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Abstract: Artifical neural networks (ANNs) have made their way into marine robotics in the
last years, where they are used in control and perception systems, to name a few examples.
At the same time, the black-box nature of ANNs is responsible for key challenges related to
interpretability and trustworthiness, which need to be addressed if ANNs are to be deployed
safely in real-life operations. In this paper, we implement three XAI methods to provide
explanations to the decisions made by a deep reinforcement learning agent: Kernel SHAP,
LIME and Linear Model Trees (LMTs). The agent was trained via Proximal Policy Optimization
(PPO) to perform automatic docking on a fully-actuated vessel. We discuss the properties and
suitability of the three methods, and juxtapose them with important attributes of the docking
agent to provide context to the explanations.
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1. INTRODUCTION

Despite the progress in artificial intelligence over the past
decade, there is still a significant trade-off between in-
terpretability and accuracy. As neural networks become
increasingly complex in dimensionality and design, under-
standing the underlying decision-making becomes equally
difficult. Being unable to explain the reasoning behind
black box decisions is unacceptable for safety-critical ap-
plications. Explainable Artificial Intelligence (XAI) is a
relatively recent movement in the AI community, referring
to tools that allow humans and/or machines to understand
the decision-making rationale of AI systems. XAI systems
are usually characterized as being either intrinsically inter-
pretable, or post-hoc interpretable. XAI systems that only
work for specific predictors are characterized as model-
specific. If they are not concerned about the internal pre-
dictor structure, they are model-agnostic. Interpretability
is defined by Miller (2019) as the degree to which an
observer can understand the cause of a decision, and can
roughly be divided into two classes Molnar (2019)

Local Interpretability Being able to explain reasoning
behind single decisions or groups of decisions.

Global Interpretability Understanding the reasoning
behind the entire model behavior on a holistic or mod-
ular level.

An explainer should be interpretable, locally faithful,
model-agnostic, and should provide a global perspective
Ribeiro et al. (2016). A locally faithful explainer is one that
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exerts local fidelity. There are several kinds of networks
that are not inherently interpretable. For example, convo-
lutional neural networks with multiple successive matrix
convolutions end up with being far too complex for humans
to understand. This requires the use of explainers that can
be applied to any black box algorithm post-hoc. In this
paper, model-agnostic methods will be discussed.

Achieving holistic global interpretability is often hard to
achieve in practice. Being able to understand the model on
a modular level is however much closer in reach. For linear
regression models with a large feature space for example,
modular interpretability can be achieved through looking
at the weights, but holistic model interpretability is hard
to achieve because feature spaces with dimensions larger
than three are simply inconceivable for humans Molnar
(2019).

1.1 Related work and motivation

The motivation for this paper was the scarcity of research
on XAI for cyber-physical systems and deep reinforce-
ment learning. Most of the available literature are survey
papers. Additionally, Explainable AI is a fairly young
research topic. To the author’s best knowledge, no paper
has compared the explanations from white-box and black-
box models for a cyber-physical system using the methods
described in this paper. Shapley-based methods such as
SHAP has been proposed by researchers as a possible first
step to achieve a global understanding of reinforcement
learning agents Heuillet et al. (2021). SHAP was success-
fully implemented for a DRL agent in Liessner. et al.
(2021); He et al. (2021), but no comparison to other meth-
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1. INTRODUCTION

Despite the progress in artificial intelligence over the past
decade, there is still a significant trade-off between in-
terpretability and accuracy. As neural networks become
increasingly complex in dimensionality and design, under-
standing the underlying decision-making becomes equally
difficult. Being unable to explain the reasoning behind
black box decisions is unacceptable for safety-critical ap-
plications. Explainable Artificial Intelligence (XAI) is a
relatively recent movement in the AI community, referring
to tools that allow humans and/or machines to understand
the decision-making rationale of AI systems. XAI systems
are usually characterized as being either intrinsically inter-
pretable, or post-hoc interpretable. XAI systems that only
work for specific predictors are characterized as model-
specific. If they are not concerned about the internal pre-
dictor structure, they are model-agnostic. Interpretability
is defined by Miller (2019) as the degree to which an
observer can understand the cause of a decision, and can
roughly be divided into two classes Molnar (2019)

Local Interpretability Being able to explain reasoning
behind single decisions or groups of decisions.

