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Abstract

An Automatic Well Planner (AWP) is used to efficiently adjust pre-determined well paths to honor near-well properties and
increase overall production. AWP replicates modern geosteering decision-making where adjustments to pre-programmed
well paths are driven by continuous integration of data obtained from logging-while-drilling and look-ahead technology. In
this work, AWP is combined into a robust optimization scheme to develop trajectories that follow reservoir properties in a
more realistic manner compared to common well representations for optimization purposes. Core AWP operation relies on
an artificial neural network coupled with a geology-based feedback mechanism. Specifically, for each well path candidate
obtained from an outer-loop optimization procedure, AWP customizes trajectories according to the particular geological
near-well properties of each realization in an ensemble of models. While well placement searches typically rely on linear
well path representations, AWP develops customized trajectories by moving sequentially from heel to the toe. Analog to
realistic drilling operations, AWP determines subsequent trajectory points by efficiently processing neighboring geological
information. Studies are performed using the Olympus ensemble. AWP and the two derivative-free algorithms used in
this work, Asynchronous Parallel Pattern Search (APPS) and Particle Swarm Optimization (PSO), are implemented using
NTNU’s open-source optimization framework FieldOpt. Results show that, with both APPS and PSO, the AWP solutions
outperform the solutions obtained with a straight-line parameterization in all the three tested well placement optimization
scenarios, which varied from the simplest scenario with a sole producer in a single-realization environment to a scenario
with the full ensemble and multiple producers.

Keywords Machine learning - Artificial neural networks - Well placement optimization - Tailored trajectories -
Reservoir simulation - Robust optimization - Ensemble optimization - Production optimization -
Optimization with uncertainty
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including automated history matching. The combined
effect of increased and more frequent data acquisition
together with an increase in computational power has paved
the way for real-time closed-loop reservoir management
[1,20].

Another shift is the increased awareness and capabilities
to quantify and characterize uncertainty within the subsur-
face. This shift expands on classical engineering principles,
and often uses an ensemble to capture the uncertainties
related to properties, structure, and related features. Geir
Evensen’s work within this domain has been fundamental
for operators to change their best practices in daily reser-
voir engineering workflows [7, 12]. In this paradigm, the
uncertainty in a reservoir is represented by an ensemble of
multiple realizations [13, 30]. The ensemble may contain
equiprobable realizations of the actual reservoir or different
weighting factors may be assigned to different realiza-
tions [11]. As each realization is a plausible representation
of reality, all novel information acquired during the develop-
ment of a field needs to be assimilated into the set of models
such that the alterations to former development plans can be
implemented with increased reliability [6].

The uncertainty characterization described in terms
of ensembles was firstly applied in history-matching
methodologies [17, 24, 25] within closed-loop reservoir
management workflows, see e.g. [16, 20, 32]. The focus
was mainly on incorporating new information from direct
and indirect sources such as seismic, pressure, and rate
measurements, to accurately match historical data with
numerical models. After history-matching the models, they
can be used to forecast the production of the reservoir
with a discrete representation of the uncertainty, namely the
ensemble of updated models.

An approach to optimize the expected performance of
the asset is known as robust optimization [8, 9, 28],
which consists of maximizing the weighted average of the
objective functions corresponding to the ensemble mem-
bers. In robust optimization, the uncertainty is represented
with a discrete approximation of the average performance.
Thus, the number of function evaluations, i.e., the computa-
tional requirement of the method, increases proportionally
to the size of the ensemble. This implies that, when geolog-
ical uncertainty is represented by an ensemble, any increase
in the computational complexity of the simulation model
must be multiplied by the number of realizations. The over-
all complexity might become computationally intractable
in the case of robust optimization of full-fledged models,
where each cost function evaluation requires the simulation
of the whole ensemble of models.

Well placement and control problems may be solved
using derivative-free methodologies [3, 10]. The compu-
tational demand required by this type of methodologies
commonly depends on the number of decision variables.
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This usually limits the level of refinement, i.e., the num-
ber of degrees of freedom that can be imposed to treat
the problem. Such limitations favor low-order well param-
eterizations such as the use of a straight-line for well
trajectories and control steps spanning longer time periods.
The computational demand due to problem dimension is
particularly relevant for well control problems where the
number of decision variables tends to be large, leading to
computational challenges even on a single realization.

With regard to modern drilling operations, both the
general capabilities of information acquisition [29] and the
development of specialized tools with increased depth of
investigation and look-ahead capabilities have improved
significantly [23]. These advances have enabled operators to
make decisions in real-time to alter the drilling direction by
the continuous incorporation of new data into the decision
process. This creates additional degrees of freedom for
decisions in modern drilling routines, where information
collected in the drilling process can significantly affect the
optimized pre-drill plans, as these have been developed
without the updated information provided by the logging-
while-drilling tools.

These different factors influence how well placement
optimization can be conducted. A standard way of
performing well placement optimization over an ensemble
of models would be to apply the same trajectory to all
realizations. However, such an implementation does not
discriminate with respect to realization-specific properties
such as permeability and porosity distribution, or distance
to boundary layers and faults in the near-well region.
Moreover, given the initial starting point for the well and
a general overall direction, with modern logging tools
the well trajectory will be affected by local information
obtained during the drilling process. This can be mimicked
in ensemble well placement optimization by enabling for
individual well trajectories in the different realizations.

Actually customizing well trajectories for each realiza-
tion requires a highly-refined well parameterization that can
enable numerous individual breakpoints to account for the
different features of each realization. Obviously, this signif-
icantly increases the number of decision variables required
for the well placement problem, making this approach infea-
sible when using typical derivative-free methods. An alter-
native is to develop tailored well trajectories by adaptive
adjustment of well paths given the initial well starting point
and overall direction. In this approach, the starting point
and direction are determined by the optimization procedure,
whereas the well description tailored for each realization
is determined by a separate automatic procedure. By doing
so, the optimization and simulation domains can have dif-
ferent scales with respect to well parameterizations, i.e.,
well descriptions can be coarser in the iterative layer that
operates on optimization variables, while simulations are
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performed using highly-refined, realization-specific, well
trajectories [22].

