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1 | INTRODUCTION

Telomeres are nucleoprotein structures that cap the ends of linear
chromosomes in most eukaryotes (Blackburn, 1991). Understanding
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Abstract

Early-life telomere length (TL) is associated with fitness in a range of organisms. Little
is known about the genetic basis of variation in TL in wild animal populations, but
to understand the evolutionary and ecological significance of TL it is important to
quantify the relative importance of genetic and environmental variation in TL. In this
study, we measured TL in 2746 house sparrow nestlings sampled across 20 years and
used an animal model to show that there is a small heritable component of early-life
TL (h2 = 0.04). Variation in TL among individuals was mainly driven by environmental

(annual) variance, but also brood and parental effects. Parent-offspring regressions

2
maternal

inheritance. We did not find evidence for a negative genetic correlation underlying

showed a large maternal inheritance component in TL (h = 0.44), but no paternal
the observed negative phenotypic correlation between TL and structural body size.
Thus, TL may evolve independently of body size and the negative phenotypic cor-
relation is likely to be caused by nongenetic environmental effects. We further used
genome-wide association analysis to identify genomic regions associated with TL vari-
ation. We identified several putative genes underlying TL variation; these have been
inferred to be involved in oxidative stress, cellular growth, skeletal development, cell
differentiation and tumorigenesis in other species. Together, our results show that
TL has a low heritability and is a polygenic trait strongly affected by environmental

conditions in a free-living bird.

KEYWORDS
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the causes of individual variation in telomere length (TL) is import-

ant because this trait has been shown to predict variation in sur-

vival or lifespan within and among species, particularly in birds (Bize
et al., 2009; Froy et al., 2021; Heidinger et al., 2012; Joeng et al.,
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2004; Monaghan, 2010; Pepke & Eisenberg, 2021; Tricola et al.,
2018; Wilbourn et al., 2018) and individual fitness in wild animals
(Eastwood et al., 2019, but see Wood & Young, 2019). Telomeres
shorten through life in many organisms (Dantzer & Fletcher, 2015;
Remot et al., 2021) due to cell division, oxidative stress, and other
factors (Jennings et al., 2000; Reichert & Stier, 2017). This can result
in telomere dysfunction, genome instability, cell death (Nassour et al.,
2019), and organismal senescence (Herbig et al., 2006). Individual TL
or telomere loss may act as biomarkers or sensors of exposure to
intrinsic and extrinsic stressors (Bateson, 2016; Houben et al., 2008),
and hence reflect individual condition (Rollings et al., 2017), but the
physiological mechanisms underlying the ontogenetic variation in TL
are not well understood (Erten & Kokko, 2020; Monaghan, 2014).
Several studies have investigated the potential of telomere dynamics
(i.e., individual differences in TL and telomere loss rate) in mediating
life-history trade-offs both across (Dantzer & Fletcher, 2015; Pepke &
Eisenberg, 2020) and within relatively long-lived species (Monaghan,
2010; Spurgin et al., 2018). However, despite being an ecologically
important trait in many species (Wilbourn et al., 2018), knowledge
about the genetic architecture of TL and its adaptive potential in wild
populations remains scarce (Dugdale & Richardson, 2018).
Quantifying the additive genetic variance of a trait is required to
understand mechanisms driving adaptive evolution, that is, the re-
sponse to selection on a trait (Ellegren & Sheldon, 2008; Kruuk et al.,
2008; Lande, 1979). However, the magnitude of the heritability and
mode of inheritance of TL is not well-known in populations of wild
animals, and few general patterns have been described (Bauch et al.,
2019; Dugdale & Richardson, 2018; Horn et al., 2011). Utilizing long-
term pedigree data, individual variation in early-life TL can be decom-
posed into various genetic and environmental sources of variation
through a type of mixed-effect model (“animal model”), which takes
all relationships from the pedigree into account (Kruuk, 2004; Wilson
et al., 2010). Estimates of TL heritabilities from studies using animal
models (reviewed in Dugdale & Richardson, 2018) have varied con-
siderably across wild bird populations, from h?> =0 (n = 177, in white-
throated dippers, Cinclus cinclus, Becker et al., 2015) to h®* = 0.74
(n =715, in western jackdaws, Coloeus monedula, Bauch et al., 2021).
While most studies are characterized by relatively small sample sizes,
recent long-term studies on Seychelles warblers (Acrocephalus sech-
ellensis, n = 1317, h?> = 0.03-0.08, Sparks et al., 2021) and common
terns (Sterna hirundo, n = 387, h* = 0.46-0.63, Vedder et al., 2021) also
revealed contrasting estimates of TL heritabilities. Epidemiological
studies of humans have documented consistently high TL heritabil-
ities, ranging from h? = 0.34-0.82 (Broer et al., 2013). In humans,
some studies reported strong paternal inheritance (e.g., Njajou et al.,
2007) or maternal inheritance (e.g., Broer et al., 2013) or that there
were no differences in parental mode of inheritance (e.g., Eisenberg,
2014). In birds, several studies have documented maternal effects
on offspring telomere dynamics (Asghar et al., 2015; Heidinger et al.,
2016; Horn et al., 2011; Reichert et al., 2015), or effects of paren-
tal age at conception on offspring TL (Eisenberg & Kuzawa, 2018;
Marasco et al., 2019; Noguera José et al., 2018). Reichert et al.
(2015) found a significant correlation between mother-offspring TL

measured at 10 days of age in king penguins (Aptenodytes patagon-
icus), but not when TL was measured at later ages (>70 days). This
may be because post-natal telomere loss rate is strongly influenced
by individual environmental circumstances (Chatelain et al., 2020;
Wilbourn et al., 2018) and does not always correlate strongly with
chronological age (Boonekamp et al., 2013, 2014).

Faster growth in early life is associated with reduced longevity
(Metcalfe & Monaghan, 2003) and TL may be involved in mediating
the trade-off between growth rate and lifespan (Salmén et al., 2021;
Young, 2018). Accordingly, a negative phenotypic correlation be-
tween TL and body size or growth rate has been documented within
several species (Monaghan & Ozanne, 2018, but see Boonekamp
et al., 2021). Telomeres are known to shorten during growth
(Ringsby et al., 2015), but a negative phenotypic correlation may
also indicate the existence of a negative genetic correlation (Roff,
1995; Roff & Fairbairn, 2012). Froy et al. (2021) reported a modest
negative genetic correlation (r, = -0.2) between bodyweight and
TL in feral Soay sheep (Ovis aries). Furthermore, we have previously
shown that artificial directional selection on body size in wild house
sparrows (Passer domesticus) affected TL in the opposite direction
(Pepke et al., 2021). This suggests that there is a genetic correla-
tion between the two traits. Thus, quantifying the genetic correla-
tion between TL and body size enables us to determine whether the
two traits can evolve independently of each other or if the pattern
of selection on both traits is needed for predicting evolutionary re-
sponses (Kruuk et al., 2008).

