
https://doi.org/10.1007/s11265-020-01544-z

Fast and Accurate Edge Computing Energy Modeling and DVFS
Implementation in GEM5 Using System Call Emulation Mode

Yahya H. Yassin1 · Magnus Jahre2 · Per Gunnar Kjeldsberg1 · Snorre Aunet1 · Francky Catthoor3,4

Received: 27 November 2019 / Revised: 21 April 2020 / Accepted: 5 May 2020
© The Author(s) 2020

Abstract
Stringent power budgets in battery powered platforms have led to the development of energy saving techniques such as
Dynamic Voltage and Frequency scaling (DVFS). For embedded system designers to be able to ripe the benefits of these
techniques, support for efficient design space exploration must be available in system level simulators. The advent of the
edge computing paradigm, with power constraints in the mW domain, has rendered this even more essential. Without a fast
and accurate methodology for architecture simulation and energy estimation, the benefit of new ideas and solutions cannot
be evaluated. In this paper, we propose a non-intrusive application controlled DVFS management implementation in the
GEM5 simulator, used with GEM5’s system call emulation mode. We also propose a novel architecture independent energy
model based on categorization of different measurable workload classes. Our energy model is parametrized and calibrated
with power measurements on a SAM4L microcontroller board, containing an ARM Cortex M4 processor. Together with the
GEM5 output statistics, the model accurately estimates the total energy consumption of our simulated system. The results
from our modified GEM5 simulator are validated with representative signal processing applications. After correction of
systematic offset errors, our results deviate with less than 4% compared to measurements from the SAM4L microcontroller.
Our contributions in this paper can easily be tailored to other processor models in GEM5 and to future versions of GEM5.
It will therefore enable system architects to explore new techniques and compare the improvements relative to existing
architectures.

Keywords DVFS · GEM5 · System call emulation · Edge computing · Embedded systems · Energy model · System
scenario

1 Introduction

Recent advances in embedded systems and integrated
circuit technology have enabled an unprecedented growth
in features in mobile signal processing systems [18].
Even if battery technology has also improved significantly,
the gains in available energy is much lower than the
increase in demand from the more powerful algorithms.
Hence, we have a major power management challenge on
battery powered platforms, especially given that battery
capacity in any case is a finite resource that must
be used efficiently. This is particularly so in the edge
computing domain [22], e.g., miniaturized surveillance
systems and wearable devices, where you can have ultra

� Yahya H. Yassin
yhyassin@gmail.com

Extended author information available on the last page of the article.

low power budgets in the order of a few mW [12].
Different energy saving approaches have been proposed
as mitigations. A survey by Mittal et al. [18] divides
them into four categories; 1) Dynamic Voltage and
Frequency (DVFS) and power-aware scheduling techniques,
2) Power Mode Management (PMM) through dynamic use
of low power modes, 3) Micro-architectural techniques,
leveraging application properties or variation in workload to
dynamically reconfigure components of the system to save
energy, and 4) Use of accelerator cores, e.g., DSPs, GPUs
and FPGAs. In this paper we focus on ultra low power edge
computing systems, without the most complex processing
units. The two first categories are then most relevant [23].

In order to efficiently exploit these energy saving
techniques, custom circuitry is typically required for
platform re-configuration, e.g., to dynamically tune the
power configurations while a processor core is active.
One example system is the SAM4L board [4] where
its ATSAM4LC4C microcontroller [5] supports switching

/ Published online: 29 May 2020

Journal of Signal Processing Systems (2021) 93:33–48 OPEN ACCESS

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-020-01544-z&domain=pdf
http://orcid.org/0000-0001-9107-116X
mailto: yhyassin@gmail.com


between two voltage states at run-time. The same is
possible with the STM32F4 microcontroller [24]. Both
are examples of the less complex types of processing
units typically used for edge computing. What we also
see is that the dynamic behavior in advanced signal
processing applications is increasing [17], giving increased
opportunities to implement finer granularity energy saving
approaches. Finer granularity leads to the need for
more run-time re-configuration settings, but also for
efficient optimization and tradeoff approaches, since the
re-configuration typically comes with an overhead both
in time and energy. System designers are using computer
architecture (CA) simulators, such as GEM5 [8], GEM5-
GPU [20], and Multi2Sim [25], to model and analyze new
processor designs and energy saving techniques [1]. A CA
simulator incorporates detailed performance models and
uses them to approximate the behavior of real hardware.
They enable designers to experiment with a variety of
different configurations at early stages of a system design
and to investigate interesting tradeoffs before the prototype
stage of the design process [23].

To be able to evaluate the energy related consequences
of different architectural choices an energy model is also
required. The model needs to be sufficiently accurate to
compare and choose between alternative implementations,
but also fast enough to allow investigation of a large number
of alternative solutions. Detailed transistor level models
will typically give accurate results, but be prohibitively
slow, while abstract behavioral models can be fast
but not sufficiently accurate. For efficient design space
exploration, the model must also be easily integrated
with the CA simulator and be flexible with respect to
use with different technologies and use-cases. Current
CA simulators and energy models are to a large extent
optimized for complex microprocessors, and less suited for
the simpler microcontrollers used in edge computing. The
techniques and methodologies presented in this paper will
enable designers to exploit the design-space exploration
capabilities of CA simulators while adhering to the needs of
our focus domain.

For compute bound workloads without known deadlines,
active execution at high frequency alternating with deep
sleep, known as Race-To-Halt (RTH), typically leads to
a larger overall energy reduction than operating at lower
frequency and Vdd without deep sleep [7]. In deep sub-
micron technology nodes, the RTH technique is useful
because the leakage and short-circuit current are increasing
in magnitude, and in the end dominates. DVFS techniques
are on the other hand more suitable for memory bound
workloads, and for real time systems with deadlines and
long idle times [7]. CA simulators need configurable

frequency and voltage scaling functionality in order to
further develop these types of energy saving techniques.

GEM5 [8] is a widely used CA simulator, and researchers
have proposed different solutions for DVFS management
in full system mode [13, 23]. However, the GEM5 full
system mode simulates a complete system in an operating
system (OS) based environment. This is not representative
for many edge computing systems, which often run without
an OS. The application itself then has to be in control
of the DVFS and power management. Furthermore, for
many realistic contexts the simulation time of a full system
with an OS is unacceptably long. As an alternative, GEM5
provides a System call Emulation (SE) mode. This is an
application-level simulation where it is only necessary to
specify the statically linked binary file that is going to be
simulated. This makes the simulator significantly faster to
execute and also more applicable for edge computing design
exploration.

The McPAT energy modeling framework [16] is often
used together with GEM5 output statistics to estimate the
overall energy consumption. Like the GEM5 full system
mode, it focuses mainly on high performance processors
and can be overly complex for edge computing systems.
It also requires a detailed internal architecture model not
necessarily available to the system designer.