This work combines the concepts of geological uncer-
tainty captured by an ensemble of realizations with the
main concepts of adaptive geology-based well path steer-
ing. In this implementation, the continuous incorporation
of data gathered by the geosteering mechanism is provided
by a fictive drilling operation. The proposed methodol-
ogy, termed Automatic Well Planner (AWP), consists in
refining a coarse well trajectory provided by the optimiza-
tion routine. Analog to common geosteering operations,
the refined new trajectory is generated through a step-
wise integration of drilling information. The AWP relies on
data-based machine learning techniques to make informed
decisions on how to adapt the well trajectory to near-well
geological features. Embedding the AWP within a robust
optimization scheme gives the ability to adapt to different
geological realization while maintaining a reduced num-
ber of well path variables, i.e., the same number of well
path variables as a coarse idealized straight-line well. For
single-realization well placement optimization, introducing
the AWP within the optimization loop has been shown
to improve cost function progression and to yield higher
cost function values [22]. This work expands this approach
for well placement optimization into a robust optimiza-
tion scheme. The final optimization methodology is also
expected to be more relevant for any realistic case, as the
individual well paths mimic an actual drilling process which
adapts to information acquired near the drill bit.

In Section 2 we presents the novel AWP method for
well parameterization. In Section 3 is a description of
the robust optimization scheme with AWP, in addition to
the mathematical formulation of the overall optimization
problem. In Section 4 presents the reservoir ensemble
and the problem setup. In Section 5 we present a
verification study of the parameterization. In Section 6
we highlight two case studies where optimization runs
using AWP are compared against runs using a straight line
well representation. Finally, in Section 7 we present the
conclusions of the work.

2 Automatic well planner

AWP is an adaptive parameterization method capable of
efficiently tailoring well trajectories for different geological
realizations based on near-well properties. This section
describes the overall functionality of the methodology. It
starts by presenting an overview of the AWP, and continues
with a brief description of its main components.

Note that the focus of this article is on extending the AWP
concept to deal with geological uncertainty. Therefore, this
section treats the key ingredients of the method that are

related to its incorporation into a robust well placement
optimization scheme, and omits describing the training of
the neural network. Moreover, the focus is on describing
how the AWP translates the well heel and toe coordinates
into a refined trajectory and its tailoring to the specific
properties of each realization of an ensemble. The interested
reader is referred to [22] for a detailed description of the
AWP methodology.

2.1 Overall AWP procedure

Commonly, well placement searches are conducted using
linear well path representations based on real-valued well
heel and toe coordinates. Analog to drilling operations, the
AWP determines a custom trajectory by adapting this path
using a sequence of steps from the well heel towards the
toe. This search is guided by a neural network which is
trained to improve the production and well configurations
based on surrounding geological information, e.g., higher
permeability, porosity or oil saturation.

The overall AWP procedure is illustrated in the flow
chart depicted in Fig. 1. During the initialization phase, the
current location x, is set to the well heel x;, analog to
the starting position of drilling within the reservoir sands.
The procedure continues with the data acquisition phase,
in which information p is gathered from the surrounding
region of the current location. The information is collected
at points in a set of directions S = {s} from the current

Initialize: Set current lo-
cation x, = x5, and ¢ =0

+
Information Acquisition:
Gather information ,
p(s + x¢) for a set
of directions s € S

Move: Update current
position x, = x,

Decide: Allow the
artificial neural network
to make a decision
on the elevation of
the next line-segment

Constraints:
Any
violated?

NS
Locate: Based on

decision determine
next location x,,

Target
check: Toe
reached?

Return path {x;}

|<_

Fig. 1 A flow chart indicating the iterative AWP procedure to obtain
the well path trajectory
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location x.. The collected information is all within a
distance d,, from the current location, thus ||s| < d,, for
all directions s € S. The collected information {p(s +
X,) | s € S} is processed by a previously trained artificial
neural network to decide the direction of the next line-
segment. The procedure stops if the next location x,, is
sufficiently close to the target, i.e., the well toe, or if any
constraints would be violated when stepping to the next
location. Otherwise, the simulated drill-bit is moved to the
next position and the procedure continues iteratively until
the stopping criteria is reached.

2.2 Properties

The virtual drilling process requires information about the
reservoir surrounding the drill bit in order to make its
decisions. The user defines which property or combination
of properties should be collected and used for the decision
process. We assume the spatial distributions of these
properties are defined within the reservoir model as property
maps p(X). Property maps can be based on discrete grid-
based properties, e.g., a permeability or porosity grid, or a
continuous relationship; e.g., a geometric relationship like
the height from the top of the reservoir.

2.3 Virtual drilling

The virtual drilling generates a well trajectory based on a
pre-determined set of coordinates which represent the well
start-point xj,, i.e. the heel, and the well end-point, i.e., the
toe, X;, of the perforated part of a well. We consider all well
paths as locally straight, i.e., they are defined by a ordered
set of positions {xp, X1, X2, ..., X,—1, X, }, where the consec-
utive positions define connected straight lines x;_; — X;.
This type of well paths can alternatively be described in
terms of a set of azimuth @, elevation ® and lengths L,
together with the initial x;, position, see e.g., [, 14, 18].

The AWP procedure sequentially calculates new posi-
tions at each iteration i such that next direction given by
the angles ¢; and 6; are chosen by a trained neural network,
while we keep the line segment length constant as /. Notice
that the connected line segments described by ® = {6;},
@ = {¢;} and [ from x; have a unique mapping back to the
ordered set of positions {Xp, X1, X2, ..., X,—1, X, }. In other
words, the AWP, here denoted by N, can be viewed as a
mapping N : X;, X, — {Xp, X1, X2, ..., Xy—1, Xp}. A result-
ing well trajectory from the AWP procedure is illustrated in
Fig. 2.

The goal of the AWP is to maximize the objective
function

Zx-eN(xh x) P (xi) )
! R b (x, , 1
Z( NG P .
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Fig. 2 This figure illustrates the AWP well trajectory (in red)
vs. the well trajectory with the Straight-Line approach (in black).
The blue circle indicates the target area. Brighter colors indicate
high permeability good sands, while the darker colors indicate low
permeability sands

where |N(X;,X;)|| = n represents the number of well
segments. The outer sum runs over the training set of heel
and toe coordinates in relevant reservoir models [22]. The
term b, (X,,) is defined as:

b[(Xn) = { Rg ||Xl‘ - Xn” < tg (2)

2
(- (X —Xp)) ||Xt_xn||>tg ,

where R, is a success reward, o is a weight of each
direction, and n is the final position in the generated well
path N(xp). The function b; conditions AWP solutions
towards well paths that end up in the vicinity of x;.

