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a b s t r a c t

A Network Intrusion Detection System (NIDS) is a fundamental security tool. However, under heavy
network traffic, a NIDS might become a bottleneck. In an overloaded state, incoming and outgoing
packets in the network might suffer from long delays since previous packets are still being inspected,
and eventually the NIDS starts to drop packets when it runs out of hardware resources. Although
many solutions have been suggested in the literature to counter this problem, they are not completely
reliable as each of them has limitations. This paper investigates the design of a lightweight elastic
architecture which allows parallel processing in an existing NIDS while maintaining the filtering
integrity. Furthermore, we propose two adaptive algorithms which dynamically adjust and divide the
signature rules evenly across NIDS nodes using a node level parallelism method in order to achieve
intelligent rule ordering. We test our approaches in real-life settings by implementing a functioning
prototype involving different modern networking technologies. The prototype presented is a Network
Function Virtualization (NFV) of an intrusion detection system which utilizes Open vSwitch and Docker
containers running Snort in order to provide an elastic system. To the best of our knowledge, there
has been no work that orchestrates both scaling and rule splitting and re-ordering of IDS signatures
as a part of a holistic elastic IDS solution.

The results of this study show that the proposed algorithms are able to equally split the IDS
workload and thereby enabling the system to scale by adjusting the number of virtual components
which analyse the network traffic. At the same time the experiments indicate that the algorithms
can be tuned by a single parameter in order to avoid that some packets go unexamined while
simultaneously craving a minimum of the dynamically available computer resources.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A Network Intrusion Detection System (NIDS) is a security
ool which is composed of software and/or hardware designed to
etect cyber attacks against networks and servers [1,2]. Unlike a
acket filtering firewall, which only accesses and filters network
ackets based on the limited information of the packet headers, a
IDS can identify details of intrusion attempts from the payload
f the network packets using Deep Packet Inspection (DPI) and
hereby reveal their hidden agenda of compromising the com-
uter systems they are addressed to. A NIDS funnels all network
raffic through its sensors to detect intrusions and anomalies. As
he network traffic grows, the use of a single NIDS in a network
ay lead to congestion problems if the network throughput is
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too large. Deep Packet Inspection might involve extensive pat-
tern matching of network packets against complex attack rule
signatures. Pattern matching is an expensive operation, requiring
significantly more computer resources than a firewall, and this
can overload a NIDS [3,4]. If a NIDS is overloaded and starts drop-
ping or neglecting the content of packets, this can compromise
the security of the network. Eventually some intrusions might
not be detected as some packets which are part of the same
attack might evade the inspection of the NIDS, resulting in an
incomplete packet matching.

There are many solutions available when it comes to dealing
with large network traffic volumes for NIDS including:

1. Upgrading hardware by installing dedicated packet capture
cards and installing more computer resources (CPU, Mem-
ory), as well as tuning the NIDS software so it can handle
more traffic.
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2. Using a cluster of NIDS and distribute both the network
traffic and the signature rules across the NIDS nodes.

The first solution consisting of upgrading hardware and tuning
the NIDS software is very costly and not scalable. Network band-
width speed is continuously increasing by a factor of ten every
four years [5], and continuously upgrading hardware to operate a
NIDS is expensive. Tuning a NIDS to make it handle more traffic
is a challenging task with many trade-offs, which can make the
NIDS more complicated than intended.

The second solution which resorts to clusters of NIDS is af-
fordable and scalable. The solution can be adapted to the current
traffic flow and resources can be released and used for other
purposes when the network traffic is low. Many studies [6,7] take
the advantage of using low cost computers with NIDS as a cluster
to handle the high network traffic load. Moreover one can add
additional NIDS instances to the cluster if needed. However, both
the way the traffic is distributed across NIDS instances and the
way the signature rules are distributed play a very important role
to guarantee the success of this solution.

Snort is the de facto standard open source intrusion detection
and prevention system [8] and is the tool we base our proposed
IDS solution on. A shortcoming of Snort is that the current stable
release still is single-threaded, awaiting the Snort 3.0 release,
and this makes our approach even more important. There exists
multi-threaded IDS solutions like Suricata [9] but still the ap-
proach of distributing the workload to completely independent
virtualized computational units makes the system even more
scalable and flexible. This paper aims to explore and design an
architecture that runs NIDS in parallel to reduce the processing
time of the pattern matching and reduce the number of packets
dropped. This architecture is restricted to NIDS performing rule
based intrusion detection making it possible to split the rules
into smaller sets which can be processed in parallel which is not
necessarily true for other NIDS based on machine learning [10]
or other detection principles. The most important key factor is to
develop an algorithm that distributes signature rules evenly in an
intelligent manner across NIDS sensors in the cluster. Additionally
an algorithm for automation of a dynamic scaling of NIDS sensors
is developed. The algorithm adapts the number of NIDS sensors
in response to the workload.

There is a number of studies that seek to improve the per-
formance of NIDS. The vast majority of these studies focus on
splitting up, routing and load balancing the network traffic across
different NIDS nodes in the system. In this paper, we rather focus
on dividing and distributing signature attack rules across the NIDS
nodes. In other words, we adopt rule splitting across different
NIDS nodes. The work on rule splitting is extremely scarce and the
only work we could find in the literature is due to Jiang et al. [11].
Jiang et al. performed rule splitting over different IDS instances in
an offline manner based on a tree like data structure called Leaf
Pruning (LP). However, the rules were not profiled and the split-
ting of the rules based on LP is static. Thus, if the matching time of
some rules in the IDS increases due to the dynamics of the traffic,
some of the instances might become bottlenecks in terms of
matching time. Note also that rule splitting and dynamic scaling
entail some orchestration challenges. Our propounded dynamic
scaling is responsible for defining communication between snort
sensors, as well as defining the processes that trigger the scaling
behaviour. It will also ensure that the integrity of snort sensors is
maintained in terms of inspection of packets while updating new
rules to the snort sensors. Our scaling was achieved by exploiting
the virtualization capabilities of containers, thus, we can call our
IDS elastic. Traditional approaches for parallel IDS usually use
multicore architecture and multi-threading to balance the pattern
matching load, and in some cases sophisticated hardware such

as GPUs [12–14]. In other words, the absolute vast majority of
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works on parallel IDS focus on accelerating the pattern operation
by distributing the workload of the pattern matching per packet.
When it comes to elastic IDS, [15] proposes a reactive approach
to adjust the number of IDS instances based on the drop rate.
The traffic is captured at each instance for the last 10 s and
stored in pcap files, and whenever the drop rate is high, a new
instance is launched and the recorded traffic is sent to it. The
latter approach is rather simplistic and entails clear overhead and
inspection delay.

