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Sammendrag 

Radiomics i psoriasisartritt og brystkreft: Vurdering av sykdom og 

prediksjon av overlevelse gjennom MR-bildeanalyser 

Psoriasisartritt er en kronisk inflammatorisk leddsykdom som utvikler seg hos pasienter med 

hudpsoriasis. Sykdommen innebærer betennelse i ett eller flere ledd og er heterogen med ulike 

kliniske mønstre. Behandling rettes mot betennelsene og avhenger av sykdommens 

aggressivitet. Tidlig diagnose og målrettet behandling er viktig for å forhindre progressiv 

leddskade, deformormasjoner og funksjonshemming som oppstår ved vedvarende betennelse. 

Brystkreft er den vanligste kreftformen hos kvinner i Norge. Mens kvinner diagnostisert med 

brystkreft i et tidlig stadium har høy overlevelsesrate, innebærer diagnosen avansert brystkreft 

en dårligere prognose. Tidlig prognostisk informasjon kan ha betydning for valg av behandling 

og veilede oppfølging etter behandling. 

Magnetisk resonans (MR) avbildning kan bistå i diagnose av psoriasisartritt, og brukes t 

rutinemessig for å vurdere behandlingsrespons i brystkreft. Bildene vurderes kvalitativt ved 

visuell inspeksjon.  Radiologisk tolkning av bilder krever lang trening, er tidkrevende og kan 

vise høy inter-rater-variasjon. Radiomics, uthenting av kvantitative egenskaper fra medisinske 

bilder, kan forenkle tolkningav MR-bildene. Det er viktig å finne kvantitative mål fra MR som 

er pålitelige, sensitive og spesifikke for diagnostiske, prediktive og prognostiske formål. 

Hensikten med dette prosjektet er å bidra til utvikling av kvantitative analysemetoder for MR-

bilder og oppnå objektive og kvantitative MR-bildebaserte mål for diagnostiske og 

prognostiske formål. De spesifikke målene med dette prosjektet var å implementere et 

rammeverk for behandling og analyse av longitudinelle data innhentet med forskjellige 

skannere og protokoller, etablere kvantitative MR-bildebaserte mål for subtile beinmargsødem 

i ryggrad og iliosakralledd hos pasienter med psoriasisartritt, og vurdere prognostisk verdi av 

tekstur-egenskaper ekstrahert fra dynamisk kontrastforsterkede MR-bilder av lokalavansert 

brystkreft. 

Den første artikkelen evaluerte terskling for kvantifisering av benmargsødem i ryggrad og 

iliosakralledd hos pasienter med psoriasisartritt, og sammenlignet de kvantitative målene fra 

terskling med et semi-kvantitativt scoringssystem etablert av spondyloarthritis research 

consortium of Canada (SPARCC). Kvantitative mål fra terskling viste en signifikant positiv 
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sammenheng med SPARCC for både ryggrad og iliosakralledd, med best resultat for ryggrad. 

Den andre artikkelen vurderte klassifisering og kvantifisering av benmargsødem hos pasienter 

med psoriasisartritt ved bruk av intensitet, gradient og teksturegenskaper fra MR-bilder av 

ryggrad som prediktorer. De beregnede størrelsene viste en signifikant korrelasjon med 

SPARCC. Klassifiseringen var mer sensitiv men mindre spesifikk enn terskling. Den tredje 

artikkelen vurderte prognostisk verdi av tekstur-egenskaper ekstrahert fra dynamisk 

kontrastforsterkede MR-bilder av brystkreft tatt opp før start av behandling. Det ble funnet en 

klar sammenheng mellom tekstur-egenskaper og overlevelse. I tillegg ga tekstur-egenskapene 

en merverdi til de kliniske prognostiske faktorene i prediksjon av overlevelse. 

For å konkludere; Prosjektet viser at radiomics av MR bilder har potensiale til å bidra i 

diagnostisering og vurdering av prognose for pasienter med psoriasisartritt og brystkreft. 

Resultater fra studiene som inngår i dette prosjektet bør valideres i større kohorter. 
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Πᾶσά ἐπιστήµη χωριζοµένη τῆς ἀρετῆς πανουργία, οὐ σοφία φαίνεται. 

(Knowledge, when separated from virtue, is seen to be cunning and not wisdom.) 

Plato, 427-347 BC, Philosopher 
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Summary 

Radiomics in psoriatic arthritis and breast cancer: Assessing disease burden 

and predicting survival through MR image analysis 

Psoriatic arthritis is a chronic inflammatory joint disease that develops in patients with skin 

psoriasis and manifests by inflammation in one or multiple joints, and highly heterogeneous 

distinct clinical patterns. Treatment strategies target inflammation and depend on disease 

aggressiveness. Early diagnosis and targeted treatment are important in order to prevent 

progressive joint damage, deformity and disabilities that occur because of persistent 

inflammation. Breast cancer is the most frequent type of cancer among women in Norway. 

While women with breast cancer diagnosed at an early stage have high survival rates, advanced 

breast cancers exhibit poorer prognosis. Early prognostic information can affect the choice of 

treatment and guide post-treatment follow-up. 

Magnetic resonance (MR) imaging can assist in the diagnosis of psoriatic arthritis and has been 

routinely used in assessing treatment response in breast cancer. Clinicians rely mainly on 

qualitative MR findings, based on visual inspection of the images. Radiological interpretation 

of images requires long training, is time-consuming and can exhibit high inter-reader variance. 

Radiomics, the mining of quantitative features from medical images, can assist MR image 

interpretation. It is important to find quantitative MR image-derived measures that are reliable, 

sensitive and specific for diagnostic, predictive and prognostic purposes. 

This project aims to assist in the development of quantitative analysis methods of MR images 

and obtain objective quantitative MR image-based measures for diagnostic and prognostic 

purposes. The specific aims of this project included implementing a framework for processing 

and analysis of data acquired longitudinally and with different scanners and protocols, 

establishing quantitative MR image-based measures of subtle bone marrow oedema in the spine 

and the sacroiliac joints (SI) of patients with psoriatic arthritis, and assessing the prognostic 

value of textural features extracted from dynamic contrast enhanced MR images of locally 

advanced breast cancer patients. 

The first paper evaluated thresholding for the quantification of bone marrow oedema in the 

spine and the SI joints of patients with psoriatic arthritis and compared the quantitative 

measures provided by thresholding to a semi-quantitative scoring system established by the 
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spondyloarthritis research consortium of Canada (SPARCC). Quantitative measures by 

thresholding showed a significant positive correlation with the SPARCC scores for both the 

spine and SI joints, performing better in the spine. The second paper evaluated the effect of 

high intensity interval training (HIIT) in psoriatic arthritis patients by MR radiological 

assessment of the spinal bone marrow oedema at baseline and after intervention. In addition, 

the second paper explored the potential of MR image intensity, gradient and textural features 

to detect bone marrow oedema changes. Bone marrow oedema in the spine was not changed 

after HIIT and the features were not associated with HIIT in psoriatic arthritis patients. The 

third paper assessed the prognostic value of textural features extracted from pre-treatment 

dynamic contrast-enhanced MR images of breast cancer patients. A clear association between 

textural features and survival outcome was found. In addition, the textural features showed an 

added value to the clinical prognostic factors in predicting survival outcomes. 

In conclusion, this project highlights the use of radiomics, by establishing diagnostic and 

prognostic quantitative MR image-based measures in both psoriatic arthritis and breast cancer. 

Results from the studies included in this project should be validated in larger cohorts. 
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Symbols and abbreviations 
 

1H hydrogen-1 

! optimal percentage for threshold calculation 

ACR American college of radiology 

ASDAS Ankylosing Spondylitis Disease Activity Score 

" random effects coefficients vector (in linear mixed-effects models) 

#$ external magnetic field 

BASDAI Bath Ankylosing Spondylitis Disease Activity Index 

CASPAR ClASsification criteria for Psoriatic ARthritis 

CK cytokeratin 

CRP C-reactive protein 

% distance 

DAS disease activity score 

DCE dynamic contrast-enhanced 

DCIS ductal carcinoma in situ 

&,' residuals (in partial least squares discriminant analysis) 

EGFR epidermal growth factor receptor 

ER estrogen receptor 

'(, '),…,	'(+ GLCM textural features 

, magnetic field gradient 

-(, -),…,	-($ gradient features 

,.& frequency-encoding gradient 

,/& phase-encoding gradient 

,00 slice-selective gradient 

,1, ,2 2-dimensional directional image gradients for x-axis and y-axis, 

respectively 

,3 magnetic field gradient in the z-direction 

GLCM grey level co-occurrence matrix 

HER2 human epidermal growth factor receptor 2 

HIIT high intensity interval training 

4 image 

5(, 5),…,	56 intensity features 
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IDC invasive ductal carcinoma 

ILC invasive lobular carcinoma 

7 matrix of components (latent variables) (in partial least squares 

discriminant analysis) 

LABC locally advanced breast cancer 

LCIS lobular carcinoma in situ 

LMM linear mixed-effects model 

LOPO leave one patient out 

8 net magnetization vector 

8$ net magnetization in equilibrium 

812 net transverse magnetization 

83 net longitudinal magnetization 

MR magnetic resonance 

N3 non-parametric non-uniform intensity normalization 

NAC neoadjuvant chemotherapy 

NST no special type 

/ loadings matrix (in partial least squares discriminant analysis) 

PCA principal component analysis 

PgR progesterone receptor 

PLS-DA partial least squares discriminant analysis 

9:;<2=:> relative hyper-intensity 

RF radiofrequency 

ROI region of interest 

0 signal intensity  

0& signal enhancement 

SI sacroiliac 

SPARCC spondyloarthritis research consortium of Canada 

STIR short-tau inversion recovery 

? time 

@ threshold 

@(,'!? intrinsic longitudinal relaxation time of fat 

@( longitudinal relaxation constant 

@)
∗  total transverse relaxation constant 
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@) transverse relaxation constant 

TE echo time 

TI inversion time 

TR repetition time 

C fixed effects matrix (in linear mixed-effects models) 

independent variable matrix (in partial least squares discriminant 

analysis) 

D dependent variable matrix (in partial least squares discriminant analysis) 

2 dependent variable vector (in linear mixed-effects models) 

E random effects matrix (in linear mixed-effects models) 

F fixed effects coefficients vector (in linear mixed-effects models) 

G gyromagnetic ratio 

H observation error vector (in linear mixed-effects models) 

I flip angle 

J mean 

K standard deviation 

L direction of GLCM 

M resonant frequency 

M$ Larmor frequency 
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1. Introduction 

1.1 Psoriatic arthritis 

Psoriatic arthritis is a chronic inflammatory joint disease that is associated with skin psoriasis 

(1). The prevalence of psoriatic arthritis in Norway has been estimated to 0.2%-0.7% (2, 3) and 

is the same for both sexes (4). Psoriatic arthritis is an autoimmune disease that manifests in 

five distinct clinical patterns - distal predominant pattern, oligo-articular asymmetrical, poly-

articular rheumatoid arthritis-like, spondylitis, and arthritis mutilans (1). The most recent set 

of criteria for the classification of psoriatic arthritis patients is the Classification criteria for 

Psoriatic ARthritis (CASPAR) (5). The CASPAR comprises the presence of current or past 

psoriasis, the presence of current or past dactylitis, psoriatic nail dystrophy, a negative test 

result for rheumatoid factor, and radiological evidence of new bone formation. These criteria 

seem to have high sensitivity and specificity, and have been used in clinical practice as well as 

in the assessment of new treatments (5).  

Patients with psoriatic arthritis experience a wide range of symptoms of varying severity, 

including stiffness, pain, swelling and tenderness of the joints, ligaments, and tendons. Patients 

may experience a different range and severity of symptoms, with inflammation in one or 

multiple joints. As psoriatic arthritis progresses over time, the disease can change to a poly-

articular pattern, where more than five joints are affected, and the prognosis is poor (4). 

Sclerosis, erosions, fat deposition and bony bridges/ankyloses reflect previous inflammation 

and are considered chronic inflammatory signs. The course of the disease is unpredictable, with 

most patients having erosions and deformations within the first years of diagnosis (6). 

Enthesitis and synovial thickness were found predictive of future structural damage (7).  

Treatment strategies for psoriatic arthritis vary and depend on the symptoms. Patients with 

mild psoriatic arthritis are usually treated with physical therapy, non-steroidal anti-

inflammatory drugs, and local injections of corticosteroids. Patients with aggressive psoriatic 

arthritis receive additional treatment with synthetic (e.g. methotrexate, leflunomide, 

salazopyrin) and/or biologic disease-modifying anti-rheumatic drugs (e.g. tumour necrosis 

factor inhibitors, interleukin-17 inhibitors) that target inflammation (4). Early diagnosis and 

appropriate treatment are important in order to prevent progressive joint damage, deformity 
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and disabilities that occur when persistent inflammation is present. Psoriatic arthritis is also 

associated with decreased quality of life and increased mortality risk, with cardiovascular 

disease high on the list of psoriatic arthritis death causes (8).   

Even though physical exercise is recommended for patients with psoriatic arthritis, the 

beneficial effects of this intervention have not been widely investigated (9). A previous study 

(9, 10) investigated the effect of high intensity interval training (HIIT) on psoriatic arthritis 

patients. HIIT is a method of physical activity consisting of repeated intervals of high aerobic 

activity at 80-95% of maximum heart rate separated by periods of lower intensity activity (11). 

It was shown that HIIT was beneficial for psoriatic arthritis patients in the prevention of 

cardiovascular disease by improving cardiorespiratory fitness and reducing abdominal fat (9), 

and in decreasing fatigue (10). However, no clear effects on disease activity markers were 

found (10). 

1.2 Axial psoriatic arthritis 

Psoriatic arthritis in the spine and the axial skeleton is called axial psoriatic arthritis and is 

defined as spondylitis. In patients with psoriatic arthritis, the prevalence of axial psoriatic 

arthritis varies from 25% to 75% depending on the criteria used (12, 13). Axial psoriatic 

arthritis can be clinically asymptomatic, with only subclinical inflammation present. Axial 

inflammation can be evaluated using the composite scores, the Bath Ankylosing Spondylitis 

Disease Activity Index (BASDAI) (14)  and the Ankylosing Spondylitis Disease Activity Score 

(ASDAS) (15). The BASDAI consists of five and the ASDAS of four questions, with patient 

reported answers. In addition, the ASDAS includes the level of the C-reactive protein (CRP) 

or the erythrocyte sedimentation rate. Both tools are useful in clinical practice as well as in 

research, when evaluating spondylitis disease activity (14, 15). 

1.3 Breast cancer 

Women’s breast consists of glandular (lobes, lobules and ducts), fatty, connective tissue and a 

system of lymph nodes (Figure 1). Breast cancer is the most frequent cancer type in women in 

Norway, followed by lung and colon cancer (16). 

There are several types of breast cancer based on the tissue it affects. Ductal carcinoma in situ 

(DCIS) is neoplastic proliferating epithelial cells in the ducts, with an intact layer of basement 
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membrane and myoepithelial cells (17). Left untreated, DCIS progresses to invasive breast 

cancer in 40% of the cases (17). Invasive ductal carcinoma (IDC, also known as invasive 

carcinoma of no special type (NST)) is the most common type of invasive breast cancer 

comprising 80% of breast cancer cases, beginning in the ducts and invading surrounding tissue 

(18). Lobular carcinoma in situ (LCIS) is a non-infiltrating proliferation of cells in the lobules, 

the milk-producing glands at the end of the ducts. Invasive lobular carcinoma (ILC) is a type 

of cancer that affects the lobules and their surrounding breast tissue. ILC is the second most 

common type of cancer with an estimated incidence of 10% of all breast cancers (18). Other, 

less common types of breast cancer include Paget’s disease of the nipple and inflammatory 

breast cancer. 

 

 
Figure 1. Drawing illustrating anatomy of breast and adjacent lymph nodes. Image from Don 

Bliss, National Cancer Institute. 
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Another way of subtyping breast cancer is based on gene expression. There are five intrinsic 

or molecular subtypes of breast cancer; luminal A, luminal B, human epidermal growth factor 

receptor 2 (HER2)-enriched, basal-like and normal-like breast cancer (19). Table 1 summarizes 

the immunohistochemical status for the five intrinsic subtypes for estrogen receptor (ER), 

progesterone receptor (PgR), HER2, protein Ki67 and basal markers. Ki67 is a marker of cell 

proliferation, and basal markers comprise of cytokeratin (CK) 5, CK14 and epidermal growth 

factor receptor (EGFR). 

 

 

Table 1 Immunohistochemical status of intrinsic breast cancer subtypes 

Intrinsic subtype Immunohistochemical status 

Luminal A ER+ and/or PgR+, HER2-, Ki67-  

Luminal B ER+ and/or PgR+, Ki67+ 

HER2-enriched ER- and PgR-, HER2+ 

Basal-like ER- and PgR-, HER2-, basal marker + 

Normal-like ER+ and/or PgR+, HER2-, Ki67- 

ER: estrogen receptor, PgR: progesterone receptor,  

HER2: human epidermal growth factor receptor 2 

1.3.1 Staging, biomarkers and prognosis 

Breast cancer staging refers to identifying the burden of disease, which provides helpful 

information regarding prognosis and guides the choice of initial treatment (20). The most 

common staging system for breast cancer is anatomically based and uses a combination of 

primary tumour size (T), regional lymph node (N) spread and presence or absence of distant 

metastasis (M). A simplified version of the TNM classification system for breast cancer is 

presented in Table 2. Using the TNM status, breast tumours are grouped into five stages of 

increasing aggressiveness (0 to IV) and poorer prognosis. 

The Nottingham grading system is used to divide breast cancers into three histological grades; 

low, intermediate and high grade, depending on how differentiated the cells are regarding their 

appearance and growth pattern compared to normal cells (21). In addition to the anatomically 

based TNM staging, histological type (IDC, ILC or other) and other biomarkers (ER, PgR, 

HER2) are important in staging and stratifying breast cancer patients to treatment (22). 
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Tumours positive for hormonal receptors are more likely to respond to hormonal therapy and 

thus have more available treatment options. 

Table 2. Simplified version of the TNM classification system for staging breast cancer 

tumours (23).  

Primary tumour size (T) 

TX Primary tumour cannot be evaluated 

T0  No evidence of primary tumour 

Tis  Carcinoma in situ (DCIS, LCIS, Paget’s disease of the nipple) 

T1 Tumour is ≤ 20mm in greatest dimension 

T2 Tumour is > 20mm, but ≤50mm in greatest dimension 

T3 Tumour is > 50mm in greatest dimension 

T4 Tumour has grown into the chest wall and/or the skin, or tumour is 

inflammatory breast cancer 

Regional lymph nodes (N) 

NX Regional lymph nodes cannot be evaluated 

N0 No regional lymph node metastasis 

N1 Metastasis to movable ipsilateral level I, II axillary lymph node(s) 

N2 Metastasis to fixed ipsilateral level I, II axillary lymph node(s) 

N3 Metastasis in ipsilateral infraclavicular (level III axillary) lymph 

node(s) 

Distant metastasis (M) 

M0 No clinical or radiographic evidence of distant metastasis 

M1 Distant detectable metastasis 

DCIS: ductal carcinoma in situ, LCIS: lobular carcinoma in situ 

1.3.2 Treatment strategies 

Treatment strategies in breast cancer patients depend on the disease burden, the tumour location 

and biology and the age and health status of the patient (24). Stage I and II, except for IIB 

(T3N0M0), are considered as early stage breast cancers. These tumours are treated with surgery 

and then with post-operative radiation therapy, chemotherapy, hormone therapy or a 

combination, depending on the biology of the tumour. Tumours of higher stages are considered 

advanced breast cancer. Advanced breast cancers in the absence of distant metastasis are 
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categorized as locally advanced breast cancer (LABC) (25). Guidelines for LABC suggest 

primary systemic therapy in order to downsize the primary tumour, eradicate micro-metastases 

and enable breast-conserving therapy, followed by surgery (26).  