Global Interpretability Understanding the reasoning
behind the entire model behavior on a holistic or mod-
ular level.

An explainer should be interpretable, locally faithful,
model-agnostic, and should provide a global perspective
Ribeiro et al. (2016). A locally faithful explainer is one that
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exerts local fidelity. There are several kinds of networks
that are not inherently interpretable. For example, convo-
lutional neural networks with multiple successive matrix
convolutions end up with being far too complex for humans
to understand. This requires the use of explainers that can
be applied to any black box algorithm post-hoc. In this
paper, model-agnostic methods will be discussed.

Achieving holistic global interpretability is often hard to
achieve in practice. Being able to understand the model on
a modular level is however much closer in reach. For linear
regression models with a large feature space for example,
modular interpretability can be achieved through looking
at the weights, but holistic model interpretability is hard
to achieve because feature spaces with dimensions larger
than three are simply inconceivable for humans Molnar
(2019).

1.1 Related work and motivation

The motivation for this paper was the scarcity of research
on XAI for cyber-physical systems and deep reinforce-
ment learning. Most of the available literature are survey
papers. Additionally, Explainable AI is a fairly young
research topic. To the author’s best knowledge, no paper
has compared the explanations from white-box and black-
box models for a cyber-physical system using the methods
described in this paper. Shapley-based methods such as
SHAP has been proposed by researchers as a possible first
step to achieve a global understanding of reinforcement
learning agents Heuillet et al. (2021). SHAP was success-
fully implemented for a DRL agent in Liessner. et al.
(2021); He et al. (2021), but no comparison to other meth-
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convolutions end up with being far too complex for humans
to understand. This requires the use of explainers that can
be applied to any black box algorithm post-hoc. In this
paper, model-agnostic methods will be discussed.

Achieving holistic global interpretability is often hard to
achieve in practice. Being able to understand the model on
a modular level is however much closer in reach. For linear
regression models with a large feature space for example,
modular interpretability can be achieved through looking
at the weights, but holistic model interpretability is hard
to achieve because feature spaces with dimensions larger
than three are simply inconceivable for humans Molnar
(2019).

1.1 Related work and motivation

The motivation for this paper was the scarcity of research
on XAI for cyber-physical systems and deep reinforce-
ment learning. Most of the available literature are survey
papers. Additionally, Explainable AI is a fairly young
research topic. To the author’s best knowledge, no paper
has compared the explanations from white-box and black-
box models for a cyber-physical system using the methods
described in this paper. Shapley-based methods such as
SHAP has been proposed by researchers as a possible first
step to achieve a global understanding of reinforcement
learning agents Heuillet et al. (2021). SHAP was success-
fully implemented for a DRL agent in Liessner. et al.
(2021); He et al. (2021), but no comparison to other meth-

ods were performed. It is therefore natural to investigate
the method SHAP, and its related method LIME. SHAP
and LIME build on many of the same ideas, but SHAP
provides some desirable guarantees that LIME do not.
However, LIME is often lauded as a fast explainer. It was
therefore of interest to see how its explanations compared
to SHAP.

2. BACKGROUND

This section will present an overview of the docking
problem, as well as the docking agent which was developed
by Rørvik (2020). Brief theory behind the three XAI
methods applied to the agent will also be presented.
Local Interpretable Model-Agnostic Explanations (LIME)
is an explainer that samples the locality of the sample
to explain, and builds a linear regression model around
the sample to provide explanations. Shapley Additive
Explanations (SHAP) is an explainer rooted in a series of
fairness axioms. Finally, the method Linear Model Trees
(LMTs) will be presented, which builds a regression tree
that estimates the agent.