In this work we keep the azimuth constant:

Xt — X

o =¢ =arctan< ! h) , 3
Yt — Yh

where X, = (xp, yn,zn) and X, = (x;, yr, z¢). This

means that the search is conducted in a two-dimensional
space. The primary reason for omitting the azimuth in this
application of the AWP procedure is related to the grid-
block dimensions. The Olympus model have 50m x 50m x
3m grid blocks [15], providing our methodology with too
coarse information in the horizontal direction relative to the
vertical direction to properly adapt to the surrounding flow
properties in the horizontal direction. We therefore omit
the azimuth, which reduces the computational burden of
training the AWP significantly. In the future it would be
interesting to include the azimuth for models that have the
necessary horizontal resolution (e.g., a geomodel) to affect
the AWP decisions.

2.4 Data acquisition

The key operations of the AWP method are the data
acquisition and the processing of the gathered information.
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As described above, during the virtual drilling the data
related to the property map p is collected from neighboring
locations {x. + s | s € S} of the drill bit location X, within
a given pre-determined radius dy, (set to 100 meters in this
work). The neighboring locations are illustrated as blue dots
in Fig. 3.

2.5 Artificial neural network

The AWP utilizes an artificial neural network (ANN) as
a decision-maker. Since we keep the azimuth and length
constant as ¢ and /, the only decision to be made by the
neural network is the elevation angle 6; of the next line-
segment. This decision on the local elevation is bounded,
as illustrated in Fig. 3(b), whereas Fig. 3(c) illustrates
the former decisions made in the sequential procedure.
Based on the information from the data acquisition process
the ANN evaluates the current trajectory versus the new
information. Based on this evaluation step, the artificial
neural network gives a recommendation on whether to
build or drop the elevation of the virtual drilling bit. This
process is iterated for every 12 meters (the approximate
length of drill pipe) until the virtual drilling simulation has
achieved a full pass from heel to toe and a final trajectory
is generated.

2.6 Run-time

When developing the AWP we need to train the decision-
maker to be capable of providing the appropriate design

Fig.3 The well trajectory
consisting of steps of equal
length /, as generated by the
AWP methodology. The set of
sampling points for the next
decision are indicated by blue
circles in (a). Dog-leg severity
bounds for the next decisions are
indicated by cyan colored bars,
enlarged in (b). The change in
elevation at the previous
decision is enlarged in (c)

adjustments. The training of the ANN is the primary compu-
tational burden. Depending on computational resources, the
training time ranges from minutes to hours. Once the ANN
has been successfully trained, however, the AWP methodol-
ogy typically designs well trajectories within milliseconds.

2.7 Constraints

The AWP method is a sequential decision-making procedure
which is also subject to multiple constraints. There are restric-
tions on how far the calculated trajectory can deviate from the
straight line between the input heel and toe locations, on the
distance between the end point of the AWP well path and
the input toe value, on the total well length, and on the dog-
leg-severity. All of these constraint are formulated below.
Importantly, since the ANN is trained with these constraints,
these are embedded in the procedure and are therefore
implicitly enforced. In the unlikely case that any of the
constraints is violated, we revert from the AWP-calculated
trajectory to the straight line representation.

2.7.1 Deviation constraint

A deviation constraint is imposed in order to prevent the new
locations calculated by the AWP from deviating excessively
from the well heel and toe coordinates in the original
trajectory:

(i —xp) X (% —Xp)l

<tg VX;e Nxp,x) . (4)
lIx; — x|
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The parameter #; can be adjusted to allow for more or less
flexibility in straying away from the straight line between
the given heel and toe. In this work, the parameter #; is set
to 20 meters.

2.7.2 Length constraint

A length constraint factor 8 is imposed in order to prevent
the length of the AWP well from increasing unrealistically:
|1X: — Xall

IN G, X))l < =————8 - &)

Here the B parameter relates the number of segments
IN(xp)|l in the AWP well path to the number of segments
of length / in a straight line between the heel and toe. In this
work we limited the AWP by setting 8 to 1.05.

2.7.3 Dog-leg-severity constraint

The dog-leg severity (DLS) is a measure of how much the
well can change its trajectory over a given length. A bound
constraint is imposed to ensure a realistic DLS for drilling
operations:

10; = Oi—1ll + i — piall <yl . (6)

where 0;, 0;_1, ¢;, and ¢;_ are the angles of consecutive
steps. Since the azimuth is kept constant, the bound is
applied to the elevation angle 6 only. The parameter y gives
the DLS bound for allowed change in angle per well-length.
In this work, the DLS bounds are given as 3 degrees per 30
meter.

2.7.4 Remedial actions

If the decision-maker in the AWP violates any of the
constraints mentioned, remedial actions will be taken to

mitigate the impact. If, for instance, there are no active cells
in the vicinity, the AWP will assign a negative cost function
value to the solution, which will rule out the tentative
solution from the candidates to the optimum. If the AWP
violates a constraint while refining the trajectory, e.g., the
deviation or length constraint, the well trajectory is reverted
back to the (feasible) straight-line originally provided.

3 Robust well placement optimization
with automatic well planning

In this section we describe how the AWP is combined with a
well placement optimization algorithm in order to determine
optimal well trajectories under geological uncertainty.
The uncertainty is represented with an ensemble of
equally probable geological realizations. These geological
realizations have the same underlying grid structure, where
this grid is populated with different property maps for the
different realizations. For a given set of well heel and
toe coordinates provided by the optimization procedure,
the AWP develops customized well trajectories for each
realization by incorporating properties, geological features
and reservoir boundaries.

An illustration of the development of customized well
trajectories is given in Fig. 4. In this figure, a set
of realizations is subjected to the same heel and toe
coordinates, and the AWP procedure generates an individual
well path for each realization. The individual well paths
are developed based on the selected geological properties
of each ensemble member. The distance between the AWP
and the underlying SL is limited by Eq. 4. Additionally,
the ANN, which acts as a decision-maker in the AWP, was
designed to return to the toe location when reaching the end
of the well, as enforced by Eq. 2. The combined behavior is
intended to allow the optimization layer to enforce control

Fig. 4 This figure illustrates the trajectories created for a subset of
realizations in the ensemble given the same coordinates for the heel
and toe. The black lines indicate the Straight-Line between x; and
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x;. The blue circle represents the target area given by Eq. 2. The red
connected lines represent the new trajectories developed by AWP
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over the vertical positioning of the start and end of the well
trajectory. Still, the added flexibility of AWP allows the
optimization procedure to be less sensitive with regards to
heel and toe coordinates as the AWP automatically adjusts
the well trajectories to better fit with the geology. In other
words, we expect less simulations have to be performed
surrounding any candidate solution while still maintaining
a thorough evaluation of a particular region in the search
space. Thus, this setup is expected to improve the overall
performance of the optimization procedure because the well
trajectories are adapted to the geology of each realization.