1.4 Magnetic Resonance Imaging 

Magnetic resonance (MR) imaging is an imaging technique using non-ionizing radiation that 

can provide anatomical and functional images of the body both in health and disease.  

1.4.1 Principles of Nuclear Magnetic Resonance 

Nuclei with non-zero spin possess a magnetic moment when placed in a magnetic field (27). 

In an external magnetic field (#$) magnetic moments of a single nuclei precesses around an at 

a specific frequency, called Larmor frequency (NO), that is proportional to the strength of 

#$	(28). 

NO = QRO (Equation 1) 

where Q is the gyromagnetic ratio.  

The hydrogen-1 (1H) nucleus is the most common used nucleus in current MR applications. 1H 

is a spin S
T
 nucleus and has two possible spin states with different energy. In an external 

magnetic field (#$),  slightly more 1H nuclei are found at the lower energy state compared to 

the higher energy state, leading to a net magnetization vector, 8, that is aligned to #$ (29). 

Applying a radiofrequency (RF) pulse at the Larmor frequency of the nuclei under inspection 

will excite the nuclei to a higher energy state, a process called magnetic resonance, and tip 8 

out of alignment with #$. The excited nuclei release the absorbed energy to the environment 

and 8 is re-established along #$ through a process called longitudinal relaxation, 

characterized by a time constant US(30).  

VW(Y) = VO(1 − ]
^_

àb ) + VW(0e)]
^_

àb  (Equation 2) 

where VW is the longitudinal component of 8, VO is the maximum value of VW and Y is the 

time. US is when 63% of the longitudinal magnetization is re-established. 
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The process by which the transverse components of 8 decay to 0 and spins lose their phase 

coherence, is called transverse relaxation and is characterized by a time constant UT (30). 

Vfg(Y) = Vfg(0e)]
^_

h̀b  (Equation 3) 

where Vfg is the transverse component of 8 and Y is the time. UT is when 37% of the 

transversal magnetization is lost. Transverse relaxation, also called spin-spin relaxation, stems 

from interactions between neighbouring nuclei that lose their phase coherence. The transverse 

relaxation is affected by magnetic susceptibility differences and local RO inhomogeneity, 

resulting in a total transverse relaxation constant UT∗ (where UT∗ ≤ UT). 

1.4.2 Image formation 

Spatial localization methods use magnetic gradients to create a spatially varying magnetic field. 

When a magnetic field gradient , is added in a given direction, e.g. z-direction (jW) (Figure 

2), the protons experience a slightly different magnetic field that depends on their position, and 

their resonant frequency (N) is modulated in the following manner: 

N(k) = Q(RO + jWk) (Equation 4) 

Therefore, the presence of a gradient gives rise to a variation in the resonant frequency in the 

gradient direction (31), with some spins precessing faster and others precessing slower 

compared to the ones in the isocentre (k = 0). Gradients can be applied in any orientation 

relative to RO. 

 

 
Figure 2. Linear gradient , in the direction of the magnetic field #$. 
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Slice selection 

In slice selection, an RF pulse is applied simultaneously with a slice-selective gradient, and the 

excitation is limited to a slice. Due to the slice-selective gradient, the nuclei’s resonant 

frequencies depend on their position along the gradient. By choosing an RF pulse with a centre 

frequency corresponding to the resonance frequency at the wanted slice position, and a 

bandwidth corresponding to the wanted slice thickness, only the spins within the slice will be 

exited and the later detected MR signal will be from this specific slice (32). 

lmno]	Yℎnoqr]ss = 	
tu	vwxyz{y_|

}~
  (Equation 5) 

 

In-plane localization 

For spatial localization within the slice, two magnetic gradients in the other two directions are 

used; a phase-encoding gradient and a frequency-encoding (read-out) gradient. After the 

application of the phase encoding gradient, nuclei will precess at their Larmor frequency, but 

the phase is changed. The phase of the nuclei will depend on their position along the phase 

encoding gradient. The frequency-encoding gradient is applied simultaneously as the MR 

signal is acquired. At the presence of the frequency-encoding gradient, the frequency of the 

measured signal will depend on its position along the gradient (32). 

Spatial localization results in protons in different locations having magnetic moments with a 

unique combination of frequency and phase. During acquisition, image data are stored in the 

spatial frequency domain, the k-space. Pulse sequences consisting of RF and gradient pulses 

acquire data that fill the k-space. Each line of the k-space is filled in the presence of the 

frequency encoding gradient. The lines are offset from each other by the phase encoding 

gradient. A pulse sequence diagram describes the process (Figure 3). At the end of a 2D 

acquisition, when the k-space is fully acquired, it is transformed using the inverse 2D Fourier 

transform, thus the final grayscale image is produced (33).  
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Figure 3.  Diagram of a spin echo pulse sequence. The RF pulses are applied simultaneously 

with the slice-selective gradients (j��). The combination of RF pulses with j�� results in the 

restriction of the excitation in a selected slice. In-plane spatial localization is performed using 

a phase-encoding gradient (jÄÅ) and a frequency-encoding gradient (juÅ) in the two 

orthogonal directions to (j��). The resulting MR signal is acquired in the presence of juÅ.  

1.4.3 Image contrast 

Tissues are complex, have structures and contain a variety of molecules. Different tissues have 

varying water and fat contents, and different relaxation properties. One way to produce contrast 

in MR images is to choose repetition time (TR) and echo time (TE) of the imaging sequence 

and exploit the difference in relaxation properties of different tissues. TR refers to the time 

from the application of an excitation pulse to the application of the next excitation pulse and 

controls the amount of US relaxation. TE refers to the time from the application of an excitation 

pulse to the time when the MR signal is recorded and controls the amount of UT relaxation. A 

short TR and short TE, compared to the tissue US and UT relaxation times respectively, will 

result in a US-weighted image, while using a long TR and a long TE will result in a UT-weighted 

image (28). In US-weighted images, signals from fat is hyper-intense and signals from fluids 

are less intense. In UT-weighted images, signals from both fluids and fat are hyper-intense. 

Normal and pathological tissue will likely have different tissue properties and different US and 

UT relaxation times. Appropriate choice of TR and TE, related to the tissue and the pathology 

time
0 TE/2 TE

echo

GFE

GPE

GSS

RF

90o 180o



Introduction 

 

 10 

of interest, will create contrast between normal and pathological tissue, making it possible to 

visualize the pathology. 

1.4.4 Short-tau inversion recovery 

Short-tau inversion recovery (STIR) is a fat-suppressing MR imaging sequence where a 

magnetization preparation technique is followed by excitation (34), that exploits the difference 

in T1 relaxation time between fat and water containing tissue. Specifically, in STIR, a 180° 

inversion RF pulse flips the longitudinal component of 8 in the opposite direction. Due to US 

relaxation, the longitudinal component of 8 will increase to return to its initial value, passing 

through null value. After a set amount of time, called inversion time (TI), the 90° RF pulse of 

the excitation is applied. The choice of TI is done, so that the longitudinal magnetization of fat, 

the tissue we want to suppress, at the time of the 90° RF pulse is null. 

UÇ = US,Éw_ ∙ ln	(2) (Equation 6) 

where US,Éw_ is the intrinsic longitudinal relaxation time of fat. At 1.5 Tesla, TI is approximately 

140 ms. Fat will not emit any signal due to the absence of net magnetization at the time for the 

RF excitation pulse (Figure 4). Water has a longer US relaxation time and therefore is not nulled 

and still produces signal. STIR does not provide a tissue specific suppression, but rather 

suppresses signal emitted from tissue with the short US relaxation time as fat. STIR requires a 

long TR, resulting in a weighting similar to UT-weighting (35).  
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Figure 4.  Longitudinal magnetization for fat and fluid when an inversion recovery sequence 

for fat suppression is applied. 

The fat suppression achieved by STIR is not sensitive to heterogeneities in #$ and the effects 

of magnetic susceptibility, but should not be used after administration of US-shortening 

contrast-agents (36). 

1.4.5 Contrast agents 

In addition to TR and TE manipulation, exogenous contrast agents can be used to provide 

contrast in MR images. Each exogenous contrast agents is characterized by its relaxivity, which 

is its potency to reduce the US and UT relaxation times in the tissue where it accumulates. This 

characteristic determines whether a contrast agent is suitable for contrast enhanced US-, UT- or 

UT
∗-weighted imaging (37). Gadolinium-based contrast agents are routinely used in MR 

imaging of cancer (38). They exhibit high relaxivity and low toxicity and can specifically target 

tumour tissue. Tumour tissue usually has different physiology from normal tissue, including 

angiogenetic micro-vessels and increased vascular permeability. Clinically available 

gadolinium-based contrast agents accumulate in the extracellular-extravascular space in the 

tumour tissue through the leaky and chaotic tumour vessels and provide signal enhancement in 

US-weighted images. A commonly used sequence that makes use of contrast agents is dynamic 

contrast-enhanced (DCE) MR imaging and is described in detail in chapter 1.4.6. 
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1.4.6 Dynamic contrast-enhanced MR imaging 

DCE MR imaging can provide knowledge about the tumour vasculature by utilizing the effect 

of a contrast agent in tissue relaxation times. In DCE MR imaging, one or more baseline images 

are acquired before a contrast agent injection and several contrast-enhanced images are 

acquired immediately after and at the time following the injection. The basic principle of DCE 

MR imaging is that the local concentration of the contrast agent in the tissue changes the signal 

intensity of the tissue in the MR images (39).  

When using a conventional US-weighted spoiled gradient echo pulse sequence for the 

acquisition of DCE MR images, the measured signal intensity as a function of time l(Y) 

follows: 

l(Y) = VO	]^`Å h̀
∗(_)⁄ â{xä	(S^ãåçé ça(è)⁄ )

S^êëâä	ãåçé ça(è)⁄  (Equation 7) 

where VO is the maximum magnetization value, UT∗ is the total transverse relaxation constant, 

US is the longitudinal relaxation and í is the flip angle. 

Using the temporal changes in signal intensity, a curve of signal intensity in time is calculated. 

This curve is called signal enhancement (lì) kinetic curve and follows this form: 

lì(Y)[%] = 100
�óòôèåöòõèúùôè(_)^�ûùôü†°õü

�ûùôü†°õü
 (Equation 8) 

where lÇvwâã¢{xã  is the signal intensity at baseline and lÇ£ëâ_^êëx_§wâ_ is the signal intensity at 

a post-contrast time-point. 

In addition to the signal enhancement curve, one can estimate kinetic parameters that relate to 

physiological parameters of tissue by fitting DCE MR imaging data to a pharmacokinetic 

model (40). Pharmacokinetic modelling requires MR images with high temporal resolution.  

1.5 MR imaging in psoriatic arthritis 

MR imaging can be used to assist in the clinical management of psoriatic arthritis (41). MR 

imaging features of psoriatic arthritis are similar to those of rheumatoid arthritis and 

spondyloarthritis, including “synovitis, tendonitis, dactylitis, bone marrow oedema, bone 

erosions, spondylitis, sacroiliitis, soft tissue oedema and subclinical arthropathy” (42). 
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Sclerosis, fat deposition and ankylosis can be detected with US-weighted sequences, while UT-

weighted sequences and STIR might be better in the detection of erosions. In US-weighted fat-

suppressed post gadolinium administration, active oedematous lesions, intra-articular changes 

(synovitis), capsulitis and enthesitis are visible. However, for active oedematous lesions, STIR 

is sufficient, with the exception of synovitis in the sacroiliac (SI) joints. 

While its usefulness in differential diagnosis can be argued, MR imaging can give an additional 

insight and assist the clinician in making a diagnosis and monitoring the effect of intervention 

by detecting subclinical (asymptomatic) bone marrow oedema, that would otherwise go 

undiagnosed (41, 43). Fluid-sensitive fat-suppressed sequences, such as STIR, can be used to 

image oedematous lesions. In the STIR images, fat signal from normal bone marrow is 

suppressed, and active bone marrow oedema is hyper-intense compared to normal bone 

marrow. Thus, good lesion contrast is achieved. A pitfall of STIR in psoriatic arthritis is that 

blood vessels or haemangioma look similar to inflammation, limiting its usefulness in 

differential diagnosis. 

1.5.1 Spondyloarthritis research consortium of Canada Index 

There are many methods of radiographic scoring of disease activity and changes in axial 

psoriatic arthritis (44, 45). To assess bone marrow oedematous lesions in MR images of the 

spine and the SI joints, the spondyloarthritis research consortium of Canada (SPARCC) method 

has been proposed. In the SPARCC method, T2-weighted STIR images of the spine and the SI 

joints are scored according to the SPARCC SI Joint and Spine Inflammation Indices (46, 47). 

The presence of oedema accounts for two thirds of the total SPARCC score, and the intensity 

and depth of the oedema, if present, account for one third. 

SPARCC has been used in research settings, when assessing the effectiveness of new treatment 

methods. The scoring is performed by a trained reader, a radiologist or a rheumatologist, in a 

specifically designed environment (big screen and controlled settings). It is labour-intensive, 

taking 10 to 30 minutes per image set per patient depending on disease activity, but it has been 

shown as a reliable and sensitive to changes method for scoring bone marrow oedematous 

lesions in MR images of the spine and SI joints of psoriatic arthritis patients (48).  



Introduction 

 

 14 

1.6 Dynamic contrast-enhanced MR imaging in breast cancer 

According to guidelines from the European society of breast imaging, DCE MR imaging is a 

useful clinical tool in differential diagnosis, tumour detection, disease monitoring and 

treatment evaluation in breast cancer (49). DCE MR imaging can visualize new vessel 

formation in tumours and detect changes in tumour microvasculature due to anti-angiogenetic 

treatment (50, 51). Angiogenesis is a process where new vessels are formed from pre-existing 

vessels. While angiogenesis can be a normal physiological process, it is also part of several 

pathological conditions including cancer, where new vasculature fulfils the demand for 

nutrients and oxygen supply observed in fast growing tumours. Lastly, DCE MR imaging has 

potential as prognostic indicator for patient survival (52, 53). 

Evaluation of the signal enhancement kinetic curve type has potential in differentiating benign 

from malignant tumours, achieving sensitivity and specificity of approximately 90% and 60% 

respectively (54, 55). The shape of the signal enhancement kinetic curve is evaluated by 

categorizing the washout pattern of the contrast agent. Three types of signal enhancement 

curves in breast cancer lesions can be recognized (Figure 5): type I (progressive enhancement), 

type II (rapid enhancement with plateau) and type III (rapid enhancement followed by rapid 

washout) (56). Progressive enhancement suggests a benign tumour, while rapid enhancement 

followed by rapid washout is linked with malignant tumours. Texture analysis of enhancement 

maps has also shown potential in differentiating benign and malignant breast cancer lesions 

(57). Regarding treatment response, DCE MR imaging can be useful in assessing, but also 

predicting response to neoadjuvant chemotherapy (NAC) treatment (58-64). 
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Figure 5. Types of signal enhancement curves in dynamic contrast-enhanced MR imaging: 

type I (progressive enhancement), type II (rapid enhancement with plateau) and type III (rapid 

enhancement followed by rapid washout). 

1.7 MR image analysis 

Radiomics is the extraction of quantitative image features from medical images to assist in 

establishing a diagnosis, estimating prognosis and predict response to therapy (65). Raw MR 

images contain noise and artefacts. Pre-processing is the initial step of quantitative MR image 

analysis that aims to minimize artefacts, reduce noise and generally improve image quality, 

which in turn can improve diagnostic accuracy. To obtain useful metrics from medical images, 

their technical validity and clinical usefulness must be established (66). In addition, the context 

of use, acquisition parameters and processing have to be known (66). Lastly, reliable metrics 

must be accurate (high repeatability) and precise (65). In this section, the main pre-processing 

techniques for quantitative analysis that are relevant in the context of this thesis are presented. 

1.7.1 Intensity non-uniformity correction 

Intensity non-uniformity or bias field is low frequency intensity variation in an image due to 

imperfect RF field uniformity, the acquisition sequence or patient anatomy (67). The presence 

of a bias field results in blurry images and altered grey-level distribution in the same tissue 

across an image. It is a common artefact in MR images that can hinder quantitative image 

analysis, where the grey-level values of the pixels are analysed. A bias-field correction 

algorithm is needed as a pre-processing step for images affected by bias field to improve image 
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quality. Several methods for bias-field corrections have been proposed (68). These either 

require an extra measurement of the bias field or are based on mathematical models that 

approximate the bias field (68). In the context of this thesis, a non-parametric non-uniform 

intensity normalization (N3) bias field correction algorithm (69) was used. N3 algorithms 

perform great and are insensitive to pathological data, independent of pulse sequence and do 

not require a tissue model to estimate the bias field and the true tissue intensities (70). 

1.7.2 Normalization 

Normalization is the process of changing the range of pixel intensity values. It can be a linear 

or non-linear process that aims at increasing the contrast in the image (histogram equalization) 

or render comparable images with the same pixel intensity ranges (histogram matching). In 

MR imaging, changes in imaging protocol parameters and the MR scanner used for different 

subjects or the same subject in longitudinal studies result in intensity variations, which in turn 

can affect further image analysis. Normalization is used to allow direct comparisons of images 

acquired with different settings.  

Histogram equalization and matching 

Histogram equalization is the process of adjusting the contrast using the intensity histogram of 

an image. The method modifies the pixel intensities in a way that each pixel has the same 

relative intensity and that each possible intensity value is represented in the same number of 

pixels. In other words, it adjusts the pixel intensities so that the image histogram is uniformly 

distributed. The mathematical description of the conventional histogram equalization has 

described extensively and more advanced methods have been developed (71). In histogram 

matching, the histogram of an image is transformed to match the histogram of a reference 

image (72). 

1.7.3 De-noising and sharpening 

Noise reduction and sharpening are common ways to improve overall image quality prior to 

post-processing, like segmentation or edge detection. Noise in MR images is typically Gaussian 

noise. Anisotropic diffusion, median filtering and wavelet transform are common ways to 

reduce noise in MR images while preserving the important parts of the image, such as edges, 

lines and detail. Anisotropic diffusion is a non-linear and space-variant noise reduction 

technique, that has been described by Perona and Malik (73). In this technique, a family of 
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parameterized images is produced. Each resulting image is the result of the convolution of the 

original image with a locally adaptive filter, a filter that depends on the local content of the 

original image. Thus, preservation of the edges and smoothing of the unimportant parts of the 

image can be achieved. Median filtering replaces the value of each pixel with the median of 

the values of its neighbouring pixels and can be used as bandpass filters in images where signal 

and noise overlap (74). The choice of method depends on the quality of the acquired image and 

the aim of the analysis. After noise reduction, sharpening increases the contrast between areas 

with low variation in pixel intensities. Sharpening can be achieved with the use of a high-pass 

filter that retains high frequency information and suppresses low frequency information in the 

image.  