Telomere length is a complex phenotypic trait (Aviv, 2012;
Hansen et al., 2016) expected to be polygenic, that is, affected by
small effects of many genes (Dugdale & Richardson, 2018; Hill,
2010). Accordingly, numerous genome-wide association studies
(GWAS), which tests correlative associations of single-nucleotide
polymorphisms (SNPs) with specific traits, have identified several
loci correlated with TL in humans that map to genes involved in
telomere and telomerase maintenance, DNA damage repair, cancer
biology, and several nucleotide metabolism pathways (e.g., Andrew
et al,, 2006; Codd et al., 2010, 2013; Coutts et al., 2019; Deelen
etal, 2013; Delgado et al., 2018; Jones et al., 2012; Levy et al., 2010;
Li et al., 2020; Liu et al., 2014; Mangino et al., 2012, 2015; Mirabello
et al.,, 2010; Nersisyan et al., 2019; Ojha et al., 2016; Soerensen
et al., 2012; Vasa-Nicotera et al., 2005; Zeiger et al., 2018). None of
the GWA studies in humans specifically tested the marker associa-
tions of early-life TL, which pose a challenge to the interpretation of
the results, as TL shortens through life in humans (Blackburn et al.,
2015) and genes may have different impacts at various life stages
(Weng et al., 2016). Furthermore, large sample sizes and dense sam-
pling of genetic loci is needed to ensure high power in GWA studies
(Mackay et al., 2009) and resolve any pleiotropic effects (Prescott
etal., 2011). The genes influencing TL in humans that were identified
through GWAS only explain a small proportion of the interindivid-
ual variation in TL (<2%, Aviv, 2012; Codd et al., 2013; Fyhrquist
et al., 2013). One GWAS on TL of a nonhuman species (dairy cattle,
Bos taurus) was recently performed (llska-Warner et al., 2019) sup-
porting the polygenic nature of early-life TL. However, domesticated
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species in captivity may display TL dynamics that are not represen-
tative of natural populations (Eisenberg, 2011; Pepke & Eisenberg,
2021). There are to the best of our knowledge no previous GWAS on
TL performed in natural populations.

In this study, we aimed to provide novel insights into the genetic
architecture of TL and the evolutionary mechanisms by which natu-
ral selection can alter telomere dynamics using data from a passerine
bird. We obtained a single measure of TL in individuals (n = 2746)
born within 20 cohorts in two natural insular populations of wild
house sparrows at a similar age (c. 10 days), in addition to individuals
at the same age in two insular populations that underwent artificial
selection on body size for four consecutive years (n = 569, Kvalnes
et al., 2017; Pepke et al., 2021). First, we estimated the phenotypic
correlations between TL and tarsus length (as a proxy for body size,
Araya-Ajoy et al., 2019; Senar & Pascual, 1997) in house sparrow
nestlings. Second, we tested for effects of parental age on offspring
TL. Third, we estimated heritability, environmental variances, and
parental effects on early-life TL, and test for genetic correlations
between TL, tarsus length, and body condition in the natural pop-
ulations (primary analyses). Nestling body condition (body mass
corrected for structural body size, Schulte-Hostedde et al., 2005)
is included here to account for the component of body size that is
not explained by tarsus length, which could be due to variation in
the mass of other tissues or fat reserves (Peig & Green, 2010). We
then used similar analyses in the artificially selected populations to
validate our results from the primary analyses. Finally, we used high-
density genome-wide single nucleotide polymorphism (SNP) gen-
otype data (Lundregan et al., 2018) in a GWAS to identify genetic
regions and potential candidate genes underlying variation in early-
life TL within wild house sparrows (up to n = 383).

2 | MATERIALS AND METHODS

2.1 | Study populations and data collection

The study was performed in four insular house sparrow popula-
tions off the coast of northern Norway (Figure S1.1 in Appendix S1).
The study periods differed between the populations with data from
Hestmanngy (66°33'N, 12°50E) in the years 1994-2013, Traena
(Husay island, 66°30’N, 12°05'E) in the years 2004-2013, and Leka
(65°06'N, 11°38'E) and Vega (65°40'N, 11°55’E) both in the years
2002-2006. Hestmanngy and Traena were unmanipulated natural
populations and are included in the primary analyses. The popula-
tions of Leka and Vega underwent artificial size selection (see Kvalnes
et al., 2017; Pepke et al., 2021) and were analysed separately in a set
of secondary analyses as replications of the primary analyses. All four
islands are characterized by heathland, mountains, and sparse for-
est. The sparrows live closely associated with humans and within the
study area they are found mainly on dairy farms (Hestmanngy, Vega
and Leka), where they have access to food and shelter all year, or in
gardens and residential areas (Traena), where they may be more ex-
posed to weather conditions (Araya-Ajoy et al., 2019). Natural nests

inside barns or artificial nest boxes were visited at least every ninth
day during the breeding season (May-August) to sample fledglings
(5-14 days old, with a median of 10 days). All individuals were ringed
using a unique combination of a metal ring and three plastic colour
rings. Fledged juvenile sparrows and unmarked adults were captured
using mist nets from May to October. These procedures ensured that
approximately 90% of all adult birds were marked on all islands dur-
ing the study period (Jensen et al., 2008; Kvalnes et al., 2017). We
measured tarsometatarsus (tarsus) length using digital slide calipers
to nearest 0.01 mm and body mass to nearest 0.1 g with a Pesola
spring balance (see Appendix S1). Morphological measurements
were taken by different fieldworkers. All fieldworkers were carefully
trained to consistently use the same measurement technique of THR
or, in some cases, another experienced fieldworker (Kvalnes et al.,
2017). For 234 out of 2746 nestlings, no nestling morphological
measurements were made. Following Schulte-Hostedde et al. (2005)
nestling body condition was calculated as the residuals of a linear re-
gression of mass on tarsus length (both log, ,-transformed). To avoid
collinearity in models where both nestling age and tarsus length were
included as covariates, we age-corrected tarsus length by using the
residuals from a regression of tarsus length on age and age squared
(to account for the diminishing increase in tarsus length with age).
One blood sample (25 pl) was collected from each fledgling, which
was stored in 96% ethanol at room temperature in the field and sub-
sequently at -20°C in the laboratory until DNA extraction.

2.2 | Molecular sexing and pedigree construction

DNA extraction is described in Appendix S1. Sex of most fledglings
(n = 2641) was determined using amplification of the CHD-gene lo-
cated on the avian sex chromosomes as described in Griffiths et al.
(1998). 21 individuals were sexed exclusively based on their pheno-
type as adults and 84 nestlings could not be sexed. The pedigree con-
struction is detailed in previous studies (Billing et al., 2012; Jensen
et al., 2003, 2008; Ranning et al., 2016). Briefly, we used individual
genotypes on 13 polymorphic microsatellite markers scored using
the cenemapper 4.0 software (Applied Biosystems) to assign parent-
age in cervus 3.0 (Kalinowski et al., 2007). Nestlings within the same
clutch were assumed to have the same mother. Nestlings with miss-
ing parents (unassigned: n = 662 with missing mother and n = 700
with missing father) were assigned dummy parents, assuming that
nestlings within the same clutch were full siblings and thus had the
same (unassigned) parents. The dummy parents were included in
the pedigree as founders. We calculated individual inbreeding coef-
ficients (F) based on the microsatellite pedigree using the R package
pedigree (Coster, 2012). Pedigrees were ordered using the R pack-
age MasterBayes (Hadfield et al., 2006) and pruned to only con-
tain informative individuals. The pruned pedigrees included 4118
individuals (3093 maternities and 3130 paternities) in the natural
populations, and 1057 individuals in artificially selected populations.
Maximum pedigree depth was 13 generations, the number of equiv-
alent complete generations (the sum of the proportion of known
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ancestors across all generations, Wellmann, 2021) was 1.510, and

mean pairwise relatedness was 0.003.