The well placement optimization algorithm employed in
this work consists of three main parts: (1) an optimization
layer, (2) a parameterization layer, and (3) a simulation
layer. The outline of this scheme is illustrated by a
flow chart in Fig. 5. The optimization layer iterates on
heel x;; and toe X;; coordinates for all wells i €
{1,..., N}, such that the tuple x = (x1, x2, ..., xy) with
x;i = (Xpn,i,X;;) improves a cost function ¥ (x). The
parameterization layer translates the optimization variables
X, i.e., the heel and toe coordinates, into customized well
representations P; ; for each well i and each realization
R;. The realizations are members of the ensemble of size
M, thus j € {1, ..., M}. The simulation layer requires
running multiple reservoir simulations §; using customized
well representations calculated by the parameterization
layer. After the simulation runs, the outputs f; are
used to calculate the expected value for the ensemble
E(f1, f2, ..., fm), which is the cost function v (x) to be
optimized in the optimization layer.

Optimization m}éax w(x)
Layer g(x) >0
b4
x = (21,...,ZN)
well coordinates
Parameterization
Layer WP (x, R ){AWP(x, Rs XAWP(x, Ras )
Py P P v
Simulation Sl\ 8? SM
Layer f1 f2 f M
N ¥
w(x) - E(fhf?v'" 7fM)
P(x)

Fig.5 Scheme of the applied optimization algorithm incorporating the
AWP method

3.1 Optimization layer

The optimization problem to be solved in the optimization
layer can be formulated as:

¥ (x) (7a)

Pyp : m;lx
S.t. :
gx) >0 (7b)

where Py, is the well placement problem, x = (x1, ..., xy)
are the heel and toe coordinates of all wells, the cost
function ¥ (x) is a measure of the profit to be maximized,
and g(x) are constraints on the well trajectories. Notice that
the optimization procedure inherits the complexity of the
simulation models, since the evaluation of the cost function
Y requires M simulations, one for each member of the
ensemble. Further, the constraints g(x) > 0 might require
several simulations in a standard optimization scheme,
but in our setup these constraints are largely handled
implicitly by the AWP through the constraint-handling
embedded in its training. By doing so, the optimal solution
automatically satisfies the constraints without requiring
additional simulations in the optimization procedure.

The well placement problem given by Eq. 7 is commonly
solved using derivative-free procedures, although various
approaches have been proposed to either directly [31]
or indirectly [33] approximate gradient information.
Derivative-free methods are typically used when gradients
are not readily available or the response surface has a high
number of local extrema. These methods have become com-
putationally attractive in the past decades mainly because
of the recent advances in distributed computing. In this
work, we employ two derivative-free algorithms which
take advantage of parallelization capabilities: Asynchronous
Parallel Pattern Search (APPS) and Particle Swarm Opti-
mization (PSO).

APPS [19, 21] is a deterministic, local optimization
algorithm. It works by sampling the feasible space around a
center point, at the extremum of a predefined pattern (step
length). If an improvement is found, the incumbent point is
moved to the best point and the step length may increase.
Otherwise, the step length is reduced in order to converge.

PSO, on the other hand, is a stochastic, global,
population-based optimization algorithm [26, 27]. PSO
searches the feasible space using a population of solution
candidates, known as particles. These are moved around
in the search-space according to a simple mathematical
formula determined by each particle’s position, velocity,
best previous position of the particle and the best location in
the search space known to the population.

Both algorithms have parallel implementations available
in the framework for field development optimization
FieldOpt [2].

@ Springer
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3.2 Parameterization layer

The parameterization layer translates the optimization
variables x into simulation variables, namely the well
trajectories P; ; for each well x; and realization R;. Instead
of using straight lines for the well trajectories, the AWP
calculates a set of elevation angles ®, which together with
the constant step lengths / and azimuth ¢ give an ordered
set of positions X describing the well trajectory such that
Egs. 1, 2, 3, 4, and 5 are satisfied. The parameterization
problem can be synthetically formulated as:

{Pi,j = AWP(x;,Rj) | i € [1,N],j € [1, M]} , (8)

where P; ; = X; ; is the trajectory of well i calculated by
the AWP for realization R;. Here X; ; is the ordered set of
coordinates describing the well path.

3.3 Simulation layer

To deal with the uncertainty that is present in the
ensemble, we treat all ensemble members as equally
probable representations of the reservoir. In general, a main
implication of a realistic well path is that it cannot solely
rely on the reservoir model, but that it has to adapt through
geosteering operations to reservoir properties measured
during drilling. This process is emulated by the AWP, which
adapts the well path by making local adjustments to the
trajectory based on the local property map p;(x) of each
realization.

The reservoir simulation can be written as a function of
the customized paths P; ; and the realization R; as follows:

fi=58;P ;R , )
where f; is the output cost function of a reservoir simulation

§; performed with the well trajectories P; ; in the model
realization R;. As the ensemble members are regarded

Fig.6 A height map overlayed
by the location of the injectors
as shown in black
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equally probable, the expected value for the set of individual
cost functions f; is calculated as the average

1 M
E(fi forooon ) =32 fi (10)
j=1

This average value is then selected as the objective function
in the optimization layer:

vx) =E(f1. fa.on ) Y

4 Problem description

In this section we present (1) the ensemble of models used in
the experiments, (2) a description of the robust optimization
problem tackled in the case studies.

The remainder of this section is split into two parts.
The first part contains a description of the ensemble of
model realizations used in the experiments. The second
part presents an assessment of the AWP parameterization in
comparison with the SL representation.

4.1 Models

All simulations presented in this paper will use the Olympus
ensemble [15]. Olympus is a synthetic hydrocarbon reser-
voir constructed to represent a fluvial reservoir on the Nor-
wegian Continental Shelf. There are significant contrasts in
permeability, porosity and saturation between the channels
and the surrounding volumes. The channels are meander-
ing, gradually changing position from top to bottom. The
Olympus model also contains a more homogeneous forma-
tion underneath the channelized formation. In this study the
lower formation is removed to reduce the computational
cost of simulations.