We summarize the contributions of this paper as follows:

• An innovative design of a parallel NIDS based on Network
Function Virtualization and rule distribution is presented.

• Using a modified parallel technique, NL-FP-1, we create a
working parallel environment and devise two algorithms
which dynamically adjust and divide the signature rules
evenly across NIDS nodes.

• Prototype experiments show that the dynamic scaling algo-
rithm at any time adjusts the number of Snort nodes needed
in response to the CPU load on the system.

The remainder of this paper is organized as follows. In Sec-
tion 2 we review the state-of-the-art while focusing on the most
notable studies related to our work. Section 3 presents our so-
lution and Section 4 is dedicated to the experimental results.
Section 5 gives some closing remarks.

2. Related work

In this section some notable attempts in the literature to
boost the performance of NIDS under heavy traffic situations are
reviewed.

A framework of parallel techniques in the field of intrusion
detection was presented by Wheeler and Fulp [7] to improve
the performance of signature based intrusion detection systems.
Three parallelization designs were discussed.

The first method is called Node Level Function Parallel 1 (NL-
FP-1) where single Snort rules are categorized based on their rule
group and evenly distributed across the IDS nodes. A rule group
in Snort is a way to put rules in groups based on their source
IP, destination IP or port number. For instance, all Snort rules for
ssh are placed in rule group port 22, while all web-traffic rules
are placed in rule group port 80. Packets are duplicated to all IDS
nodes for inspection using a traffic duplicator.

The second method, called NL-FP-2, considers complete rule
groups instead of single rules in different rule groups and then
distributes rules to all the IDS nodes. For packet distribution one
can either duplicate all the packets and send them to all IDS nodes
or alternatively use a traffic splitter and route traffic based on
source ip, destination ip or port number to the IDS that has these
Snort rule groups. E.g all web traffic should be routed to the IDS
node that is configured for the Snort web traffic rule group.

The last method is called Node Level Data Parallel 1 (NL-DP-1).
According to this method, each IDS node has the complete Snort
rule policy, and packets are distributed evenly by a traffic splitter
(load balancing). The main disadvantage of this approach is the
difficulty of maintaining the session integrity, reducing the ability
of Snort to analyse the traffic correctly without the full picture of
packet flows. In fact, delay of session integrity can be a bottleneck
inhibiting the success of this approach. However, a sophisticated
traffic splitter can solve this bottleneck.

Shiri et al. [6] implements the NL-FP-2 approach proposed
by Wheeler and Fulp [7] by deploying two IDS nodes in par-
allel. In their experiments the Snort signature rules are evenly
divided between two IDS nodes, so that both IDS nodes have
the same number of rules. For testing the authors use a dataset

from a TCPDUMP-file generated to compare the processing time



H. Haugerud, H.N. Tran, N. Aitsaadi et al. Future Generation Computer Systems 124 (2021) 254–267

o
e
m
n

f
e
r
i
T
M
i
n
t
r
o
p
t
s
t
o
w
m
p
o
r
p
o

o
s
s
t
t
p
N
e
i
W
p
n

a
o
a
a
p
p
l
f
w
T
t
c

l
a
p
w
D
i
1
a
p
p
t
o

d
B
s
w
l
s
c
t
a
t
t

I
s
o
n
b
s
a
A
f
f
s
m
p
o
t
t
o
b

t
p
r
v
s
,
l
n
s
G
i
e
o
t
w
r

n
c
i
P
s
m
c
S
b
l
t
P
a
t
b

n their parallel implementation versus a single IDS node. Their
xperiment results show that the processing time of their imple-
entation of two IDS nodes is 42% faster than for a single IDS
ode.
Recently, it was proposed to extend the idea of a parallel

irewall to the cloud [16]. The authors propose combining two
lements for boosting the performance of a firewall that are
arely combined (1) rule ordering and (2) rule decomposition
nto disjoint sets that are deployed over smaller parallel firewalls.
he latter study relies on the so-called batch estimator proposed
ohan at a. [17] for estimating the matching probability of rules

n a dynamic environment for the sake of rule reordering. Please
ote that traffic aware ordering [16–18] is an appealing idea
hat can be adopted in the context of IDS when the number of
ules is large. Kopek et al. [3] introduce an improved version
f NL-DP-1 [7] called Divided Data Parallel (DDP), which is a
arallel content matching approach, where its goal is to reduce
he processing time that Snort spends in the content matching
tage, which can consume up to 70% of the processing time. In
he DDP approach, the payload of a packet is sent to an array
f processors set up in parallel and is divided into fragments
here the processors inspect parts of the payload. If there is a
atch with any Snort rule the processor will notify the other
rocessors that the payload of that packet is matched and the
ther processors will then move on to the next packet. The
esults show an improvement of content matching where the
rocessing time has a speedup of 1.25 n (where n is the number
f processors), while previous work had a speedup of 0.75 n.
Bulajoul et al. [19] experimentally demonstrate the inability

f packet handling in NIDS as network traffic increases. The re-
earchers demonstrate how NIDS have the tendency to drop and
top analysing packets as the speed and volume of the network
raffic increases. The goal of this paper is to reduce processing
ime in NIDS, which in return reduces the number of dropped
ackets. The experiments confirm that when running the Snort
IDS in parallel, the number of packets dropped decreases. The
xperiment results show that as the number of IDS nodes running
n parallel increases, the packet drop rate decreases consequently.
ith a dataset of 8000 packets; running one IDS node had a
acket drop rate of 10.9%. When running two instances of IDS
odes with the same data set the drop rate was decreased to 5.7%.
The work reported in [20] proposes two pattern matching

lgorithms to reduce memory usage and improve the run time
f an IDS. The Aho–Corasick algorithm is used when analysing
packet payload with short patterns, while the Wu–Manber

lgorithm is used for longer patterns. Both algorithms are multi-
attern matching algorithms, meaning they can inspect multiple
ackets concurrently if there are enough threads that can be
aunched. In the experiment the authors ran the algorithm using
our threads, where one thread used the Aho-Croasick-algorithm
hile the other three threads used the Wu–Manber-algorithm.
he results show that by using this combination, a reduction of
he time spent on pattern matching by 41% compared to a normal
onfiguration is achieved.
Umar et al. [21] propose a model for multithreading and paral-