As illustrated in Fig. 1, the main contribution of this
paper is 1) a non-intrusive application controlled DVFS
management implementation in GEM5 SE mode, and
2) an architecture independent energy model based on
classification of different measurable workload classes. The
energy model is parametrized by running a calibration
application once on real hardware. The contributions enable
efficient use of CA simulators in design exploration for
energy optimization of ultra-low power edge computing
systems.

To our knowledge, no published DVFS implementations
exist in GEM5 SE mode or for application controlled
DVFS in GEM5. A few implementations are available
in full system mode, based on the Alpha processor
[13], or implemented as a component responsible for
setting clock frequencies according to OS policies [23].
Our DVFS mechanism is controlled by the application
through custom pseudo instructions implemented in the
GEM5 simulation kernel based on the ARM processor
model. These custom pseudo instructions communicate
with Python configuration scripts at the GEM5 user-level,
where the DVFS controller is implemented.

Our architecture independent energy modeling frame-
work uses known energy and power formulas available in
literature [18, 21], split into subparts for, e.g., dynamic and
static power using realistic device parameters. In our model,

34 J Sign Process Syst (2021) 93:33–48



Figure 1 Illustration of paper
contribution, model setup and
execution.

One-�me HW profiling 
and measurement

Fast and accurate 
energy es�mates

Model parameters

Run�me
sta�s�cs

Gem5 SE

Applica�on 
controlled DVFS

Energy model
Workload classes
Offset correc�on

we separate different types of workloads into measurable
classes, which are parametrized in our power formulas. The
device parameters are calibrated using measurements from
real HW in order to estimate the power consumption of dif-
ferent workloads accurately, resulting in a fast and accurate
energy model. These calibrated parameters are stored in a
simple XML interface which is read by our energy model
script. In this paper, we calibrate our parameters with power
measurements from the SAM4L microcontroller [30]. Other
architectures can be modeled similarly by exchanging our
calibrated values with new ones in our XML interface.
The only information needed by the energy model script
from the GEM5 simulator are the workload related statis-
tics. Together this makes the setup fully reusable in a
user-friendly manner for other processor platforms.

Section 2 presents an overview of CA simulators and
existing DVFS implementations in GEM5. It also covers
related work on energy models for use in CA simulators.
Our DVFS implementation in GEM5 is described in
Section 3, and the energy model is presented in Section 4.
In Section 5 we introduce our experimental setup before
we present and discuss our results in Sections 6 and
7, respectively. Finally, our conclusions are presented in
Section 8.

2 Related Work

A number of CA simulators exist today, e.g., GEM5
[8], SimpleScalar [6], Sniper [10], and Multi2Sim [25].
Multi2Sim only supports out-of order execution and is
mainly intended for CPU-GPU computing. SimpleScalar
and Sniper are application-level simulators as opposed to
GEM5, which is a full system simulator. The benefit of an
application-level simulator is the ability to run only target
applications instead of a full fledged target OS. The GEM5

simulator supports application-level simulation using the SE
mode, the model of choice in our work as motivated in
the introduction. Many of the techniques we present in this
paper are agnostic to the choice of CA simulator, however.

Spiliopoulos et al. [23] extends the GEM5 simulator
to support full-system DVFS modeling. They extend the
GEM5 clock and voltage domains and use them with
a kernel-level DVFS controller containing configurable
memory-mapped registers that interacts with the software.
Spiliopoulos et al. [23] rely on McPAT [16] for the power
models and they extend it with a set of coefficients that
describes the GEM5 modeled system with DVFS.

Haririan et al. [13] presents non-intrusive full system
DVFS emulation in GEM5 based on the DEC Alpha pro-
cessor model. They implement DVFS relevant performance
monitors in the full system GEM5 model and transfer their
values to the configuration script at user-level. The script
controls DVFS based on custom instructions provided by
the simulation kernel. The status of the main application
is monitored by a concurrent utility application running
periodically. This utility application communicates with the
configuration scripts and compares its performance counters
with previously measured values. The comparison results
are used to trigger a DVFS switch accordingly. Their solu-
tion does not allow the application to have direct DVFS
control of the platform.

Li et al. [16] introduce McPAT, an integrated power, area
and timing modeling framework that supports comprehen-
sive design space exploration for multi-core and many-core
processor configurations. This framework includes models
for the fundamental components of different types of pro-
cessor cores. With a flexible XML interface, McPAT can
be interfaced with many performance simulators. McPAT
focuses mainly on complex high performance processors,
and all parts of the system architecture must be modeled
properly in order to extract the correct energy results. The

35J Sign Process Syst (2021) 93:33–48



architecture based energy model has also been seen to incur
estimation errors that are difficult for designers to detect and
compensate for [19].

A framework for analyzing and optimizing microproces-
sor power dissipation at the architectural level, WATTCH, is
presented by Brooks et al. [9]. It is a fast and high accuracy
framework tailored to work together with SimpleScalar [6].
Similar to McPAT, WATTCH requires the internal compo-
nents of the system architecture to be modeled in detail in
order to benefit from the energy model.

Compared to previous work, our DVFS controller is
implemented in GEM5 SE mode, using a generic technique
which can be applied to other simulators as well. The DVFS
implementation is application controlled and focuses on
simulating low power embedded systems with less complex
architecture than high performance processors. Compared
to energy modeling frameworks typically used in CA
simulators, our energy model is architecture independent
in the sense that it does not need details about internal
components in the processing unit. Instead it uses energy
and power formulas parametrized using measurements on
real hardware. Coupled with statistics from GEM5 this gives
fast and accurate energy estimates for microcontroller based
edge computing systems.

3 Contribution I: GEM5 DVFS in SE Mode

In this section, we present our first contribution in this
paper; SE mode DVFS implementation in GEM5. Figure 2
shows details of our GEM5 implementation. We will first
give an overview of the functionality before we go into
implementation details in the following subsections. When
the application running on the simulated processor model
(lower right corner of Fig. 2) decides that it wants to change
DVFS state, it executes a custom instruction that calls the
DVFS controller. The different clock and power settings
are instantiated as separate CPU models and the DVFS
controller activates the CPU switch mechanism, which then
loads the correct model into each CPU core (upper left
corner of Fig. 2). Activity statistics for cores and memories
are now gathered by the simulator for the time period
the selected DVFS state is running, and then dumped to
text files for later post-processing. When the application
stops executing, we thus have separate activity statistics for
each DVFS state, which can be used by Python scripts to
calculate the total energy consumption (right hand side of
Fig. 2).

From a more formal perspective, the GEM5 simulator
is comprised of C++ processor models at the simulator

Figure 2 GEM5 DVFS simulator flow with Python scripted energy model.

36 J Sign Process Syst (2021) 93:33–48



kernel level (upper part of Fig. 2), which interacts with
Python, Ruby, and Swig configuration scripts at the user
level (lower part of Fig. 2). The kernel-level represent the
physical system components through C++ objects, called
simObjects. These simObjects are exposed to Python, such
that they can be controlled by the user level configuration
scripts. The user level thus represents the control part
of the simulator, from which the different kernel level
simObjects are configured and controlled through Python.
The user level also links the compiled user application to the
simObjects and runs the simulator.