1.7.4 Segmentation 

Image segmentation is the process where an image is labelled in regions containing relevant 

information (75). The remaining part of the image, that does not contain relevant information, 

is called background. Segmentation algorithms either detect discontinuities in pixel values (for 

example, edge detection) or are intensity-based (for example, thresholding and region 

growing). In the former, the underlying assumption is that pixels containing relevant 

information are in the same intensity range, which is different from the one background pixels 

occupy.  

Thresholding 

Thresholding is an image segmentation method, that results in a binary image (76). In its 

simplest implementation, it involves defining a range of pixel intensities as belonging to a 

category, while setting the remaining pixels as background. For example, if a pixel intensity is 

greater than some fixed constant U, it is replaced in the processed image (Ç_|§ãâ|ë¢yãy) with a 

white pixel. Otherwise, it is replaced by a black pixel (Figure 6). 

Ç_|§ãâ|ë¢yãy(•, ¶) = ß
1, n®	Ç(•, ¶) ≥ U		
0, n®	Ç(•, ¶) < U

 (Equation 9) 

A suitable threshold U can be selected manually or automatically by advanced thresholding 

algorithms, like Otsu’s method (77) or histogram-based methods (78). The above 

implementation for thresholding is more suitable for images with a bimodal histogram, where 

a small percentage of pixels is misclassified (Figure 7). In other cases, it is possible to use 
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multiple thresholding, where more than one thresholds are set as cut-off values and region-

growing, where the criteria for pixel classification include the proximity of the pixels as well 

as the similarity in their intensities. 

 

 
Figure 6. Example of thresholding in abdominal MR image. 

 

 
Figure 7. Bimodal histogram of digital image that is suitable for thresholding. A small 

percentage of pixels is misclassified. 
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Thresholding can be combined with non-linear operations that rely on the relative ordering of 

the pixels, making it more robust in noisy images or images with texture (79).  

1.7.5 Image feature extraction 

Feature extraction is a procedure where information is extracted from the image and is 

represented in the form of feature vectors. Image features can be shapes, gradients, textures, 

edges, points, objects etc.  

Image gradients are directional changes in the grey-level intensity values in an image. 

Gradient-based descriptors have been used as features in visual object recognition (80). Texture 

is defined as the spatial variation of intensity within an image. A human observer can recognize 

texture (coarseness, contrast, etc.), but has limited ability to define and quantify it. Texture 

analysis is a method for assessing the spatial position of grey-level intensity of pixels in a 

digital image. Through texture analysis, a set of metrics that quantify the perceived texture of 

a digital image, called textural features, are computed from the distribution of pixels (81). 

Textural features identify the underlying patterns and textures in a digital image and increase 

the information that we can derive from it (82). In the context of this thesis, texture analysis is 

reserved for two-dimensional grey-level MR images. However, the principles described in the 

section can also be extended and applied to three-dimensional digital images as well as 

coloured images. 

The method consists of two steps. In the first step, a matrix, called grey level co-occurrence 

matrix (GLCM), is created from the original image by counting how often a pair of pixel 

intensities, spaced apart at a distance ´ at a given direction	¨, occur in an image. All possible 

pairs of pixels are considered and a matrix is created for each set of ´ and ¨. By varying the 

distance, one can study different scales of texture within the image, whereas by varying the 

direction, one can study a particular orientation. Usually four GLCMs in horizontal (¨	 = 	0ë), 

vertical (¨	 = 	90ë) and oblique (¨	 = 	45ë and ̈ 	 = 	 90ë) orientations are computed and then 

the mean GLCM is calculated. In the second step, textural features are derived from the GLCM 

matrix. 

The most commonly used GLCM textural features were mathematically formulated by 

Haralick (83): angular second moment (®S), contrast (®T),  correlation (®∞), variance (®±), 

inverse difference moment (®≤), sum average (®≥), sum variance (®¥), sum entropy (®µ), entropy 
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(®∂), difference variance (®SO), difference entropy (®SS), information measure of correlation one 

(®ST), information measure of correlation two (®S∞) and maximal correlation coefficient (®S±). 

Two additional features are described by Conners (84): cluster shade (®S≤) and cluster 

prominence (®S≥). The mathematical description of GLCM features is shown in Table 3. While 

textural features are defined mathematically, their visual representation is not always intuitive 

and therefore cannot be linked to specific image properties. In addition, several features 

correlate to each other as they reflect similar properties. 

 

  



Introduction 

 

 21 

Table 3. Mathematical description of GLCM features. 

  Description of feature Equation 

G
LC

M
 fe

at
ur

es
 

®S angular second moment ∑∑∏(n, π)T

∫{

 

®T contrast 
∑rT
ª^S

xºO

∏f^g(r) 

®∞ correlation ∑ ∑ (nπ)∏(n, π) − æf
T

∫{

øfT
 

®± variance ∑(n − æf)
T∏f(n)

{

 

®≤ homogeneity (inverse difference 

moment) 
∑∑

1

1+ (n − π)T
∫{

∏(n, π) 

®≥ sum average 
∑r∏feg(r)

Tª

xºT

 

®¥ sum variance 
∑(r− ®≥)

T∏feg(r)

Tª

xºT

 

®µ sum entropy 
−∑∏feg(r)log	(∏feg(r))

Tª

xºT

 

®∂ entropy −∑∑∏(n, π)
∫

log	(∏(n, π))
{

 

®SO difference variance 
∑(r − æf^g)

T∏f^g(r)

ª^S

xºO

 

®SS difference entropy 
−∑∏f^g(r)log	(∏f^g(r))

ª^S

xºO

 

®ST information measure of correlation one ®∂ + ∑ ∑ ∏(n, π)log	(∏f(n)∏f(π))∫{

−∑ ∏f(n)log	(∏f(n)){
 

®S∞ information measure of correlation two ¬1 − ]T(É√e∑ ∑ £ƒ({)£ƒ(∫)≈° ∆«»	(£ƒ({)£ƒ(∫))) 
®S± maximal correlation coefficient 

…s]o r´	mÀÃÕ]sY	]nÕ]rŒÀmœ]	 ®∑
∏(n, q)∏(π, q)

∏f(n)∏f(q)–

 

®S≤ cluster shade ∑ ∑(n + π − æf − æg)
∞∏(n, π)

∫
{

 

®S≥ cluster prominence ∑(n + π − æf − æg)
±∏(n, π)

∫

 

— is the number of distinct gray levels in the histogram equalized image. 
=(5, “) is the (5, “)-th the entry in a normalized spatial grey level co-occurrence matrix (GLCM). 
=1(5) is the ith entry in the marginal-probability matrix obtained by summing the rows of =(5, “), 
∑ =(5, “)“ . 
=1e2(”) = ∑ ∑ =(5, “)“5 , where ” = ),‘, … , ÷◊ and 5 + “ = ” 
=1^2(”) = ∑ ∑ =(5, “)“5 , where ” = $,(, … ,◊ − ( and |5 − “| = ” 
J1 and K1 are the mean and standard deviation of =1, respectively. 
J1^2 is the mean of =1^Ÿ. 
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1.8 Classification and regression algorithms 

Depending on the output, machine learning tasks can be categorized into classification, 

regression, clustering, density estimation and rule extraction (85). In the context of this thesis, 

classification and regression are relevant. In classification problems, the task is to predict a 

discrete number of categorical outputs, while in regression problems, the task is to predict a 

continuous quantity output (86). The inputs can be continuous, categorical or binary. 

Machine learning algorithms can be grouped into four categories: supervised, unsupervised, 

semi-supervised and reinforcement learning (87). Supervised algorithms tune an adaptive 

model to a training dataset, where the inputs and corresponding outputs are known (86). The 

performance and predictive accuracy of the model is judged on a validation dataset. Then the 

model can make predictions on new data, where the output is unknown. A problem arises when 

the number of variables greatly exceeds the number of samples. In this case, because of the 

high number of variables, some correlate by chance, resulting in good class separation. The 

model produced is overly optimistic and would fit random datasets (over-fitting) (88). This 

issue should be considered and corrected for, when using machine learning algorithms. 

In the following sub-sections, three algorithms are presented: partial least squares discriminant 

analysis (PLS-DA), principal component analysis (PCA) and linear mixed-effects models 

(LMMs). 

1.8.1 Principal component analysis 

PCA is an orthogonal linear transformation of data to a new co-ordinate system with lower 

dimensionality that retains as much of the variation that was present in the data as possible 

(89). The new set of uncorrelated variables are called principal components. PCA is mainly 

applied as a dimensionality reduction or feature selection method (90). Because of the 

sensitivity of the variance to outliers, PCA can also be used as an outlier detection method (90). 

1.8.2 Partial least squares discriminant analysis 

PLS-DA is a supervised classification algorithm that uses least squares methods to find linear 

discriminators separating the space into regions (Figure 8) (91). Each region contains a 

group/class. The separation is achieved by maximizing the covariance between two data 

matrices, one containing the independent variables ⁄ (raw data) and the second containing the 
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corresponding dependent variable € (the group or class each sample belongs to) and finding a 

linear subspace of explanatory variables (92).	€ can be predicted through a reduced number of 

factors, the PLS components or latent variables. The main PLS-DA equations are 

⁄ = ‹› + ì (Equation 10) 

€ = ‹fi + ® (Equation 11) 

where ‹ is the matrix of PLS components (latent variables), ì and ® are residuals, › is the 

loadings matrix (91). The PLS-DA algorithm has two parts; first the model is built and then 

predictions can be made in new samples of unknown class or group, or test samples whose 

class or group is known. 

 
 

Figure 8. Possible discriminant function for two groups: one group is represented by triangles 

and the other group is represented by circles.  

PLS-DA is useful in the analysis of complex datasets with high dimensionality. It is an 

appropriate method for analysing noisy data with many variables and few samples. PLS-DA 

provides a way to identify the most important variables in the classification and offers a visual 

way of illustrating the differences between the investigated groups. However, the method tends 

to over-fit the data when the number of included variables greatly exceeds the number of 

samples. 
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1.8.3 Linear mixed-effects models 

LMMs are an extension of linear regression models. In linear regression, the output variable 

(dependent variable) is expressed as a linear combination of the input variables 

(independent/explanatory variables). In a mixed effects model, the independent variables are 

considered as either fixed effects, which are systematic and controlled, or random effects, 

which are unsystematic effects not accounted for by the fixed effects. An LMM can be 

represented as 

¶ = ⁄fl + ‡· + ‚ (Equation 12) 

where ¶ is the dependent variable vector, ⁄ is the matrix containing the fixed effects,	fl is the 

fixed effects coefficients vector, ‡ is the matrix containing the random effects, · is the random 

effects coefficients vector and ‚ is the observation error vector (93). The parameters of the 

model are estimated using the least squares method on a training dataset. It should be noted 

that if there is no linear relationship between the dependent variable and the independent 

variables, a logarithmic transformation can be used to conform to the linearity assumption of 

the model. 
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2 Thesis objectives 
The main objective of this thesis was to explore radiomics analysis of MR images in order to 

obtain quantitative and objective MR image-based measures. More specifically, the research 

carried out in this thesis aimed to:  

• Establish a framework for processing and analysis of data acquired longitudinally and 

with different scanners and protocols. 

• Segment subtle bone marrow oedema in the spine and the SI joints of patients with 

psoriatic arthritis. (Paper 1) 

• Evaluate the effect of HIIT in psoriatic arthritis patients by assessing bone marrow 

oedema in MR images of the spine at baseline and after intervention. (Paper 2) 

• Predict seven-year overall in LABC patients based on textural features extracted from 

DCE MR images. (Paper 3) 
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3 Materials and methods 
This thesis includes three papers in MR image analysis. Study A (paper I and II) focuses on 

the analysis of MR images of bone marrow for the detection and quantification of bone marrow 

oedema, and for the assessment of HIIT intervention effect in psoriatic arthritis patients. Study 

B (paper III) aims to predict survival through imaging biomarkers obtained prior to NAC in 

LABC patients. The materials and methods used in papers I-III are briefly outlined in Table 4. 

Table 4. Outline of material and methods used in this thesis. 

  Study A Study B 

  Paper I Paper II Paper III 

Patient cohort  43 psoriatic 
arthritis patients 

37 psoriatic 
arthritis patients 

55 LABC patients 

Data acquisition MR imaging 
protocol 

STIR of the spine 
and the SI joints 

STIR of the spine  DCE MR imaging 
of the breast 

Image pre-

processing 
Bias field 
correction 

- N4 bias field 
correction 
algorithm 

- 

Image 
normalization 
and filtering  

- Histogram 
matching 

- Histogram 
matching 

- Anisotropic 
diffusion 
filter 

- Histogram 
equalization 

ROI 
segmentation 

Manually drawn Manually drawn Manually drawn 
and refined with 
thresholding and 
morphological 
operations 

Image analysis Extraction of 
quantitative 
measures 

Thresholding Texture and 
gradient analysis  

Texture analysis  

Statistical 

methods 
Classification 
and regression  

- LMMs - LMMs 
 

- LMMs 
- Orthogonalized 

PLS-DA 
DCE: dynamic contrast-enhanced, LABC: locally advanced breast cancer, LMM: linear 

mixed-effect model, MR: magnetic resonance, PLS-DA: partial least squares discriminant 

analysis, ROI: region of interest, SI: sacroiliac, STIR: short-tau inversion recovery 
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3.1  Patient cohorts 

The studies have been approved by The Regional Committee for Medical and Health Research 

Ethics (Study A: REK number 2012/1646, Study B: REK number 2009/112). All patients 

signed informed consents. Two different patient populations were employed. 

For study A, the cohort included patients diagnosed with psoriatic arthritis, participating in a 

randomized clinical trial with HIIT as intervention. Included patients fulfilled the CASPAR 

criteria for psoriatic arthritis, were between 18 and 65 years old and were able to exercise. 

Exclusion criteria were unstable psoriatic arthritis, unstable ischemic vascular disease, severe 

pulmonary disease, pregnancy, breastfeeding and drug or alcohol addictions. During the 

inclusion period 2013-2015, 43 patients were recruited and examined by MR imaging at Aleris 

Røntgen Trondheim. In paper II, a subset of data acquired for paper I was included. 

For study B, the retrospective patient cohort consisted of LABC patients undergoing NAC prior 

to surgery. During the inclusion period 2008-2011, 55 patients were recruited and examined in 

St Olavs hospital in Trondheim, Norway. 

3.2  Data acquisition 

For study A, patients underwent MR imaging examinations on two 1.5T scanners (Scanner 1: 

Syngo MR B17 Model upgraded during the study to B19, Avanto, Siemens Healthcare, 

Germany, Scanner 2: Syngo MR D13, Avanto, Siemens Healthcare, Germany) at three time-

points; before intervention, and three and nine months after the beginning of intervention. MR 

images were acquired using an inversion recovery-based sequence (STIR) in the spine in two 

stations (sagittal orientation; TR/TE/TI: 4250 ms/51 ms for the lower spine or 52 ms for the 

upper spine/145 ms; slice thickness: 4 mm for the lower spine or 3 mm for the upper spine) 

and the SI joints (semi-coronal orientation; TR/TE/TI: 3700/52/145 ms; slice thickness: 4 mm). 

T1 and T2 weighted sequences were acquired for anatomical reference (46, 47). In paper II, 

only MR images acquired at the first two time-points were included. 

For study B, patients underwent an MR imaging examination of the breast before the start of 

NAC. MR images were acquired on a 3T Siemens Tim Trio (Erlangen, Germany) scanner 

using a dedicated four-channel breast coil. MR protocol included a US- weighted DCE MR 

imaging acquired with a three-dimensional RF-spoiled gradient-echo sequence without fat 

suppression (flip angle: 10o and TR/TE: 3.22/1.22 ms [flip angle: 6o and TR/TE: 3.5/1.2 ms for 



Materials and methods 

 

 29 

the first 17 patients]). Images were reconstructed in the coronal view with in-plane resolution 

1.1x1.1 mm2, matrix size: 320x320; and slice thickness: 1.1-1.5 mm. After the acquisition of 

one baseline image, a bolus injection of 0.1 mmol/kg of body weight of gadolinium-based 

contrast agent (Magnevist [Bayer Healthcare Pharmaceuticals, Montville, NJ, US] for the first 

nine examinations; or Omniscan [GE Healthcare, Oslo, Norway] for the rest) was given 

automatically at a rate of 2 ml/s, followed by a 20 ml saline flush. After contrast agent 

administration, seven post-contrast images were acquired with a temporal resolution of one 

minute. 

3.3  Reference standard 

In study A, a trained rheumatologist scored the STIR images of the spine and SI joints for the 

presence, intensity and depth of oedema using the SPARCC scoring methods (46, 47). The 

presence of oedema accounts for two thirds of the maximum score, while intensity and depth 

account for the rest one third. The total maximum score for the spine and the SI joints is 108 

and 72, respectively. Figure 9 illustrates the methodology for SPARCC scoring in the SI joints. 

In paper II, a radiologist who was blinded with respect to the intervention evaluated the images 

and provided psoriatic arthritis lesion segmentations. Images were also categorized according 

to the change from the first to the second scan as stable, increased or reduced bone marrow 

oedema. 

In study B, patient status seven years post diagnosis was used as classification output. Patients 

with relapse or residual tumour that were alive seven years post-diagnosis, were considered 

overall survivors. 
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Figure 9. Illustration of SPARCC scoring methodology in the SI joints. 

3.4  Image quality assurance protocol 

In study A, a quality assurance protocol using the American College of Radiology (ACR) MR 

imaging accreditation phantom test was used (94). The test evaluates MR image quality 

through the assessment of geometric accuracy, high-contrast resolution, slice thickness 

accuracy, slice position accuracy, image intensity uniformity, percent signal ghosting, low-

contrast object detectability, signal-to-noise ratio and central frequency. Phantom images were 

obtained using the sequences described in the ACR MR imaging accreditation protocol, as well 

as in the MR protocol of study A. Images were there analysed following the ACR large 

phantom test guidance (95). 

3.5  Image pre-processing 

In paper I, all spinal MR images were histogram-matched to one reference spinal image and 

all MR images from SI joints were histogram-matched to one reference SI joint image.  
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Both in papers I and II, bone marrow of the sacrum and the iliac bones in the SI joints and 

vertebral bone marrow in the spine, excluding vascular and neural structures, were manually 

outlined using 3D Slicer (MIT Artificial Intelligence Lab, USA). 

In paper II, spinal images were pre-processed using a customized intensity adjustment 

procedure based on the nonparametric nonuniform intensity normalization bias field correction 

algorithm (69) which was applied to the region of the lumbar spinal column. Image histogram 

normalization was performed to standardize the intensity values by matching the histogram 

(extracted from the spinal column) to the histogram of a randomly selected spinal image. An 

anisotropic (Perona-Malik) diffusion filter was then applied in MATLAB R2017b 

(MathWorks, Natick, MA, USA) (96). 