elization in IDS. The main focus of this paper is the distribution
nd update of signature based rules to IDS agents. The authors
ropose to aggregate all rules in a centralized database (mySQL),
hile agents have their own database called Small Signature
atabase (SSD). The rules in the centralized database are divided
nto smaller portions and distributed to the agents SSD, e.g rule
–200 is used for agent 1, 201–400 for agent 2 and so on for
dditional agents. The results of the experiment show that their
roposed model is 50% faster when using two IDS agents com-
ared to one. In addition the authors suggest using an algorithm
o update the main database with frequent rules that raise alerts
n the agents.
 m
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Kumar et al. [22] propose a technique to maintain and update
atabases consisting of the most frequent attack signature rules.
y using the Rule Induction Algorithm (RIA) (a modified ver-
ion of the SRLF algorithm) the solution builds smaller databases
hich contain only the most frequent attack signatures from the

arge database. The RIA algorithm also takes care of updating the
maller databases whenever the number of most frequent attacks
hanges in the large database. The results of the experiment show
hat when using an IDS where all rules were enabled, the total
mount of dropped packets was 5%, while for the proposed model
he total amount of dropped packets was reduced to 1% over 50
est sessions.

The study reported in [23] emphasizes how difficult it is for
DS to process packets when the networking speed in a high-
peed network infrastructures is increased. Neither optimization
f packet matching algorithms used by centralized processors
or custom-developed hardware can cope with these problems
ecause of their inherent stateful nature. Hence, the authors have
tudied a pattern matching algorithm that works by performing
stateful signature matching and detection of network attacks.
parallel rule matching unit made of four sensors deployed on

our Linux boxes performed better than a single sensor used
or a particular set of detections on a particular dataset. Other
tudies in this area are either not fully compliant with a parallel
atching algorithm or utilize a central sensor to process the
ackets. Moreover, the study in question has been built on the
bservations of similar studies in this area. Hence, it also facili-
ated the communication between all the four sensors, allowing
hem to synchronize the state matching and render the transport
f each packet sensor-independent. This study was only limited
y the limitations of the hardware utilized.
In [24], Schuff et al. discuss two parallelization strategies for

he Snort NIDS. However, the solutions presented in this pa-
er can also be applied to other NIDS which involve stream
eassembly and flow-tracking. Using the system based on Snort
ersion 2.6RC1, the analysis discovers that the two parallelization
trategies show a good performance on the targeted workloads
although they face some limitations. The conservative paral-
elization manages to yield substantial speedups on 3 of the 5
etwork packet traces involved, giving as much as a three times
peedup on 4 processor cores and processing at speeds up to 1.7
bps. However, the optimistic parallelization shows a degrade
n the extra overheads performance of 10% for traces which
xhibit flow concurrency, therefore, limiting the speedup to 2.8
n four cores. Despite these results, the article also mentions that
he optimistic parallelization enables more intra-flow parallelism
ith one additional trace resulting in a good speedup with traffic
ates over 2 Gbps.

Chen et al. [25] focus on a new parallel structure of a NIDS
amed Para-Snort. The structure is characterized by a clean-
ut modular design and highly optimized core algorithms. The
mportance of this article is set by the innovativeness behind
ara-Snort, not only it indicates more flexibility and ease while
caling new modules, but it also shows the ability to replace
odules by using hardware acceleration. Furthermore, through
omprehensive experimental results, the paper shows that Para-
nort manages to increase the speedup by an order of magnitude
etween 4 and 6 times for various traces using a 7-thread paral-
elizing test setup. However, as mentioned by the authors, despite
he advantages presented in the article, the processing engine of
ara-Snort requires further improvement. All in all, Para-Snort
ppears to be a Snort parallelization strategy which is designed
o achieve a better performance while showing impressive results
oth for load balancing and for multi-pattern matching.
A white paper by Intel Corporation [26] discusses the perfor-
ance benefits that result from the use of multiple processing
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ores for communications applications while also illustrating the
esults indicated by the analysis on an open source intrusion
etection application. The paper shows that Intel multi-core pro-
essors exhibits a significant increase in performance for packet
rocessing applications. Using four execution cores with pipelin-
ng and flow-pinning gives only a minimal incremental through-
ut for 175 concurrent TCP connections. However, for 25,000 TCP
onnections the resulting throughput was more than 6.2 times
reater than for the single core system. The study also indicates
hat software tuning to increase the L2 cache hit rate beyond the
0% recorded could potentially yield even greater performance
mprovement.

. The proposed solution

In this section, we present the overall architecture for dis-
ributing network traffic and dividing and updating signature
ules on Snort sensors. Network Function Virtualization (NFV)
s a new paradigm in the move towards open software and
etwork hardware [27–29]. In our work, we adopt some of these
rinciples and use Open vSwitch and Docker containers running
nort in order to make an elastic virtualized IDS which is flexible
nd easily scalable. Software-defined Networking (SDN) is an-
ther technology which has been increasingly used in virtualized
ecurity scenarios [30]. Thus, our solution could seamlessly be
ntegrated within an infrastructure using SDN [31].

The proposed solution is a scalable intrusion detection system,
owever, the main focus of this paper is on how to scale the
olution and avoid packets passing the sensors undetected, and
here is much less focus on the detection part. Nevertheless, all
he snort sensors in the solution send their alerts to a central alert
atabase so that the prototype is a fully functional IDS. As the
raffic is duplicated and sent to several snort sensors, it would not
ake sense to drop packets which raise an alert and the solution
ill hence not be a candidate for an intrusion prevention system.
or such a system scaling could be obtained by splitting the
raffic into several streams which were redirected to a number of
ensors, each containing all the rules, and then dropping packets
ould make sense and could stop an attack.
It is well known that it is challenging to keep the integrity

f the alerts when splitting the network traffic [2,32], a design
eferred to as Node Level Data Parallel 1 (NL-DP-1) [7] in Sec-
ion 2. In general the state of the connections need to be kept as
n some cases rules are triggered by related traffic. This leads to
n extra communication overhead between the sensor nodes in
rder to maintain the integrity of the alerts. In our solution, these
roblems are avoided by sending all traffic to all of the intrusion
odes. Additionally, we distribute a fraction of the rules to each
ode so that the sensors do not have to match each packet with
very NIDS rule contained in the large set of rules in order to
rocess the rules in parallel.
We adopt the Node Level Function Parallel 1 (NL-FP-1) de-

ign [7] with a main modification in terms of division and distri-
ution of signature rules. The parallelization model used in this
aper is divided into two main parts; the first part is to distribute
nort signature rules evenly to the IDS sensors in the parallel
luster, while the second part is the control of the network
raffic distribution. A model for each part is designed for a better
verview.