2.3 | Telomere length measurements

Relative erythrocyte telomere lengths (TL) of 2746 nestlings from
Hestmanngy and Traena (sample sizes are detailed in Table S1.1 in
Appendix S1) were successfully measured using the real-time quan-
titative polymerase chain reaction (QPCR) amplification method by
Cawthon (2002) with modifications by Criscuolo et al. (2009). Primer
sequences, PCR assay setup and thermal profiles followed Pepke
et al. (2021) and are detailed in Appendix S1. Briefly, this method
measures the ratio of telomere sequence relative to the amount of
a nonvariable gene (GAPDH) and a reference sample. The reference
sample consisted of pooled DNA from six individuals, which was also
included as a two-fold serial dilution (40-2.5 ng/well) on all plates to
produce a standard curve, in addition to a nontarget control sample
(all in triplicates). Samples were randomized and run on 2 x 125 96-
well plates (telomere and GAPDH assays, respectively). The gPCR
data was analysed using the qsase software (Hellemans et al., 2007),
which computes relative TL as the ratio (T/S) of the telomere repeat
copy number (T) to a single copy gene number (S) similar to Cawthon
(2002). In gBASE the T/S ratio is calculated as calibrated normalized
relative quantities (CNRQ) that control for differences in amplifica-
tion efficiency between plates and for inter-run variation by includ-
ing three inter-run calibrators from the standard curve. All individual
plate efficiencies were within 100 + 10% (mean telomere assay
efficiency was 97.5 + 3.9%, and 97.6 + 4.2% for GAPDH assays).
The average of the reference sample cycle thresholds (Ct) across
all plates were 10.54 + 0.03 SD and 21.53 + 0.02 SD for telomere
and GAPDH assays, respectively. Thus, while reproducibility of TL
measurements within the reference sample of the same DNA sam-
ple extract is high, we performed DNA re-extraction of the same
blood samples for 25 individuals to test TL consistency across DNA
extractions (Appendix S1). The re-extractions were run on different
plates and the TL estimates of these samples remained highly cor-
related (R? = 0.75, Figure $1.3 in Appendix S1). For these individuals,
the average of the TL measurements was used in subsequent analy-
ses. All reactions for the primary analyses (from the populations on
Hestmanngy and Traena) were performed by the same person (MLP).
MLP and WB generated the secondary data set (n = 569 on 2 x 21
plates, from the populations on Leka and Vega) as described in Pepke
et al. (2021). The primary and secondary data sets used different

reference samples and are therefore not combined in the analyses.

2.4 | Statistical analyses

241 | The correlation between tarsus length and
telomere length

We first tested the phenotypic correlation between TL and tar-
sus length (as a proxy for body size) within 2462 house sparrow

nestlings from Hestmanngy and Traena. TL (response variable) was
log,,-transformed and linear mixed-effects models (LMMs) were
fitted with a Gaussian error distribution (R package Ime4, Bates
et al., 2015). Sex differences in TL are known for house sparrows
(Pepke et al., 2021). Thus, models included sex (continuous) fledg-
ling age at sampling, hatch day (humbered day of year mean cen-
tred across years), and island identity as fixed effects. We fitted
random intercepts for brood identity, year, and gPCR plate identity
to account for the non-independence of nestlings from the same
brood, year and plate. Because our study populations are known
to be affected by inbreeding depression (Niskanen et al., 2020), we
included the inbreeding coefficient (F, continuous) as a fixed effect
(Reid & Keller, 2010). We then compared models with and without
(age-standardized) tarsus length using Akaike's information criterion
corrected for small sample sizes (AlCc, Akaike, 1973; Hurvich & Tsai,
1989), and Akaike weights (w) and evidence ratios (ER) to determine
the relative fit of models given the data (Burnham & Anderson,
2002). Models were validated visually by diagnostic plots and model
parameters are from models refitted with restricted maximum
likelihood (REML). Estimates and 95% confidence intervals (Cl) are

reported.

2.4.2 | Parental age effects on offspring
telomere length

We tested whether maternal age at conception (MAC [mean
1.8 + 1.1 SD years, range 1-7 years], n = 373 mothers with
n = 1967 offspring) or paternal age at conception (PAC [mean
2.1+1.2 SD years, range 1-8 years], n = 388 fathers with n = 1927
offspring) predicted TL in offspring from Hestmanngy and Treena.
We applied within-subject centring (van de Pol & Wright, 2009)
to separate within-parental age effects (e.g., senescence) from
between-parental age effects (e.g., selective disappearance), by in-
cluding both the mean parental age at conception and the deviation
from the mean parental age for each parent as fixed effects in two
LMM s (for fathers and mothers, respectively) explaining variation
in offspring TL (log,,-transformed). Both models included island
identity and sampling age as fixed effects, and random intercepts
for year, gPCR plate identity, and either maternal identity or pater-
nal identity.

2.4.3 | Heritabilities and genetic correlation of
telomere length, tarsus length, and body condition

We used a multivariate Bayesian animal model (Hadfield, 2019;
Kruuk, 2004) fitted with Markov chain Monte Carlo (MCMC) to es-
timate heritability and genetic correlations of early-life TL, age-
standardized tarsus length and body condition in the two natural
island populations (Hestmanngy and Traena, n = 2662) and the two
manipulated island populations (Leka & Vega, n = 569) that under-
went artificial size selection. TL was log,,-transformed and all traits
were fitted with a Gaussian error distribution using the R package
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MCMCglmm (Hadfield, 2010). Models included sex, fledgling age at
sampling (associated only with TL and condition), island identity,
and inbreeding coefficient (F) as fixed effects (Wilson, 2008), which
were fitted such that different regression slopes were estimated for
each trait (Hadfield, 2019). To estimate variance components, ran-
dom intercepts were included for individual identity linked to the
pedigree (“animal’, V,), brood identity (V) nested under mother
identity, father (V) and mother identity (V,,), and birth year (cohort
effects, V, ). Parental effects include those influences on offspring
TL that are repeatable across the lifetime of the mother or father
(Kruuk & Hadfield, 2007), while brood identity accounts for other
common environmental effects (McAdam et al., 2014). House spar-
rows are multibrooded laying up to three clutches in a season and
may breed in multiple years, with an average of 3.6 + 1.3 SD fledg-
lings per brood in this study. Furthermore, to account for variance
associated with measurement error we included qPCR plate iden-
tity (V,, associated only with TL, see e.g., Froy et al., 2021; Sparks
et al., 2021). Random effects were generally specified with 3 x 3
covariance matrices to estimate the variances and covariances be-
tween the effects for each trait. We used inverse-Wishart priors for
random effects and residual variances in the multivariate model
(V =l and nu =3, Hadfield, 2019). We reran analyses with other
relevant priors (parameter expanded) to verify that results were not
too sensitive to the choice of prior. The MCMC chain was run for
2,000,000 iterations, sampling every 500 iterations after a burnin
of 5% (100,000 iterations). Mixing and stationarity of the MCMC
chain was checked visually and using Heidelberger and Welch's
convergence test (Heidelberger & Welch, 1983) implemented in the
“coda” package (Plummer et al., 2006). All autocorrelation values
were <0.1 and effective sample sizes were >3000. The narrow-
sense heritability was calculated as the posterior mode of the pro-
portion of phenotypic variance (V) explained by additive genetic

v
. . . h2 — A
variance (Wilson et al., 2010): Vat Vot Ve + V1 Vo7 Vg vy Where

Vy is the residual variance. We also estimated heritabilities exclud-
ing V from the total phenotypic variance since it does not repre-
sent biological variance (de Villemereuil et al., 2018). Estimates are
provided as their posterior mode with 95% highest posterior den-
sity intervals (HPD). All analyses were performed in R version 3.6.3
(R Core Team, 2020).