We take advantage of GEM5’s pseudo instruction
functionality in the simulator kernel and let the application
directly control the DVFS switch through a custom pseudo
instruction we have implemented in the ARM processor
model. This instruction interacts with the user level
configuration scripts and switches the CPU model at run-
time. A summary of our main user and kernel level
modifications are listed in Table 1. Table 2 compares
our generalized modifications to state-of-the-art DVFS
implementations in GEM5. In the following sub-sections,
we will describe our GEM5 DVFS simulator flow in more
detail.

3.1 GEM5 Kernel Level Modifications

Our DVFS mechanism is implemented in a generic way so
that it can be tailored to work with any in-order CPU model.
Only CPU specific mechanisms, such as our custom DVFS
instruction, must be ported to the target instruction set
architecture, provided there is space available for additional
instructions. To demonstrate our methodology, we apply our
changes to the ARM processor model.

The DVFS instruction, gem5Dvfs shown in Listing 1,
is implemented in an unused location within the GEM5
model of the ARM instruction set (Row 3 of Table 1). This
instruction combines available registers for storage of DVFS
state, delay and period variables of our DVFS function.
The functionality of the DVFS instruction is modeled in the
pseudo inst files (Row 2 of Table 1). In Fig. 2 we find this
custom atomic CPU model with DVFS instruction depicted
below the Main Memory.

The GEM5 version we are using does not have native
support for multiple clock domains per CPU model in SE
mode. Consequently, we have implemented one custom
CPU model for each performance level. These custom CPU
models are copies of the custom atomic CPU model with
modified file and variable names (Row 1 of Table 1).

At the end of gem5Dvfs in Listing 1 the simulation
exits its loop with “gem5 DVFS” as the cause of exit. This
message is then handled by the user level configuration
scripts to switch the current CPU model with another model
based on the value of the dvfs state variable from the

Table 1 GEM5 modifications.

Row File path Type of modification

Kernel level modifications

1 In src/cpu/:

scpu1800mv40mhz

scpu1650mv33mhz Copies of src/cpu/simple

scpu1500mv26mhz with modified variable and

scpu1350mv19mhz function names

scpu1200mv12mhz

scpu1050mv06mhz

2 In src/sim/:

pseudo inst.hh Implementation of the

pseudo inst.cc DVFS instruction function

3 In src/arch/arm/isa/:

operands.isa Extension of the ARM

insts/m5ops.isa instruction set with

formats/m5ops.isa one DVFS instruction

4 In util/m5:

m5op arm.S Connecting the pseudo

m5op.h DVFS instruction to

m5ops.h the configuration scripts

5 In src/python/m5/: DVFS checkpoint function

simulate.py used by the DVFS instruction

User level modifications

6 In config/examples/: Declaration of each clock

se.py domain for DVFS

7 In config/common/: Connecting CPU models to

Simulation.py the system, adding the

Options.py DVFS options flag and

CpuConfig.py controller functionality

application, before the simulation continues. The when and
repeat variables in Listing 1 are optional configurations that
can delay a DVFS switch with a number of ns or trigger
a periodic DVFS switch depending on what is required by
the application. In this paper, we set these parameters to
zero because the energy delay is handled by our energy
model described in Section 4. The gem5Dvfs instruction is
connected to a new gem5 dvfs inst function in the GEM5
utilities, which are included when compiling the application
for the target platform in GEM5 (Row 4 of Table 1). The
utility function makes the DVFS instruction available to the
application.

In order to control the DVFS switches occurring while
the application is running we implemented a copy of the
GEM5 checkpoint function to create DVFS checkpoints
with time stamps each time the DVFS instruction is used
(Row 5 of Table 1).

37J Sign Process Syst (2021) 93:33–48



Table 2 Comparison to state-of-the-art DVFS implementations in
GEM5.

State-of-the-art Our implementation

Works only in full Implemented for SE mode

system mode

Custom versions of simple, Copies of the simple atomic

detailed and timing CPU CPU model with modified

models used with DVFS variable and function names

Implementation of the DVFS Implementation of appli-

pseudo-instructions used cation controlled DVFS

with performance monitors pseudo-instruction used

together with GEM5’s

checkpoint mechanism

OS controlled or system DVFS policy triggered by a

monitor based DVFS policies DVFS instruction from the

through either kernel level application together with

mechanisms or by GEM5’s GEM5’s switchCpus

switchCpus mechanism mechanism

The performance statistics are stored in the stats.txt
output from GEM5 where each DVFS performance level is
collected in separate simulation rounds. Before each DVFS
instruction in the user-level we first dump the gathered
performance statistics to a file and reset the statistics
counters immediately after each DVFS instruction. This
procedure allows us to force the simulator to start a new
simulation round, i.e., a new collection of performance
statistics, after each DVFS instruction. Each simulation
round in the stats.txt file in GEM5 lists the statistics for all
CPU models instantiated in the configuration script. In order
to know which CPU was active in each simulation round,
we also introduced a new statistics variable, dvfsCPUActive,
in each of our custom CPU models. This variable is used
in a Python script in a post-processing step to extract the
performance history from the correct CPU (right hand side
of Fig. 2).

3.2 GEM5 User Level Modifications

Our DVFS controller is implemented in the GEM5 Python
configuration scripts at the user level. An advantage of
having the DVFS controller in the configuration script
is that the designer can change and experiment with
different DVFS switching policies without recompiling the
simulation kernel. Compilation of the GEM5 kernel is only
required if new frequencies or CPU’s are added or modified.

In GEM5’s SE mode user level script, se.py, we have
instantiated one CPU clock domain for each of our
custom CPU models and assigned them their corresponding
frequency (Row 6 of Table 1). As visualized at the
boundary between the user level and kernel level parts
of Fig. 2 these user level domains are then connected
with their corresponding kernel level CPU models using
the mechanism in the common user level Simulation.py
script (Row 7 of Table 1). Our working version of the
GEM5 simulator did not permit a frequency change after the
processor was initialized. However, it allowed changing the
processor model through the GEM5 switchCpus function,
which worked when we assigned separate clock domains for
each CPU model. Method switchCpus drains the simulation
and switches out the old CPU. When the simulation is
drained, all the components are notified to come to a
consistent state that can safely be serialized, in a similar way
checkpoints are written to file. The old CPU continues to
run until it has committed all instructions still residing in
the pipeline. When this process is finished the CPU models
are exchanged with the help of built-in functions in the
gem5 simulator, and all statistics from the old CPU are
written to the stats.txt file. The simulation then continues
with the new CPU model. It is thus possible to run a fully
functional simulation in order to achieve accurate energy
estimates. The DVFS functionality is only activated when
our “--gem5-dvfs” option is enabled at the start of the
simulation. We modified the GEM5 run function used by
se.py in Simulation.py to include our DVFS controller as
shown in Listing 2. We implemented the DVFS controller

Listing 1 DVFS pseudo
instruction.

38 J Sign Process Syst (2021) 93:33–48



Listing 2 Modification in the
run function.

itself in the gem5 dvfs switch function as shown in Listing
3.