.1. Distribution and update of signature rules model

The method for distributing signature rules of the NL-FP-1
echnique is to segregate rules based on rule groups. A rule group
n Snort permits to place by default rules in the same group based

n their source IP, destination IP or port number. For instance, all
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Fig. 1. Model for updating IDS sensors with new rule-sets.

ules with an incoming port number of 22 (SSH) belong to a rule
roup.
However, a different approach for the distribution of signature

ules is implemented in this work, where the rules are distributed
venly based on the performances of each rule with the use of a
ignature rule ordering algorithm that creates new rule-sets for
ach IDS sensor. The algorithm is discussed in greater detail in
ection 3.3.1.
Whenever a new rule-set is created, these rules have to be

istributed to update the old rule-set on every Snort sensor. Fig. 1
hows a simple model of how Snort sensors are updated with new
ules in their database. All signature rules are kept in a central
ule-set file and when there is a need to create new rule-sets, the
ontroller will use the signature rule ordering algorithm to create
ew rule-sets for each Snort sensor and update the Snort sensors
atabase with new rules.

.2. Technical model

The technical model describes the core modules of our system
or creating a dynamic scalable parallel environment of NIDS sen-
ors. The technical model resorts to two algorithms; the signature
ule ordering algorithm and the dynamic scaling algorithm.

A diagram of the technical model has been designed to show
ow the scaling algorithm script works, adjusting Snort sensors
ased on the output of a system load parameter. The diagram of
ig. 2 shows the state of all Snort sensors in the scenario where
he controller using both algorithms has monitored a system
esource, performed calculations and made a decision that three
ensors are needed. The rule ordering algorithm has then created
hree new rule-sets for each sensor, and the scaling algorithm
as distributed the new rule-sets and reloaded each sensor, il-
ustrated by an updating icon for sensor 1, sensor 2, and sensor
.
The diagram shows only a small part of the technical model,

nd was designed to give an overview of how the scalable parallel
nvironment works. In the next sections a more detailed insight
nto how both algorithms work is given to complete the picture
f the technical mode.

.3. Algorithms

In this section, diagrams and pseudo-code will serve as
lueprints for how the signature rule ordering and dynamic
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Fig. 2. Parallel architecture model.
caling algorithms are developed. The signature rule ordering
lgorithm is integrated with the dynamic scaling algorithm in
rder to complete the design of the technical model.

.3.1. The signature rule ordering algorithm
Three procedures interplay to manifest a working signature

ule ordering method and they are called load_profiled_rules(),
oad_rules() and order_rules(). Each of these algorithms is de-
cribed below. The description is supported by the workflow
iagram of Fig. 3 and pseudo-code for each of the three proce-
ures.
The numbers in parenthesis accompanying the procedure names

elow represent the numbers in the workflow diagram of Fig. 3.

1. load_profiled_rules() - (1)
This component is used to read all rule profiling perfor-
mance files generated by the Snort sensors to create a
dictionary that consists of the signature rule ID (SID) and
the amount of time spent on each rule performing packet
inspection. In cases of multiple performance profiling files,
occurrence of the same signature rule might happen, there-
fore duplication of signature rules is managed by this com-
ponent as well. This component finally returns a dictionary
of all signature rules storing the time used for packet
inspection. Pseudo-code of this procedure is shown in Al-
gorithm 1.

def load_profiled_rules (performance_profiling_files): {
profiled_rules_dictionary = {} // empty dictionary

for file in performance_profiling_files do
open file ;
for i in file do

find SID and avg/check parameter and add to
dictionary ;

end
end
return profiled_rules_dictionary
}
Algorithm 1: Pseudo-code of the load_profiled_rules() proce-
dure of the signature rule ordering algorithm.

2. load_rules() - (2)(3)
The load_rules() component will load the main rule-set
(the centralized rule-set that contains all signature rules)
and use the dictionary created by load_profiled_rules() to
create a list that maps the signature rule ID to the actual
258
content of the rule, which consists of the rule options
that define how the rule is constructed. Rules with un-
known time measurement and yet to be matched by the
detection engine will be appended to a separate list. This
procedure returns two lists; where the first list consists
of signature rules with a known time measurement while
the second list consists of signature rules with unknown
time measurement used in packet inspection. For the sake
of simplicity, rules with known time measurement are
called profiled rules, while rules with unknown time mea-
surement are called unprofiled rules. The pseudo-code of
load_rules() is shown in Algorithm 2.

def load_rules (Snortrulefile, profiled_rules_dictionary): {
// use the SID from dictionary and find the
// corresponding rule in the main Snort rule-set file

profiled_rules, time, unprofiled_rules = [ ] //empty lists
for rule in Snortrulefile do

if SID in rule then
append rule to profile_rules list ;
append avg/check time to time list ;

else
append rule to unprofiled_rules list ;

end
return profiled_rules, time, unprofiled_rules
}
Algorithm 2: Pseudo-code of the load_rules() procedure of the
signature rule ordering algorithm.