We also ran univariate models of TL, tarsus length and body con-
dition including the same fixed and random effects as in the multivar-
iate model (Appendix S2). For comparison with previous studies (e.g.,
Asghar et al., 2015), we tested whether maternal TL and/or paternal
TL predicted offspring TL using two LMMs (parent-offspring regres-
sions, Appendix S2). Parental heritabilities (hﬁmemm and hﬁatemao can
be estimated from parent-offspring regressions as the slope multi-
plied by two (one sex contributes half of the genes to their offspring).
We used the R package pedantics (Morrissey & Wilson, 2010) to
show that, based on parent-offspring regression, the pruned pedi-
gree of the natural populations had 280% power to detect heritabili-

ties 20.21 (see Figure S1.2 and Appendix S1). Furthermore, we

estimated maternal (V,\,) and paternal (V) genetic effects (e.g.,
Wolf & Wade, 2016) in a multivariate animal model by fitting random
intercepts for maternal and paternal identity linked to the pedigree
to quantify these effects while accounting for the environmental
variances specified above (Appendix S2). Maternal and paternal her-

e 2 _ Vv 2 _V
itabilities were calculated as: Mraternal = v, and Moaternal = V-, re-

spectively (Wilson et al., 2005). To test for sex-specific heritabilities
(e.g., Jensen et al., 2003; Olsson et al., 2011), we ran a bivariate ani-
mal model of TL in females and males as two different phenotypic

traits with a genetic correlation between them (Appendix S2).

2.4.4 | SNP genotype data and association analyses
Nestlings that survived to adulthood (recruited) on Hestmanngy
and Traena were genotyped on a high-density 200K SNP array (de-
tailed in Lundregan et al., 2018) with median distances between
SNPs shorter than 5000 bp. SNPs were originally identified from
whole-genome resequencing of 33 individual house sparrows
which were mapped to the house sparrow reference genome
(Elgvin et al., 2017). DNA was extracted as described in Hagen
et al. (2013), separately from telomere analyses. Data preparation
and quality checks were performed using the GenABEL package
(GenABEL project developers, 2013). We removed SNPs or indi-
viduals for which there was more than 5% missing data, the minor
allele frequency (MAF) was less than 1%, or pairwise identity-by-
state (IBS) was more than 95%. After quality control, the genomic
relationship matrix (GRM) was computed based on 180,650
(180,666) autosomal markers in 373 (383) individuals (142 [145]
males and 137 [142] females from Hestmanngy and 47 [48] males
and 47 [48] females from Traena) with numbers in brackets show-
ing sample sizes when individuals with missing tarsus length
measurements are included. We then performed two GWA analy-
ses by fitting LMMs for the variation in TL using the package
RepeatABEL (Ronnegard et al., 2016): The first model included
age-standardized tarsus length as a covariate, and the second
model did not. Both models included sex, age, hatch day (mean
centred), F, and island identity as fixed effects, and brood identity,
year, qPCR plate, and the GRM fitted as random effects. We esti-
mated the proportion of phenotypic variance explained by each
SNP as: thp = %, where p and q are the allele frequencies and
B is the estimated allele substitution effect (Falconer & Mackay,
1996). Finally, we determined if SNPs significantly associated with
TL were within 100 kb of any gene within the annotated house
sparrow genome, because this is the distance that linkage disequi-
librium decays to background levels in this species (Elgvin et al.,
2017; Hagen et al., 2020). Gene ontology (GO) searches were per-
formed using the gene ontology annotation (GOA) database
(Binns et al., 2009; Huntley et al., 2015) to obtain an overview of
biological processes and molecular functions known to be influ-

enced by the genes.
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3 | RESULTS

3.1 | The correlation between tarsus length and
telomere length

The model explaining variation in TL that included tarsus length was
ranked higher than the model without tarsus length (AAICc = 2.5,
w, = 0.78, ER, = w,/w, = 3.55). There was a negative association
between tarsus length and TL (4, length= -0.004 + 0.002,Cl = [-
0.007, -0.000], n = 2462, Figure 1 and Table 1), such that larger
nestlings generally had slightly shorter early-life telomeres. Thus,
an increase in (age-corrected) tarsus length of 1 mm was associated
with a decrease in TL of 0.8%.

3.2 | Parental age effects on offspring
telomere length

There was no evidence for associations between offspring TL and
MAC (fypac =0-001 + 0.004, Cl = [-0.007, 0.009], 4, .. mac =0-001
0.005, Cl =[-0.008, 0.010], Figures S2.1a,c in Appendix S2) or PAC
(Bypac =0.0050.003, CI =[-0.002,0.011], £, pac= ~0-001 + 0.003,
Cl =[-0.008, 0.005], Figure S2.1b,d in Appendix S2).

3.3 | Heritabilities and genetic correlations of
telomere length, tarsus length, and body condition

We found nonzero additive genetic variances (V,) for TL (V, = 0.009,
HPD = [0.008, 0.010]), tarsus length (V, = 0.201, HPD = [0.111,
0.314]) and body condition (V, = 0.006, HPD = [0.005, 0.006]) in
the natural populations (Table 2, Figure 2). The main component
contributing to variance in TL was between-year differences (V,,
explaining 68% of the total variance), while maternal (V,,, 7%), pa-
ternal (V, 7%), brood (Vg, 6%), and qPCR plate variances (V,,, 5%)
also explained considerable proportions of the total phenotypic
variance (Figure 2). Combined, the environmental effects captured

87% of the phenotypic variance in TL. Variation in TL measurements

0.6 1
0.4 1
0.2 1
0.0 1
-0.2 1
-0.4 1 0®

log(telomere length)

-0.6 1 °
-0.8 1

across years is shown in Figure S2.2: Appendix S2. For tarsus length
and condition, the main variance components were among differ-
ent broods (38%) and among years (76%), respectively (Table 2,
Figure 2). The heritabilities were h? = 0.039 for TL (HPD = [0.022,
0.057]), h? = 0.080 (HPD = [0.045, 0.124]) for tarsus length, and
h? = 0.027 (HPD = [0.015, 0.043]) for body condition. Heritability
for TL increased slightly to h? = 0.041 (HPD = [0.023, 0.061]) when
excluding gPCR plate variance (V) from the total phenotypic vari-
ance (Table 2). The heritability estimates were of the same magni-
tude in the univariate animal models (Table $2.1 in Appendix S2).
There was no evidence for a genetic correlation between TL and tar-
sus length (r, = -0.029, HPD = [-0.120, 0.078]) or between TL and
condition (r,=-0.011, HPD = [-0.080, 0.055]).