Image pre-processing in study B was performed by a previous PhD student at the MR Cancer 

group. In brief, images were motion-corrected by a non-linear image registration using the 

FNIRT tool in the FSL package (Oxford FMRIB Centre, University of Oxford, Oxford, UK) 

optimized for breast images. Segmentation of breast cancer lesions was performed on post-

contrast subtracted images at two minutes post-injection by manual segmenting contrast 

enhancing region, thresholding regions with a relative enhancement ration higher than 0.2 and 

applying an opening morphological operation. The segmenting procedure should exclude 

pixels of necrotic, healthy, and fatty tissue, and vessels. Histogram equalization to 32 levels 

was applied only to the segmented regions. 
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3.6  Image analysis 

Table 5 summarizes the methods that were used for the extraction of quantitative measures. 

Table 5. Methods for extraction of quantitative measures. 

 Study A Study B 

 Paper I Paper II Paper III 

 Thresholding Feature extraction 

Type of 

implementation 

Pixel-wise approach 

 

Region-based 

approach 

Information Grey-level intensity 

Grey-level intensity, 

gradient and 

textural features 

Textural features 

In paper I, quantitative measures of bone marrow oedematous lesions were extracted from 

images using thresholding. The threshold was defined as the  

UℎÃ]sℎ m´ = æ + À ∙ ø (Equation 13) 

Where æ is the mean signal intensity in the reference normal bone marrow region of interest 

(ROI), À is the optimal percentage and ø is the standard deviation of the signal intensities in 

that ROI. The reference normal bone marrow ROI was chosen as a circular ROI (≥ 200 pixels) 

at a healthy vertebra in one slice of the spinal image series and at the centre of the first sacral 

vertebra in one slice of the SI joint image series. The optimal threshold for the spine and the SI 

joints was explored by a receiver operatic characteristic curve analysis. For the spine, the 

optimal threshold was found to be æ + 4.15 ∙ ø, while for the SI joints, the optimal threshold 

was	æ + 2.64 ∙ ø. 

Thresholding provided a mask of pixels with higher signal intensity that the applied threshold, 

which was consistent with inflammation (97). Connected components of less than 10 pixels 

were considered artefacts and were removed. All hyper-intense pixels were normalized to the 

mean signal intensity of normal bone marrow. Thresholding provided three quantitative 

metrics: the volume covered by STIR hyper-intense pixels, the relative hyper-intensity of STIR 

hyper-intense pixels (ltã¢Âg£ã§) to normal bone marrowand the number of lesions per image 
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set. For each image set the total volume and the mean, median, 75-percentile and 90-percentile 

of ltã¢Âg£ã§  were calculated for all image sets. 

In paper II, texture and gradient feature maps were calculated from bone marrow ROIs in STIR 

spinal images of psoriatic arthritis patients. The feature set that was calculated included seven 

intensity features; grey-level intensity value of the central pixel in the ROI, mean, median, 

standard deviation, minimum, maximum and semi-interquartile range of the grey-level 

intensity values in the ROI. In addition to the intensity features, ten gradient features were part 

of the feature set. For the extraction of the gradient features, 2-dimensional directional 

gradients for x-axis (jf) and y-axis (jg) were calculated using a Sobel gradient operator in the 

imgradientxy function in MATLAB R2017b. The ‹1xë§Ê and ‹2xë§Ê of the directional 

gradients were calculated based on equations 14 and 15, respectively. 

‹1xë§Ê = |jf| + ÁjgÁ  (Equation 14) 

‹2xë§Ê = Ëjf
T + jg

T (Equation 15) 

The ten gradient features were the sum, mean, standard deviation, median, minimum, 

maximum and semi-interquartile range of ‹1xë§Ê inside the ROI and the sum, mean and 

standard deviation of ‹2xë§Ê inside the ROI. Lastly, four GLCM features were extracted using 

the graycomatrix and graycoprops functions in MATLAB R2017b; energy (¬®S), ®T, ®∞ and 

®≤. An overview of the features used in Paper II is shown in Table 6. 
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Table 6. Feature set description (Paper II). 

  Description of feature 

In
te

ns
ity

 fe
at

ur
es

 

5( Grey-level intensity value of the central pixel  

n) Mean of grey-level intensity values  

n‘ Median of grey-level intensity values 

n÷ Standard deviation of grey-level intensity values 

nÈ Minimum of grey-level intensity values 

n+ Maximum of grey-level intensity values 

n6 Semi-interquartile range of the grey-level intensity values 

G
ra

di
en

t f
ea

tu
re

s 

ÕS Sum of ‹1xë§Ê 

ÕT Sum of ‹2xë§Ê 

Õ∞ Mean of ‹1xë§Ê 

Õ± Mean of ‹2xë§Ê 

Õ≤ Standard deviation of ‹1xë§Ê 

Õ≥ Standard deviation of ‹2xë§Ê 

Õ¥ Median of ‹1xë§Ê 

Õµ Minimum of ‹1xë§Ê 

Õ∂ Maximum of ‹1xë§Ê 

ÕSO Semi-interquartile range of ‹1xë§Ê 

G
L

C
M

 

fe
at

ur
es

* 

¬®S energy 

®T contrast 

®∞ correlation 

®≤ homogeneity (inverse difference moment) 

GLCM: grey level co-occurrence matrix 

7(”Í>Î = |,1| + Á,2Á, ,1 and ,2 are the 2-dimensional directional gradients for x-axis and y-

axis, respectively. 

7)”Í>Î = Ë,1
) + ,2

) 

* Mathematical descriptions of the GLCM features are shown in Table 3. 

Feature maps were calculated using a sliding window implementation. A sliding window is the 

operation, where an orthogonal kernel of a certain size slides from top left of the ROI row-by-

row down to bottom right. At every position of the kernel, texture analysis is performed using 
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the pixels inside the kernel as input. The resulting features corresponded to the pixel in the 

centre of the kernel. In this case, the ROI was the bone marrow of each vertebra in the spine. 

The analysis was performed using a three-by-three pixels kernel. Figure 10 illustrates a sliding 

window implementation. 

 
Figure 10. Illustration of a sliding window operation with a three-by-three pixels kernel. 

Texture analysis in paper III was performed by a previous PhD student at the MR Cancer group. 

In brief, texture analysis was performed using two-dimensional GLCMs. From these matrices, 

16 features were computed. 14 out of the 16 texture features were described by Haralick (83) 

and the additional two features were described by Conners (84). A mathematical description 

of GLCM features is shown in the introduction. While textural features are defined 

mathematically, their visual representation is not always intuitive and therefore cannot be 

linked to specific image properties. In addition, several features correlate to each other as they 

reflect similar properties. 

Texture analysis was performed using in-house MATLAB scripts developed at Centre for 

Magnetic Resonance Investigations, Hull York Medical School at University of Hull, Hull, 

UK.  

3.7  Statistical methods 

The work carried out in this thesis required advanced image processing and analysis. Non-

commercial in-house software developed at NTNU using MATLAB R2017b, in addition to the 
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commercial software R (R Foundation for Statistical Computing, Vienna, Austria) and IBM 

SPSS Statistics (IBM SPSS Statistics for Macintosh, Version 22.0) were used. 

In all studies, LMMs were employed to assess the effect of time-related changes. In paper I, 

the effect of the MR scanner and intervention were also considered in LMMs. LMMs (98) were 

built in R 3.1.1 using the function lme from the ‘nlme’ package (99) employing the method of 

restricted maximum likelihood. In addition to the work included in Paper II that evaluated the 

effect of HIIT in patients with psoriasis arthritis, an orthogonalized PLS-DA classifier was 

used to segment axial psoriatic arthritis lesions using intensity, gradient and textural features. 

In paper III, orthogonalized PLS-DA was used for the classification of patients based on their 

seven-year overall survival status (PLS toolbox version 8.2.1, Eigenvector Research, Inc., 

Washington, USA in MATLAB MathWorks, Natick, MA, USA). Random subsets with 10 data 

splits and 20 iterations were used for cross-validation.  

The specific methods used in each paper are described in detail at the Material and Methods 

section of each paper. 
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4 Summary of papers 

4.1  Paper I 

Quantifying bone marrow inflammatory oedema in the spine and sacroiliac joints with 

thresholding 

Ioanna Chronaiou, Ruth S. Thomsen, Else M. Huuse, Leslie R. Euceda, Susanne J. Pedersen, 

Mari Hoff, Beathe Sitter 

BMC Musculoskeletal Disorders (2017),18:497, DOI 10.1186/s12891-017-1861-1 

The main purpose of this paper was to assess the effectiveness of thresholding in the 

quantification of bone marrow oedema in the spine and SI joints of psoriatic arthritis patients 

and compare it with the SPARCC scoring system.  

STIR images of the spine (N=85) and the SI joints (N=95) of patients with psoriatic arthritis 

(N=41) were acquired on two 1.5T Siemens Avanto scanners at three time-points. After 

normalization, bone marrow was manually segmented on MR images and a threshold was 

applied to visible bone marrow. The hyper-intense, compared to normal bone marrow, areas 

were masked and were considered as oedematous lesions. The volume and relative signal 

intensity of the hyper-intense areas were calculated and were compared to SPARCC spine and 

SI joint indices, through LMMs. The effect of the MR scanner, intervention and time of 

acquisition were assessed. 

For both the spine and the SI joints, LMMs showed a significant positive correlation between 

the volumes and relative signal intensities of the hyper-intense areas, and the SPARCC indices. 

In the spine, thresholding provided a sensitivity and specificity of 90% and 84%, respectively, 

in the spine and 49% and 68% respectively, in the SI joints. Thresholding performed better in 

the spine that the SI joints, possibly due to signal intensity in homogeneities within the SI joints 

images and signal intensity differences between the SI joints images that were not corrected by 

normalization. Such differences were not present in the spinal images. The MR scanner, 

intervention and time of acquisition did not have a significant effect on the volumes and relative 

signal intensities.  
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In conclusion, thresholding allows quantification of bone marrow oedematous lesions in 

psoriatic arthritis patients and has potential in becoming an automated alternative to SPARCC 

scoring system in the spine. 

4.2  Paper II 

Evaluating the impact of high intensity interval training on axial psoriatic arthritis based on MR 

images 

Ioanna Chronaiou, Guro Fanneløb Giskeødegård, Ales Neubert, Tamara V. Hoffmann-

Skjøstad, Ruth S. Thomsen, Mari Hoff, Tone F. Bathen, Beathe Sitter 

Submitted to PLOS ONE 

The purpose of the study was to evaluate the effect of HIIT in psoriatic arthritis patients by 

investigating spinal MR images at baseline and after intervention. Patients were randomized 

into an intervention group that performed HIIT three times per week for 11 weeks, and a control 

group with no change in pre-study physical exercise habits. 

STIR and T1-weighted MR images of the spine of patients with psoriatic arthritis (N=37) were 

acquired on 1.5T Siemens Avanto scanners at baseline and after intervention.  All images were 

evaluated by a radiologist for bone marrow oedema and scored by a trained rheumatologist 

using the SPARCC scoring system. Vertebral bone marrow was manually segmented from 

STIR MR images. Segments were further bias field corrected, noise reducing image smoothing 

algorithms were applied in pre-processing and the MR signal intensities were normalized to an 

atlas using histogram matching. For each image pixel, 21 features were extracted using local 

image intensity statistics with a three-by-three pixels neighbourhood kernel.  

MR imaging established that the disease burden in terms of bone marrow edema showed minor 

variations in both groups. We observed no differences between the intervention and control 

group.  Disease activity score (DAS) in 44 joints and four textural features of psoriatic arthritis 

lesions decreased for both groups, but the textural features changes were not significant after 

Bonferroni correction. 

In conclusion, MR imaging showed that bone marrow edema in psoriatic arthritis did not 

change significantly after HIIT, supporting that HIIT is safe for psoriatic arthritis patients. 
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Texture analysis of spinal MR images could be more sensitive to changes in BME than 

radiological evaluation and SPARCC scoring.   

4.3  Paper III 

Feasibility of contrast-enhanced MRI derived textural features to predict overall survival in locally 

advanced breast cancer 

Ioanna Chronaiou, Guro F. Giskeødegård, Pål E. Goa, Jose Teruel, Roja Hedayati, Steinar 

Lundgren, Else M. Huuse, Martin Pickles, Peter Gibbs, Beathe Sitter and Tone F. Bathen 

Acta Radiol. 2020 Jul;61(7):875-884. doi: 10.1177/0284185119885116.. 

This paper aimed to evaluate the ability of GLCM textural features extracted from post-contrast 

DCE MR images obtained before NAC to predict seven-year overall survival in LABC patients 

for better treatment stratification. 

One baseline and seven post-contrast pre-treatment DCE MR images from 55 LABC patients 

were acquired at a 3T Siemens Trio scanner. 16 GLCM textural features were extracted from 

segmented tumours at each time-point. The ability of GLCM textural features from all time-

points to distinguish patients based on their seven-year overall survival status was assessed 

through LMMs. The time-point with the highest classification accuracy between seven-year 

overall survivors and non-survivors was established through orthogonalized PLS-DA. The 

predictive value of GLCM textural features from this time-point, alone or in combination with 

traditional prognostic factors, was evaluated by PLS-DA and using Kaplan-Meier analysis with 

log-rank test.  

LMMs revealed significant differences in five GLCM features (f1, f2, f5, f10, f11) in survivors 

and non-survivors. In the PLS-DA model, the same features, as well as f3 and f9, from two 

minutes post-contrast images were the most different and resulted in a classification accuracy 

of 73.1% (p<0.001), compared to 67.2% (p=0.005) and 77.8% (p<0.001) achieved by 

traditional prognostic factors and a combination of these with textural features, respectively. 

The median value of f1, f2, f10 and f11 from two minutes post-contrast provided the most 

significantly different survival curves in Kaplan-Meier analysis.  
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In conclusion, GLCM textural features from pre-treatment post-contrast DCE images were 

found to be associated with seven-year overall survival. Prognostic value of textural features 

should be investigated further. 

4.4  Additional analysis  

In addition to the work included in Paper II that evaluated the effect of HIIT in patients with 

psoriasis arthritis, it was investigated whether machine learning can segment axial psoriatic 

arthritis lesions using intensity, gradient and textural features. The classification model was 

established using an orthogonalized PLS-DA classifier built on extracted image features from 

90% of the patients, using a leave one patient out (LOPO) cross-validation. The number of 

latent variables was optimized using an internal LOPO cross-validation. Data from the 

remaining 10% patients were used to test the model. The 21 features that were calculated for 

each pixel were used as predictors. Healthy pixels in the training dataset were under-sampled 

at a ratio of 1:1 (healthy to pathological) to achieve a more balanced dataset and avoid a model 

bias towards the over-presented class in the dataset. Model evaluation was performed using 

sensitivity and specificity metrics on the test dataset. PLS-DA classification achieved a 

sensitivity and specificity of 97% and 96%, respectively, for the presence of bone marrow 

edema.  

To assess the effect of neighbourhood kernel size in feature values, features were extracted 

using both a three-by-three and a five-by-five kernel size. All features, but one (®∞ calculated 

with a 5-by-5 pixel kernel), were significantly different between healthy and pathological bone 

marrow (p<0.05). 
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5 Discussion 
The expanding use of MR imaging as an assisting tool in the diagnosis, staging, monitoring 

progression and evaluating treatment response in a variety of diseases makes it an interesting 

target for clinically relevant research (100-102). MR imaging has become a cornerstone in 

clinical evaluations performed at a hospital, resulting in more examinations per patient. 

Additionally, new methods emerge and multi-parametric MR imaging is common. As a result, 

MR imaging produces an increasing amount of data that must be analysed and interpreted. 

Qualitative MR analysis is based on visual inspection of the images, while quantitative MR 

imaging uses the MR scanner as scientific measuring instrument and allows us to measure the 

burden of disease, assess its progression and evaluate treatment responses (103). Most 

clinicians rely on qualitative image analysis, which requires long training, is time-consuming 

and is subject to inter-reader variance. With an increasing amount of information available to 

clinicians, radiomics analysis can assist in the time-consuming interpretation of complex 

datasets with automation and the extraction of useful information for decision making (104).  

The main challenge in the field of radiomics is the lack of standardization in the methodologies 

used for image acquisition and pre-processing, segmentation of targeted regions and feature 

extraction (105-108), which hinders the comparison of results from different studies. Several 

features depend on acquisition and image reconstruction parameters (106, 107) and there is an 

increasing amount of research assessing the reproducibility and repeatability of radiomics 

features (109-111). The choice of segmentation method will also affect the repeatability of the 

features (106). It is important that segmentations should be consistent and exhibit low inter-

observer variability (107, 108). In addition, different implementations for the calculation of the 

same feature value impact the interpretation of the study results (106, 107). It is therefore 

necessary to standardize the way that features are calculated (107). Radiomics also suffers from 

the curse of dimensionality (112), because the number of calculated features is often much 

larger than the sample size (106, 107). One solution to this problem is to use feature selection 

or dimensionality reduction methods, which can help reduce the false discovery rate and the 

risk of overfitting (106-108). Another way to avoid finding correlations by chance is to correct 

for multiple hypothesis testing (107). Lastly, an external validation dataset is recommended for 

the confirmation of study results (107). 

The papers included in this thesis aim to facilitate the development of quantitative analysis 

methods of MR images, with applications demonstrated in breast cancer and psoriatic arthritis. 
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In the context of this thesis, two methods for segmentation of bone marrow oedema in STIR 

images were explored: thresholding and classification using intensity, gradient and textural 

features as predictors. Baseline and after intervention values of these features were used to 

assess the effect of HIIT in psoriatic arthritis patients. Textural features were also extracted 

from pre-treatment DCE MR images of breast cancer patients for prediction of long-term 

outcome. A routine including quality control, normalization, and statistical analysis was 

implemented to pool data acquired longitudinally and with different scanners and protocols. 

The main findings of the research presented in this thesis are discussed in the following 

sections. 

5.1  Processing MR data acquired at multiple sites or with different protocols 

In a clinical setting, it is common that the imaging parameters vary slightly between the 

patients. This could be due to protocol optimization for each patient (e.g. a change of field of 

view or acquisition matrix may result in automatic optimization of TE) or due to the 

examinations being performed at different scanners with different possibilities and limitations. 

In daily clinical practice, a radiologist relies on the visual inspection of the images to decide 

on a diagnosis (113). In this qualitative approach, the contrast between tissues is important, but 

the actual values of the pixel intensities are not. In quantitative approaches, images are treated 

as data and are automatically analysed by algorithms (104). For quantitative comparisons, 

variability due to the use of different scanners, or variability occurring from a longitudinal 

setting, should be controlled (114). To some extent, minimizing such differences is possible by 

implementing a standardized protocol, relevant to the study, at all scanners for all patients. 

However, protocol standardization across hardware setups, field strengths and vendors can be 

challenging (115). Differences in the hardware (e.g. different coils for different scanners) may 

result in different signal-to-noise ratio and image quality, while different vendors may allow 

slightly different implementations and acquisition parameters. Additionally, scanner upgrades 

may be impossible to delay in longitudinal clinical studies and can result in differences in the 

protocols, reconstruction algorithms, correction algorithms or hardware. In general, scanner 

upgrades improve the performance of the scanner and therefore may improve the clinical 

results. Metrics that are robust against protocol and scanner changes are preferred to ensure 

that research results can be translated in clinical settings, where data acquisition is affected by 

multiple parameters including the hardware, the software and the radiographer (116). A 
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specific framework for the interpretation of data acquired and the evaluation of the calculated 

metrics in different settings should be designed.  