3. order_rules() - (4)(5)(6)(7)
The last and most important component of the signature
rule ordering algorithm is the order_rules() procedure. The
tasks of this component is to create new rule-sets by di-
viding profiled rules evenly across the number of rule-
sets needed. The profiled rules will first be randomly dis-
tributed into a number of rule-sets. The profiled rules in
the newly created rule-sets will then be reordered using
simulated annealing algorithm based on how much time
each rule used in the detection engine during the deep
packet inspection. Once the simulated annealing process
is finished, the final rule-set distribution is expected to be
more evenly balanced than the initial randomized place-
ment. Finally, the unprofiled rules are evenly randomly
distributed across the new rule-sets. Pseudo-code of the

procedure is shown in Algorithm 3.
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Fig. 3. Workflow diagram of the signature rule ordering algorithm.
Splitting the snort rules is a load balancing problem. In fact,
y virtue of knowing the statistics of the matching time of each
ule, distributing the snort rules over a fixed number of instances
an be seen as a typical load balancing problem, which is known
o be NP hard. In load balancing, the optimal solution is the
ne that minimizes the makespan of execution of a job over
arallel machines. Here the makespan corresponds to the time
he slowest snort instance [33] takes to process the packets. In
ur case, we cast the problem into equalizing workload which
s not exactly the same as the above explained load balancing
roblem [33]. The reason why we opted for ‘‘load equalization’’ is
o try to ensure that for any given packet, the pattern matching
ime is even across the different snort instances and thus the
‘flow duplication’’ and pattern matching go hand in hand, with
o heterogeneous delay experienced by the same packet at the
ifferent snort instances. An algorithm that aspires to minimize
he ‘‘makespan’’ (in this case, the time it takes to inspect the
acket in the slowest IDS instance) might create a phenomenon
hich we call differentiated delay as a packet might be already
rocessed with the slowest instance, while a new packet enters
he fastest snort instance. In order to perform load equalization,
e used Simulated Annealing which is known to be an efficient
259
optimization algorithm. Other optimization algorithms could be
used, also it is possible to devise different types of heuristics. We
have for example developed in a previous work a game theo-
retical based approach for ‘‘equalizing’’ workload across different
virtual machines in the cloud [34]. Usually the load equalization
problem is a simple problem that can be solved efficiently using
lightweight optimization algorithms since the processing times of
the different rules are similar. The load equalization problem has
been also studied as a variant of the Bin Packing problem, see for
instance [35].

3.3.2. The dynamic scaling algorithm
While the rule ordering algorithm was developed to evenly

distribute rules across the rule-sets, the dynamic scaling algo-
rithm was developed in order to generate and distribute the new
rule-sets to the Snort sensors in an efficient way. The dynamic
scaling algorithm is run in the background and dynamically scales
the Snort sensors in order to save system resources while sus-
taining the integrity of the Snort sensors and keeping a zero
percent packet drop-ratio. The dynamic scaling algorithm consists
of three important stages; the monitoring stage, the calculation
stage and the reaction stage.
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def order_rules(profiled_rules, time, unprofiled_rules,
files_needed): {
// create empty lists in list based on the number
// of rule-sets needed

bucket = [ [] for i in range(files_needed)]

// random distribution of rules to bucket list

for rule in range (profiled_rules) do
append rule to bucket ;

end

// Balancing the rule-sets using simulated annealing

if profiled_rules != EMPTY then
INIT_TEMPERATURE = start temperature
TEMPERATURE_DECREASE = decrease rate
MIN_TEMPERATURE = stop temperature

while INIT_TEMPERATURE > MIN_TEMPERATURE: do
- use the simulated annealing method to reorder rules
between the $bucket lists ;
- calculate the score and accept or reject the solution;
- remove rule from list if solution is accepted;
- decrease temperature;

end
append remaining unprofiled rules randomly to $bucket
}
Algorithm 3: Pseudo-code of the order_rules() procedure of the
signature rule ordering algorithm.

The first stage in the scaling algorithm is to monitor a system
resource parameter for a period of time. A system parameter can
be CPU, RAM and hard disk usage among others. CPU usage turns
out to be the right choice in our case. We have opted to choose
CPU usage as an important factor for scaling decisions and for
splitting the rules. The reason is that the CPU can be a bottle-
neck resource in NIDS. Snort operates with regular expression
matching and thus, the CPU is the most important parameter to
speed up the matching. Usually memory and disk IO demands
do not differ much under heavy load of traffic due again to the
computational nature of regular expression matching.

Once the monitoring part is done, the second stage will calcu-
late how many Snort sensors are needed based on the usage of
system resources in order to avoid the situation where packets
are being dropped. At this junction, we give an example of how
this calculation is performed. For instance, let us suppose that a
system has 16 CPUs and thus a maximum CPU usage of 1600%,
and assume that the CPU threshold, which is the only input to the
scaling algorithm, is set to 40% in the current case. This indicates
that we impose a constraint on Snort sensors to not exceed 40%
and presumably this is under the assumption that a larger CPU
usage could lead to packet dropping. If the total average CPU load
of the whole system the last 45 s was measured to be 220%, the
number of Snort sensors n needed to avoid a total CPU usage
bove the threshold would be calculated to be

= ceiling
(
220
40

)
= ceiling(5.5) = 6

hen this number has been computed, the reaction stage will
djust the number of Snort sensors that either need to be started
r stopped. In case the calculation of the number of Snort sensors
eeded equals the current number of sensors, status quo will
imply be kept. Additionally the number of Snort sensors that has
een affected will need to be updated with new rule-sets. This is
 c
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achieved using the signature rule reordering algorithm to create
new rule-sets for the affected Snort sensors. The reaction stage
will distribute the new rule-sets and reload all the affected Snort
sensors so that they can resort to the new rule-set configuration.

The stages are outlined as pseudo-code in Algorithm 4.

CPU_THRESHOLD = threshold of CPU usage
interval = 45 s
active_Snort_sensors = active_sensors()
while True do

total_cpu_usage = average total CPU usage last 45 s;
n_sensors_needed = ceiling(total_cpu_usage /
CPU_THRESHOLD)

diff = n_sensors_needed - active_Snort_sensors
while diff ! = 0 do

if diff < 0 then
Docker command: turn off one Snort sensor;
diff + = 1

else
Docker command: turn on one Snort sensor;
diff − = 1

end
// Have Snort sensors been turned on or off?
if active_Snort_sensors != active_sensors() then

- call signature rule ordering algorithm to create new
rule-sets
- send new rule-sets to sensors
- reload Snort sensors

end
Algorithm 4: Pseudo-code of the dynamic scaling algorithm,
given that the system resource considered is CPU usage.

. Measurement, analysis and comparison

.1. The underlying infrastructure

The underlying infrastructure consists of the important key
ools and configurations needed to deploy a working parallel
nvironment for the NIDS so that the algorithms can tested and
xperiments can be conducted. The system was built on two
hysical machines. The first machine is the main server where
lmost all key tools were installed and configured. The second
achine is a client machine connected directly to the main server
n its network interface card, replaying network traffic to the
ain server using the tcpreplay tool. Both machines are using
buntu Linux 14.04 64-bit version as operating system and a
ummary of the hardware specifications is listed in Tables 1 and
.