Parent-offspring regressions showed a large maternal inheri-
tance componentin TL (hiatemaI =0.435+0.156, Cl =[0.127,0.741]),
but no paternal inheritance (Figure S2.3 in Appendix S2). Including
parental genetic effects in a multivariate animal model confirmed
slightly higher maternal (hfnatema| =0.078, HPD =[0.048, 0.099]) than
paternal heritability of TL (hgaternm = 0.072, HPD = [0.043, 0.089],
Table 52.2 in Appendix S2). We found no evidence of differences in
sex-specific heritabilities of TL (Table $2.3 in Appendix S2).

In the analyses of the artificially selected populations (Leka and
Vega, Table S2.4 in Appendix S2) we found comparable heritability
estimates for TL (h? = 0.031, HPD = [0.005, 0.061]) and body condi-
tion (h?=0.018, HPD = [0.004, 0.049]), and a slightly higher estimate
for tarsus length (h? = 0.126, HPD = [0.040, 0.237]). Similarly, there
was no evidence for genetic correlations between TL and tarsus
(r,=-0.036, HPD = [-0.224, 0.149]) or between TL and body condi-
tion (r, = -0.008, HPD =[-0.129, 0.140], Table S2.4 in Appendix S2).

3.4 | GWA analyses

When controlling for the phenotypic effect of tarsus length on TL,
nine SNPs showed evidence for an association with early-life TL
(Table 3, Figure 3), with a Bonferroni (1935) corrected threshold
of p < 2.77 x 107 at the genome-wide p-value threshold (i.e., the
nominal p = .05 divided by 180,650 markers) and a genomic inflation

FIGURE 1 The negative association
between age-corrected tarsus length
and telomere length (log,,-transformed)
in 2462 house sparrow nestlings with

B -4 -2 0
Tarsus length (age-corrected)

a regression line from a LMM shown in
Table 1. The 95% confidence interval
(grey) reflects only the fixed effects
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TABLE 1 Estimates, standard errors
(SE), lower and upper 95% confidence
intervals (Cl) from a LMM of variation in
telomere length (TL, n = 2462)

Response variable:
log,,(TL)

Intercept

Tarsus length

Sex (female)

Island identity

(Hestmanngy)
Age
Inbreeding coefficient
(F)
Hatch day
o-grood ID (n = 948)
‘7§PCR plate ID (n=125)
o2 (n=20)

year

O residual

Estimate SE Lower CI Upper Cl qpERUiELs
-0.0089 0.0202 -0.0484 0.0305 0.9797
-0.0035 0.0016 -0.0066 -0.0003 0.9920
-0.0042 0.0039 -0.0119 0.0035 0.9904
~0.0080  0.0085 ~0.0250 00089 09817
-0.0013 0.0015 -0.0043 0.0016 0.9970
-0.1796 0.0941 -0.3638 0.0049 0.6613
-0.0001 0.0001 -0.0004 0.0001 0.9998
0.0038 0.0030 0.0045 1.0088
0.0010 0.0007 0.0015 1.0023
0.0020 0.0010 0.0040 1.0046
0.0071 0.0066 0.0077 1.0165

Marginal R/Conditional R?: 0.006/0.486

Note: The model included random intercepts for brood identity, gPCR plate identity, and year.
Italics indicate parameters with Cls not overlapping zero.

factor of 1 =1.0489 + 0.0002 (Figure S2.3 in Appendix S2). Using the
annotated house sparrow genome, a total of 22 genes on five chro-
mosomes were found to be located within proximity (+ 100 kb) of
six of the top SNPs (Table 4). Four SNPs that showed weak evidence
for an association with TL (nominal .05 < p < .10) are also shown in
Table 3. Among three of these SNPs we identified three genes within
+100 kb on three chromosomes (Table S2.5 in Appendix S2).
SNPa429690 s located on chromosome 2 within the Aquaporin-1
(AQP1) gene, which encodes the AQP1 water channel membrane
protein. The AQP1 protein is abundant in erythrocytes (where TL
is measured) and important in regulating body water transport and
balance (Nielsen et al., 2002), but also in a range of other physiologi-
cal functions including cell migration, wound healing, fat metabolism
and oxidative stress (Saadoun et al., 2005; Verkman et al., 2014). The
same SNP is located 39 kb from the growth hormone-releasing hor-
mone receptor (GHRHR), which controls body growth (Mullis, 2005),
and has been associated with telomerase activity (Banks et al., 2010),
lifespan (Soerensen et al., 2012) and the progression of several types
of cancer (Chu et al., 2016; Schally et al., 2018; Villanova et al., 2019).
Humans with overexpression of growth hormones and consequently
insulin-like growth factor 1 (IGF-1) have shorter telomeres (Aulinas
et al., 2013; Deelen et al., 2013; Matsumoto et al., 2015; Monaghan
& Ozanne, 2018). SNPa17235 was close (11 kb) to FRMD4B (FERM
domain-containing protein 4B), which is involved in epithelial cell po-
larity that is important in tissue morphogenesis (Ikenouchi & Umeda,
2010). This SNP was also near other genes related to cell prolifera-
tion (UBA3 and TMF1), skeletal muscle organization (LMOD3) and
oxidative stress (ARL6IP5, see Table 4). SNPa450086 was 76 kb
from OXR1 (oxidation resistance protein 1) that regulates expression
of several antioxidant enzymes (Volkert et al., 2000). SNPa108592
was in the vicinity (43-84 kb) of several genes on chromosome
15 linked to cell proliferation, ubiquitination and immune response
(Table 4). SNPi16410 was closest to SHCBP1 (70 kb) and CDCA4

(76 kb), which are both involved in cell proliferation and probably
apoptosis (Asano et al., 2014; Wang et al., 2008; Xu et al., 2018; Zou
et al., 2019). SHCBP1 is upregulated by growth factor stimulation
(Schmandt et al., 1999). CDCAA4 is likely involved in the regulation
of hematopoietic stem cells from where erythrocytes (reflecting TL)
are derived (Abdullah et al., 2001). Expression of the SCN4A gene
(68 kb from SNPa491204) has previously been correlated with TL
in human stem cells (Wang et al., 2017). SNPa491204 was 49 kb
from the growth hormone gene GH (which is linked to TL as men-
tioned above, see also Pauliny et al., 2015) and WNT9B (40 kb) of the
Wnt/p-catenin signalling pathway, which is modulated by telomer-
ase (Park et al., 2009). In Appendix S2 we mention interesting genes
found beyond the +100 kb limits of the top SNPs.

When not controlling for the effect of tarsus length on TL, the
same top SNPs were identified as in the analysis above where tar-
sus length was included (Table S2.6 in Appendix S2). In addition,
SNPa208275 was associated with TL and found 47 kb from FGFR2
encoding a tyrosine-protein kinase that is a receptor for fibroblast
growth factors that regulates several aspects of cell proliferation
and bone morphogenesis (Table S2.7 in Appendix S2, Katoh, 2009).