In study A, quality control and system performance testing procedure were performed. The 

standardized image quality assurance protocol and phantom developed by the ACR MR 

imaging accreditation program were used in accordance with the ACR large phantom test 

guidance (95). Advantages of the ACR phantom test include the use of a single phantom 

appropriate for nearly all clinical MR scanners, the efficient testing procedure (total 

examination time was approximately one hour per scanner) and the assessment of both 

qualitative and quantitative performance of the scanner (117). The chosen procedure assessed 

the overall quality of the image (signal-to-noise ratio, geometrical accuracy and distortions, 

image intensity uniformity, slice thickness and position accuracy, object detectability and 

ghosting). The phantom was scanned once at each of the scanners, after all patient examinations 

were performed, to control that the scanners were properly working and provide comparable 

image quality. Ideally, phantom testing should be performed longitudinally in longitudinal 

studies to ensure the performance stability of the scanners. The image quality assurance step is 

necessary in longitudinal and/or multi-site studies (118).  

The use of multiple scanners or protocols may induce intensity variations due to scanner-

related and image weighting differences, thus hindering further quantitative analysis or post-

processing. This is particularly evident in retrospective studies, where there was no intention 

to pool the data. The studies included in this thesis were designed so that these variations were 

minimal. For study A, a standardized protocol was implemented in the two scanners and for 

study B, only one scanner was used for data acquisition. Depending on the study design, there 

are several methods that correct for intensity non-uniformity in MR imaging (119). In all three 

papers included in this thesis, histogram equalization or matching was used to normalize the 

images and correct for intensity variations between them. This ensured that images acquired at 

multiple time-points or with multiple protocols could be compared and analysed together. 

In study A, MR imaging examinations were performed in two scanners at three time-points. 

Histogram matching was used as a normalization method to create similar intensity 

distributions between the images. In this study, the MR protocol for the lower spine was 

changed due to human error for ten patients, examined in the same scanner, at one time-point. 

For these patients, TR was 3500 ms and TE was 31 ms (in contrast with the rest of the patients, 
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for which TR was 4250 ms and TE was 51 ms TR was 4250 ms), resulting in different image 

weighting. Histogram matching was applied to these images but was not sufficient to obtain 

the same contrast between tissues that was necessary for quantitative analysis, and a decision 

was made to exclude these scans. In study B, the imaging protocol was not consistent 

throughout the study due to a platform upgrade and a successive sequence update after the first 

17 patients had been examined. This resulted in different imaging parameters (TR, TE and flip 

angle) in these patients, which in turn had an effect on the maximum enhancement. Histogram 

equalization was performed prior to textural feature extraction to minimize the effect of the 

change in the imaging parameters. 

As a last step, the interaction between the scanner and the MR image-derived measurements of 

interest (signal intensities and textural features) had to be accounted for by statistical methods. 

Especially for texture analysis, there is a need to assess the sensitivity of textural parameters to 

the acquisition protocol changes and the normalization method (65, 120, 121). LMMs can 

account for the influence of between-subject and within-subject variations to MR image-

derived measurements due to the MR scanner and acquisition parameter changes (122). In the 

studies included in this thesis, the scanner or protocol was included as a fixed effect in LMMs, 

to examine and account for the possibility that any observed effects to MR image-derived 

measurements are confounded by the changes in the MR scanner or protocol. In study A, the 

effect of the MR scanner on the measurements by the thresholding method was not significant. 

In study B, several textural features were significantly affected by the change in acquisition 

protocol. Most of these features were not significantly different between patient groups of 

interest. When data after the scanner upgrade and the protocol change was analysed separately, 

the same features were found important in the classification between patient groups and the 

difference was more significant, suggesting that the protocol change could be masking group 

differences. A decision was made to include all the data, prior and after the scanner upgrade, 

as these circumstances relate more to a clinical setting, where standardization may not be 

possible. 

Based on the methods applied in the papers included in this thesis, the suggested steps to proper 

interpretation of these data is outlined in Table 7 and discussed in this section. A more general 

outline of evaluation criteria is discussed in (65). 
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Table 7. Steps for appropriate quantitative interpretation of MR imaging data acquired by 

multiple scanners and/or protocols. 

Image acquisition phase Run an image quality protocol using phantom or human 

control. 

Image pre-processing phase Apply intensity non-uniformity correction (ex. 

histogram matching) on acquired images. 

Statistical analysis phase Use statistical models that include confounding 

variables and can account for the change in the scanner 

and/or the protocol (e.g. LMMs). 

5.2  Classification problems: Pixel-wise or region-based approach 

Texture analysis was performed in papers II and III. In paper II, features were calculated in a 

pixel-wise approach where the features were extracted in the immediate neighbourhood of each 

pixel using a three-by-three kernel, resulting in a feature map for each feature calculated. In 

paper III, a region-based approach was used, where the calculated features refer to the whole 

ROI. In general, the choice of the appropriate approach depends on the research question. Both 

pixel-wise and region-based approaches have advantages and limitations. 

The pixel-wise approach gives more detailed information about the part of the image that is 

analysed, provides input for pixel-wise classification and potentially could be used for lesion 

segmentation. It is particularly suitable when a small part of the image that has specific 

characteristics has to be identified or in images with high to very high spatial resolution (123). 

In paper II, several psoriatic arthritis patients exhibited small oedematous lesions, compared to 

the size of their vertebra (Figure 11). In this case, a region-based approach, that would calculate 

mean features from the whole vertebra, would be less appropriate, because the number of pixels 

that contained healthy tissue was much higher than the number of pixels containing oedema. 

The features then reflect the physiology of the healthy tissue, unless the inflammatory burden 

was larger, resulting in undetected lesions. The main limitation of the pixel-wise approach is 

that pixel-wise feature extraction is computationally intensive, compared to region-based 

approaches. Feature values are calculated by some operation, for example averaging, that takes 
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into account the values of the neighboring voxels. This could be a limitation in some 

applications, such as edge detection. 

 
Figure 11. Pre-processed STIR MR image of a spinal vertebra of a psoriatic arthritis patient. 

Bone marrow oedema (delineated in red) is much smaller compared to total vertebral bone 

marrow (region of interest, delineated in blue). 

The region-based approach is suitable for cases where the part of the image that is analysed 

contains one type of tissue relevant in the analysis. For example, in case of large oedematous 

lesions, the region-based approach can be used to classify slices into healthy or containing 

oedematous lesions, as seen in (124, 125). In paper III, the analysis aimed at classifying tumour 

lesions to seven-year overall survivors. The regions that were analysed contained areas with 

visible contrast enhancement, consistent with tumour and a morphological operation was 

applied to ensure that no enhanced vessels or spuriously enhanced voxels were included in the 

ROI (Figure 12). Therefore, the features that were calculated refer to the overall image 

characteristics of tumours. Using a pixel-wise approach in this case would have provided more, 

possibly excessive, information and reduce the computational efficiency. 
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Figure 12. Two minutes post-contrast DCE MR image of locally advanced breast cancer. 

Tumour (region of interest) is outlined in red. 

It has been reported that the size of the ROI may have an impact in the calculated feature values 

(126, 127). In paper II, the kernel size has an impact on the feature value for most of the GLCM 

and gradient features, but smaller impact on the intensity features. The intensity features are 

dependent on the local contrast and brightness. It is expected that the variation between the 

samples increases as the kernel size is reduced (126). In paper III, the largest tumour diameter 

was significantly higher in non-survivors, as larger tumour size is associated with a poorer 

prognosis in breast cancer. However, no significant correlation between textural features and 

tumour size was found in the cohort analysed in paper III. 

5.3  Texture analysis in MR images: Relating textural features to physiology 

Texture translates information from biomedical images that may not be perceptible by the 

human eye to quantitative biologically relevant measurements (128). Texture analysis of MR 

images has received increased attention during the past two decades (82, 129, 130). In both 

studies included in this thesis, GLCM textural features were used as an input to segmentation 

and/or classification algorithms. 

In the pathologies of the bones, textural features are considered sensitive in detecting alteration 

of the bone architecture, segmenting and characterizing lesions and evaluating treatment 
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response (124, 125, 131-136). Texture features have been further used in assessing tissue 

heterogeneity and disease progression in osteoarthritis (124, 125, 131-134). Intensity (standard 

deviation, smoothness and third moment) (125), gradient (variance and mean of absolute 

gradient) and textural features (correlation and sum entropy) (124) extracted from segmented 

bone marrow could effectively classify between healthy slices and slices that were affected by 

bone marrow oedema of the knee. Lastly, MR image-derived textural features could evaluate 

the degree of post-radiation bone marrow oedema in patients with skeletal metastases (136). 

In cancer, textural features appear useful in differentiating cancerous from non-cancerous 

tissue, staging of the disease, assessing response to treatment and prognosis (137-142), while 

relatively few studies assess prognosis through textural features from pre-treatment DCE MR 

images (141, 143-146). In study B, several GLCM textural features, extracted from segmented 

tumours in pre-treatment DCE 3T MR images, were associated with seven-year overall 

survival outcome. Five out of 16 GLCM textural features [f1, f2, f5, f10 and f11] were 

significantly different between seven-year overall survivors and non-survivors using LMM 

analysis. Most of the same features from 2-minutes post-contrast images resulted in 

significantly different survival curves in Kaplan-Meier survival analysis, while all of them 

were the most important variables at distinguishing between overall survivors and non-

survivors by orthogonalized PLS-DA. Lastly, GLCM textural features added value to the 

clinical prognostic factors in the prediction of overall survival. Since studies have different 

acquisition parameters, pre-processing and follow-up time, direct quantitative comparison of 

results is challenging. The results shown in paper III were in agreement with most of the 

published literature (141, 143-146) and with previously published results of the same cohort 

regarding NAC treatment response (138). Patients with less heterogeneous tumours on contrast 

enhanced T1-weighted subtraction images were related to poorer outcomes (145). The opposite 

was true for T2-weighted images, where high heterogeneity was related with poorer outcomes 

(145). A previous study (141) that attempted to predict breast cancer survival based on 

parameters calculated by pre-treatment DCE MR images found GLCM textural features related 

to heterogeneity [f7 and f8] and symmetry [f15 and f16] consistently higher in patients with 

shorter survival. These features were not significantly different between the patient groups in 

study B but were all affected by changes in the MR protocol. 

GLCM textural features are derived from the grey-value spatial distribution in the GLCM. 

Although mathematically defined, their visual interpretation and their relationship to 
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physiology is not always intuitive. As several features describe similar image properties, 

several features are correlated with each other, as seen on the heat-map of paper III (Figure 

13). Specifically, ®T, which measures the intensity variation between a reference pixel and its 

neighbour and relates to contrast, is positively correlated with ®SO and ®SS, which are associated 

with heterogeneity. ®S, a measure of local uniformity of intensities in an image, and ®≤, which 

measures “how close the distribution of elements in the GLCM matrix is to the diagonal of 

GLCM” (147), are associated with homogeneity and are also positively correlated. In contrast, 

®T and ®≤ are negatively correlated. f7 and f8, which relate to heterogeneity, are positively 

correlated with each other and negatively correlated with ®S. The use of statistical analysis to 

recognize the most important features to a specific research question could be useful before 

further analysis. Direct comparison of textural features calculated from different studies can be 

challenging. Therefore, assessing the textural features in more generic terms can be useful 

when comparing with existing literature. 

 
Figure 13. Heat-map based on Pearson correlations between the textural features illustrates 

correlations, ranging from strong negative (-1) to strong positive (+1), between GLCM features 

®S to ®S≥ obtained from two minutes post-contrast images of LABC patients. 

5.4  Quantifying bone marrow oedema in patients with psoriatic arthritis 

In study A, quantitative MR image-based measures for bone marrow oedema in patients with 

psoriatic arthritis were extracted and compared to the reference standard MR image scoring, 

SPARCC. Two pixel-wise methods for quantification of bone marrow oedema in patients with 

psoriatic arthritis were implemented. Both methods resulted in the segmentation of the 

2 4 6 8 10 12 14 16
Features (f1 to f16)

2

4

6

8

10

12

14

16

Fe
at

ur
es

 (f
1 to

 f 16
)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



Discussion 

 

 50 

oedematous voxels. Paper I evaluated thresholding as a method for quantification of bone 

marrow oedema in the spine and SI joints of psoriatic arthritis patients. The additional analysis 

of Paper II assessed the use of intensity, textural and gradient features as predictors for the 

segmentation of oedematous voxels in the spine of the same patients. 

Lesion detectability by either method is affected by poor image quality and signal intensity 

inhomogeneities. Appropriate pre-processing, that includes bias-field correction and 

normalization is crucial. It should also be noted that both methods primarily aim to quantify 

the volume of oedematous lesions, while SPARCC primarily scores for the presence of 

oedema. Patients with the same SPARCC score do not necessarily experience the same 

inflammatory load in terms of volumes of oedematous lesions, which is why SPARCC scores 

and calculated volumes do not always agree. SPARCC and calculated volumes provide 

complementary information. The number of lesions was also assessed as a measure of disease 

burden in paper I. A combination of number and volume of oedematous lesions would provide 

similar information to SPARCC score. In addition, both methods perform best in patients with 

high inflammatory load. Many patients in this study had either low or no inflammation in their 

spine and/or SI joints, with the mean SPARCC score for the spine being 7.4, ranging from 0 to 

51 out of a maximum of 108 and for the SI joints being 1.6, ranging from 0 to 17 out of a 

maximum possible score of 72.  

Both SPARCC score and MR image-based calculated volumes provide additional information 

regarding psoriatic arthritis disease burden, compared to clinical evaluation scores (BASDAI, 

DAS 44, high sensitivity CRP, pain scores). A lack of correlation between clinical evaluation 

scores and MR image bone oedema scores has been reported for psoriatic arthritis patients, 

suggesting that these clinical measures may not accurately reflect the burden of inflammation 

in these patients (148). It can be that inflammation seen in MR images is subclinical and does 

not necessarily cause any clinical symptoms. This subclinical disease activity may have 

prognostic value, as it has been hypothesized for rheumatoid arthritis patients (149). 

Thresholding is the simplest histogram-based method for classification and segmentation. The 

grey-level intensity value of each voxel determines the classification result. It performs best in 

images with bi-modal grey-level intensity histogram, where the objects and the background 

have different, but uniform brightness (150). Bone marrow oedematous lesions are hyper-

intense compared to normal bone marrow in STIR images, resulting in bi-modal intensity 
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histogram in the ROI, the bone marrow (97). Hence, thresholding is an appropriate method for 

quantification of bone marrow in psoriatic arthritis patients and other types of 

spondyloarthritis, that is fast and easily implemented. On the other hand, more advanced 

methods allow for a set of predictors to determine the result of the classification. In paper II, 

the chosen predictors were local measures of grey-level intensity, as well as their spatial 

variations as described by textural and gradient features. This approach performs best in lesions 

that do not necessarily have the same overall brightness but exhibit similar spatial variations in 

grey-level intensities. Spatial information of the signal intensities in an oedematous lesion 

could be useful in the identification and quantification. In study B, thresholding based on 

relative enhancement was performed in the pre-processing of the images after manual lesion 

segmentation to exclude areas of necrosis, healthy or fatty tissue from tumour segmentation 

(138). 

In the additional analysis of Paper II, the PLS-DA classifier achieved a pixel-wise sensitivity 

and specificity of 97% and 96%, respectively, compared to manual lesion segmentations. 

Intensity features nS nT, n∞ and n≥ were the most important features. PLS-DA classification failed 

in several image sets. Overall, PLS-DA identifies the same lesions as manual lesion 

segmentation, but the area of the lesion identified by PLS-DA classification is generally smaller 

than the area by the manual lesion segmentation. Manual segmentations were performed before 

application of the diffusion filter, which can contribute to the discrepancy of lesion sizes. The 

diffusion filter is a shape adapting smoothing that reduces noise while preserving edges and 

structures in the images.  

A common limitation of papers I and II is that bone marrow segmentations were drawn 

manually. There are multiple methods for automatic segmentation of the spine, but they were 

out of scope of these papers (151-153). However, with the addition of an algorithm that 

performs automatic bone segmentation for the spine and SI joints, the methods presented in 

these papers can provide fully automated quantification of the volume of oedematous lesions 

in the spine and SI joints of psoriatic arthritis patients, as well as patients suffering from other 

types of spondyloarthritis who experience inflammation in the same areas. Lastly, it is possible 

that the lack of external validation set resulted in overfitting in Paper I. This means that the 

model presented in paper I would behave more poorly in segmenting oedematic lesions in new 

images of psoriatic arthritis patients. There are many ways to prevent overfitting. An example 
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would be the feature selection that was performed using LOPO cross validation when 

developing the PLS-DA classifier for the additional analysis of Paper II. 

5.5  Predicting survival with texture analysis of dynamic contrast-enhanced MR 

images of breast cancer 

NAC is the standard initial treatment for inoperable LABC patients, before assessing 

operability (24). Response to NAC and long-term outcomes are variable. The treatment course 

following NAC is decided on an individual basis depending on patient’s response to treatment, 

disease stage and lesion characteristics. Clinical factors, such as ER status and tumour grade, 

may allow identification of LABC patients who would benefit from low-intensity 

chemotherapy or even no chemotherapy (24). Predicting patient long-term survival outcome 

prior to NAC can affect treatment stratification offering more aggressive treatment to patients 

with lower expected survival and recognizing patients who need close post treatment follow-

up. Even though clinical prognostic factors have shown promising results in assessing 

prognosis of breast cancer patients, MR imaging can provide additional biomarkers with 

potential for long-term survival prediction that provide added value to clinical prognostic 

factors (154).  

Biomarkers are measurable indicators of biological processes. Prognostic biomarkers provide 

information about the disease outcome and affect the management of the disease by stratifying 

the patients (155). Clinical prognostic indicators for breast cancer include age at diagnosis, 

largest tumour dimension, TNM stage, ER, PgR and HER2 status and histological grade and 

type (141, 156, 157). Intrinsic breast cancer subtypes may have diverse biological mechanisms, 

resulting in different response to treatment and prognostic implications (158), with luminal-A 

tumours having favourable prognosis (159). Intrinsic subtypes have been shown to add 

significant predictive and prognostic value compared to other clinical prognostic indicators 

(160). Within the HER2+ patient subgroup, HER2-enriched patients responded better to 

trastuzumab-based therapy compared to non-HER2-enriched patients, indicating that using 

knowledge from intrinsic breast cancer subtyping can assist in personalizing breast cancer care 

(161). 

In study B, the use of GLCM textural features from a single time-point of pre-treatment post-

contrast DCE MR images as prognostic indicators of overall survival in breast cancer patients 
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was assessed. Textural features showed added value to clinical prognostic factors in predicting 

overall survival. The combination of clinical prognostic factors with GLCM features resulted 

in significantly higher classification accuracy for predicting overall survival. In a previous 

study, combination of clinical prognostic indicator with MR-derived metrics, not including 

textural features, but shape, resulted in significantly more accurate prediction of five-year 

survival of LABC patients (141). These results indicate that textural information from pre-

treatment DCE MR images can potentially assist in increasing personalized treatment for breast 

cancer patients. 

A limitation of study B is that the number of features (N=16) is comparable to the number of 

patients (N=55). As a rule of thumb, 10-15 patients are needed for each feature added in the 

model to reduce false discovery rate (107). PLS-DA is handles this problem, the curse of 

dimentionality, very well, requiring at least twice as many samples as features (162). Due to 

the retrospective nature of this study, it was impossible to include more patients. To this end, 

the reported p-values were corrected using Bonferroni multiple-comparison correction.
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6 Conclusions and future perspectives 
The work described in this thesis signifies the importance of furthering the knowledge of 

radiomics to obtain diagnostic and prognostic quantitative MR image-based measures. 