.1.1. Docker and snort
Snort version 2.9.9.9 was used for the IDS sensors. The Snort

ain ruleset file containing all Snort rules (approximately 35
00 rules) was downloaded using PulledPork, which is a rule
anagement tool for Snort and Suricata. The reason for doing

his was to retrieve the necessary directories and files structures
hich are later used as templates for Docker.
Docker version 1.13.0 was first installed through the apt-

et package management. Before launching Snort containers, a
ocker image was built to containerize the Snort application and
ts dependencies. Barnyard2 was used to parse binary output log
iles that contains alerts created by Snort and save the alerts in a

entralized mySQL database.
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able 1
ain server specification.
Dell PowerEdge R710 hardware specifications

CPU 16 cores @ 2.13 GHz
RAM 76 GB
NIC 5

Table 2
Client machine specification.
Dell Optiplex 780 hardware specifications

CPU 2 cores @ 2.93 GHz
RAM 8 GB
NIC 2

4.1.2. Tcpreplay
Tcpreplay version 3.4.4 was installed using apt-get on the

hysical client machine and used to replay network traffic from
pcap file. The pcap file used in all the experiments consisted
f 1.5 GBytes of recorded network traffic from a private network.
ost of the traffic at such a place is just normal traffic and the
umber of alerts are hence few. The alerting capacity of an IDS is
ormally not a bottleneck, while the CPU demanding deep packet
nspection using regular expressions often is. However, there are
any publicly available pcacp file datasets that could be used as
n alternative. We refer the interested reader to for example the
arge Netresec pcap dataset [36]. For the sake of repeatability, the
ource code of our project can be found in [37]. A Bash script
as developed to replay the traffic at different settings, such as
andwidth speed and a given number of times in a loop, for the
urpose of customizing the experiments.

.1.3. Open vSwitch
Open vSwitch version 2.0.2 was installed and a network bridge

as created for the Docker Snort containers in order to isolate
etwork traffic, so that only traffic from the pcap file generated
y the client machine is seen by the Snort sensors.

.1.4. Real-time network traffic distribution architecture
The main purpose of the IDS is to analyse network traffic for

ntrusions, hence the importance of the network setup for the
nort sensors to analyse the correct network traffic. Regarding the
hysical aspect of the network setup, only one port is configured
o run as a mirror port. However, the Snort sensors have their
wn isolated virtual network, so there is a need to duplicate
nd distribute this traffic further to each Snort sensor. For this
urpose, a virtual switch is used to connect the physical and
irtual ports together in order for all Snort sensors to receive the
ame data. An illustration of the networking model is shown in
ig. 4 where all data flow directions represent duplicated traffic.
n this proposed architecture, the network traffic is real-time
raffic.

.1.5. Emulated network traffic environment architecture
This architecture adopts a similar approach to the real-time

etwork traffic distribution architecture. The only difference in
his approach is that instead of sniffing and duplicating real-time
raffic from the network, we use tcpreplay to replay a pcap file
o emulate network traffic. The server will receive the traffic
eplayed from the pcap file and traffic is duplicated and sent to

he Snort sensors for inspection.
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4.2. Initial experiments

The general procedure of the experiments was to replay the
recorded pcap network traffic at a set of different speeds and
record the CPU usage and the total drop rate of the Snort sen-
sors. A Snort ruleset containing 31607 rules and rule profiling
performance files that contained 3345 unique rules were used.
The latter rules are the ones which were matching some of the
packets of the test pcap file and for which the profiling data were
collected. The rest of the rules were also a part of the exper-
iments, but these rules never explicitly led to time consuming
deep packet inspection in the experiments conducted.

Initial experiments showed that the memory was not a bottle-
neck as the memory utilization was almost stable even for heavy
workloads, and just increased slightly with the increase of the
number of rules.

However, other initial experiments also showed that there
were strong correlations between the CPU usage and the packet
drop rate. Fig. 5 shows the results of a set of experiments where
the network throughput is increased from 10 Mbps to 50 Mbps.
At the lowest throughput the CPU usage of the Docker container
running the Snort sensor is 40% while no packets are dropped.
However, as the speed of the replayed TCP traffic is increased
inducing a CPU usage above 40%, the Snort sensor is congested
and starts to drop packets. The results show that as the CPU
load increases up to 100%, the drop rate of packets also slowly
increases up to 14%. An important goal of the system is to dy-
namically add more sensors when the current sensors reach
congestion and these results indicate that the CPU load should
not exceed by far 50% in order to avoid that network packets pass
the IDS unexamined.

4.3. Signature rule ordering algorithm

In this experiment, we test the effectiveness of the distribution
of signature rules across n number of rule-sets performs using
the simulated annealing rule ordering algorithm. The results in
Table 3 show three tests where the initial 3345 profiled rules are
distributed into 2, 3 and 4 rule sets respectively. First the rules
are distributed randomly and with an equal number in each set.
The initial total time is the sum of the time in seconds each of
the rules spent in the detection engine for all the rules in the
given set. Initially, there is some difference and the rule ordering
algorithm is applied in order to make the total time of each rule
set as even as possible. Ideally, all rulesets should have an even
execution time. We see that the simulated annealing algorithm in
these three cases gives an almost perfect result which should be
good enough for any practical case. The total number of rules used
was also in this experiment 31607, but the rules for which there
where no profiling data were just evenly divided between the
sets as there would not be any significant difference in processing
time when comparing them.

The results of a set of experiments conducted to see how well
the signature rule ordering algorithm performed when receiving
real TCP-traffic is shown in Fig. 6. The signature rule ordering
algorithm (intelligent rule ordering) was applied to divide the
31607 rules into two sets and 5 different experiments was per-
formed. An overwhelming stream of network packets was sent
to both Snort sensors and the number of packets analysed and
dropped was logged. If the rule ordering is perfectly balanced,
the two sensors should drop equally many packets in each of
the experiments. As can be seen from Fig. 6, the difference is
very small. On average the difference between the percentage of
packets dropped by the two Snort sensors is 0.25% for the five
experiments.