2.1 Docking

Docking involves various complex maneuvers to steer a
vessel from the open sea towards a designated area in the
harbor area called a berth. It has been characterized as one
of the hardest problems to solve within ship control Tran
and Im (2012). Not only does the vessel need to take into
account the speed limits of the harbor, distance to other
ships and obstacles, but it has to simultaneously deal with
extremely nonlinear motions, reduced maneuverability at
low speeds, and environmental forces.

Historically, auxiliary devices such as tug boats have been
used to dock large vessels, but with the increased freedom
of maneuverability in the form of azimuth thrusters and
tunnel thrusters, more sophisticated strategies can be
employed. Performing automatic docking using auxiliary
devices together with neural networks have already proven
successful Tran and Im (2012); Ahmed and Hasegawa
(2013); Im and Nguyen (2018). For example, Im and
Nguyen (2018) used a neural network architecture with
one hidden layer to perform supervised learning. The
artificial neural network (ANN) was trained from data
collected by observing a skilled captain berth the vessel,
but there are a multitude of reasons why this is a sub-
optimal approach. The captain would have to berth the
ship perfectly every time, which is not possible in practice.
Errors are bound to happen, and the ANN will be entirely
limited to the data provided. Even though the captain
may have experience docking the vessel, the procedure
the captain follows may not necessarily the most efficient
for any given scenario. A major drawback with some of
these aforementioned implementations is that they do not
generalize well from one arbitrary port to another. These
methods also had strict limits from what angle the vessel
may approach the berth. Recent advances such as Nguyen
(2020) allowed an ANN to berth both starboard and port
side on multiple ports successfully without re-training, but
did not take into account environmental forces such as
wind and waves. Some publications were found using deep
reinforcement learning to solve similar problems, but most

of them were applied to underwater vehicles Anderlini
et al. (2019). Other methods that have been proposed are
backstepping controllers Zhang et al. (2020) and model
predictive control Martinsen et al. (2019).

2.2 Automatic docking as a deep reinforcement learning
problem

Deep reinforcement learning (DRL) agents have already
been shown to perform well in collision avoidance and
trajectory following Meyer et al. (2020). Using a deep rein-
forcement learning agent has been proposed as a solution
to the docking problem Rørvik (2020). The docking agent
was proven to successfully solve the docking scenario from
a variety of poses relative to the berth. It was trained using
Proximal Policy Optimization (PPO) with two hidden
layers of 400 hidden units each, ReLU activations for both
hidden layers, and a hyperbolic tangent activation for the
output layer.

The agent was trained on a three degrees-of-freedom
vessel. It is 76.2 meters long, weighing 6000 tonnes in
dead weight Martinsen et al. (2019). The vessel actuators
are three thrusters: one tunnel thruster, and two azimuth
thrusters. Their numbering and location on the vessel is
shown in Figure 1. The tunnel thruster is used to create a
side force on the vessel, while the two azimuth thrusters are
mounted in the aft of the ship, and are rotatable thrusters.
The action vector is described in Equation 1. fi is the
applied thrust measured in newton, and ai is the azimuth
angle in radians for thruster i.

y = [f1 f2 f3 a1 a2] (1)

Fig. 1. Thruster numbering on vessel Martinsen et al.
(2019)

The state vector is described in Equation 2, and the
respective state descriptions in Table 1.

x =
[
x̃ ỹ l u v r dobs ψ̃obs ψ̃

]
(2)

3. IMPLEMENTATION

3.1 Computational Hardware

The results were produced using a workstation running
a virtualized Ubuntu 20.04 environment. The workstation
has an AMD Ryzen 9 3950X CPU with 32GB of allocated
RAM.