Firstly, in the work presented in this thesis, we demonstrated the use of a framework that 

included a quality control procedure, image pre-processing steps and appropriate statistical 

analysis, for analysis of data acquired longitudinally, and with different scanners and protocols. 

Secondly, we evaluated the potential of STIR images to quantify the inflammatory burden in 

the spine and the SI joints of patients with psoriatic arthritis and to assess the effect of HIIT in 

psoriatic arthritis patients at baseline and after intervention. Lastly, we found an association 

between seven-year overall survival and textural features of pre-treatment breast cancer DCE-

MR images and demonstrated the added value of textural features to the clinical prognostic 

factors in the prediction of overall survival. 

Following the results of this research thesis, several aspects of this work are considered for 

further study. Reliable measures obtained from images must be technically and clinically 

validated, accurate and precise. The use of acquisition protocols and pre-processing steps 

optimized for the extraction of textural features should be explored, for both psoriatic arthritis 

and breast cancer imaging. Different methods for features extraction, such as 3D texture and 

run-length texture feature extraction, are worth looking into. Furthermore, considering that ROI 

size and segmentation method influence textural features, different approaches for ROI 

segmentation should be explored. Since textural features may depend on the acquisition 

parameters and can be affected by the acquisition settings, multi-centre studies are necessary 

to ensure the reproducibility of the results. Additionally, the usefulness of textural image 

features in segmenting bone marrow oedema, assessing the effect of intervention in psoriatic 

arthritis and predicting survival of LABC patients have to be validated in larger cohorts, as 

well as in patient subgroups, such as patients with low versus high disease burden. The 

correlation of textural features with disease activity should also be investigated in larger 

cohorts of patients with axial psoriatic arthitis. Lastly, as results of this research thesis and 

published literature indicated that texture relates to underlying physiology, investigating the 

relationship between measured obtained from radiomics analysis to physiology is another 

possible line of research. A better understanding of what physiological phenomena the textural 

parameters describe would contribute to more open and interpretable models when such 
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features are used for e.g. prognostic purposes. In the long term, this could contribute to easier 

translation of such methodology to clinical use. 
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with thresholding
Ioanna Chronaiou1*, Ruth S. Thomsen2, Else M. Huuse3, Leslie R. Euceda1, Susanne J. Pedersen4, Mari Hoff2,5

and Beathe Sitter1

Abstract

Background: Psoriatic Arthritis (PsA) is a chronic inflammatory arthritis that develops in patients with psoriasis.
Inflammatory edema in the spine may reflect subclinical disease activity and be a predictor of radiographic
progression. A semi-quantitative method established by the spondyloarthritis research consortium of Canada
(SPARCC) is commonly used to assess the disease activity in MR images of the spine. This study aims to evaluate
thresholding for quantification of subtle bone marrow inflammation in the spine and the sacroiliac (SI) joints of
patients with PsA and compare it with the SPARCC scoring system.

Methods: Short tau inversion recovery (STIR) MR images of the spine (N = 85) and the SI joints (N = 95) of patients
with PsA (N = 41) were analyzed. A threshold was applied to visible bone marrow in order to mask areas with
higher signal intensity, which are consistent with inflammation. These areas were considered as inflammatory
lesions. The volume and relative signal intensity of the lesions were calculated. Results from thresholding were
compared to SPARCC scores using linear mixed-effects models. The specificity and sensitivity of thresholding
were also calculated.

Results: A significant positive correlation between the volumes and mean relative signal intensities, which were
calculated by thresholding analysis, and the SPARCC scores was detected for both spine (p < 0.001) and SI joints
(p < 0.001). For the spine, thresholding had sensitivity and specificity of 83% and 76% respectively, while for the SI
joints the values were 51% and 88% respectively.

Conclusions: Thresholding allows quantification of subtle bone marrow inflammatory edema in patients with
psoriatic arthritis, and could support SPARCC scoring of the spine. Improved image processing and inclusion of
automatic segmentation are required for thresholding of STIR images to become a rapid and reliable method for
quantitative measures of inflammation.

Trial registration: NCT02995460 (December 14, 2016) – Retrospectively registered.
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Background
Psoriatic Arthritis (PsA) is a chronic inflammatory joint
disease associated with psoriasis [1] that manifests with
inflammation in peripheral joints, axial skeleton, enthesi-
tis and dactylitis [2]. Magnetic resonance imaging (MRI)
allows visualization of inflammation and damage in all
structures involved in PsA [3] and has been found to be
more sensitive to inflammatory changes than clinical
examination [4]. The prevalence of PsA ranges from 20
to 420 per 100,000 population in all countries except
Japan, where prevalence is lower [5].
The prevalence of axial PsA varies from 25% to 75% of

PsA patients depending on the criteria used [6, 7]. In a
subgroup of patients with axial PsA, there is subclinical
inflammation in the absence of clinical symptoms.
Detecting radiographic involvement of the spine and the
sacroiliac (SI) joints in these patients is important for
diagnosis and classification. Accurate quantification of
small inflammatory lesions in the spine and SI joints is
important as it may reflect subclinical disease activity [3]
and be a predictor of radiographic progression [8, 9].
Additionally, an accurate method that can detect minor
changes will be able to assess the effect of treatment or
intervention. A semi-quantitative method established by
the spondyloarthritis research consortium of Canada
(SPARCC) can be used in order to assess the disease
activity in MR images of the spine and SI joints. This
scoring method is reliable and sensitive to changes [10],
but it requires a trained reader and is labor-intensive. A
computer-aided and potentially automatic method for
the quantification of bone marrow inflammation is thus
a possible time-efficient alternative.
Manual methods for image analysis rely on human vi-

sion, which is very sensitive, but are reader-dependent
and prone to subjective errors and variation. Automatic
methods offer advantages over manual methods of
analysis. They are standardized and reproducible and
have a consistent accuracy. Moreover, automatic
methods follow a systematic approach, thus are highly
repeatable. Once established, the procedure can easily be
consistently applied in a large number of images, is
objective and less time-consuming.
Thresholding has been used in a previous study to

quantify inflammation in the SI joints of patients with
chronic lower back pain originating in the SI joints [11].
Application of this approach is based on the fact that
inflammatory lesions have higher signal intensity than
normal bone marrow in short tau inversion recovery
(STIR) images [11], which are typically used for imaging
of bone marrow inflammation. The proposed method is
potentially faster, easier and more robust than SPARCC
and more importantly, eliminates the need of a trained
reader. Another advantage of thresholding compared to
SPARCC is that the former uses all images in the image

set, while in the latter only a selection of slices is scored.
Altogether, thresholding could be an alternative to
SPARCC for quantification of subtle bone marrow in-
flammation in the spine and SI joints of patients with
psoriatic arthritis. However, the validity of thresholding
in this setting has not yet been tested.
This study aims to validate thresholding as a method

suitable for accurate quantification of subtle bone mar-
row inflammation in patients with PsA and compare it
with the SPARCC scoring system.

Methods
Patients
Patients diagnosed with PsA (N = 43) were recruited to
the study, all being under optimal treatment at the time.
Eligible patients were participating in a randomized
clinical trial with high intensity interval training as inter-
vention. Trial participants fulfilled the CASPAR-criteria
for PsA, were between 18 and 65 years old and were able
to exercise. Exclusion criteria were unstable PsA, un-
stable ischemic vascular disease, severe pulmonary
disease, pregnancy, breastfeeding and drug or alcohol
addictions. Two patients were excluded due to condi-
tions that could influence the MR image analysis, one
due to incidental findings (lymphoma) and one due to
anomaly in the SI joints. Thus, 13 men with a mean age
of 48 years (range: 30–64 years) and 28 women with a
mean age of 48 years (range: 23–65 years) were included
(N = 41). All patients have signed informed consent and
the Norwegian Regional Committee for Medical and
Health Research Ethics has approved the study. Patients
were randomized into a control and an intervention
group as part of a separate study. Effects of intervention
are out of the scope of this study. Clinical evaluation at
baseline, patient global assessment [mean ± standard
deviation (SD): 42 ± 23 mm], disease activity score of 28
joints (mean ± SD: 2.9 ± 1.1), Bath ankylosing spondylitis
disease activity index (mean ± SD: 3.4 ± 1.8), quality of
life questionnaire, and high-sensitivity C-reactive protein
(hs-CRP, median: 4.2 mg/L, range: 0.1 to 28.7 mg/L) pro-
vided patient health status.

MRI
All patients underwent MRI examinations of the
spine and the SI joints based on standardized proto-
cols [12, 13]. Examinations were performed on two 1.5 T
scanners (Scanner 1: Syngo MR B17 upgraded during the
study to B19, Scanner 2: Syngo MR D13, Avanto, Siemens
Healthcare, Germany). An inversion recovery based
sequence (STIR) was used for the examination of the
SI joints and the spine in two stations (Table 1). The
protocol also included T1 and T2 weighted sequences
for anatomical reference. American College of Radiology
phantom tests were performed on both scanners as image
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quality control [14]. The effect of using different MR scan-
ners was assessed with statistical analysis.
Clinical evaluation and MRI of the spine and SI joints

were performed at one (N = 4), two (N = 20) and three
time-points (N = 17). A total of 95 scans of the spine
and the SI joints were acquired. Ten image sets of the
spine were excluded from the analysis due to human
error during the acquisition that resulted in altered
protocol and different image weighting. A total of 85
scans of the spine and 95 scans of the SI joints were thus
included in image analyses.
Acquisition parameters of short-tau inversion recovery

(STIR) sequence used for the examination of the spine
and the SI joints. Orientation, time to recovery (TR),
time to echo (TE), time to inversion (TI), slice thickness,
gap and number of slices are presented in the table.
Images of the spine we acquired in two stations (lower
spine and upper spine).

SPARCC scoring
A rheumatologist (RST) trained for the SPARCC scoring
methods, blindly scored the STIR images of the spine
and the SI joints according to the SPARCC SI Joint and
Spine Inflammation Indices [12, 13]. In short, for the
spine, the six most abnormal disco-vertebral levels on
the STIR sequence are selected. Three consecutive
sagittal slices, that represent the most abnormal slices
for each level, are chosen for scoring at that level. The
total maximum SPARCC score is 108 for all six levels of
the spine. In the SI joints, the six consecutive slices
covering the cartilaginous part of the joints, which is
the most relevant part of the SI joints when looking
for inflammation, are scored. The total maximum
SPARCC score is 72 for all six slices of SI joints.
Cases with positive SPARCC scores were considered
positive for the presence of bone marrow inflamma-
tory edema, whereas cases with SPARCC score of 0
were considered negative.
For the spine, only a total SPARCC score per image

set (N = 85) was provided, while for the SI joints both a

total SPARCC score per image set (N = 95) and a
SPARCC score for each chosen slice (N = 570) were
available.

Thresholding
Image pre-processing
Histogram-matching [15] is a histogram-based intensity
normalization method that transforms the histogram of
an image so that it is a match to the histogram of a
reference image. Histogram-matching was performed to
ensure that all image sets had the same overall bright-
ness. All spinal MR images were histogram-matched to
one reference spinal image and all MR images from SI
joints were histogram-matched to one reference SI joint
image. The function imhistmatch in MATLAB
(MathWorks, Natick, MA, USA) was used.

Segmentation of bone marrow
Bone marrow of the sacrum and the iliac bones in the SI
joints and vertebral bone marrow in the spine, excluding
vascular and neural structures, were manually outlined
using 3D Slicer (MIT Artificial Intelligence Lab, USA).

Volume of STIR hyper-intensity
All data processing was performed in Matlab R2016b
(The MathWorks Inc., Natick, MA, 2000) using in-
house scripts.
A signal intensity threshold consistent with inflamma-

tion was calculated from a circular ROI (≥ 200 pixels) at
a healthy vertebra in one slice of the spinal image series
and at the center of the first sacral vertebra in one slice
of the SI joint image series (Fig. 1a, c). The criterion for
choosing the ROI placement was the absence of bone
marrow inflammatory edema. The mean signal intensity
in this ROI was used as reference normal bone marrow
signal intensity. A threshold was defined as the sum of
the mean signal intensity in the reference normal bone
marrow ROI and a percentage of the SD of signal inten-
sity in that ROI. A receiver operating characteristic
(ROC) curve was used to define the optimal threshold
for the spine (area under curve [AUC] = 0.81) and the SI
joints (AUC = 0.70) (Fig. 2). For the spine, the optimal
threshold was defined as the sum of the mean signal in-
tensity in the reference normal bone marrow ROI and
4.15 times the SD of signal intensity in that ROI. For the
SI joints, the optimal threshold was defined as the sum
of the mean signal intensity in the reference normal
bone marrow ROI and 2.64 times the SD of signal inten-
sity in that ROI.
All pixels with higher signal intensity than the thresh-

old, consistent with inflammation [11], were selected
and further used for the calculation of the volume of
STIR hyper-intensity (volumehyper) in the vertebral
bodies. All connected components (objects) in the resulting

Table 1 Acquisition parameters
Spine SI joints

Orientation Sagittal Semi-coronal

TR (msec) 4250 3700

TE (msec) 51 (for lower spine)
52 (for upper spine)

52

TI (msec) 145 145

Slice thickness (mm) 4 (for lower spine)
3 (for upper spine)

4

Gap 10% 10%

Number of slices Minimum of 16 15

TR time to recovery, TE time to echo, TI time to inversion
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volumes that have fewer than 10 pixels were removed, as
they were considered artefacts. Volumehyper was acquired
by adding the volumes of all hyper-intense pixels. The
number of objects per image set, which represent different
lesions, was calculated.

Relative signal intensities of STIR hyper-intense pixels
All hyper-intense pixels were normalized to the mean
signal intensity of normal bone marrow [11]. The
relative signal intensities of STIR hyper-intense pixels
(SRelHyper) were calculated according to Eq. 1.

SRelHyper ¼ Shyper−
Pn

i¼1 Sbone;i
n

! "
=

Pn
i¼1 Sbone;i

n
ð1Þ

where Shyper is the signal intensity value of the respect-
ive hyper-intense pixel, Sbone is the signal intensity of the
pixel included in the reference normal bone marrow
ROI and n represents the number of pixels in the refer-
ence normal bone marrow ROI [11]. The mean (SRelHy-
per, mean), the median (SRelHyper, median), 75-percentile
(SRelHyper, 75perc) and 90-percentile (SRelHyper, 90perc) of
SRelHyper were calculated for all image sets.

Statistical analysis
Spearman’s rank-order correlation between SPARCC
scores and volumehyper, SRelHyper, mean, number of objects
per image set and hs-CRP and was calculated in IBM
SPSS Statistics (IBM SPSS Statistics for Macintosh,
Version 22.0).
Linear mixed-effects models (LMM) [16] were built in

R 3.1.1 using the function lme from the ‘nlme’ package
[17] employing the method of restricted maximum like-
lihood. LMM incorporate two types of effects: fixed,
which are systematic and controlled, and random, which
encompass unsystematic differences not accounted for
by the fixed effects, e.g. variation between patients. The
fixed effects are essentially different explanatory
variables or classification factors whose relationship with
the response variable is evaluated simultaneously. LMM

L5

L4

L3

L2

L1

T12

T11
T10

A B

C

D

Fig. 1 Example of placement of circular region of interest (ROI, ≥
200 pixels) at the erector spinae muscles in short-tau inversion recovery
(STIR) MR images of the spine (a) and gluteus maximus muscle in STIR
MR images of the SI joints (c) of psoriatic arthritis patients for
the normalization to signal from muscle tissue. For the selection of
reference normal bone marrow signal as part of thresholding analysis, a
circular ROI (≥ 200 pixels) was placed at a healthy vertebra in one slice of
spinal images (a) and at the center of the first sacral vertebra in one slice
in sacroiliac joint images (c). Example of thresholding of the volume of
short-tau inversion recovery (STIR) hyper-intensity in a STIR MR
image of the spine (b) corresponding to (a), and of sacroiliac
joints (d) corresponding to (c). Vertebrae T10-L5 can be seen in (a) and
(b). Inflammation was detected in T12. Iliac bones and sacrum are
visible in (c) and (d)

Fig. 2 A receiver operating characteristic curve for the spine
(continuous line) and the sacroiliac joints (dashed line) was plotted
in order to define the optimal thresholds (shown in circle)
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models were built for data from both spine and SI joints
separately, including the categorical fixed effects of inter-
vention group (intervention or control), time of scan
(time-point 1, 2 or 3), and MR scanner (machine 1 or 2)
(without interaction terms). The continuous fixed effect
of SPARCC score was also included, while the random
effect was the patient number and the response variables
were volumehyper, SRelHyper, mean, SRelHyper, median, SRelHy-
per, 75perc, SRelHyper, 90perc or the number of objects per
image set from thresholding. The latter were log10
transformed to comply with normality assumptions,
confirmed by visual inspection of residual q-q plots and
histograms.
We calculated sensitivity and specificity of thresh-

olding compared to SPARCC from the proportion of
patients identified with inflammatory lesions. Both for
the spine (N = 85) and the SI joints (N = 95), the cal-
culations were performed per image set including all
the slices in each image set. In addition, for the SI
joints, the calculations were performed per image set
including only the six slices that were chosen for the
SPARCC scoring method (N = 95) and per slice for
the slices that were chosen for the SPARCC scoring
method (N = 570).

Results
SPARCC
For the 85 image sets covering the spine, 60 were
positive for inflammation using the SPARCC scoring
method. For the 95 image sets covering the SI joints,
35 had a positive SPARCC score. Overall, 84 out of
570 slices of the SI joints were given a positive
SPARCC score.
For the image sets with positive SPARCC scores, the

mean score was 10.5 for the spine and 4.3 for the SI
joints. Including all image sets, with positive or zero
SPARCC scores, the mean SPARCC score for the spine
was 7.4 ranging from 0 to 51 out of maximum possible
score 108. The mean SPARCC score for the SI joints is
1.6, ranging from 0 to 17, out of a maximum possible
score of 72.

Thresholding
Thresholding revealed inflammatory lesions in 56 out of
85 image sets of the spine and 25 out of 95 image sets of
the SI joints. In the analysis of SI joints, when including
only the six slices that were chosen with the SPARCC
method, 25 out of 95 image sets were found positive for
the presence of inflammatory lesions. In total, 92 out of
570 slices of the SI joints showed inflammation when
analyzed using thresholding.
For the image sets that had inflammatory lesions,

mean volumehyper was 2.92 cm3 and 2.77 cm3 for the
spine and the SI joints, respectively. Including all image

sets, with or without inflammatory lesions, mean volu-
mehyper was 1.92 cm3, ranging from 0 to 17.86 cm3, in
the spine and 0.73 cm3, ranging from 0 to 19.04 cm3, in
the SI joints.
The mean and the range of volumehyper, SRelHyper, mean,

SRelHyper, median, SRelHyper, 75perc and SRelHyper, 90perc for
the spine and the SI joints using all the slices are pre-
sented in Table 2. Examples of thresholding of the vol-
ume of STIR hyper-intensity in the SI joints and the
spine are presented in Fig. 1.
Volume of short-tau inversion recovery (STIR) hyper-

intense pixels (volumehyper) and measures of lesion rela-
tive signal intensities; mean (SRelHyper, mean), median
(SRelHyper, median), 75-percentile (SRelHyper, 75perc) and
90-percentile (SRelHyper, 90perc) of the relative signal
intensities of STIR hyper-intense pixels for the spine
and the SI joints calculated by thresholding. All
values are given with standard deviations and param-
eter range in brackets.