However, in the random rule ordering experiments shown

in Fig. 7, the difference between packets analysed and dropped
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Fig. 5. Packet drop rate correlated to CPU load.
able 3
erformance of the signature rule ordering distribution of rules. The final total
ime given in seconds is very close to the Balanced execution time for each of
he three tests.
Test 1 Balanced execution time 992.67

Rule-set 1 2

Initial total time 987.98 997.36
Final total time 992.64 992.70
Rules in rule-set 1689 1656

Test 2 Balanced execution time 661.78

Rule-set 1 2 3

Initial total time 653.67 618.43 713.24
Final total time 661.76 661.81 661.76
Rules in rule-set 1159 1128 1058

Test 3 Balanced execution time 496.33

Rule-set 1 2 3 4

Initial total time 466.77 522.89 527.13 468.55
Final total time 496.38 496.28 496.36 496.31
Rules in rule-set 832 844 830 839

varies more and in the second experiment the difference is rather
very large. The latter could be a rare anomaly, but for the four
other experiments the average difference between the percent-
age of packets dropped by the two Snort sensors is 1.5%. One
can conclude that with the use of signature rule ordering al-
gorithm, signature rules are evenly distributed across rule-sets
which makes the Snort sensors balanced in terms of packet
inspection. This makes it possible to set up a system which
adds more Snort sensors while keeping the load balanced when
the existing Snort sensors are not able to cope with the load
and the CPU usage and rate of packet drop get too large. Our
algorithm performs rule profiling to distinguish which rules are
using the most time in the detection engine for pattern matching
262
for packets in order to divide the rules evenly. If this logic is not
taken into account when developing the algorithm, one would see
an imbalance in terms of pattern matching time across the snort
sensors over time. A random split of the rules might put ‘‘heavy
rules’’ requiring long pattern matching time in the same snort
sensor which would create bottlenecks and uneven processing
time of the same packets across the different snort instances.

4.4. Dynamic scaling algorithm

A set of full scale prototype experiments were conducted to
see how well scaling of Snort sensors performed when exposed
to varying amounts of network traffic. The speed of the TCP-
packet flow started at 5 Mbps and was gradually increased to
a maximum of 300 Mbps and then slowly reduced back to 5
Mbps at the end of the experiments. This procedure lasted for
more than two hours and the total CPU usage of the system
was recorded every second together with the number of active
Snort sensors. Three experiments were performed by varying the
CPU load threshold of the dynamic scaling algorithm. All the
parameters in the experiment are user defined and generally
depend on the characteristics of the traffic. Finding appropriate
parameters is usually done by manual tuning. In the experiments,
we have tested 50%, 60% and 70%, as threshold CPU load based on
the results of the initial experiment shown in Fig. 5.

In the first case where the threshold for total CPU load was
set to 70%, the results of Fig. 8 show that the algorithm was able
to adjust the number of Snort sensors in response to the CPU
load. When the CPU load is substantially increased, the system
adds more Snort sensors in order to keep the CPU load below
the threshold. In the same manner Snort sensors are removed
when the CPU load is decreased and the value stays low. In
this specific case the figure shows the actual value of the CPU

usage for every second and this value fluctuates strongly. In
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Fig. 6. Results of five packet drop rate experiments using two Snort sensors with intelligent rule ordering.
Fig. 7. Results of five packet drop rate experiments using two Snort sensors with random rule ordering.
rder to avoid that new IDS sensors where added and with-
rawn to often, the decision to change the number of sensors
as taken every 45 s based on the average value of the CPU
sage for the given interval. Loosely speaking, there are two
ypes of scaling approaches: (i) schedule based and performance
riggered. In schedule based approaches, usually, the network
dministrator defines a regular interval at which a scaling action
ight be performed. A performance triggered scaling denotes a
et of approaches where some of the scaling is rather reactive to
egradation in performance. We have opted for a schedule based
caling although a performance triggered approach could also
ave been used. The interval of 45 s is a user defined parameter
hich defines the reaction time of our IDS. We measure the
verage CPU for 45 s to take scaling action based on threshold
ased policies. A shorter time interval would lead to very frequent
caling actions, which might not be necessary in case of short
ursts in CPU usage. In this case, we might experience a ping-
ong effect, while resources can increase and decrease in an
scillating and unstable manner [38]. A longer interval might lead
o either degradation of the performance or unnecessary usage
f the resources over a long time depending on the workload.
e cannot claim that 45 s is an optimal value, a more thorough

tudy needs to be conducted to find an optimal value. Such a
uestion has been very well studied within the field of elastic
loud infrastructure in general [39], for instance many works on
lastic load balancing of web services have studied the optimal
hoice of the scaling schedule interval. We leave determining the
ptimal scaling schedule interval depending on the characteristic
f the traffic to a future work.
The experiments lasts for 2 h and 20 min, giving the 8400 CPU

oad data points of Fig. 8.
In Fig. 9 the threshold CPU usage is reduced to 60%. In this

ense, the scaling algorithm will try to avoid that any of the
nort sensors uses more than 60% CPU time in order to reduce

he amount of packets dropped. The algorithm strives to achieve
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this by providing as many sensors as needed to deal with the
current CPU usage without the sensors on average using a higher
percentage than the threshold. In Fig. 9 the blue line shows the
average CPU usage of the system during the last 45 s. Since the
system has 16 CPUs, the maximum CPU usage is 1600%. When
the average CPU load for instance exceeds 600% the system needs
to run more than 10 CPUs at 60% to avoid exceeding the given
threshold of 60%. Because of this, the amount of sensors needed
is calculated to be 11 and the number of sensors is adjusted
accordingly, unless the system is already using this number of
Snort sensors. In this way the system dynamically responds to the
fluctuating amount of network traffic, striving to keep the CPU
threshold using a minimum number of CPU kernels. When the
actual CPU load reaches 800% one can see that up to 13 CPUs are
needed in order to cope with the sensors need for computations.
As the load is reduced and the total CPU usage falls below 60%,
only a single Snort sensor is needed to handle the TCP traffic as
seen in the right part of the graph, more than two hours into the
experiment and close to the end.

From the initial experiments presented in Fig. 5 we observed
that when the Docker Snort sensor usage of approximately 50%,
the system started to drop packets because of network conges-
tion. This might suggest that the system should run at a threshold
of 50% in order to both keep a good quality of service by avoiding
packet drop and to use as few CPU resources as possible. The
results of scaling the system at a threshold of 50% is shown in
Fig. 10. In all the three cases, the same network traffic is sent
and in order to force a lower threshold the system has to spawn
more resources. Because of this, we can see that the system at the
peek loads need to deploy the maximum possible of 16 sensors,
but still the total load slips above 800% exceeding the demanded
threshold. At that stage, there are however no more resources
available to the system and this cannot be avoided given the
current hardware setup.