In the numerical reservoir models employed in this work,
the injectors are placed in locations surrounding a larger
oil-containing volume, as illustrated in Fig. 6. All injectors

‘ 2D view of all 5 injectors‘

L J
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share a common maximum bottom hole pressure of 240
bars, and have no limits to their injection rates. The producer
has a minimum bottom hole pressure threshold of 110 bars
and no production rate limits.

4.2 Optimization description

In this section we present the problem formulation for the
robust well placement optimization problem applied to the
Olympus ensemble described previously. As mentioned in
the section on robust optimization above, the main goal is
to determine the location of one or more producers that
maximize the expected value defined in Eq. 10. Notice
that, at each iteration, the evaluation of the mean objective
over the different trajectories is somewhat costly since it
requires running one simulation for each realization. As
mentioned before, the decision variables are the positions of
the producers only, while the injectors are kept stationary.
Although the final trajectories output by AWP are refined,
in the optimization domain they contain only well heel and
toe coordinates, similarly to the SL parameterization. This
means that the optimization problem with both the AWP
and the SL has only 6 variables per producer, namely the
well heel and toe coordinates in three-dimensional space
X = (Xn,Xt) = (X, Yhs Zhs Xt Yt 2t)-

The objective function chosen for the experiments is the
expected value of the standardized formulation of the Net-
Present-Value (NPV) with the inclusion of capital costs:

T R,
t=1

where R; is the net cash-flow of each period ¢, d is the
discount factor, w; is the cost of wells, and T is the number
of periods. In our case, we set the discount factor d = 0.08,
and the number of periods of time 77 = 20. In our setup,
the wells are assumed to be drilled at a fixed price. The net
cash-flow at period ¢ is calculated as:

R; = profit of hydrocarbon production

—cost of water injected

—cost of water treatment (13)
for every interval of 365 days. All prices are assumed to
be fixed, and are set to the following values: oil price at

453$/bbl, cost of water injection at 2$/bbl, and cost of
water production at 6 $/bbl

5 Parameterization validation - random
search

This section presents a comparison between the AWP and
the SL parameterizations with respect to their productivity

for the same well heel and toe coordinates evaluated over
the ensemble. While the SL parameterization is a simple
straight line from the heel to the toe, the AWP adapts
the well trajectory to the reservoir properties such as
permeability, boundaries and structural components with
the aim to increase the productivity. The following analysis
confirms the productivity differences resulting from the
enhanced AWP trajectory compared to the basis straight-
line representation.

The productivity of the AWP and SL approaches in
different regions of the reservoir are compared using a
random search (RS) algorithm [4], adapted to create random
wells within the reservoir. In this algorithm, the well
locations are uniformly distributed within the feasible space.
For each set of heel and toe coordinates, x = (Xp, X;),
the algorithm creates well paths using both the AWP and
the SL parameterizations. The two parameterizations are
compared with respect to cumulative liquid production and
the relative standard deviation of liquid production across
the ensemble. The random search employed in this work
considers 938 wells, for which the chosen measures are
evaluated over all the realizations. Notice that only the
producer location is changed for this validation, whereas the
injector locations remain fixed with their positions shown
in Fig. 6. The relative standard deviation formula utilized in
the RS algorithm is given by:

M

or=— |- (fi—m) (14)

J=i

where M is the ensemble size, and us = E(f1, f2, ..., fm)
is the mean corresponding to the expected value [E for the
set of functions f1, f2, ..., fu-

The results obtained in the parameterization validation
by means of the RS algorithm are summarized in Table 1
and illustrated as cumulative histograms depicted in Fig. 7.
The results show that by utilizing the AWP methodology
the expected cumulative liquid production is larger than the
one obtained with the SL method. Moreover, the relative
standard deviation with the AWP method, as calculated
by Eq. 14, is less than the relative standard deviation

Table 1 This table shows the mean liquid production (Liq. Prod.)
across the ensemble and the relative standard deviation of liquid
production evaluated over all realizations of the ensemble (Rel. Std)
according to a number of unique pairs of heel and toe coordinates
(Num.)

AWP SL
Type Num. [#] Mean [SM3] Mean [SM3]
Liq. Prod. 938 1.27E7 1.12E7
Rel. Std. 938 46.1 48.5
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with the SL well description. These results suggest that
AWP trajectories have the collective effect of being able to
compensate for the differences in geology, thus providing
an improved representation capable of dealing with the
underlying uncertainty. Moreover, the well parameterized
using AWP yields more production per length than the
equivalent well parameterized as a straight line. Despite
having the same compact well representation, i.e., {Xp, X;},
the AWP procedure achieves improved well representations
because it increases their contact with permeable layers,
thereby leading to improved productivity. Furthermore,
because of the higher productivity, the more refined
trajectory is expected to lead to faster convergence and a
more efficient search.

6 Case studies

In this section we present three case studies with increasing
complexity. The first case is presented as a proof of
concept embedding the AWP in an optimization loop as
described in Section 3 for a single realization environment
(M 1) using APPS. Case 2 and 3 utilize the entire
Olympus ensemble (M = 50) in a robust well placement
optimization procedure as described in Section 3. The main
idea is to highlight the benefits of using tailor-made well
trajectories using AWP starting form a single realization
environment with one producer and gradually transitioning
to a robust well placement optimization workflow with
multiple producers. Case study 1 illustrates the conceptual
idea of using AWP in an optimization loop for the placement
of one producer in a single realization environment. In Case
study 2 the problem complexity is increased by considering
an ensemble with 50 realizations in the optimization of a
sole producer, where the focus lies in assessing the impact of
using AWP instead of the SL when uncertainty is present. In
Case study 3, two additional producers are considered in the
robust optimization. The inclusion of new wells increases
the degrees of freedom of the optimization problem and
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allows for an evaluation of the scalability of AWP to
more complex scenarios, involving more interdependent
dynamics between the wells and the reservoir.

The computational cost of the pattern search algorithm
APPS grows significantly as the number of free variables
and realizations increases. This algorithm is therefore
omitted in the multi-well optimization due to its prohibitive
computational cost, and the optimization is only run using
the stochastic PSO algorithm. All the case studies were
performed with the SL and AWP approaches using the same
initial well locations and constraint values.

6.1 Case study 1 - single producer in a single
realization

This case study compares results from an optimization
routine using the AWP procedure against results using
the same optimization routine with the traditional SL well
trajectory. The purpose is to investigate if and how the
solutions and performance vary when using the different
types of parameterization in the optimization procedure.