Statistics
Spearman’s rank-order correlation analysis revealed a
significant positive correlation between SPARCC score
and volumehyper both for the spine (correlation coeffi-
cient: 0.74, p < 0.001) and the SI joints (correlation coef-
ficient: 0.52, p < 0.001). SPARCC score did not correlate
significantly with hs-CRP. Correlation coefficients calcu-
lated by Spearman’s rank-order correlation analysis are
presented in Table 3.
Results from multilevel LMMs to simultaneously

assess the relationship between volumehyper, SRelHyper,
mean, SRelHyper, median, SRelHyper, 75perc, SRelHyper, 90perc or
the number of objects per image set and the fixed effects
of SPARCC score, intervention group, time of scan and
MR scanner are summarized in Table 4. A significant
positive correlation between volumehyper and SPARCC
score was detected for spine (coefficient ± standard
error: 0.11 ± 0.02, p < 0.001,) and SI joints (coefficient ±
standard error: 0.31 ± 0.05, p < 0.001). The intervention
group, time of scan (not shown) and the MR scanner
were determined to not have a significant effect on the
measurements by the thresholding method.

Table 2 Volume of short-tau inversion recovery hyper-intense
pixels and measures of lesion relative signal intensities

Spine (N = 58) SI joints (N = 36)

volumehyper (cm
3) 2.92 ± 3.86 (0.04–17.86) 2.77 ± 4.18 (0.03–19.04)

SRelHyper, mean 1.69 ± 0.12 (1.41–2.01) 0.66 ± 0.13 (0.45–0.92)

SRelHyper, median 1.72 ± 0.23 (1.31–2.26) 0.63 ± 0.23 (0.38–1.07)

SRelHyper, 75perc 2.09 ± 0.16 (1.79–2.26) 0.83 ± 0.23 (0.47–1.07)

SRelHyper, 90perc 2.24 ± 0.04 (2.05–2.26) 1.00 ± 0.14 (0.57–1.07)

STIR short-tau inversion recovery, SI sacroiliac, volumehyper volume of STIR
hyper-intensity, SRelHyper relative signal intensities of STIR hyper-intense pixels,
75perc 75-percentile, 90perc 95-percentile

Chronaiou et al. BMC Musculoskeletal Disorders  (2017) 18:497 Page 5 of 8



The two methods, SPARCC and thresholding, agreed
on the absence of inflammatory activity in 19 out of 85
image sets of the spine, resulting in a sensitivity of 83%
and a specificity of 76%. For the SI joints, the agreement
was for 53 out of 95 image sets, resulting in a sensitivity
of 51% and a specificity of 88%. When comparing the
scores of each slice from the whole image set of SI
joints, the two methods agreed on 434 slices out of 570
showing no inflammation, resulting in a sensitivity of
48% and a specificity of 89%.
Spearman’s rank-order correlation coefficients and p-

values for the relationship of thresholding-derived metrics
(volume, number of lesions and high-sensitivity C-reactive
protein to spondyloarthritis research consortium of Canada.
Linear mixed-effects model (LMM) coefficients and p-

values for the relationship of thresholding-derived metrics
and number of lesions to spondyloarthritis research
consortium of Canada (SPARCC) scores and MR scanner
(scanner 1 or 2). The coefficients indicate how much volu-
mehyper, SRelHyper, mean, SRelHyper, median, SRelHyper, 75perc

and number of lesions increase (positive coefficient) or de-
crease (negative coefficient) for every unit increase in the
SPARCC score.

Discussion
This study evaluates thresholding as a computer-aided
method for quantification of subtle bone marrow

inflammation in the spine and SI joints of PsA patients.
Thresholding-derived metrics (volumehyper, SRelHyper, mean,
SRelHyper, median, SRelHyper, 75perc, SRelHyper, 90perc and
number of objects per image set) correlate significantly
with SPARCC scores both for the spine and the SI joints.
However, the agreement on absence or presence of in-
flammation between the two methods was higher for the
spine than for the SI joints, indicating that the proposed
method of analysis performs better in the former. All
metrics (mean, median, 75th-percentile and 90th-
percentile) for the relative signal intensity of the hyper--
intense lesions correlate with the same level of signifi-
cance with the SPARCC scores. We therefore suggest
that the SRelHyper, mean can be used as a standard metric
for relative signal hyper-intensity of inflammatory
lesions.
To validate the use of the proposed method, we com-

pared thresholding data to SPARCC scores for 85 image
sets of the spine and 95 image sets of the SI joints from
41 PsA patients. In addition, for the 570 slices from SI
joints, a slice-by-slice comparison was performed on re-
sults from the two methods. There was some disagree-
ment between the two methods. The lesions that
thresholding failed to detect in the spine (N = 10) had a
mean SPARCC score of 3.8, while correctly identified le-
sions (N = 50) had a mean SPARCC score of 11.8. The
disagreement was bigger for the SI joints, where lesions
that thresholding failed to detect (N = 17) had a mean
SPARCC score of 2.5, while correctly identified lesions
(N = 18) had a mean SPARCC score of 5.9. Sensitivity
and specificity measures show that thresholding analysis
is more accurate in the spine. Spearman’s rank-order
correlation analysis confirms higher correlation for the
spine than the SI joints. Patients included in this study
had little to no inflammation, especially in the SI joints,
which may suggest that the method performs better in
areas with higher inflammatory activity. Additionally, the
examined anatomical structures in the spine are in the
homogeneous image center of all slices, whereas the ex-
amined anatomical structures of the SI joints are more

Table 3 Spearman’s rank-order correlation
SPARCC score

Spine SI joints

Coefficient p-value Coefficient p-value

volumehyper 0.74 < 0.001 0.52 < 0.001

SRelHyper, mean 0.67 < 0.001 0.47 < 0.001

Number of lesions 0.72 < 0.001 0.52 < 0.001

hs-CRP −0.14 0.215 0.091 0.380

SI sacroiliac, SPARCC spondyloarthritis research consortium of Canada, STIR
short-tau inversion recovery, volumehyper volume of STIR hyper-intensity, S
RelHyper relative signal intensities of STIR hyper-intense pixels, hs-CRP high-sensi-
tivity C-reactive protein

Table 4 Results from linear mixed-effects model
Spine SI joints

SPARCC score MR scanner SPARCC score MR scanner

Coefficient p-value p-value Coefficient p-value p-value

volumehyper 0.11 < 0.001 0.467 0.31 < 0.001 0.804

SRelHyper, mean 0.09 0.001 0.347 0.25 < 0.001 0.597

SRelHyper, median 0.09 0.001 0.348 0.25 < 0.001 0.596

SRelHyper, 75perc 0.09 0.001 0.338 0.26 < 0.001 0.560

SRelHyper, 90perc 0.09 0.001 0.348 0.26 < 0.001 0.590

Number of lesions 0.13 < 0.001 0.424 0.37 < 0.001 0.672

SI sacroiliac, SPARCC spondyloarthritis research consortium of Canada, STIR short-tau inversion recovery, volumehyper volume of STIR hyper-intensity, SRelHyper relative
signal intensities of STIR hyper-intense pixels, 75perc 75-percentile, 90perc 95-percentile
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distant from the homogeneous image center, and also in
varying distance through slices. This may affect the
homogeneity of the acquired image. Areas that are closer
to the coil appear more hyper-intense, resulting in
slightly different signal intensities through an image.
This issue could have been resolved using appropriate
pre-processing. Anatomical differences may also contrib-
ute to lower lesion detectability in the SI joints.
Additional pre-processing of the SI joint images could
be used to correct for the inhomogeneities and signal in-
tensity differences and improve the performance of
thresholding in the SI joints.
Examinations were acquired using two MR scanners

with different software platforms over the course of a
year. During that time, one of the scanners underwent
software upgrade. This should have no effect in the
results of this study, and LMM also showed that differ-
ent MR scanners used for imaging did not affect the
measurements by the thresholding method.
The thresholding method presented here was first in-

troduced in a previous study [11], where it was used to
measure inflammatory changes in the SI joints of
patients with lower back pain. However, in that study,
the method was not compared to any clinical evaluation
score and its validity was not tested. Additionally, the
method was not tested for different threshold values to
justify for the specific choice of threshold. In our study,
the method is also applied in the spine.
One limitation of the thresholding method is that the

ROIs of the bone marrow in the spine and the SI joints
of the patients were drawn manually, in order to accur-
ately exclude neural structures and blood vessels, but in-
clude possible inflammatory lesions. This presupposes a
basic knowledge of the anatomy of SI joints. Fully
automated methods for the selection of the sacrum and
iliac bone ROIs should be explored. A fully automated
method for the localization and segmentation of the
vertebral units has been used in a previous study as part
of a semi-automated framework for comparative
visualization of inflammatory bone marrow lesions in
MR images of the spine [18]. Combining fully automated
segmentation of the spine and thresholding in such a
setting could potentially assist in assessing radiological
progression of patients with inflammatory lesions in the
spine. Time required for SPARCC scoring depends on
the experience of the reader, but also on how many
lesions a patient has. A trained reader will need approxi-
mately 10 min for a patient without lesions and 30–
40 min for a patient with many lesions. Time required
for manual segmentation of bone marrow of a single
image set is approximately 10 min. However, a fully au-
tomated segmentation of inflammation will reduce the
reading time significantly and make thresholding a
quantitative method feasible in the clinic.

A disadvantage of intensity-based methods for image
analysis, such as thresholding, is that these methods are
not able to differentiate between different pathologies
that lead to increased signal intensities in the images,
which is something a trained human can do easily. How-
ever, SPARCC scoring is used in patients who already
have a diagnosis with a pre-investigative probability of
having inflammation due to the primary diagnosis
(psoriatic arthritis, spondyloarthritis, ankylosing
spondylitis). Other approaches, including textural ana-
lysis, may be more beneficial in this instance. Another
limitation of this study is the absence of a control group.
Overall, automatic thresholding is a novel method

which performs relatively well at detecting inflammatory
lesions in the spine of PsA patients, but more poorly in
the SI joints. In addition to the presence or absence of
inflammation, it provides volumetric information and al-
lows localization of the lesions. The implementation of
the method is generic enough to allow for application in
the quantification of bone marrow inflammation in
other types of spondyloarthritis. Fully automated imple-
mentation of the thresholding method should be
explored.

Conclusion
Thresholding allows quantification of subtle bone mar-
row inflammation in PsA patients with low SPARCC
scores for inflammatory activity. The significant correl-
ation for low inflammatory scores suggests that this
method can provide reliable and sensitive quantitative
measures for the presence of subtle inflammation in
bone marrow. With further studies, automatic segmenta-
tion and technique optimization, it is possible that
automatic thresholding may eventually be an alternative
or supplement to SPARCC scoring.
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Abstract 22 

Introduction  23 

High intensity interval training (HIIT) has shown to benefit patients with psoriatic arthritis 24 

(PsA). However, MR imaging has uncovered bone marrow edema (BME) in healthy volunteers 25 

after vigorous exercise. The purpose of this study was to investigate MR images of the spine 26 

of PsA patients for changes in BME after HIIT. 27 

Materials and Methods  28 

PsA patients went through 11 weeks of HIIT (N=19) or no change in physical exercise habits 29 

(N=20). We acquired scores for joint affection and pain and STIR and T1-weighted MR images 30 

of the spine at both timepoints. MR images were evaluated for BME by a trained radiologist, 31 

by SpondyloArthritis Research Consortium of Canada (SPARCC) scoring, and by extraction 32 

of textural features.  33 

Results 34 

No significant changes of BME were detected in MR images of the spine after HIIT. This was 35 

consistent for all three image evaluations. Disease activity score in 44 joints (DAS44) and four 36 

textural features of PsA lesions decreased for both groups, but the textural features changes 37 

were not significant after Bonferroni correction. 38 

Conclusion 39 

BME in spine was not changed after HIIT, supporting that HIIT is safe for PsA patients. 40 

Texture analysis of MR images could be more sensitive to changes in BME than radiological 41 

evaluation and SPARCC scoring.    42 
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Introduction 43 

Psoriatic Arthritis (PsA) is a chronic inflammatory joint disease associated with skin psoriasis  44 

that can manifest in the axial skeleton and peripheral joints, and can include dactylitis and 45 

enthesitis [1]. The prevalence of PsA range from 20-670 per 100,000 population [2, 3]. 46 

Between 30 -50% of PsA patients will develop axial PsA, involving the spine or the sacroiliac 47 

joints [4].  48 

 49 

Physical exercise gives beneficial effects on inflammation, joint damage and symptoms [5]¸ 50 

and is recommended as supplementary treatment to patients with arthritis [6]. It has been 51 

suggested that physical exercise, and in particular high intensity interval training (HIIT), can 52 

have anti-inflammatory effect [7, 8]. It is however also possible that vigorous exercise can 53 

increase the disease burden, as mechanical strain drives both entheseal inflammation and new 54 

bone formation and may contribute to further development of spondyloarthritis [9, 10]. To our 55 

knowledge, there are no reported studies of PsA patients under HIIT with imaging of the axial 56 

skeleton. It has thus not been explored if vigorous exercise decreases or increases the disease 57 

burden in terms of BME in PsA patients.  58 

 59 

Short and long-term beneficial effects of HIIT on disease activity, patient disease perception 60 

and the risk of cardiovascular disease were recently reported in PsA patients [11, 12]. Exercise 61 

led to reduced fatigue and cardiovascular risk factor in terms of truncal fat and maximal oxygen 62 

uptake, whereas scores for joint affection and pain were compatible with the control group. 63 

This finding is important, as it shows that HIIT have no negative impact on the disease burden 64 

and can be recommended for PsA patients [11, 12]. A sub-group of these patients were also 65 

examined by MR imaging before and after intervention. MR imaging can portray inflammation 66 

in the structures involved [13] and evaluate inflammatory changes with higher sensitivity than 67 
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clinical examination [14]. Short tau inversion recovery (STIR) is the recommended MR 68 

imaging sequence for axial PsA [15, 16], presenting edematous lesions with hyperintense 69 

signals [17]. Radiological assessment of edematous lesions is based on hyperintensity in STIR 70 

MR images, located in two or more sites and/or two or more slices [18]. Lesions can be 71 

confirmed as hypointense signals in T1-weighted MR images. A semi-quantitative scoring 72 

system of disease activity can be highly sensitive to changes in the spine, like the 73 

Spondyloarthritis Research Consortium of Canada (SPARCC) scoring system [16].  74 

 75 

It is further possible to characterize disease through quantitative image features, also diseases 76 

that are difficult to identify in the MR image by human vision alone. Spatial variations of grey-77 

level intensity in an image are perceived by a human observer as texture [19]. Texture analysis 78 

allows the quantification of these spatial variations by computing a set of metrics, called 79 

textural features, from the distribution of pixel grey-level intensities in an image [20], and has 80 

been used in studies of BME [21-26]. Image gradient measures the magnitude of directional 81 

grey-level intensity variations in an image [27]. Spatial position, variation and directionality of 82 

the signal intensities inside an image could provide more detailed image characteristics than 83 

observer-based methods for MR image evaluation, and thus be more sensitive to subtle changes 84 

[23].  85 

 86 

The aim of this study was to assess whether HIIT in PsA patients led to detectable changes in 87 

the axial skeleton, by investigating MR images of the spine for BME. Additionally, we have 88 

explored the potential of textural features to detect BME changes. 89 
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Materials and Methods 90 

Patient cohort 91 

The presented study is part of a randomized controlled trial with HIIT as intervention, 92 

conducted at St. Olavs hospital and NTNU–Norwegian University of Science and Technology, 93 

Trondheim, Norway from 2013 to 2015 [11, 12]. Participants fulfilled the ClASsification for 94 

Psoriatic ARthritis (CASPAR) criteria and were between 18 and 65 years. The intervention 95 

group (N=19) performed HIIT three times per week for 11 weeks, whereas the control group 96 

(N=20) did no change in pre-study physical exercise habits [12]. All patients signed informed 97 

consent and the Norwegian Regional Committee for Medical and Health Research Ethics 98 

approved the study (Trial registration: NCT02995460).  99 

 100 

Disease activity scores 101 

Scores for joint affection and pain were assessed at baseline and after 11 weeks as previously 102 

described [12], and included patient global assessment (PGA), high sensitivity C-reactive 103 

protein (hs-CRP), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and Disease 104 

Activity Score in 44 joints (DAS44).  105 

 106 

MR image acquisition 107 

The MR imaging was performed of the spine in two stations using an inversion recovery-based 108 

sequence (STIR) and T1-weighted turbo spin-echo (TSE) sequence based on a standardized 109 

protocol [16] as previously described [28]. For two patients, both in the HIIT group, the second 110 

MR imaging was not performed, and both patients were excluded from evaluation by 111 

radiologist and SPARCC scoring, leaving MR images from 37 patients for the further analyses. 112 



6 
 

For 10 of the participants, the MR imaging protocol deviated with respect to spatial resolution 113 

in the first (N=1) or second MR imaging (N=9), and these images were excluded from analysis 114 

by textural features.  115 

 116 

Image analysis 117 

Radiological evaluation  118 

The MR images were evaluated by a radiologist for BME at both time-points. The radiologist 119 

was blinded with respect to intervention. BME was identified by hyperintense signals in STIR 120 

MR images, supported by hypointense signals in T1-weighted MR images. To be considered 121 

positive for BME, the hyperintense signal should be located in two or more sites and/or two or 122 

more slices [18, 29]. Images were also assessed with respect to change from first to second MR 123 

imaging; categorized to stable, increased, or reduced BME.  124 

  125 

SPARCC scoring 126 

The STIR MR images at both time-points were scored by a trained rheumatologist as 127 

previously described [16]. In brief, the six most abnormal disco-vertebral levels on the STIR 128 

sequence are selected. Three consecutive sagittal slices, that represent the most abnormal slices 129 

for each level, are chosen for scoring at that level. The total maximum SPARCC score is 108 130 

for all six levels of the spine. The SPARCC scores were also categorized with respect to change 131 

from first to second MR imaging; stable, increased, or reduced SPARCC score.  132 

 133 

Image pre-processing and textural feature extraction 134 

Vertebral bone marrow, excluding vascular and neural structures, were manually segmented 135 

using 3D Slicer (MIT Artificial Intelligence Lab, USA) in MR images from all patients (N=37), 136 
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comprising images from both time-points (N=27), only first (N=9) or only last (N=1) time-137 

point. Images of the spinal column were pre-processed using a customized intensity adjustment 138 

procedure based on the nonparametric nonuniform intensity normalization (N4) bias field 139 

correction algorithm [30]. Pixel intensity values were normalized by matching the histogram 140 

extracted from the spinal column to the histogram of a randomly selected atlas image. Image 141 

noise was reduced using an in-house implementation of anisotropic (Perona-Malik) diffusion 142 

smoothing filter (iterations = 15, an integration constant = 1/7, time step = 0.01, conductance 143 