3.2 LIME

Local Interpretable Model-Agnostic Explanations (LIME)
creates locally interpretable explanations for a single data
point. LIME creates a linear surrogate model that ap-
proximates the local behavior of the predictor for a single
prediction. By creating a perturbed dataset made up of
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State Description

x̃,ỹ The Cartesian distances from origin of
the vessel to the target position, in
body frame. x-direction is north-south, y-
direction is east-west.

ψ̃ The relative difference between heading
of vessel and heading of the desired tar-
get.

u,v,r Linear and rotational velocities of the
vessel, in body frame.

l A binary variable describing whether the
vessel is in contact with land. Only used
when training the agent.

dobs,ψ̃obs The distance from the vessel’s edge to the
closest obstacle and the relative heading
between the vessel and the closest obsta-
cle.

Table 1. Description of states Rørvik (2020).

local perturbations around the decision in question, the
importance of each feature in the black box predictor can
be inferred. The output from LIME is a vector of coeffi-
cients that suggests how increasing or decreasing variables
affect the prediction. As described in Ribeiro et al. (2016),
Equation 3 illustrates how LIME creates an explanation
ξ(x) for an instance x:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (3)

L(f, g, πx) is a measure of how unfaithful a model g is
when approximating f in the locality πx. All predictions
are weighted according to πx, also called a kernel. As
the samples stray further from the prediction LIME is
explaining, they will carry lower weight. Ω(g) is a measure
of complexity of the explanation. LIME balances out this
equation by minimizing L(f, g, πx) while keeping Ω(g) low
enough to be human interpretable.

For tabular data, LIME will also have to be supplied a
background dataset. The dataset will be used to compute
the mean, standard deviation, and discretize the feature
into quartiles Ribeiro (2018), which are used to scale the
data. When LIME samples perturbed instances, it first
samples from a normal distribution. Then, the samples
are multiplied by the standard deviation, and the mean is
added.

The GitHub LIME implementation made available by
Ribeiro (2018) was used to explain the docking episode.
The number of neighbors were set to 5000, which is the
amount of perturbations per sample LIME will perform
to evaluate feature importance. For every second of the
docking episode, LIME was applied to each data point one
time for every action.

3.3 Kernel SHAP

The Shapley value is a coalitional game theory concept
based on a set of fundamental axioms of fairness. It
is proven that the Shapley value is the only solution
that satisfies these axioms. The Shapley value therefore
provides a unique solution to distribution of reward based
on work contributed Young (1985). The Shapley value
serves as the basis for the Shapley Additive Explanations

(SHAP) framework to quantify how much each feature in
a neural network contributes to the output.

Several variations of SHAP exist, but this paper focuses on
Kernel SHAP. Kernel SHAP is a model-agnostic method
of approximating feature attributions. The feature attri-
butions are approximated instead of calculated exactly,
because computing them exactly is time-consuming. Ker-
nel SHAP builds on the LIME framework, as shown by
Lundberg and Lee (2017) when the following parameters
are inserted into Equation 3:

Ω(g) = 0 (4)

πx(z
′) =

(M − 1)(
M
|z′|

)
|z′|(M − |z′|)

(5)

L(f, g, πx) =
∑
z′∈Z

[f(h−1
x (z′))− g(z′)]2πx(z

′) (6)

|z′| is the number of present features in z′, and hx is
a function that maps a coalition z′ to a valid instance.
hx is needed because in practice, ”removing” a feature
is not trivial for models with a fixed-size input. Setting
the feature values to 0 is also not always desirable either.
Instead, Kernel SHAP ”removes” features by sampling the
background data and replacing the missing features with
feature values from one of these random samples.

The most significant difference from LIME is the weighting
kernel. Instead of weighting samples according to how
close they are to the sample to be explained, Kernel
SHAP weighs small and large coalitions heavier through
the Shapley kernel πx(z

′). Small coalitions—coalitions
where many features are missing—allows the significance
of presence of a feature to be studied. Large coalitions,
where few features are missing, allows the algorithm to
see how the model prediction changes with respect to the
absence of features. Mid-sized coalitions do not say much
about either situation, and are weighted less.