The optimization algorithm was run with three different
initial well locations, all placed within the region sur-
rounded by water injectors. We ran the optimization using
wells parameterized with both the SL and AWP procedure
to automatically generate well paths. There are thus six opti-
mization runs in total. The initial positions for each of the
three cases are indicated by red lines in Fig. 8. Note that
this red line only indicates the horizontal direction of the
well given by the initial heel and toe values. The actual
well trajectory will be different in the vertical direction not
shown in Fig. 8. Thus the actual initial well trajectory will
either be a line or the well trajectory generated by the AWP
method. The two optimization runs will therefore start with
slightly different well configurations, and thereby with dif-
ferent NPV values at the initial step in the optimization
process.

Recall that the optimization algorithm applied in this case
study is the deterministic pattern-search algorithm APPS
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Fig.8 Reservoir height map showing the different well configurations
for the three optimization example cases. Blue shows the trajectory
solution obtained using AWP, while orange shows the SL trajectory,

described in [19]. The current best NPV value at different
iterations is plotted in Fig. 9. In line with the discussion
above, even though the three cases have the same initial
variable for the heel and toe, they still have different initial
NPV values as the well trajectories are different. For all
cases, optimization runs using the AWP procedure give a
higher NPV value, which is in line with the observations
summarized in Table 2.

The convergence plots in Fig. 9 show that by applying the
AWP inside the optimization procedure, the optimization
algorithm converges faster and to a higher value than
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and red is the initial well trajectory. Black lines represent the injectors.
The color bar shows the difference in height of the top layer in the
reservoir

its more traditional SL. well counterpart. The number of
iterations required for convergence is seen to decrease from
around 28-39 iterations to around 22-25. When looking at
the final positions after optimization, as illustrated by Fig. 8,
all six well positions are seen to end up fairly close to each
other.

Investigating the full well trajectories, one can observe
that by adapting to local geometry and structural challenges,
the AWP procedure generates wells that are both more
productive and better equipped to deal with complexities
such as faults. In addition, the AWP is able to produce from
multiple high permeable streaks simultaneously, which is
hard to obtain when using the SL approach.

In general, the higher permeability sands penetrated
by the AWP procedure increase the drainage volume and
accelerate the oil production, resulting in a better initial
NPV for all cases independent of their starting location, as
reflected by the values in Table 2.

The initial and final production curves of Case 1 are
plotted in Fig. 10. We observe that both SL and AWP
solutions significantly improve the oil production. As this
is a main component of the NPV, they both improve the
NPV significantly. Interestingly, the optimal AWP well path
gives lower water production compared to the optimal SL.
As the optimal oil production is similar for the two cases,
this indicates that the total liquid production is lower for the
AWP compared to the SL solution. This is in contrast to
the result when they have the same heel and toe coordinates
as indicated by the verification study summarized in Fig. 7.
Thus, it is not necessarily the case that an optimization
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Table2 NPV values for the three optimization cases, at the initial position (Init.), and after optimization (Opt.) using either the AWP or SL method
for the well paths. In addition, the table contains the number of iterations (Its.) and evaluations (Evals.) for each approach case

AWP SL
Case Init. [$] Opt. [$] Its. [#] Evals. [#] Init. [$] Opt. [$] Its. [#] Evals. [#]
1 8.37E8 1.50E9 24 252 6.67E8 1.42E9 39 422
2 9.06E8 1.50E9 25 262 5.50E8 1.43E9 28 296
3 1.25E9 1.46E9 22 255 7.52E8 1.43E9 38 413

using the AWP procedure ends up with a solution that gives
a more productive well, even though the AWP procedure
gives higher productive wells than SL for the same well
coordinates.

The final location of the producers when using the two
types of trajectories, as indicated in Fig. 8, appear to have
roughly the same layout. However, the difference between
the two approaches, both in terms of final objective function
value as well as in terms of total number of iterations
used, is significant, as shown in Table 2. Compared to its
straight line counterpart, the AWP procedure can adapt more
efficiently to complex geological formations. This feature
effectively serves as an additional constraint-handling
measure during optimization. The impact of this feature
is particularly clear when using pattern-search algorithms
together with constraint-handling capability that only relies
on geometry. The pattern-search approach works in such a
way that perturbations are performed iteratively along each
of the three spatial dimensions. Since this initial stepping
does not take into account the geometry of the reservoir,
the algorithm is likely to step outside of reservoir bounds.
At this point, constraint-handling within the implementation
in this work projects out-of-bounds coordinates back into

— Opt. AWP oil
—-—- Opt. AWP water
— Init. AWP oil
=== Init. AWP water

Opt. SL oil

Opt. SL water
— Init. SL oil

Init. SL water

Cumulative production [SM3]

2017 2021 2025 2029 2033
Year

Fig. 10 Cumulative production of oil and water for Run 1 in the well
placement optimization using APPS
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the reservoir. This constraint-handling, however, is guided
solely by the geometry of the grid and trajectory, while
the indirect constraint-handling performed by the AWP
procedure explicitly takes into account the local reservoir
properties. The result is that straight line wells that only
rely on relatively crude geometry-based constraint-handling
can have large parts of their original paths rendered non-
productive. Such lower-producing solution candidates are
likely to lead the optimization algorithm to move away from
trajectories close to the outer edges, in effect limiting the
extent of the search space by not having the capacity to
handle complex bounds, which are likely to be encountered
in realistic applications. With the introduction of the AWP
procedure within the well placement optimization routine,
on the other hand, trajectories are effectively modified to fit
high-productivity areas irrespective of complex geometries
including faults or dome-like structures. Consequently, the
added property-based handling of well paths introduced by
the AWP procedure leads to more realistic well trajectories.

6.2 Case study 2 - single producer in an ensemble

The APPS and PSO algorithms were applied to the
previously described robust well placement optimization
problem considering one producer and employing both the
AWP and the SL parameterization methods.