The functionality of our DVFS controller is implemented
in our Platform Adaption Manager (PAM) function called
PAM select. This function selects which CPU model to
choose based on the application request given by the
dvfs state variable and triggers a frequency change from our
dfs function. The PAM select and dfs functions are shown in
Listings 4 and 5.

Our current DVFS controller handles homogeneous
multi-core switching, i.e., all active and parallel processor
cores of the same kind change their models simultaneously
when the application executes the DVFS instruction. As

shown in Listings 5 and 6, our dfs function generates a CPU
switch list. This switch list is used by the GEM5 switchCpus
function to switch the active CPU with another model. An
extension of our dfs function to support different models
to be simultaneously active is considered future work and
requires heterogeneous multi-core support in GEM5.

3.3 Usage of DVFS in the Application

Listing 7 shows the DVFS function, dvfs scenario, which
must be included in the application for DVFS control. In
our tests we also trigger a DVFS switch at the beginning
and end of the application in order to isolate the power

Listing 3 DVFS Controller.

39J Sign Process Syst (2021) 93:33–48



Listing 4 PAM select function.

estimation of the application. dvfs scenario initially dumps
the performance statistics of the current performance level,
before switching the CPU model through our DVFS
function. Immediately after the switch all performance
statistics are reset, and the performance statistics for the new
CPU model are then collected in a separate simulation round
in stats.txt.

Compared to state-of-the-art solutions, we introduce
direct application control of the voltage and frequency
mechanisms in the simulated platform. Our implemented
mechanisms are generic because we mainly add extensions
to architecture independent parts of the simulator. Only the
implementation of the gem5Dvfs instruction needs to be
ported to an available location in the instruction set of other
architectures of interest.

3.4 Limitations of Our DVFS Mechanisms

The current implementation of our DVFS mechanisms is
limited to the simple atomic in-order CPU model in GEM5.
Our mechanisms focus on CPU voltage and frequency
scaling, and do not support memory hierarchy voltage
and frequency scaling. For our focus on microcontroller

based edge computing, this is not a limitation. However,
doing the following modifications will enable using our
technique for other domains as well. To support DVFS in the
memory hierarchy, mechanisms similar to the switchCpus
mechanism is required for the memory hierarchy in GEM5
to enable memory level DVFS. Similarly, a heterogeneous
multi-core support in GEM5 is required before our DVFS
mechanisms can be extended to support heterogeneous
multi-core DVFS. These extensions are considered out of
the scope of this paper.

4 Contribution II: Energy Model

The second contribution in this paper is our energy model,
based on equations divided into subparts explicitly exposing
essential device parameters. These are parametrized through
power measurements from the SAM4L microcontroller with
different workloads (arithmetic and memory) and power
modes (active and sleep). The theory and assumptions
behind our energy model and power consumption formulas
are presented in Section 4.1. How we combine the GEM5
statistics with SAM4L power measurements through our

Listing 5 dfs function.

40 J Sign Process Syst (2021) 93:33–48



Listing 6 generate switch list
function.

energy modeling scripts is presented in Section 4.2.
Section 4.3 describes how we apply offset error corrections
in GEM5.

4.1 Estimation of the Power Consumption

Our model for power consumption is based on Eqs. 1 and 2
[21].

PTotal = PStatic + PDynamic (1)

PDynamic = CEf V 2
dd, where CE = αC (2)

In Eq. 2, CE is the effective load capacitance, Vdd is the
supply voltage, f is the clock frequency, α is the activity
factor (between 0 and 1), and C is the load capacitance.
The static power can be modeled as shown in Eq. 3 [11],
where PShort-circuit is the short-circuit (direct path) power
and ILeak is the leakage current. Even though gate- and
junction-leakage currents exacerbate ILeak, it is dominated
by the sub-threshold current Ids, giving Eqs. 4 [26] and 5
[3], respectively. In Eq. 4, β is the gain factor of a MOS
transistor (μA/V 2), τ is the rise or fall time of a signal,
f is the device frequency, VTh is the threshold voltage,
and Vdd is the supply voltage. According to Alioto [2], the
overall energy per clock cycle of a VLSI system consists
mainly of the dynamic and the leakage energy. The short-
circuit current energy contribution is usually negligible, due
to the exponential MOS I-V characteristics. Rabaey et al.
[21] similarly shows that the short-circuit power in Eq. 4
can be ignored for well designed circuits, because it is
normally less than 10% of the dynamic power dissipation,
except for slow input signals (large τ ). We hence assume
that PLeak >> PShort-circuit and leave out the short circuit
power consumption from our model.

PStatic = PShort-circuit + ILeak · Vdd (3)

PShort-circuit = β
12

τf (Vdd − 2VTh)
3 (4)

ILeak = Ids = I0e
(1−κ)

Vbs
VT e

κ
Vgs
VT (1 − e

− Vds
VT + Vds

V0
) (5)

In Eq. 5, Vbs is the substrate-to-source potential, Vgs

is the gate-to-source potential, Vds is the drain-to-source
potential, VT = k · T/q is the thermal voltage (26 mV
at room temperature [3]), I0 is the zero-bias current, V0 is
the early voltage (proportional to channel length), and κ

is the effectiveness of the gate potential in controlling the
channel current. Assuming that our target device operates
in saturation, which is the case for Vds > 3 · VT [3], we
can ignore the body effect. Equation 6 assumes Vgs = 0,
and results in a simplified formula for the leak current when
Vds >> VTh, which is the case for our target platform
architecture.

ILeak = I0 + I0

V0
Vds (6)

In our model we assume that the drain-to-source potential
(Vds) is equivalent to the supply voltage (Vdd). Hence, our
model for total power consumption valid within our target
domain, is as shown in Eq. 7.

PTotal = I0Vdd + I0

V0
V 2

dd + CEf V 2
dd (7)

In order to estimate the values of CE , I0 and V0,
we measure the total power consumption of our SAM4L
microcontroller at 40 MHz and 20 MHz with Vdd = 1.8
V, and similarly at 12 MHz with Vdd = 1.2 V. The
measurements were done directly on the SAM4L board
using an oscilloscope and ampere meter. Details on a
similar experimental setup can be found in [29]. With
these three measurements we use Eq. 7 to find the values
of CE , I0 and V0. We also observe that these values
differ when the SAM4L is executing different types of
workloads. When the application is reading and writing to
memory, the measured CE value is, as expected, higher
than when the microcontroller is only executing arithmetic
instructions (a memory access has higher load capacitance
than the ALU). We made two separate measurements on

Listing 7 Inline DVFS
instruction implementation.

41J Sign Process Syst (2021) 93:33–48



our SAM4L microcontroller; one with a computational
workload, and one with a memory access workload. From
these measurements, we calculate the CE , I0 and V0 values
shown in Table 3.