In Fig. 11, we zoom in on the first 25 min of the complete

experiment shown in Fig. 10. As in the 70% threshold case of
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Fig. 8. Scaling performance with a threshold of 70% CPU load.
Fig. 9. Scaling performance with a threshold of 60% CPU load.
ig. 8, the load recorded every second is shown, while the scaling
lgorithm calculates the average load every 45 s, at every hori-
ontal tick-label of the graph, and makes its decision based on
his number. So even though there are some high CPU peeks after
wo and three minutes, it is not until the average exceeds a 70%
PU usage after 11 min that the number of sensors is increased
o two by the algorithm. From this graph, one can also see that
hen the number of Snort sensors is adjusted in response to the
orkload, the CPU load is temporarily heavily increased as well,

eading to the large spikes of the CPU load immediately after the
ddition of a new sensor. The reason for this is that all the Snort
ensors are in the process of being reloaded with new rule-sets,
long with one (and in other cases more) new Snort sensor, thus,
haring the load among them in a new way. This CPU workload
eeds to be handled but the scaling algorithm has been coded to
gnore the additional CPU load Snort spends on reloading in such
vents.
As the three experiments were conducted, the packet drop

ate and average CPU load of each experiment was also logged.
264
Table 4
Packet drop rate and CPU load for the three scaling experiments with varying
CPU threshold.
CPU threshold Packet drop rate Average CPU load

50% 0,00% 438%
60% 0,15% 413%
70% 1,07% 379%

The packet drop rate is the percentage of network-packets
dropped by the Snort sensors during the experiments. When a
Snort sensor is overloaded it will not find time to analyse all
packets and has to let some packets proceed without analysing
them. Table 4 shows that the CPU load threshold needs to be
decreased to 50% in order to avoid that Snort drops packets.

As explained in Section 4.4, since the system has 16 CPUs, the
maximum CPU usage is 1600% and the total average CPU load of
the system is seen to exceed 100% in the table. By increasing the
CPU threshold to 60% there will be some packets lost and even



H. Haugerud, H.N. Tran, N. Aitsaadi et al. Future Generation Computer Systems 124 (2021) 254–267

m
r
u
p

f
f
t
t
d
s
b
a
s
S
f
s
s

Fig. 10. Scaling performance with a threshold of 50% CPU load.
Fig. 11. Scaling performance with a threshold of 50% CPU zoomed in.
ore packets are lost at 70%. These results are comparable to the
esults of the initial experiments of Fig. 5, when an average CPU
sage above 50% occurs, the Snort sensors might have to drop
ackets.
Increasing the CPU threshold for the individual Snort sensors

rom 50% and up to 70% will in practice mean that on average
ewer sensors will have to deal with all the network load. Then
he packet drop rate will increase while the average CPU load of
he whole system, shown in the third column of Table 4, will
ecrease as there is less overhead running fewer sensors and
ome of the packets are just dropped and not examined. As can
e seen from the Average CPU load column of Table 4, allowing
higher CPU threshold reduces the total CPU usage slightly as

ome packets are dropped and there is less overhead starting new
nort sensors. However, this is a reasonably small price to pay
or avoiding that TCP packets bypass examination. Whenever a
caling takes place requiring rule distribution, the affected snort
ensors will be updated with new rulesets and restarted for the
265
new rulesets to take effect while keeping the integrity of the af-
fected sensors. In other words, while snort sensors are restarting
with new rulesets, incoming packets should still be inspected or
else possibilities of intrusions can be undetected within this time
frame. The time used for a snort instance to be active or inactive
should also be done in a quick manner, hence for stopping and
starting a container from scratch, the Docker pause and unpause
command was used. We have recorded around 0.2 s for pausing
or unpausing a docker instance on which Snort runs. Snort also
takes some time to reload the new configuration which is in the
order of 1 s. Thus, in total, redistributing the rules, scaling and
reloading the rules takes around 1.2 s. Also it is reported that
reloading the configuration in snort might lead to some packets,
meaning a few packets to pass uninspected according to technical
documentation related to Snort [40].

Since the captured trace in our case reflects regular traffic,
attacks within the traffic are envisaged. However, we did not
monitor the logs of the IDS to discover this as this was not
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he main aim of our study. Our system should detect an intru-
ion faster as the ‘‘throughput’’ of the IDS is boosted using rule
plitting over parallel instances.

. Conclusion

In this paper, we propose an innovative design of a parallel
IDS based on NFV and rule distribution. Using Open vSwitch and
ocker containers running Snort, the IDS functions are virtual-
zed which yields flexibility and elasticity in the face of varying
etwork traffic. Using a modified parallel technique, NL-FP-1, we
reate a working parallel environment and devise two algorithms
hich dynamically adjust and divide the signature rules evenly
cross NIDS nodes. In this sense, by profiling the matching time
f the IDS rules, we split the rules over the different instances
n a manner that aspires to equalize the processing time of a
acket over the different snort sensors. Such a strategy ensures
hat a packet will ensure the same processing delay across those
nstances.

The signature rule ordering algorithm keeps a balance across
ctive NIDS nodes in terms of both the system resource usage and
he packet drop rate. This enables the dynamic scaling algorithm
o at any time adjust the number of Snort nodes needed in
esponse to the CPU load on the system. This ensures that enough
ystem resources are allocated when needed to avoid that packets
re dropped by the IDS for large workloads while at the same time
esources are released when they are not needed. Measuring the
verage CPU load imposed by the sensor workload, the system
nsures that no or just a small percentage of packets are dropped
y the IDS system. The level of perfection can simply be adjusted
y decreasing the CPU load threshold, which is the only input to
he system, until there are no packets being dropped. In the pro-
otype experiments the threshold was determined to be at a total
PU load of approximately 50%, but this would probably have to
e fine tuned when using the system in other environments and
or other network workloads.

A possible future improvement to the system could be to also
dopt the percentage of packets dropped as a factor in the scaling
lgorithm, in order to impose a minimal level of dropped packets.
The prototype system where the experiments were performed

s just an example environment where this setup can be imple-
ented. The virtualized nature of the solution means it can read-

ly be implemented in various infrastructures involving Software-
efined Networking (SDN), virtual machines and containers.
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