The KernelExplainer object of the SHAP implementation
provided by Lundberg and Lee (2017) was used to create
SHAP values for the states in the docking episode. The
background data for SHAP was first summarized using
a K-means summarizer with 100 neighbors to reduce
computation time.

3.4 Linear Model Trees

A decision tree (DT) is a machine learning model that
divides the input domain into subregions by performing
multiple evaluations on data, and assigns a prediction to
each of the subregions. This can be visualized as a tree-like
structure, where each of the splits are called internal nodes.
When there are no more splits to be evaluated, a leaf node
has been reached. The prediction depends on which leaf
node, or subregion, the input data falls into. Regression
trees are decision trees where the predicted output is a
constant real number. Model trees on the other hand can
output predictions based on any type of model. Linear
Model Trees (LMT) is a regression tree where the only
structural difference is that instead of constant predictions
in the leaf nodes, an LMT uses a linear function to form
its prediction. For DTs, the splits in the input data can
be either multivariate or univariate. Univariate splits are

splits that depends on only one input feature at a time.
When the splits are done using multiple input features,
they are called multivariate splits. DTs with multivariate
splits are called oblique DTs. For the LMT implementation
used, the splits on the input data are univariate. This
is done to retain interpretability and reduce computation
time. Growing an LMT is done by greedily splitting the
data. This gives no guarantees for global optimality, as a
seemingly bad split may cause a good split to never be
found Gjærum et al. (2021).

By using an LMT to form a piece-wise linear approxima-
tion of a black box predictor, the simpler structure of the
LMT can be used to understand the predictions made
by the black box predictor. The resulting tree sacrifices
some accuracy to give more interpretability. By weighting
the linear regression coefficients in the leaf nodes, the
predictions by the LMT can be interpreted. From Gjærum
et al. (2021), the linear functions in the leaf nodes can be
written on the form

y =
∑
f∈F

afxf + C (7)

where y is the model prediction. af is the linear regression
coefficient for the feature xf , and C is a constant. F is the
set of all features. Total feature importance If for each
feature f can then be calculated as

If =
afxf∑

j∈F |ajxj |
(8)

The LMT implementation used is based on an adaptation
of classification and regression trees from Wong (2020).
The modifications done allowed the tree to grow to a max-
imum number of leaf nodes instead of a maximum depth,
and added randomization in the process of searching for
thresholds and choosing the next node splits Gjærum et al.
(2021). The LMT used contains 681 leaf nodes, with the
shallowest leaf node situated at depth 5, and the deepest
at depth 15. The LMT was trained by collecting the
states and actions from the PPO agent from 1000 docking
episodes. The starting points were chosen randomly for
each docking episode in order to capture as much of the
vessel dynamics as possible.

3.5 Background Data

As mentioned in Section 3.2 and Section 3.3, we need
to supply these algorithms with a background dataset.
Motivated by observed values, the following table was
proposed in Rørvik (2020) as a representative dataset for
the DRL agent.

Data was first collected by letting the DRL agent perform
ten docking episodes from ten different locations. From
this data, 2000 data points that fell within the valid ranges
of Table 2 were sampled as part of the dataset. The final
dataset to serve as background data for SHAP and LIME
therefore had the dimensions (2000,9).

4. RESULTS

The results were inspected by plotting the vessel’s position
in Figure 2 together with the vessel’s actions in Figure

Variable Valid range

xd [m] 800

yd [m] 517.8

x [m] (xd − 400, xd + 400)

y [m] (yd − 400, yd + 400)

ψ [rad] (−π
4
, π
4
)

u [m/s] (−0.5, 0.5)

v [m/s] (−0.05, 0.05)

r [rad/s] (−0.005, 0.005)

Table 2. Valid ranges for the dataset.