Our energy model takes into account energy required
for DVFS switching and also includes use of sleep modes
in addition to DVFS. The SAM4L microcontroller has
multiple sleep modes, but in this paper we only consider
the deepest sleep13 mode. It is, however, easy to extend
it to take into account others as well. The sleep13 power
consumption and the energy consumption of the DVFS
scale down and scale up overhead (ESD

and ESU
) were

again measured directly on the SAM4L board with the
oscilloscope and ampere meter. The oscilloscope was used
to find the time between two pin pull-up signals from
the microcontroller; one before and one after a DVFS
switch. The ampere meter was used to measure the current
consumption of the chip during this time, and to measure
the deep-sleep power consumption. Table 4 gives the results
from the measurements.

4.2 GEM5 Statistics and Energy Modeling Scripts

The GEM5 simulator outputs a stat.txt file containing
statistics such as the number of instructions executed,
the type of instructions executed, the number of memory
accesses (reads and writes), and the number of simulated
cycles at a given frequency. In our implementation of the
DVFS mechanism, the simulator also outputs checkpoint
files for each executed DVFS instruction. These checkpoint
files contain an ID number and a time stamp, which is
used together with the stats.txt file to map a time line of
simulation events when using DVFS. Our DVFS mechanism
splits the statistics in the stat.txt files into different chunks
in order to separate the activity occurring at different
frequencies into simulation sets. Together with our power
model and parameters from Tables 3 and 4, we calculate
the total energy consumption for the GEM5 simulation as
shown in Eq. 8.

ETotal = ESU
· SU + ESD

· SD +
En∑

i=E0

ESimi
(8)

In Eq. 8, E0, E1, ..., En are the energy consumptions
of all the simulation sets derived from our model of the
power consumption, Eq. 7, and the output stat.txt file from

Table 3 Variables derived from measurements for use in work load
based total power calculation.

Type of workload CE (nF) V0 (V) I0 (mA)

Computation 0.19 –0.56 –0.84

Memory access 0.21 –0.49 –0.75

Table 4 Measured sleep mode related power and DVFS switching
energy values.

Psleep13 (μW ) ESD
(nJ ) ESU

(nJ )

51 28 62

GEM5. This is explained further later in this section. ESD

and ESU
are the energy scale down and up overhead for

DVFS, respectively. SU and SD are the number of scale
up and scale down events (i.e., DVFS switches) occurring
throughout the simulation.

We calculate the application’s total energy consumption
with a Python script. Our script can calculate the energy
consumption in two ways, defined by a NOINTERVAL
input parameter. If NOINTERVAL is zero the energy model
assumes our application processes a set of workloads
arriving in uniform time intervals (e.g., every second).
The application is in this case assumed to complete its
workload, go to sleep and wake up just before the next
workload arrives. Otherwise, when NOINTERVAL is one,
our model assumes that the application executes one single
non-periodic workload and terminates its execution when
finished.

For simplicity, only the active execution is modeled
in our GEM5 simulator. The sleep energy consumption
is added for each simulation set through the script-based
postprocessing. Equation 9 shows how we calculate the total
energy per simulated frequency.

ESim i = Pactivei
· tactivei

+ Psleepi
· tsleepi

(9)

Pactive in Eq. 9 is calculated using the total power
model of Eq. 7. Psleep is taken from Table 4. One of the
benefits of the GEM5 simulator output statistics is the
modeling of the number and types of instructions executed,
including memory accesses. This can be used for separation
between different workload classes and allows us to model
the effective capacitance CE more accurately taking into
consideration how it varies with different classes.

The total effective capacitance CE is split up as shown
in Eq. 10. CEC

and CEM
, for effective computation and

memory capacitance, respectively, are combined to estimate
the effective capacitance for our specific experiment.
KC and KM are the fractions of the execution that
are computational and memory access instructions, as
calculated in Eq. 11 where x is the type of instruction and
the numbers are collected from the stat.txt file generated
during the experiment.

CE = KC · CEC
+ KM · CEM

(10)

Kx = #Instructions of type x

#Sum of all executed instructions
(11)

42 J Sign Process Syst (2021) 93:33–48



The overall methodology presented in this paper can
handle any number of workload classes that can be differen-
tiated through estimated effective capacitance numbers and
GEM5 statistics.

4.3 Offset Error Corrections

Parts of the circuitry in the SAM4L microcontroller are
hard to incorporate into our model because it requires
vendor specific information which is not publicly available,
e.g., the clock circuitry. This will be the same for most
commercial processors, and our methodology hence has
to be able to handle this. We compensate for the power
consumption of this additional circuitry through systematic
offset corrections to the I0, V0 and EC parameters in Eq. 7.
The original parameter values were found as described
in Section 4.1 running two different workloads on the
microcontroller (one computational and one memory access
workload). The offset correction parameters included in
Eq. 12 are obtained by running the same workloads on
GEM5 and comparing the power consumption results. The
offset corrections are then approximated experimentally
until the deviation in the simulated GEM5 results is
minimized.

PTotal = I0XI0Vdd + I0XI0

V0XV0

V 2
dd + CEXCE

f V 2
dd (12)

We use different error correction factors for different
workloads as shown in Table 5. We can observe that for the
SAM4L microcontroller no error corrections were needed
for the static power, which implies that our assumptions in
the static power model are sufficiently accurate in this case.

5 Experimental Setup

Our DVFS extension is implemented on the stable 2014-12-
14 release1 of GEM5. Our modular approach makes it easy
to port to newer GEM5 releases through adaption of new or
modified system components.

The DVFS GEM5 simulator is tested using two
applications obtained from the Mediabench II website [14];
H264 and JPEG. Such applications can be found in the
upper range of edge computing devices [31], not being
among the latest more complex and compute intensive
codecs. Their signal processing behavior is also relevant
for application in less complex devices. From H264, we
extracted the encoder control structure from the source

1https://github.com/gem5/gem5/releases

Table 5 GEM5 offset correction parameters.

Workload XCE
XI0 XV0

Arithmetic 1.18 1.0 1.0

Memory access 1.17 1.0 1.0

code and modeled it under the assumption that all memory
accesses take one clock cycle. The resulting code was
implemented in a complete experimental system using
our framework for system scenarios (FSS) [28]. Test data
for three video streams simulated using different wireless
networks (WLAN, LTE and WCDMA) was ported to
GEM5 from our previous work [30]. The overhead of
the scenario mechanisms in GEM5 were estimated using
a separate program where all other code is removed.
The energy consumption of the scenario mechanisms was
averaged over 1 million frames in GEM5, resulting in an
overhead of 1.54 μJ per frame simulated at 1.8 V and
40 MHz. This equals less than 0.01% of the total energy
consumed while processing the stream, which we consider
to be negligible.

Like our H264 encoder control structure application,
we extracted the JPEG compression control structure
from the Mediabench II JPEG application, and the
energy consumption of the JPEG compression application
is measured on the SAM4L microcontroller with three
different configurations. In the first configuration, we
compress 500 consecutive 600x400 frames at 1.8 V and
40 MHz (JPEG FAST). In the second configuration we
compress the same frames at 1.2 V and 12 MHz (JPEG
SLOW). In the final configuration, we compress the frames
using DVFS (JPEG DVFS), where we switch between
our two voltage and frequency settings after every 10th
compressed frame (i.e., 50 DVFS switches for 500 frames)
in order to simulate a sequence with multiple DVFS
switches.