4 | DISCUSSION

The evolutionary response to selection on TL depends on the ad-
ditive genetic variance of TL and the strength and sign of any ge-
netic correlations with other traits under selection (Lande & Arnold,
1983). Dugdale and Richardson (2018) criticized past quantitative
genetic studies of TL on the main grounds that (1) they applied basic
regression analyses that did not consider environmental effects im-
pacting TL and as a consequence of that, additive genetic effects
may have been overestimated in previous studies; (2) TL changes
with age, complicating the fact that parents and offspring are often
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TABLE 2 Posterior modes and lower and upper 95% highest posterior density intervals (HPD) for fixed effects, variance components,
and heritability estimates from a multivariate animal model of the covariation of early-life telomere length, age-corrected tarsus length, and
body condition (n = 2662)

Variable log, (telomere length) Tarsus length Body condition
HPD HPD HPD

Fixed effects Estimate Lower Upper Estimate Lower Upper Estimate Lower Upper
Intercept 0.0217 -0.1498 0.2351 -0.0119 -0.3388 0.2948 0.0034 -0.1759 0.2005
Sex (female) -0.0039 -0.0129 0.0075 -0.0662 -0.1525 0.0315 0.0012 -0.0069 0.0105
Island identity (Hestmanngy) -0.0206 -0.0722 0.0291 -0.0009 -0.2705 0.2213 0.0014 -0.0434 0.0375
Inbreeding coefficient (F) -0.2067 -0.5747 0.1478 -0.9762 -3.6177 1.4944 -0.0246 -0.3485 0.2867
Age -0.0046 -0.0093 -0.0003 - - - -0.0007 -0.0063 0.0039
Variance components
h? 0.0387 0.0220 0.0565 0.0797 0.0454 0.1239 0.0274 0.0151 0.0427
h? (excl. V) 0.0407 0.0227 0.0606 - = = = = =
A 0.0087 0.0078 0.0097 0.2013 0.1114 0.3138 0.0057 0.0052 0.0062
Vg 0.0117 0.0103 0.0134 0.9292 0.7895 1.0830  0.0094 0.0084 0.0108
Vi 0.0145 0.0126 0.0169 0.1495 0.0957 0.2315 0.0126 0.0109 0.0147
Ve 0.0134 0.0115 0.0153 0.1367 0.0934 0.2121 0.0108 0.0094 0.0123
Vy 0.1406 0.0747 0.2840 0.2132 0.1182 0.4777 0.1387 0.0821 0.2930
Vo 0.0103 0.0082 0.0137 - - = - = =
Vi 0.0068 0.0062 0.0075 0.8174 0.7329 0.9050 0.0043 0.0039 0.0047
Covariances between TL and Covariances between TL and

tarsus condition
T -0.0293 -0.1204 0.0779 i -0.0113 -0.0802 0.0554
Cov, -0.0012 -0.0055 0.0031 Cov, -0.0001 -0.0005 0.0004
Covg -0.0033 -0.0145 0.0086 Covy 0.0000 -0.0010 0.0009
Cov,, -0.0005 -0.0070 0.0060 Covy, 0.0000 -0.0014 0.0015
Covp 0.0003 -0.0055 0.0055 Covg -0.0002 -0.0013 0.0011
Covy -0.0031 -0.1084 0.1015 Covy -0.0019 -0.0804 0.0819
Covg -0.0049 -0.0098 0.0008 Covg -0.0001 -0.0004 0.0002

Note: Abbreviations refer to: heritability h? additive genetic variance V,, brood variance Vi, maternal variance V,,, paternal variance Vj, year variance
V., qPCR plate variance V,, residual variance V,, and with identical subscripts for the covariances (Cov) including the additive genetic correlation r,.

FIGURE 2 Variance components for

o 1.00

2 TL, tarsus length and body condition

© . . . .

= ] visualized as relative proportions of the

S 0.75 - Variance component total phenotypic variance. Abbreviations
% ) . Va refer to: additive genetic variance V,,

%‘ . Vg brood variance Vj;, paternal variance V,

S 050 . Ve maternal variance V,,, gPCR plate variance
'S_ [:l Vu Vo, residual variance Vi, and year variance
G L] Vo vy

e V,

S 025 L] Ve

£ L) w

o

Q

e

Q- 000

Telomere length Tarsus length Body condition

sampled at different ages; and 3) sample sizes were too small to pro- (1) using mixed-effect animal models to partition genetic and envi-
vide enough power to separate genetic and environmental effects ronmental effects; (2) measuring early-life TL in both offspring and
using animal models. Here, we have accommodated this critique by parents at the same time point in life (as fledglings); and (3) collecting
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TABLE 3 Single nucleotide polymorphisms (SNPs) with evidence (italics) or weak evidence for an association with early-life telomere
length in house sparrows (n = 373). Chromosome number, SNP position, reference allele A1, effect allele A2, estimated effect size (f) with

standard error (SE), p-value, and Bonferroni adjusted p-value are shown

SNP Chromosome Position Al A2
SNPa223513 3 46984591 T C
SNPa17235 12 14959355 G A
SNPa500415 30 133629 C T
SNPa429690 2 145079103 G A
SNPa450086 2 17261563 G T
SNPa108592 15 11173875 G T
SNPi16410 5 53016672 G A
SNPa392732 2 13674493 A G
SNPa491204 27 1191908 T C
SNPa374949 1 33502667 C T
SNPa374964 1 33523052 G A
SNPa450065 2 17288071 C T
SNPa8679 1 5482366 T C
o _|
—

~ 7

)

=2

©

=
|

o

S’
o

(o)

o
|

Adjusted

B SE p-value p-value thP

0.5770 0.0855 1.46E-11 2.63E-06 0.0438
0.3045 0.0486 3.62E-10 6.55E-05 0.0413
0.2919 0.0475 8.20E-10 0.0001 0.0471
0.3627 0.0636 1.15E-08 0.0021 0.0391
0.3553 0.0651 4.82E-08 0.0087 0.0296
0.3409 0.0632 6.73E-08 0.0122 0.0302
0.2242 0.0433 2.22E-07 0.0401 0.0312
0.5017 0.0971 2.40E-07 0.0433 0.0266
0.1387 0.0269 2.64E-07 0.0478 0.0205
0.2175 0.0428 3.84E-07 0.0694 0.0267
0.2175 0.0428 3.84E-07 0.06%94 0.0267
0.2138 0.0422 4.01E-07 0.0724 0.0300
0.2624 0.0520 4.59E-07 0.0829 0.0280

o o

1 2 3 4

T
11 13 17 21 1A

8 9

Chromosome

FIGURE 3 Manhattan plot showing genomic location plotted against -log,,(p-value) of the GWA analysis results for early-life telomere
length in house sparrows (n = 373). The dotted line indicates the genome-wide significance threshold (corresponding to p < .05 divided by
the number of tests n = 180,650 SNPs) used to determine the top SNPs listed in Table 3

TL data from more than 3300 individuals across four populations,
which represent a considerably larger sample size than those of pre-
vious wild animal studies.

We found that around 4% of the variation in early-life TL in house
sparrows at the end of the nestling growth period was determined
by additive genetic variation. The relatively small additive genetic
variance and large year variance in early-life TL appears to be in ac-
cordance with the effects of relative growth and weather conditions
on TL in similar sparrow populations (Pepke et al., 2021). The lack of
repeated individual TL sampling in this study may prevent us from
fully separating between permanent environmental effects and the
common environmental effects (brood effects and parental effects,
Wilson et al., 2010). However, with several offspring measures for
each brood, mother, and father, most of any permanent environ-
mental variance would be included in the residual variance (Kruuk &

Hadfield, 2007). In addition, recent longitudinal studies have found
negligible permanent environmental effects on TL (Froy et al., 2021;
van Lieshout et al., 2021; Seeker et al., 2018; Sparks et al., 2021;
Vedder et al., 2021).