In contrast to Case study 1 where the three optimization
runs were performed in a single realization environment,
the optimization runs were initialized from five different
starting locations for the APPS algorithm. The results
obtained for these runs are summarized in Table 3 and
depicted in Fig. 11. Figure 11(a) shows the current best NPV
value by iteration. The NPV values are scaled by 10° for all
the cases. The deterministic behavior of APPS allows for a
case-by-case comparison of the differences between AWP
and SL, as plotted in Fig. 11(b). A positive value indicates
a higher NPV from the AWP method over the SL method,
while a negative value indicates the opposite. In four of the
five cases, AWP yielded a higher objective. Figure 11(b)
also indicates that four out of five cases converged earlier
with AWP. This NPV increase might be a consequence of
the overall increase in the liquid production caused by the
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Table 3 This table shows the final objective value of each optimization run with one producer

PSO APPS
Run AWP SL AWP SL
Num [#] NPVI[$] NPVI[$] NPV[$] EvalNr[#] NPVI[$] EvalNr[#]
1 2.18E9 2.11E9 2.00E9 228 1.98E9 288
2 1.99E9 2.11E9 2.00E9 300 2.17E9 288
3 2.17E9 2.10E9 1.99E9 192 1.95E9 336
4 2.17E9 2.10E9 2.00E9 240 1.95E9 300
5 2.17E9 2.10E9 2.22E9 312 2.13E9 372
6 2.16E9 2.10E9
Avg: 2.14E9 2.10E9 2.04E9 254 2.03E9 316

Results are taken from the last iteration performed with each algorithm

AWP parameterization, as seen in the validation analysis
presented in Section 5. In only one of the cases the solution
obtained with SL yields a higher objective compared to the
AWP solution.

If the response surface from AWP and SL have different
shapes, then APPS might converge to different local
maxima. This is a plausible reason to justify the disparity
between the solutions provided by AWP and SL in some of
the cases. For the case in which the SL yielded a higher NPV
than AWP, further investigation into the results indicates
that the increase in liquid production coming from the AWP
parameterization worsen the NPV when compared to the SL
approach for the same well heel and toe coordinates. This
allowed the SL to find a different maximum, which in the
end turned out to yield a higher NPV.
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Fig. 11 Convergence plot for the objective function (NPV) over 5
robust optimization runs with APPS with all ensemble realizations.
(a) shows the convergence graphs for all runs where blue is AWP and
orange is SL, (b) shows the difference between AWP and SL given

The same problem was optimized using the PSO algo-
rithm with 6 different runs for both the AWP method and
the SL method. The current best objective function values
versus the number of iterations are shown in Fig. 12. A
case-by-case comparison is not feasible here because of the
randomly-generated initial positions of the PSO algorithm.

From Fig. 12 we observe that the PSO with AWP seems
to converge towards the best NPV value in fewer iterations
compared to PSO with SL. We also observe that, except
for one outlier, the expected NPV values obtained with
AWP are higher than all the objective function values
achieved using SL. The difference between AWP and SL
is in the range of what was observed by the random search
previously, and might therefore be attributed to increased
liquid production by AWP over SL (Fig. 7).
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the same initial well locations. In (b) solid lines indicate that the opti-
mization procedure is running for both parameterizations. The dashed
line indicates that the AWP has converged while the SL continued
executing, whereas dotted lines indicate the opposite
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Analogously to what occurred with the APPS algorithm,
there is one case which yielded a considerably lower
objective function with the AWP parameterization. One pos-
sible explanation for this phenomenon is that the optimiza-
tion procedure got trapped into a local maximum. Stochastic
behavior is inherently difficult to explain, and it is likely
that if the run was performed with a larger swarm size, the
solutions from all cases would be more homogeneous. Even
with the outlier which underperformed, the general behavior
still suggests a more efficient search when substituting the
SL parameterization with the AWP, similar to the previous
case in a single realization environment.

6.3 Case study 3 - multiple producers in an ensemble

As in the previous case study we utilize the Olympus ensem-
ble as the numerical models for the robust optimization of
the positions of the producers. To increase our understand-
ing of the scalability of the optimization procedure with
AWP, two additional producers are considered in the opti-
mization problem. Due to the stochastic nature of PSO,
the initial particles in the swarm are randomly generated
throughout the search space. Therefore, we ran the opti-
mization in 5 different scenarios with both AWP and the
SL, and take the average objective function value and the
standard deviation across the scenarios. Due to restrictions
in terms of computational resources the runs were limited
to 16 iterations, which seems to be sufficient to highlight
the differences in terms of convergence and variance of the
solutions.

Table 4 summarizes the results from five runs with each
parameterization. It can be seen that both the final and
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Fig. 12 Convergence plot of the PSO algorithm for the objective
function (NPV) over 6 different cases, run with all realizations. Blue
lines indicate AWP method, while orange lines indicate the SL method
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average objective function values with AWP are higher
than with the SL in all the runs. Notice that the average
well length is also significantly shorter with AWP. The
reduction in the well lengths might reduce the likelihood of
early water production. Figure 13(a) depicts the objective
function evolution through each iteration of PSO with
both the AWP and SL parameterization with 3 producers.
Figure 13(b) shows the average objective function evolution
and the corresponding standard deviations for all the
runs with both parameterizations. From this graphical
representation we observe that the initial slope of the
AWP is steeper than the equivalent slope for the SL
parameterization. This may be an indicator that the
well parameterization with AWP increases the rate of
convergence or smooths the response surface allowing
for easier traversal. Notice that, in an early stage of the
optimization runs (from iteration 2 to 8) there are successive
iterations in which all runs with AWP present higher
objective function value than the runs with the SL.

The differences between AWP and SL were further
investigated by comparing the solutions produced by the
best runs with each parameterization. The final locations
for the three producers are illustrated in Fig. 14. From this
figure it is possible to see that the producers have roughly
the same configuration in comparison to one another,
however, the final producers constructed by AWP (blue) are
significantly shorter than those generated by the SL (orange)
parameterizations.

The production profiles for all ensemble members of
the best AWP and SL optimization runs are illustrated
in Fig. 15. We observe that the expected value of oil
production is slightly higher for SL compared to the AWP.
In terms of expected water production, the SL produces
significantly more water than the best run with AWP.

Table 4 This table shows the final optimized NPV obtained with both
parameterizations and the number of perforated meters (the sum of
length of all producers) inside the reservoir

AWP SL
Run [#] NPV [$] Tot. Len. [m] NPV [$] Tot. Len. [m]

1 2.13E9 1579 2.05E9 2887
2 2.15E9 1459 1.95E9 2153
3 2.10E9 2818 2.07E9 2598
4 2.13E9 1708 2.09E9 2431
5 2.13E9 1901 2.08E9 3000
Avg: 2.13E9 1893 2.04E9 2614
Std: 1.12E7 485 4.62E7 306
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Fig. 13 (a) is a convergence plot for the objective function (NPV) over
5 different optimization runs utilizing the PSO algorithm evaluated
across all realizations. (b) shows the average value for all cases for

This observation holds if we analyze the transparent red
(water production SL) and grey (water production AWP)
areas in this figure. The solution obtained with the SL
parameterization increases water production earlier and
significantly more than the solution provided by AWP.