6 Results

6.1 Correction of Systematic Offset Errors

The energy consumption of our applications is measured
on the SAM4L microcontroller and estimated using our
modified GEM5 simulator. The H264 application is run
with the three data sets and with and without the scenario
framework (FSS) while for JPEG the three different
configurations are used. The deviation of the GEM5
simulator relative to the SAM4L measurements before and
after correction of systematic offset errors are shown in
Table 6.

43J Sign Process Syst (2021) 93:33–48

https://github.com/gem5/gem5/releases


Table 6 GEM5 energy estimate deviation from SAM4L
measurements.

Application Diff in value (%) Diff in value (%)

without correction with correction

H264 WLAN Scenario 14.5 1.2

H264 LTE Scenario 11.3 –0.6

H264 WCDMA Scenario 7.9 –4.0

H264 WLAN 13.5 –0.01

No Scenario

H264 LTE 13.0 –0.6

No Scenario

H264 WCDMA 11.8 –1.9

No Scenario

JPEG FAST 13.5 0.06

JPEG SLOW 10.7 –0.9

JPEG DVFS 12.7 –0.1

6.2 Comparing Energy Reduction Techniques Using
GEM5

Our GEM5 DVFS simulator can be used by designers to
efficiently evaluate alternative strategies for energy efficient
hardware and software implementations. As an example,
Table 7 compares the relative energy savings of using the
system scenario based design methodology over a brute-
force RTH technique. We presented these experiments
in our previous work [30] based on time consuming
measurements on the SAM4L microcontroller board. The
same experiments have now been performed using the
GEM5 DVFS simulator. The percentage increase and
decrease in energy consumption measured on the SAM4L
board are listed in Table 7 together with the values obtained
from the GEM5 simulator (with and without systematic
error corrections). Negative values mean reduction in the
energy consumption with the system scenario technique
compared to the RTH technique. From Table 7 we can
observe that the estimated improvements are not affected

Table 7 Energy consumption of H264 application with scenarios
compared to no scenario.

Measurement Estimated Estimated

Application on SAM4L in GEM5 in GEM5 with

correction

H264 0.7% -0.5% –0.5%

WLAN

H264 –44.2% –43.1% –44.2%

LTE

H264 –49% –46.7% –47.9%

WCDMA

significantly by the systematic offset errors. This indicates
that the fidelity of the estimates is good even without error
correction and can be used to select the best solution among
different alternatives.

In our previous work [30], we motivated that more
available DVFS modes could result in further energy
improvements. Again, we repeat the experiment using the
GEM5 simulator and compare with the results from our
previous estimates. Figure 3 shows the relative energy
improvements with 6 compared to only 2 DVFS modes.
Note that a stricter bandwidth sensitivity requirement of the
LTE network was used for the 6 DVFS mode experiment, as
discussed in [30]. The 6 DVFS modes energy improvements
are also compared to an RTH solution with one constant
voltage and frequency.

Figure 4 shows a plot from LabVIEW of the measured
power consumption over time while Fig. 5 shows the
corresponding GEM5 simulation plot.

7 Discussion of Results

Compared to measurements done with the same applica-
tions on the SAM4L microcontroller the results of our H264
and JPEG applications simulated in GEM5 show at most
4% deviation in values after offset error corrections. Such
an accuracy is acceptable for most practical use cases in
our edge computing target domain. Small errors occur for
a number of reasons, however, and our measured deviation
varied with the supply voltage. The main cause for these
deviations is systematic offset errors, originating from addi-
tional processor and clock circuitry in the SAM4L board
which are hard to incorporate into our model. Our offset cor-
rection parameters in Table 5 shows at most 18% offset error
in the CE estimation. This offset scales well with different
Vdd values compared to our SAM4L measurements. The I0

and V0 variables are not offset corrected and implies that
our assumptions related to the static power model have good
enough accuracy to match the SAM4L microcontroller.

Other reasons for the deviations are the platform and
model differences between the SAM4L microcontroller and
the ARM model in GEM5. The SAM4L microcontroller
board contains an in-order ARM Cortex M4 processor,
while the ARM processor model in GEM5 is based on
a simplified ARM Cortex A processor. Even if we use
the simple atomic in-order CPU model in GEM5, these
architectural differences will result in a small difference
in the number of executed instructions. They will also
result in different settings being used in the SAM4L
ARM compiler compared to the ARM compiler used
with GEM5 (such as platform specific optimization flags).
Slight measurement errors and noise from the wires and
probes on the SAM4L board also affect the measured

44 J Sign Process Syst (2021) 93:33–48



Figure 3 Energy reduction with
6 DVFS modes.

power consumption, which would deviate slightly from
expected values. Future improved GEM5 processor models
and measurement techniques will increase the estimation
accuracy without having to change the overall methodology.

After our offset corrections, the deviation is reduced
significantly, to an average of 1% and at most 4%. As shown
in [27], direct use of McPAT can result in overestimates of
several hundred percent. The average error can be reduced
down to 2 to 5% through learning-based post-silicon
calibration [15]. It requires substantially more effort than
our approach, which we show is not needed in our domain
of interest. In general, our offset corrected energy reduction
results from the GEM5 simulator coincide well with the
measured improvements from the SAM4L microcontroller
for the H264 application.

In our previous work [30] we investigated, through rough
manual calculations, the consequences of increasing the
number of DVFS modes. Using inter- and extrapolation
from the 2 DVFS modes on the SAM4L microcontroller,
we calculated the dynamic power consumption that could
be expected if 6 DVFS modes were available. RTH
was not exploited in either case. With stricter bandwidth
requirements and a fixed CE = 0.165nF , the system
scenario technique with 6 DVFS modes was roughly
calculated to improve the energy consumption by 59%
compared to not using scenarios [30]. We now use the
same parameters as in [30] and extended this rough
calculation with a combination of system scenario and

RTH techniques. We predict 40.9% energy reduction when
combining RTH with the system scenario technique with 6
DVFS modes compared to combining it with only 2 DVFS
modes available. The GEM5 simulation of the same two
alternatives results in 36.3% improvement, which is slightly
less than our roughly estimated value of 40.9%. Our GEM5
energy model takes into account the static and sleep energy
consumption, which is not taken into account by our rough
calculation. The finer granularity of our power model, with
different workload classes (and CE values) also contributes
to the difference from the calculated values.

Our DVFS implementation and energy modeling
approach differs from previous techniques presented in
Section 2, e.g., through introduction of workload classes
and through calibration using measurements from real hard-
ware. The energy model can easily be ported to other types
of architectures, by taking new measurements of the power
consumption for different workload classes and measuring
the DVFS switching energy. These measurements can then
be used to re-calculate the CE , I0 and V0 parameters for the
new target architecture, easily extending the practical use
of the methodology. Our changes to the GEM5 simulator
kernel and configuration scripts are for the most part archi-
tecture independent and hence fully reusable, except for the
DVFS instruction. GEM5 supports different CPU models,
which can be used with our GEM5 extension by apply-
ing the modifications mentioned in Section 3. This enables
the system designer to experiment with new techniques on

Figure 4 SAM4L H264 measurements plot.