3. Figure 4 is a screenshot of a video setup that allowed
inspection of the force and torque vector of the vessel in
body frame together with actions and explanations. The
dial in the bottom right contains an orange line, and a
blue circular bar plot. The orange line is the calculated
force vector applied on the vessel in body frame measured
from the center. For example, 100 % of max force in the
north-westward direction results in an orange line from
the center which stops at the outer edge of the 45 degree
mark. The blue torque vector denotes how much torque
the vessel is applying, and in what direction. When the
actuators exert 25 % of max torque, the circular blue bar
plot will be filled a quarter of the way, stopping at the 270
degree mark. These visualizations contributed to put the
explanations in context.

Fig. 2. Trajectory of vessel during a docking episode.

Fig. 3. Actions for a docking episode.

Figure 5 shows the feature importances from Kernel SHAP
for an entire episode. Note that the y-axes of the plots
represent how much each state contributed to the output of
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north-westward direction results in an orange line from
the center which stops at the outer edge of the 45 degree
mark. The blue torque vector denotes how much torque
the vessel is applying, and in what direction. When the
actuators exert 25 % of max torque, the circular blue bar
plot will be filled a quarter of the way, stopping at the 270
degree mark. These visualizations contributed to put the
explanations in context.

Fig. 2. Trajectory of vessel during a docking episode.

Fig. 3. Actions for a docking episode.

Figure 5 shows the feature importances from Kernel SHAP
for an entire episode. Note that the y-axes of the plots
represent how much each state contributed to the output of
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Fig. 4. Visualization of force and torque in body frame
together with actions, trajectory, and feature attribu-
tions. The bottom left bar plot represents a weighted
sum of the absolute value of the feature attribution
per state across all actions such that the sum of all
bars equal 1.

Fig. 5. Feature attributions for Kernel SHAP.

the respective action in the positive or negative direction.
The sum of all feature attribution values equal 0. Kernel
SHAP provided smooth explanations, especially during
the approach phase, where the vessel is approaching the
berth. The actuators are not changing too much in each
time step, and this approach phase is fairly slow. The
explanations also intuitively make sense.

In the beginning of the episode, high importance is at-
tributed to x̃ for the thruster forces and dobs for the
azimuth angles. As the vessel performs for a clockwise
rotation at around 120 seconds into the episode by apply-
ing a positive tunnel thruster force, the importance of the

rotational velocity r begins to increase for f3. The vessel
slightly overshoots the berth, and needs to align itself with
the berth. The surge velocity is almost solely the main
contributors to a negative thruster force on the azimuths
to slow down the vessel. At this point, the sway velocity
v increases in importance, and the vessel moves closer in
the y-direction to the berth. During the final seconds of
the berthing phase, dobs and ψ̃obs begins to increase in
importance to bring the vessel into its final position.

The vessel reaches the berth in about 400 seconds, and
begins to slightly oscillate by the berth in a ”steady
state.” The actuators first apply a sharp corrective action
counter-clockwise, with high importance for the state ψ̃obs,
seemingly to correct the pose of the vessel. Shortly after, a
longer lasting clockwise torque is applied with importance
for r to stop the vessel from rotating and correct its
alignment to the berth.

Fig. 6. Feature attributions for LIME.

LIME has a large disadvantage in that it does not take
into account the global sample space when building the
linear models as opposed to Kernel SHAP. This can be
seen in practice from the LIME explanations in Figure 6,
and comparing them to Kernel SHAP. It is observed that
the feature attributions from LIME are clearly noisier. In
general, the explanations from LIME does seem to follow
the explanations from Kernel SHAP, but are not nearly as
smooth.

The LMT exhibits a more discrete behaviour than Kernel
SHAP and LIME. This is shown in Figure 7. There are
also several points where their explanations differ, but
they are equally intuitive. For example, when the vessel is
making its final move towards the berth after overshooting
it around 300 seconds into the episode, the agent applies a
large force vector backwards towards the berth. The most
dominating feature at this point is dobs. LIME seemed to
agree that dobs was quite important. This is however quite
different from SHAP, which attributed more importance
to the surge velocity and the rotational states.