Similarly small but significant heritabilities of TL have been re-
ported using animal models for example, nestling collared flycatch-
ers, Ficedula albicollis (h2 = 0.09, Voillemot et al., 2012), Seychelles
warblers (h? = 0.03-0.08, Sparks et al., 2021) and adult greater
mouse-eared bats, Myotis myotis (h?> = 0.01-0.06, Foley et al., 2020),
in which TL correlates with several weather variables. These studies
also documented considerable year or cohort effects on TL (Foley
et al., 2020; Sparks et al., 2021) similar to studies finding no her-
itability of TL in white-throated dippers (Becker et al., 2015) and
European badgers (Meles meles, van Lieshout et al., 2021). In compar-
ison, studies based on parent-offspring regression have often found
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(Continued)

TABLE 4

Reference

Function

Distance

SNP

Gene

Chr.

Kassmann et al. (2008), Tsujino et al. (2003). See

lon channel activity, muscle contraction, response

67,843

SNPa491204

SCN4a: Sodium channel protein type 4 subunit

27

also Wang et al. (2017)

to oxidative stress

alpha (Mus musculus)

Gomez-Garcia et al. (2005), van Gool et al.

Regulation of growth hormone, bone maturation

48,702

SNPa491204

GH: Somatotropin (Anas platyrhynchos)

27

(2010) and VanderKuur et al. (1994)

Hay et al. (1997)

Intra-Golgi transport of proteins

2555

SNPa491204

GOSR2: Golgi SNAP receptor complex member 2

27

(Rattus norvegicus)
WNT9B: Protein Wnt-9b (Homo sapiens)

Bergstein et al. (1997) and Bourhis et al. (2010).

Wnt/p-catenin signalling pathway, cranofacial and

39,887

SNPa491204

27

See also Park et al. (2009)

kidney development

Note: Chromosome number, distance (in bp) between SNP and gene, general molecular or biological function or relevance to telomere biology are indicated with references. The list is sorted first by SNP

p-value and then by gene distance.

higher TL heritabilities in e.g. king penguins (h? = 0.2, Reichert et al.,
2015), jackdaws (Coloeus monedula, h? = 0.72, Bauch et al., 2019),
and sand lizards (Lacerta agilis, h? =0.5-1.2, Olsson et al., 2011). The
heritability of TL in house sparrows is comparable to that of many
life-history traits and considerably lower than many morphological
traits (e.g., Mousseau & Roff, 1987; Visscher et al., 2008), which may
suggest that TL is under strong selection in the wild (Voillemot et al.,
2012) or that there are considerable nonadditive genetic or envi-
ronmental influences on early-life TL. However, recent animal model
studies on common terns (h?> = 0.5, Vedder et al., 2021) and Soay
sheep (h? = 0.2, Froy et al., 2021) found high TL heritabilities and a
modest positive genetic correlation (i.e., with Cls overlapping zero)
between TL and lifespan (r, =0.4 and r, =0.3, respectively). The
causes of the variable TL heritability estimates found across wild
animal populations, particularly in birds, remain unknown. Curiously,
Pepke et al. (2021) reported indications of weak nonlinear or nega-
tive associations between TL and various measures of fitness (sur-
vival and reproductive success) in house sparrows, suggesting that
the environmentally pliant TL dynamics of these relatively fast-lived
birds may be very different from several other bird species (reviewed
in Wilbourn et al., 2018). In other species, positive associations be-
tween early-life TL and survival have been documented (Wilbourn
et al., 2018), which may translate into an increased lifetime repro-
ductive success (Bichet et al., 2020; Eastwood et al., 2019; Sudyka,
2019).

A considerable proportion of the phenotypic variance in TL could
be attributed to brood and parental effects (Figure 2). However, we
did not find evidence that parental effects were transmitted through
a parental age at conception effect (Figure S2.1 in Appendix S2).
Paternal age effects, which has been observed in several other spe-
cies (Eisenberg & Kuzawa, 2018), may not manifest in these house
sparrows because the mean age at reproduction in this study was
low (around 2 years). Parent-offspring regressions (Figure S2.2 in
Appendix S2) suggested a stronger component of maternal heritabil-
ity (hfrmem_j‘I = 0.44) rather than paternal heritability of TL. Maternal
heritability estimates from parent-offspring regressions includes
both direct additive genetic, maternal genetic and maternal environ-
mental effects (Wilson et al., 2005), and we found a lower maternal
heritability (hiatemaI = 0.078) when using the animal models (Table
S2.2 in Appendix S2). Maternal inheritance of TL has been found in
several bird species (Asghar et al., 2015; Becker et al., 2015; Horn
et al., 2011; Reichert et al., 2015) and in some studies on humans
(Broer et al., 2013), where this has been attributed to an X-linked
gene (Nawrot et al., 2004) or implied genomic imprinting (Reichert
et al., 2015). In our study, we did not detect sex differences in TL
heritability (Table S2.3 in Appendix S2). However, we would ex-
pect higher heritability for the sex in which TL is less strongly as-
sociated with fitness given similar genetic architectures (Merild &
Sheldon, 1999; Roff, 2012). Such an association with fitness was
found by Heidinger et al. (2021), where early-life TL was positively
related to lifetime reproductive success in house sparrows, but
only in females. Maternal effects on offspring TL are expected to
be strongest in early-life (Wolf et al., 1998) and could act through
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for example, yolk-deposited components in the egg (Criscuolo et al.,
2020; Noguera et al., 2020; Stier, Hsu, et al., 2020) or post-laying
through maternal care behaviour (e.g., incubation and feeding rate,
Stier et al., 2020; Viblanc et al., 2020). Our results suggest that such
effects may have a genetic basis that will respond to selection: For
heritable traits like TL, maternal inheritance of offspring TL may be
expected to increase the expected rate of adaptive evolution of TL
above what would be expected from the heritability alone (Hadfield,
2012; Lande & Kirkpatrick, 1990; Rasanen & Kruuk, 2007; Wolf
etal., 1998).

There was evidence for additive genetic variance in the tarsus
length of sparrow nestlings, but the heritability estimate (h?=0.080,
Table 2) was considerably smaller than those of adult house spar-
rows in a larger sample of populations in the same area (Araya-Ajoy
et al., 2019; Jensen et al., 2008) and other bird species (Merild &
Sheldon, 2001). However, there was a large brood effect on nest-
ling tarsus length suggesting common environmental effects within
broods (e.g., Potti & Merino, 1994). For instance, variation in clutch
size, seasonal differences in food availability, weather conditions
(Ringsby et al., 2002), and provisioning rates by parents (Ringsby
et al., 2009) may induce intraclutch competition and variation in
the degree to which nestlings are able to achieve their adult tarsus
lengths at fledging (Metcalfe & Monaghan, 2001; Naef-Daenzer &
Keller, 1999). Furthermore, measurement error is probably higher
for the incompletely ossified nestling tarsi, which are covered by a
soft fleshy skin tissue that contributes to the measured length.