45J Sign Process Syst (2021) 93:33–48



Figure 5 GEM5 H264 simulation plot.

non-ARM architectures and add more DVFS modes or
different switching policies.

8 Conclusions

We present a non-intrusive application controlled DVFS
management in GEM5 SE mode, and a Python script-
based energy model used together with GEM5. Together
this gives edge computing system designers tools needed for
ultra low power design space exploration. The application
triggers DVFS through one custom pseudo-instruction,
implemented in GEM5’s ARM instruction-set model. This
instruction takes advantage of GEM5’s utility functions,
making it easily portable to other processor architectures.
The rest of our DVFS mechanisms are architecture
independent. Our energy model accurately parametrizes
different workload classes, which are calibrated with power
measurements from real HW. The results from our modified
GEM5 simulator are validated with representative signal
processing applications. The energy results from our GEM5
simulation are compared to measurements on a SAM4L
microcontroller, resulting in less than 4% deviation after
systematic offset error correction. Our changes to the GEM5
simulator kernel and configuration scripts are for the most
part architecture independent and hence fully reusable,
except from the DVFS instruction. Our modifications to
GEM5 mentioned in this paper can be applied to other
CPU models supported by GEM5 and allow for easy
and accurate power and energy estimation for a range of
practical processors and applications.

Acknowledgments Open Access funding provided by NTNU Norwe-
gian University of Science and Technology (incl St. Olavs Hospital -
Trondheim University Hospital).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Aleem, M., Islam, M.A., Iqbal, M.A. (2016). A comparative study
of heterogeneous processor simulators. International Journal of
Computer Applications 148(12).

2. Alioto, M. (2012). Ultra-low power VLSI circuit design demysti-
fied and explained: a tutorial. IEEE Transactions on Circuits and
Systems I: Regular Papers, 59(1), 3–29. https://doi.org/10.1109/
TCSI.2011.2177004.

3. Andreou, A.G., Boahen, K.A., Pouliquen, P.O., Pavasovic, A.,
Jenkins, R.E., Strohbehn, K. (1991). Current-mode subthreshold
MOS circuits for analog VLSI neural systems. IEEE Transactions
on Neural Networks, 2(2), 205–213. https://doi.org/10.1109/72.
80331.

4. Atmel, S. (2015). AM4L Xplained pro user guide. http://ww1.
microchip.com/downloads/en/devicedoc/Atmel-42074-SAM4L-
Xplained-Pro User-Guide.pdf.

5. Atmel (2016). ATSAM ARM-based flash MCU SAM4L series
datasheet. http://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel-42023-ARM-Microcontroller-ATSAM4L-Low-Power-LCD
Datasheet-Summary.pdf. 42023HS-SAM-11/2016.

6. Austin, T., Larson, E., Ernst, D. (2002). Simplescalar: an
infrastructure for computer system modeling. Computer, 35(2),
59–67. https://doi.org/10.1109/2.982917.

7. Awan, M.A., & Petters, S.M. (2014). Race-to-halt energy saving
strategies. Journal of Systems Architecture, 60(10), 796–815.
https://doi.org/10.1016/j.sysarc.2014.10.001.

8. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A.,
Basu, A., Hestness, J., Hower, D.R., Krishna, T., Sardashti, S.,
Sen, R., Sewell, K., Shoaib, M., Vaish, N., Hill, M.D., Wood, D.A.
(2011). The gem5 simulator. SIGARCH Computer Architecture
News, 39(2), 1–7.

9. Brooks, D., Tiwari, V., Martonosi, M. (2000). Wattch: a
framework for architectural-level power analysis and optimiza-
tions. SIGARCH Compututer Architecture News, 28(2), 83–94.
https://doi.org/10.1145/342001.339657.

10. Carlson, T.E., Heirmant, W., Eeckhout, L. (2011). Sniper:
exploring the level of abstraction for scalable and accurate parallel
multi-core simulation. In 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC)
(pp. 1–12). https://doi.org/10.1145/2063384.2063454.

11. Chandrakasan, A.P., Sheng, S., Brodersen, R.W. (1992). Low-
power CMOS digital design. IEEE Journal of Solid-State Circuits,
27(4), 473–484. https://doi.org/10.1109/4.126534.

12. Ghasemzadeh, H., & Jafari, R. (2013). Ultra low-power signal
processing in wearable monitoring systems: a tiered screening
architecture with optimal bit resolution. ACM Transactions on
Embedded Computing Systems (TECS), 13(1), 9.

46 J Sign Process Syst (2021) 93:33–48

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TCSI.2011.2177004
https://doi.org/10.1109/TCSI.2011.2177004
https://doi.org/10.1109/72.80331
https://doi.org/10.1109/72.80331
http://ww1.microchip.com/downloads/en/devicedoc/Atmel-42074-SAM4L-Xplained-Pro_User-Guide.pdf
http://ww1.microchip.com/downloads/en/devicedoc/Atmel-42074-SAM4L-Xplained-Pro_User-Guide.pdf
http://ww1.microchip.com/downloads/en/devicedoc/Atmel-42074-SAM4L-Xplained-Pro_User-Guide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42023-ARM-Microcontroller-ATSAM4L-Low-Power-LCD_Datasheet-Summary.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42023-ARM-Microcontroller-ATSAM4L-Low-Power-LCD_Datasheet-Summary.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42023-ARM-Microcontroller-ATSAM4L-Low-Power-LCD_Datasheet-Summary.pdf
https://doi.org/10.1109/2.982917
https://doi.org/10.1016/j.sysarc.2014.10.001
https://doi.org/10.1145/342001.339657
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1109/4.126534


13. Haririan, P., & Garcia-Ortiz, A. (2014). Non-intrusive DVFS
emulation in gem5 with application to self-aware architec-
tures. In 2014 9th International Symposium on Reconfig-
urable and Communication-Centric Systems-on-Chip (ReCoSoC)
(pp. 1–7).

14. Lee, C., Potkonjak, M., Mangione-Smith, W. (1997). Mediabench:
a tool for evaluating and synthesizing multimedia and communica-
tions systems. In Thirtieth annual IEEE/ACM international sym-
posium on microarchitecture, 1997. Proceedings (pp. s330–335).
https://doi.org/10.1109/MICRO.1997.645830.

15. Lee, W., Kim, Y., Ryoo, J.H., Sunwoo, D., Gerstlauer, A., John,
L.K. (2015). Powertrain: a learning-based calibration of McPAT
power models. In 2015 IEEE/ACM International symposium
on low power electronics and design (ISLPED) (pp. 189–194).
https://doi.org/10.1109/ISLPED.2015.7273512.

16. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M.,
Jouppi, N.P. (2009). McPAT: an integrated power, area, and timing
modeling framework for multicore and manycore architectures.
In Proceedings of the 42nd annual IEEE/ACM international
symposium on microarchitecture, MICRO 42 (pp. 469–480). New
York: ACM, https://doi.org/10.1145/1669112.1669172.

17. Ma, Z., Marchal, P., Scarpazza, D., Yang, P., Wong, C., Gomez, J.,
Himpe, S., Ykman-Couvreur, C., Catthoor, F. (2007). Systematic
methodology for real-time cost-effective mapping of dynamic
concurrent task-based systems on heterogeneous platforms.
Springer.

18. Mittal, S. (2014). A survey of techniques for improving
energy efficiency in embedded computing systems. International
Journal of Computer Aided Engineering and Technology, 6(4),
440–459.

19. Nowatzki, T., Menon, J., han Ho, C., Sankaralingam, K.
(2014). gem5, GPGPUSim, McPAT, GPUWattch, “your favorite
simulator here” considered harmful. In 11th Annual workshop on
duplicating, deconstructing and debunking (pp. 1–10).

20. Power, J., Hestness, J., Orr, M.S., Hill, M.D., Wood, D.A.
(2015). gem5-gpu: a heterogeneous CPU-GPU simula-
tor. IEEE Computer Architecture Letters, 14(1), 34–36.
https://doi.org/10.1109/LCA.2014.2299539.

21. Rabaey, J.M., & Pedram, M. (1996). Low power design
methodologies (Vol. 336). The Springer International Series in
Engineering and Computer Science.

22. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L. (2016). Edge computing:
vision and challenges. IEEE Internet of Things Journal, 3(5),
637–646. https://doi.org/10.1109/JIOT.2016.2579198.

23. Spiliopoulos, V., Bagdia, A., Hansson, A., Aldworth, P., Kaxiras,
S. (2013). Introducing DVFS-management in a full-system simu-
lator. In 2013 IEEE 21st International symposium on modelling,
analysis and simulation of computer and telecommunication sys-
tems (pp. 535–545).

24. STM (2016). STM32F4 datasheet. https://www.st.com/resource/
en/datasheet/dm00037051.pdf. DocID022152 Rev 8.

25. Ubal, R., Jang, B., Mistry, P., Schaa, D., Kaeli, D. (2012).
Multi2sim: a simulation framework for CPU-GPU computing. In
Proc. of the 21st international conference on parallel architectures
and compilation techniques.

26. Veendrick, H.J.M. (1984). Short-circuit dissipation of static
CMOS circuitry and its impact on the design of buffer
circuits. IEEE Journal of Solid-State Circuits, 19(4), 468–473.
https://doi.org/10.1109/JSSC.1984.1052168.

27. Xi, S.L., Jacobson, H., Bose, P., Wei, G., Brooks, D. (2015).
Quantifying sources of error in McPAT and potential impacts
on architectural studies. In 2015 IEEE 21st International
symposium on high performance computer architecture (HPCA)
(pp. 577–589). https://doi.org/10.1109/HPCA.2015.7056064.

28. Yassin, Y., Kjeldsberg, P., Catthoor, F. (2015). System sce-
nario framework evaluation on EFM32 using the H264/AVC
encoder control structure. In 2015 European confer-
ence on circuit theory and design (ECCTD) (pp. 1–4).
https://doi.org/10.1109/ECCTD.2015.7300121.

29. Yassin, Y., Kjeldsberg, P., Perkis, A., Catthoor, F. (2018).
Techniques for dynamic hardware management of stream-
ing media applications using a framework for system scenar-
ios. Elsevier Microprocessors and Microsystems, 56, 157–168.
https://doi.org/10.1016/j.micpro.2017.12.002.

30. Yassin, Y., Kjeldsberg, P.G., Perkis, A., Catthoor, F. (2016).
Dynamic hardware management of the H264/AVC encoder
control structure using a framework for system scenarios. In 19th
EUROMICRO Conference on digital system design (DSD’16)
(pp. 1–8): IEEE.

31. Zhang, H., Zhao, S., Pattnaik, A., Kandemir, M.T., Siva-
subramaniam, A., Das, C.R. (2019). Distilling the essence
of raw video to reduce memory usage and energy at edge
devices. In Proceedings of the 52nd Annual IEEE/ACM
international symposium on microarchitecture (pp. 657–669).
https://doi.org/10.1145/3352460.3358298.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

47J Sign Process Syst (2021) 93:33–48

https://doi.org/10.1109/MICRO.1997.645830
https://doi.org/10.1109/ISLPED.2015.7273512
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1109/LCA.2014.2299539
https://doi.org/10.1109/JIOT.2016.2579198
https://www.st.com/resource/en/datasheet/dm00037051.pdf
https://www.st.com/resource/en/datasheet/dm00037051.pdf
https://doi.org/10.1109/JSSC.1984.1052168
https://doi.org/10.1109/HPCA.2015.7056064
https://doi.org/10.1109/ECCTD.2015.7300121
https://doi.org/10.1016/j.micpro.2017.12.002
https://doi.org/10.1145/3352460.3358298


Affiliations

Yahya H. Yassin1 · Magnus Jahre2 · Per Gunnar Kjeldsberg1 · Snorre Aunet1 · Francky Catthoor3,4

Magnus Jahre
magnus.jahre@ntnu.no

Per Gunnar Kjeldsberg
pgk@ntnu.no

Snorre Aunet
snorre.aunet@ntnu.no

Francky Catthoor
Francky.Catthoor@imec.be

1 Department of Electronic Systems, Norwegian University
of Science and Technology (NTNU), Trondheim, Norway

2 Department of Computer Science, Norwegian University
of Science and Technology (NTNU), Trondheim, Norway

3 IMEC, Kapeldreef 75, 3000 Leuven, Belgium
4 Department of Electrical Engineering (ESAT), Katholieke

Universiteit Leuven (KULeuven), Leuven, Belgium

48 J Sign Process Syst (2021) 93:33–48

http://orcid.org/0000-0001-9107-116X
mailto: magnus.jahre@ntnu.no
mailto: pgk@ntnu.no
mailto: snorre.aunet@ntnu.no
mailto: Francky.Catthoor@imec.be

	Fast and Accurate Edge Computing Energy Modeling and DVFS Implementation in GEM5 Using System Call Emulation Mode
	Abstract
	Introduction
	Related Work
	Contribution I: GEM5 DVFS in SE Mode
	GEM5 Kernel Level Modifications
	GEM5 User Level Modifications
	Usage of DVFS in the Application
	Limitations of Our DVFS Mechanisms

	Contribution II: Energy Model
	Estimation of the Power Consumption
	GEM5 Statistics and Energy Modeling Scripts
	Offset Error Corrections

	Experimental Setup
	Results
	Correction of Systematic Offset Errors
	Comparing Energy Reduction Techniques Using GEM5

	Discussion of Results
	Conclusions
	References
	Affiliations