LIME and SHAP are versatile, as the background data
can be continuously modified. The LMT can not easily be

Fig. 7. Feature attributions for LMT.

modified this way, as it needs to be retrained. The number
of samples in the background dataset mattered greatly
when leaving out a K-means summarizer. When using
2000 samples as the background data, running Kernel
SHAP without a K-means summarizer was infeasible, as
the computer eventually ran out of memory.

LIME was concluded to be ill-suited for this application.
LIME was implemented with the expectation of being able
to run real-time, but spent about five times longer than
Kernel SHAP to explain a data sample. The weighting
kernel in LIME is also entirely arbitrary, and introduces
another unnecessary tuning parameter. LMT was fastest
method out of all three, and can be implemented to run
real-time. Its explanations were intuitive, but were not as
smooth as those from SHAP due to its piece-wise linearity.

Kernel SHAP was efficient, but assumes that the features
are independent of each other. This is indeed very prob-
lematic for many applications. It is not well known as to
what degree the features in the model correlate. There may
for example be some correlation between x̃ and ỹ. Recent
attempts have been made to remedy this assumption of
independent features. Tree SHAP—another method of ap-
proximating feature attributions—does not rely as heavily
on this assumption Lundberg et al. (2019). This method
does not however deliver satisfactory accuracy, and may
even give highly inaccurate results when dependent fea-
tures are present Aas et al. (2020). An overview of the
XAI methods and their pros and cons can be found in
Table 3.

Even though Shapley-value based explainers have been
widely used as a measure of feature importance, they may
not be suitable as explainers for neural networks Kumar
et al. (2020). SHAP may for example not alarm about
any potential biases in the data, or whether the model
accuracy would increase with or without a feature present.
Post-hoc perturbation based methods such as SHAP and
LIME are also vulnerable to deliberate attacks. Scaffolding
is a technique that effectively hides the biases of any
given classifier by allowing an adversarial entity to craft an

arbitrary desired explanation Slack et al. (2020). This has
the potential to create biased predictions with innocuous
explanations, which does not sit well with the safety-
critical nature of a robotic system such as an ASV.

Explainer Pros Cons Time per
explanation

LIME • Can easily
adapt to new
data

• Slow
• Noisy
explanations
• Only local
explanations

16.57 s

Kernel SHAP
+K-means

• Can easily
adapt to new
data
• Smooth
explanations

• Slow
• Only local
explanations

3.6486 s

LMT • Fast
• Can run in
real-time
• Drop-in
replacement
for model
• Can provide
global
explanations

• Discrete
explanations
• Long time
to train

0.0012 s

Table 3. Overview of XAI methods used.

5. CONCLUSION

XAI algorithms may be employed to provide explanations
in a deep reinforcement learning agent for robotic applica-
tions. Through visualizing the explanations together with
the states of the system, we can gain insight into the
reasoning behind black box predictors. This insight can
assist in validating the performance of the autonomous
system, and provide assistance during the certification
process. Methods such as LMTs are fast enough to provide
intuitive explanations real-time, which can be used in real-
time visualizations or control loops. Perturbation-based
methods such as SHAP and LIME are slow, and might
not be suitable for real-time explanations. SHAP is how-
ever a viable alternative that gives smooth and intuitive
explanations post-hoc, but should be used with caution
due to its vulnerability to create biased predictions with
innocuous explanations.

Further work may involve implementing Optimal Regres-
sion Trees (ORT), a method which expresses the node
splitting as an mixed integer optimization problem Bert-
simas and Dunn (2019) instead of greedily growing the
tree as with the LMTs. Near-optimal Nonlinear Regression
Trees (NNRT) Bertsimas et al. (2021) should also be
investigated. NNRT is another tree method where param-
eters for multivariate splits in the tree are found through
gradient descent to build non-linear prediction functions
in the leaf nodes.
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Fig. 7. Feature attributions for LMT.
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