Individuals with shorter tarsi (a proxy for structural size, Araya-
Ajoy et al., 2019) were found to have longer telomeres, although the
effect of tarsus length on TL was small and there was considerable
variation in TL for a given size (Figure 1). This confirms previous ob-
servations of a prevailing negative phenotypic correlation between
body size and TL within house sparrows (Pepke et al., 2021; Ringsby
et al., 2015) and other species (Monaghan & Ozanne, 2018). We did
not find any evidence of a significant negative genetic correlation
between TL and tarsus length (Table 2). Instead, the negative pheno-
typic association between TL and tarsus length may have no genetic
basis but is shaped by common environmental effects that affect
both traits in opposite directions (e.g., Kruuk et al., 2008) including
processes related to the incomplete replication of chromosome ends
during cell division and increased oxidative stress during growth
(e.g., Monaghan & Ozanne, 2018). The lack of a genetic correlation
between TL, tarsus length or body condition could also be attributed
to selection acting simultaneously on some correlated, unmeasured
trait (Meril3 et al., 2001). Both with and without controlling for the
effect of tarsus length on TL, our GWAS on TL identified several
genes involved in skeletal development, cellular growth and dif-
ferentiation that may regulate body growth or size (Table 4, Tables
S$2.5 and S2.7 in Appendix S2), which could, however, suggest some
genetic basis of the negative correlation between TL and size. For
instance, several growth factors were downregulated in telomerase
deficient mouse bone marrow stromal stem cells (Saeed & Iqgtedar,
2015) suggesting that short telomeres or telomere loss could also be
a constraint on proliferation potential. Thus, because several of the

genes that may regulate TL during early development appear to also
be involved in cell proliferation or morphogenesis, such genes may
have co-evolved.

None of the genes highlighted in our analysis have previously
been linked to TL in GWA studies (reviewed in the introduction).
Table 4 does not provide an exhaustive list of potential biological
processes or molecular functions associated with variation in TL, and
with little a priori information on the identified SNPs, we are cau-
tious in interpreting these apparent associations as causal (Pavlidis
et al., 2012). Furthermore, the low heritability and polygenic nature
of TL make it challenging to identify putative causal genes, which
consequently only explain a small part of the total phenotypic vari-
ance in TL, and our limited sample size (n = 383) is likely to upwardly
bias effect sizes and SNP heritabilities due to the Beavis effect (Slate,
2013). Our GWAS on TL was limited to a subset of recruiting individ-
uals, which may affect power to detect associations between SNPs
and TL if the genotype or phenotype affects recruitment probability.
Pepke et al. (2021) found no association between TL and first-year
survival in house sparrows, but that recruits had longer tarsi.

Several of the identified candidate genes (Table 4, Tables S2.5 and
S2.7 in Appendix S2) are involved in cell proliferation and apoptosis
during which TL and telomerase activity invariably play an important
role (Greider, 1998; Masutomi et al., 2003). Telomerase activity has
not been investigated in house sparrows. However, for example the
RHOF gene product functions cooperatively with CDC42 and Rac to
organize the actin cytoskeleton (Ellis & Mellor, 2000), and the latter
complex participates in the control of telomerase activity in human
cancer cells (Yeh et al., 2005). CDC42 is activated by FGD4 (Chen
et al., 2004), which was found within a major locus affecting TL in
humans (Vasa-Nicotera et al., 2005). SNPa108592 was found near
several genes involved in cell proliferation, differentiation, immune
response, and ubiquitination (Table 4). Ubiquitination regulates
several shelterin components and telomerase activity (Peuscher &
Jacobs, 2012; Yalcin et al., 2017). The closest gene, ORAI1 (43 kb),
the keeper of the gates of calcium ions (Homer, 1924), is crucial for
lymphocyte activation and immune response (Feske et al., 2006).
Although not linked to ORAI1 mutations, calcium ion levels can
modulate telomerase activity (reviewed in Farfariello et al., 2015).

We identified a particularly interesting gene associated with TL,
AQP1. The AQP1 channel not only conducts water across cell mem-
branes, but also hydrogen peroxide, a major reactive oxygen species
(ROS, Tamma et al., 2018), and nitric oxide (Herrera et al., 2006),
which is an important regulator of oxidative stress (Pierini & Bryan,
2015) and a weak oxidant itself (Radi, 2018). Furthermore, increased
availability of nitric oxide may activate telomerase and thereby
prevent replicative senescence (in endothelial cells, Vasa et al.,
2000). Enhanced oxidative stress associated with endothelial cell
senescence may also be mediated by AQP1-regulated nitric oxide
flow (Chen et al., 2020; Tamma et al., 2018). In AQP1 knocked-out
erythrocytes (where TL was measured) cell lifespan was shortened
(Mathai et al., 1996) and angiogenesis is inhibited in AQP1 knocked-
out chicken embryos (Camerino et al., 2006) and mice (Saadoun
et al., 2005). Telomeres are particularly sensitive to ROS and shorten
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due to oxidative stress during growth (Reichert & Stier, 2017; von
Zglinicki, 2002). For example, Kim et al. (2011) found a negative ge-
netic correlation between growth and resistance to oxidative stress
in yellow-legged gull (Larus michahellis) chicks, which could be me-
diated by TL (see also Smith et al., 2016). Another candidate gene,
OXR1, 76 kb from SNPa450086, has a well-described antioxidant
function (Oliver et al., 2011; Volkert et al., 2000) and is upregulated
in senescent human cells (Zhang et al., 2018). Knockdown of OXR1
increases ROS production and ultimately induces apoptosis (Oliver
etal., 2011; Zhang et al., 2018), which could be due to telomere crisis.

Over-expression of AQP1 has been associated with several types
of cancer (Verkman et al., 2008), suppression of apoptosis (Yamazato
et al., 2018) and may play an important role in tumour biology
(Saadoun et al., 2005; Tomita et al., 2017). Other candidate genes
including GHRHR, SHCBP1 (Tao et al., 2013), GH (Boguszewski &
Boguszewski, 2019), and OXR1 (Yang et al., 2015) are also involved
in tumorigenesis. Cancer prevalence is not well-studied in wildlife
(Pesavento et al., 2018), but tumours have been documented in
house sparrows (Mgller et al., 2017). Genes affecting both TL and
cancer risk (Jones et al., 2012; Tacutu et al., 2011) could underlie
the antagonistic pleiotropy of trade-offs between long telomeres in
early-life (with potential benefits to growth, reproduction, and other
oxidative stress inducing processes) and later-life cancer mortality
(Tian et al., 2018). Cancer is often viewed as a senescence-related
pathology (Lemaitre et al., 2020). However, the absence of cancer in
early-life should not lead us to conclude that a somatic and poten-
tially fitness-related cost is not paid to maintain that status (Thomas
etal., 2018).

We have shown that TL is a heritable, polygenic trait with consid-
erable environmental variation and a maternal inheritance compo-
nent in a wild passerine. It is, however, important that future studies
attempt to confirm the putative candidate genes identified here as
associated with TL in other wild populations. Even though the addi-
tive genetic component was small, selection on variation in TL may
produce evolutionary change in TL over time in wild populations.
The large component of variation in early-life TL caused by annual
environmental stochasticity suggests that this will generate hetero-
geneity in TL among cohorts. Although we did not find a negative
genetic correlation underlying the negative phenotypic correlation
between TL and body size, we may hypothesize that selection for
larger nestling size, which may enhance survival until recruitment
(Ringsby et al., 1998), will be associated with selection for shorter
early-life TL due to nongenetic mechanisms, which can ultimately

influence lifespan or reproductive success.
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