The NPVs for the different ensemble realizations are
compared in Fig. 16. The plot shows that for most
realizations the NPV is increased by replacing the SL with
the AWP methodology. In this comparison, the AWP seems
to improve both optimistic and pessimistic cases compared
with the SL parameterization.

This case study highlights interesting behavior of AWP
in a more realistic environment with multiple wells for
robust well placement optimization. Within each of the
optimization runs better objective function values are
achieved at earlier iterations using AWP. This could be
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Fig. 14 Final location of the producers in the best runs with both the
AWP (blue) and the SL (orange) parameterization
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each iteration, in addition to the standard deviation over the 5 runs per
iteration. Blue transparent area indicate AWP method, while orange
transparent area indicate the SL method

credited to the additional flexibility of AWP with regards to
properties and difficult geometry, features which generally
improve the productivity of the producers. Even though
the producer configurations for both parameterizations are
similar, as seen in Fig. 14, there is a significant difference
in their objective function values. As the AWP makes
tailored trajectories to individual channels, the results show
that these wells are more targeted and this significantly
reduces the water production. A counter argument is that
the objective function in these cases can be modified for
a different objective, e.g, maximizing oil production and
omitting the water injection/treatment costs, which might
yield different results. Uncertainty that can be handled
during the drilling process by adaptive directional drilling
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Fig. 15 The cumulative oil and water production for both parameteri-
zations for all realizations in the Olympus ensemble
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Fig. 16 Differences in Net-Present-Value for the best run with AWP
and SL; blue bar values indicates an improvement by the AWP
parameterization, orange bar indicates an improvement by the SL
parameterization

is to some degree captured and embedded into the AWP
methodology. This way, the AWP might reduce the variance
in objective function between realizations, and its effect
on the variance of the cost function should be accounted
for in the optimization framework. We acknowledge that
the average NPV, which is used as the objective in the
optimization in the work, is a rather simple objective which,
e.g., does not take into account the risk associated with
the variation between the individual realizations. Other
measures, such as risk-averse objective functions, could be
employed in the optimization layer to account for such risks,
avoiding therefore solutions that are great in average but
which could present high financial risks associated with the
underlying decisions.

Clearly, this is not an operational environment, but
it is a step towards showcasing the capabilities of
including the decision-making procedure of geosteering
in closed-loop reservoir management. The artificial neural
network that was applied to all of the cases above is of
conservative nature, and will not make significant changes
to the individual trajectories because it was trained for
consistency. With minor alterations to the training of the
artificial neural network it can be allowed to create larger
deviations from each realization. Whether or not that this is
desirable is a topic for further investigation.

7 Conclusions

This work proposes a methodology for robust well place-
ment optimization which combines an adaptive well param-
eterization with traditional derivative-free optimization
algorithms. As the real-life drilling phase adapts to local
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information of the reservoir, the suggested optimization
process adapts in a similar manner to obtain optimized
well placements within an adaptive drilling workflow. The
adaptive well parameterization, called Automatic Well Plan-
ner (AWP), emulates decision-making processes during
geosteering operations. In this respect, well placement opti-
mization with AWP is able to better capture and adapt to the
geological uncertainty represented by the ensemble.

The AWP method generates a well trajectory given a heel
and toe location. Thus the input variables to the AWP is
of the same dimensions as a straight line (SL) well. This
implies that the computational cost of optimizing with AWP
is of the same order as using the simpler SL. In this paper we
tested two derivative-free optimization algorithms, APPS
and PSO, in three separate case studies with increasing
complexities. In Case study 1 it was shown that by replacing
the traditional SL approach with the AWP the production
can be increased and the number of iterations can be reduced
in a single realization environment where uncertainty is
omitted.

When the complexity is increased and the AWP
procedure is embedded in a robust optimization scheme,
as shown in Case study 2, the optimization procedure
with AWP converged to a higher objective function value
in comparison to equivalent runs with SL, for all runs
except one. The runs performed with PSO achieved higher
objective function values earlier with AWP. Similarly, most
of the runs performed with APPS reached the convergence
criterion faster with AWP than with SL

Finally, in Case study 3, the complexity is increased
further by adding two additional wells. The differences
between AWP and SL were more pronounced than both
of the previous single producer optimization cases, with
all AWP cases converging to a higher objective function
value than the comparative runs with SL parameterization.
In general, the best solution obtained with AWP presented
higher NPV when compared to the best solutions found
using the SL parameterization.

The general improvement in performance by AWP over
SL can possibly be attributed to more favorable features
of the response surface. In particular, AWP can contribute
favorably to the optimization process by efficiently adapting
to the range of different geological conditions posed by the
realization ensemble, thus essentially help smoothing the
cost function. Further work is required to understand why
in a few cases the inclusion of AWP during optimization
is detrimental to the search. This might be due to the
AWP at all times promoting extensive penetration of
highly-permeable channels, which does not necessarily
lead to improved objective values if it exposes trajectories
to early water-breakthrough and high water production.
Along these lines, performing an AWP operation on a
SL solution can decrease the final objective since the SL
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solution is exclusively optimal with respect to a straight-
line trajectory. Further work on these topics can provide
practical guidelines for the efficient use of the AWP
technology.

Several other topics are also interesting for future
research. In this work, constraints are applied to individual
wells only. To further enhance applicability, additional con-
straints can be imposed, e.g., inter-well distance, distance to
boundary and distance to the oil-water contact. These can
be treated explicitly by constraint-handling methodology in
the optimization layer and be enforced implicitly by the neu-
ral network after having been introduced during training.
Moreover, testing other combinations of property maps as
inputs into the neural network can bring the AWP closer
to geosteering tools, thereby improving our current results.
It can also guide what would be the most valuable infor-
mation to be obtained from logging-while-drilling tools. As
the AWP method is promising, similar methodologies might
be tried for other field development problems where a high
number of free variables can be reduced to lower order prob-
lems by the use of machine learning procedures. This way
complex field development problems can be made compu-
tationally feasible for automated optimization algorithms.
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