = ∫
1

0
c{Fc(u) − u}2 du,

and, for c > n∕2,

W̃ n(c) = ∫
1

0
d{Gd(u) − u}2 du.

(Recall the shorthand d = n − c.)
Step 4: Define

Λ̃n =
∑

n𝜖n<c≤c0

𝜙f (Xc)∕
√

n −
∑

c0<c<n−n𝜖n

𝜙g(Xc)∕
√

n.

The log-likelihood ratio Λn satisfies

Λn − Λ̃n → 0,

in probability, under the null hypothesis.
Step 5: Since W̃max is independent of Λ̃n we may apply LeCam’s third lemma to show that

under the sequence of contiguous alternatives we have

anWmax,n − bn ⇝ V .

Step 6: Since this limit law is the same as under the null we must power minus level tends to 0.
For some of these steps we can fill in partial evidence.
For Step 1 we would hope to follow the ideas in Jaeschke (1979) to show that the limit V has

an extreme value distribution. In that paper the maximizer of the usual empirical process, stan-
dardized by dividing by its SD, is shown to have an extreme value limit with constants analogous
to an and bn involving

√
log log n and log log log n.

Step 2 is a consequence of Step 1 and (A12).
In Step 3 we would hope to use the closeness of Hn to the uniform distribution to convert the

dHn(u) integrals to du integrals. Then we write

cd
n ∫

1

0
{Fc(u) − Gd(u)} 2 du,

as a sum of three terms

T1 = d
n∫

1

0
c{Fc(u) − u}2 du,

T2 = c
n∫

1

0
d{Gd(u) − u}2 du,

and

T3 = −2
√

cd
n ∫

1

0

√
c {Fc(u) − u} ⋅

√
d {Gd(u) − u} du.
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The integrals in T1 and T2 are both one sample Cramér-von Mises statistics so they are on the
order 1. For any sequence c = cn such that cn∕n → 0 the coefficient in front of T2 is o(1). So T2 is
negligible relative to T1. The Cauchy–Schwarz inequality then shows T3 is negligible relative to
T2. There is a parallel argument when cn∕m → 1.

Step 4 is not conjecture; its proof is straightforward from the assumptions of the Conjecture.
Steps 5 and 6 are exactly parallel to the arguments in Lockhart (1991).