= 1.0) [31]. BME in all image sets was manually segmented using 3D Slicer. The segments 144 

were verified by a trained radiologist. 145 

 146 

Three pixel-wise types of image textural features were calculated; seven intensity features, 10 147 

gradient features and four grey level co-occurrence matrix (GLCM) textural features, all 148 

described in Supplementary Table 1. Intensity features were the grey-level intensity value of 149 

the central pixel, and the mean, the median, the standard deviation, the minimum, the maximum 150 

and the semi-interquartile range of the grey-level intensity values. For the extraction of gradient 151 

features, 2-dimensional directional gradients for x-axis (!") and y-axis (!#) were calculated 152 

using a Sobel gradient operator in the imgradientxy function in MATLAB (MathWorks, 153 

Natick, MA, USA). GLCM features were extracted using the graycomatrix and graycoprops 154 

functions in MATLAB (MathWorks, Natick, MA, USA) at four orientations (0o, 45o, 90o and 155 

135o) with a distance of 1 pixel. The resulting GLCM feature was the mean of the GLCM 156 

feature values in these orientations. Feature maps were created for each feature using a sliding 157 

window implementation. In this approach, an orthogonal 3-by-3 box/kernel “slides” in the 158 

region of interest, in this case the segmented bone marrow. The features were calculated in 159 

each orthogonal kernel position and correspond to the central pixel of the box.  160 

 161 
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Statistical analysis 162 

Changes in patient characteristics (PGA, hs-CRP, BASDAI, DAS44, and SPARCC score) 163 

before and after intervention were analyzed using Wilcoxon signed-rank test. Changes in BME 164 

status and SPARCC score were categorized, and differences between HIIT and control group 165 

were analyzed by Fisher’s exact probability test. Analyses were performed in SPSS (IBM SPSS 166 

Statistics v 26), and p-values < 0.05 were considered statistically significant.  167 

 168 

Differences in feature values from voxels in bone marrow edema and healthy voxels were 169 

assessed by linear mixed models. We used patient number and scan as random effects, whether 170 

the voxel is healthy or pathological as fixed effect, and textural feature as response variable. 171 

Further, linear mixed models were used to assess changes between first and second time point 172 

and if these changes were different between the HIIT and control groups. For this analysis, 173 

average feature values per individual per time point were used as response variables, as it was 174 

not possible to match lesions between the two time points. Fixed effects were time (whether 175 

the scan was a baseline or 11 weeks scan), intervention (whether the patient was in the HIIT or 176 

the control group) and the interaction term between time and intervention (time*intervention), 177 

and patient number was random effect. The time variable was reference coded to the baseline 178 

measurement, and the intervention variable was sum coded.  179 

 180 

Bonferroni correction was used to correct p-values for multiple comparisons from all three 181 

linear mixed-models. The statistical level of significance was set to p<0.05. Statistical analyses 182 

were performed in in RStudio: Integrated Development for R (RStudio, PBC, Boston, MA) 183 

and Matlab R2019A. 184 
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Results 185 

Patient cohort 186 

Demographic characteristics of study participants in control and HIIT groups, and their scores 187 

for joint affection and pain at baseline and after 11 weeks are shown in Table 1. BASDAI 188 

decreased for the HIIT group and DAS44 decreased for both groups after 11 weeks. 189 

 190 

Table 1. Description of study participants.  191 

Demographic characteristics of study participants in high intensity interval training (HIIT) and 192 

control groups, and their scores for joint affection and pain at baseline and after 11 weeks [11]. 193 

Mean values of scores for joint affection and pain within groups at baseline and 11 weeks were 194 

compared by Wilcoxon signed-rank test.    195 
a PGA: Patient Global Assessment, range from 0 to 100. b hs-CRP: high-sensitive C-reactive protein. 196 
c BASDAI: Bath Ankylosing Spondylitis Disease Activity Index, range from 0 to 10. d DAS44: disease 197 
activity score in 44 joints, range from 0.2 to 9.9. 198 

 199 

Image analysis 200 

Radiological evaluation  201 

Examples of acquired MR images are shown in Figure 1, demonstrating the PsA lesions of two 202 

patients with low and high disease burden. MR images of the spine from 21 of 37 patients were 203 

found negative with respect to BME in the radiological evaluation at both timepoints. Sixteen 204 

patients (43%) were identified with BME, consistent with axial manifestation of PsA. The 205 

 HIIT  Controls  
 Baseline 11 weeks p Baseline 11 weeks p 
Number, n 19 - 20 - 
Men, n (%) 4 (21) - 8 (40) - 
Women, n (%) 15 (79) - 12 (60) - 
Years, median (range) 52 (39 – 64) - 45 (23 – 64) - 
PGAa, median (range) 50.0 (1.0–95.0) 43.0 (3.0– 81.0) 0.465 46.0 (6-85) 35.5 (0-89) 0.227 
hs-CRPb mg/L, median (range) 1.8 (0.4-24.0) 2.1 (0.5-10.2) 0.096 2.2 (0.1-28.7) 2.2 (0.3-22.0) 0.571 
BASDAIc, median (range) 4.0 (0.4-8.3) 3.2 (0.5-6.6) 0.049 3.7 (0.3-6.7) 2.6 (0.2-7.7) 0.133 
DAS44d, median (range) 2.3 (0.8-3.3) 1.9 (0.5-2.4) 0.001 2.3 (0.6-3.1) 1.7 (0.6-3.0) 0.007 
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radiologically manifested axial PsA was considered mild to moderate for both groups, and 206 

disease burden in terms of BME was stable. The findings are summarized in Table 2. The 207 

number of patients with changes of BME after 11 weeks was not significantly different between 208 

the HIIT and control group (p-value: 0.50). 209 

 210 

Figure 1. MR image examples. Sagittal STIR MR images of upper spine in two patients. 211 

Image A (baseline) and B (11 weeks) are of a patient with low SPARCC scores (4 and 2, 212 

respectively). The images show the spine from the second cervical vertebrae (C2) to thoracic 213 

vertebrae 12 (TH12). Segmented region in red in B show minor BME in corner of TH10. Image 214 

C (baseline) and D (11 weeks) are of patient with high SPARCC scores (39 and 50, 215 

respectively). The images show the spine from the second cervical vertebrae (C2) to thoracic 216 

vertebrae 11 (TH11), and segmented regions in red in D show BME in C5 to C7, and in TH5 217 

to TH9. 218 

 219 

Table 2.  Bone marrow edema by radiological evaluation of MR images. 220 

 221 

 222 

 223 

 224 

Results from radiological evaluation for BME in STIR and T1-weighted MR images of the 225 

participants in high intensity interval training (HIIT) and control groups at baseline and after 226 

11 weeks. Number of participants with detectable changes after 11 weeks were not significantly 227 

different for the two groups (Fisher’s Exact Probability Test p-value: 0.50). 228 

 229 

 HIIT Controls 
   
 Baseline 11 weeks Baseline 11 weeks 
Number, n 17 20 
BME detected, n (%) 9 (53) 9 (53) 5 (25) 5 (25) 
No change, n (%) 17 (100) 17 (85) 
Increased BME, n (%)  0 (0) 1 (5) 
Reduced BME, n (%) 0 (0) 2 (10) 
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SPARCC scoring 230 

MR images for 11 of the 37 patients were found negative with respect to BME by the SPARCC 231 

scoring at both time-points. 23 of the patients (62%) had a positive SPARCC score at both 232 

timepoints. Participants in this study had a median baseline SPARCC score of 4.0 (Table 3). 233 

The number of patients with changes in SPARCC scores after 11 weeks was not significantly 234 

different between the HIIT and control group (p-value: 1). 235 

 236 

The radiological evaluation and SPARCC scoring were consistent for 49 of the MR images at 237 

baseline and 11 weeks. Out of these, 23 were found negative and 26 were found positive for 238 

BME by both methods. 23 MR images with a positive SPARCC score were judged to be BME 239 

negative by the radiological evaluation. Two MR images with a SPARCC score of 0 were 240 

identified as BME positive in the radiological evaluation. SPARCC scoring (Table 3) identified 241 

changes from baseline to 11 weeks in more patients than the radiological evaluation for BME 242 

(Table 2). The changes in BME identified by radiological evaluation for three patients were in 243 

agreement with changes in SPARCC scores for these patients.  244 

 245 

Table 3. Bone marrow edema by SPARCC scoring of MR images. 246 

 HIIT Controls 
 Baseline 11 weeks Baseline 11 weeks 
Number, n 17 20 
SPARCC score > 0, n (%) 13 (72) 13 (72) 13 (65) 10 (50) 
SPARCC score, median (max value) 4.0 (39) 5.0 (50) 4.0 (36) 0.5 (20) 
No change in SPARCC score, n (%) 5 (29) 9 (45) 
Increased SPARCC score, n (%) 5 (29) 2 (10) 
Reduced SPARCC score, n (%) 7 (41) 9 (45) 
No change by MIC, n (%) 14 (82) 16 (80) 
Increased SPARCC by MIC, n (%) 1 (6) 1 (5) 
Reduced SPARCC by MIC, n (%) 2 (12) 3 (15) 

Results from evaluation of STIR MR images of the participants in high intensity interval 247 

training (HIIT) and controls groups at baseline and after 11 weeks by SPARCC scoring [16]. 248 
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Changes in SPARCC scores are given for absolute values, and by using a threshold of SPARCC 249 

score of five according to minimally important changes (MIC) [32]. Number of participants 250 

with detectable changes after 11 weeks were not significantly different for the two groups 251 

(Fisher’s Exact Probability Test p-value: 1). 252 

a SPARCC: SpondyloArthritis Research Consortium of Canada, score range from 0 to 108. 253 

 254 

 255 

Textural features 256 

Mean and standard deviation of features extracted from MR images of pathological (BME 257 

lesions) and healthy voxels are presented in Table 4. The mean values for all but one (g7) 258 

extracted features were significantly different in pathological compared to healthy voxels. With 259 

the exception for one of the GLCM features (f1), all mean values for textural features were 260 

higher in pathological than healthy voxels. Mean values for four textural features (g6, g10, f3 261 

and f4) of pathological voxels were reduced when observing the whole cohort after 11 weeks 262 

(Table 5). These changes were not significant after Bonferroni-correction for multiple 263 

hypothesis testing. We observed no significant differences in the changes from baseline to 264 

week 11 in textural features of PsA lesions between the HIIT group and control group.  265 

 266 

  267 
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Table 4. Textural features of voxels in bone marrow edema and healthy voxels.  268 

 Voxels with BME 
(N = 3289) 

Healthy voxels  
(N = 3289) 

  

 
Mean SD Mean SD p-value q-value  

i1 159.8 21.0 117.1 21.7 <0.001 <0.001 
i2 150.1 18.0 116.6 16.9 <0.001 <0.001 
i3 153.2 19.0 117.5 16.5 <0.001 <0.001 
i4 20.6 10.2 13.4 7.3 <0.001 <0.001 
i5 104.3 34.2 87.8 29.8 <0.001 <0.001 
i6 178.2 18.4 139.9 16.7 <0.001 <0.001 
i7 14.1 8.2 8.6 5.2 <0.001 <0.001 
g1 3219.6 1571.4 2231.4 1188.8 <0.001 <0.001 
g2 2557.3 1250.6 1777.9 948.2 <0.001 <0.001 
g3 128.8 62.9 89.3 47.6 <0.001 <0.001 
g4 102.3 50.0 71.1 38.0 <0.001 <0.001 
g5 78.1 43.3 51.4 31.5 <0.001 <0.001 
g6 61.5 34.0 40.9 25.1 <0.001 <0.001 
g7 115.5 59.9 80.4 43.9 <0.001 <0.001 
g8 20.3 17.8 15.9 12.8 0.062 1 
g9 292.2 150.5 201.0 115.1 <0.001 <0.001 
g10 56.3 34.4 36.2 23.6 <0.001 <0.001 
f1 4.52 1.7 5.31 1.91 <0.001 <0.001 
f2 0.52 0.23 0.32 0.22 <0.001 <0.001 
f3 0.13 0.09 0.09 0.03 <0.001 <0.001 
f4 0.56 0.08 0.51 0.06 <0.001 <0.001 

Mean values and standard deviation (SD) of features, extracted from MR images of voxels in 269 

bone marrow edema (BME) and healthy voxels. Differences in feature values for pathological 270 

and healthy voxels were examined using linear mixed-effects models. p-values and Bonferroni 271 

corrected p-values (q-values) are reported.  272 
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Table 5. Textural features of voxels in bone marrow edema at baseline and 11 weeks.  273 

 Baseline 11 weeks Changes from 
baseline to week 11 

Differences 
between HIIT 

and control  
Mean SD Mean SD p-value q-value p-value 

i1 160.5 22.6 159.2 19.7 0.660 1 0,912 
i2 149.7 19.4 150.4 16.8 0.592 1 0,986 
i3 153.6 20.9 152.9 17.4 0.666 1 0,873 
i4 21.6 10.9 19.8 9.5 0.531 1 0,526 
i5 99.2 37.9 108.2 30.4 0.100 1 0,984 
i6 177.7 17.6 178.6 18.9 0.488 1 0,908 
i7 14.5 8.9 13.8 7.6 0.798 1 0,858 
g1 3387.5 1708.0 3089.4 1443.7 0.633 1 0,672 
g2 2679.1 1344.4 2462.7 1164.3 0.592 1 0,620 
g3 135.5 68.3 123.6 57.7 0.633 1 0,672 
g4 107.2 53.8 98.5 46.6 0.592 1 0,620 
g5 85.3 47.4 72.4 39.0 0.073 1 0,348 
g6 66.7 36.6 57.4 31.2 0.049 1 0,270 
g7 119.6 66.2 112.3 54.4 0.868 1 0,8070 
g8 20.2 19.5 20.3 16.3 0.426 1 0,845 
g9 316.3 164.4 273.6 135.9 0.243 1 0,421 
g10 60.5 37.8 53.0 31.1 0.047 0.980 0,820 
f1 4.6 1.8 4.4 1.6 0.945 1 0,784 
f2 0.48 0.24 0.54 0.22 0.088 1 0,573 
f3 0.14 0.11 0.11 0.06 0.026 0.555 0,282 
f4 0.57 0.09 0.55 0.07 0.030 0.620 0,429 

Mean values and standard deviation (SD) of pixel-wise textural features of BME in STIR MR 274 

images of psoriatic arthritis patients. Changes in feature values from the baseline to the 11 275 

weeks scan for the full cohort, and differences in changes between the HIIT and control groups, 276 

were investigated using a linear mixed effect model. p-values and Bonferroni corrected p-277 

values (q-values) are reported. 278 

Discussion 279 

No significant changes were observed in MR images of the spine after HIIT training for 11 280 

weeks. This finding was consistent for radiological evaluation, SPARCC scoring and textural 281 

features of MR images. Values for 20 out of 21 textural features were significantly different in 282 

voxels of BME compared to voxels of healthy bone marrow. No textural features of PsA lesions 283 
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were significantly different when comparing changes in values after 11 weeks between the 284 

HIIT and control groups.  285 

 286 

43% and 62% of study participants were found positive for BME by radiological evaluation 287 

and SPARCC scoring, respectively (Table 2). The fraction of BME positive participants by 288 

SPARCC scoring is above the reported 30-50% of PsA patients with axial involvement [4]. 289 

More positive findings by SPARCC scoring than by the ASAS criteria has been reported 290 

previously [33]. The difference of BME positive participants between the two methods is 291 

probably caused by different readers and principal differences in the methods. Standardized 292 

methods for scoring of axial spondyloarthritis (axSpA) are subject to some variation between 293 

readers [34]. Images of little active inflammation is more subject to low inter-reader 294 

correlation, and the mild to moderate disease burden in the cohort of this study is thus suspected 295 

to contribute to the difference of the two methods. Both methods rely on hyperintensity in STIR 296 

images, where edema related to inflammation can be detected as a bright signal on a dark 297 

background in subchondral bone marrow [35]. The use of T1-weighted images to support the 298 

radiological evaluation is prone to rejection of positive findings in STIR images, which may 299 

explain fewer positive cases by the radiological evaluation. The radiological evaluation 300 

identified changes in BME from baseline to week 11 for three patients, which agreed with 301 

higher and lower SPARCC scores for these patients. SPARCC scoring identified changes from 302 

baseline to week 11 for more patients, but in general of minor magnitude. Applying a SPARCC 303 

score threshold of five for minimally important change [32] reduced number of patients with 304 

changes from baseline to week 11 from 23 to seven.  305 

 306 

Quantitative methods for analysis of STIR MR images have been proven to discriminate 307 

between active therapy and placebo after 12 weeks of treatment in clinical trials of ankylosing 308 
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spondylitis [36, 37]. Changes occurring in the spine due to the HIIT should thus be detectable 309 

with the current MR imaging protocol and methods for image analysis. MR imaging has 310 

previously identified BME in healthy individuals and in athletes, suggesting that mechanical 311 

strain contribute to BME [33, 38]. Two studies contradict that HIIT may increase disease 312 

burden. For this cohort of PsA patients, it has been shown that HIIT have beneficial effects on 313 

fatigue and cardiac risk factors, without increased joint affection and pain [11, 12]. It has also 314 

been shown that Ankylosing Spondylitis Disease Activity Score (ASDAS) and BASDAI were 315 

significantly reduced after 3 months of HIIT in patients with axSpA [8]. Our current study 316 

showed no significant changes in BME in the spine from HIIT, by radiological evaluation, 317 

SPARCC scoring or texture analysis of MR images (Table 2 – 5), which supports that HIIT is 318 

safe to recommend to patients with PsA. 319 

 320 

Mean values of textural features were different in voxels from BME compared to voxels from 321 

healthy bone marrow (Table 4). These observed differences are consistent with a previous 322 

study, where textural features of MR images have been applied in machine learning to classify 323 

active inflammation in sacroiliac joints [24]. Choice of textural features are also important for 324 

successful tissue discrimination [26]. We surveyed intensity, gradient and GLCM textural 325 

features, which partly has been utilized in other studies with classification of BME [23, 25, 326 

39]. These studies also included histogram and run-length matrix features. In studies of 327 

osteoarthiritis in the knee [23, 40, 41], most of texture, histogram and run-length matrix 328 

features were all significantly different between the patient groups. When discriminating the 329 

post-radiation lesions edema, fatty conversion and hemorrhage, Romanos et al. found that 330 

GLCM textural features comprised four out of five features in the optimal design of the 331 

classification scheme [39]. Classification of sacroiliitis based on feature extraction has been 332 

demonstrated, based on 203 extracted image features [24]. The features maximum pixel value 333 
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and Haar wavelet from LH on level 2 were important to discriminate instances. The high -334 

intensity gray level in inflammation is a plausible cause for the impact of maximum pixel value 335 

for classification of sacroiliitis. Quantitative textural analysis has also been suggested to detect 336 

bone structure changes due to exercise [42, 43]. However, findings in these studies are not 337 

directly comparable to textural features of BME.  338 

 339 

There was no detectable effect of HIIT in the textural features from MR images (Table 5). This 340 

is in accordance with the radiological evaluation and SPARCC scoring of the MR images. 341 

However, four textural features were significantly decreased for the whole cohort (before 342 

Bonferroni correction). These changes in values for textural features in voxels of BME towards 343 

values of voxels in healthy bone marrow are similar to the reduction in DAS44 for both HIIT 344 

and control groups (Table 1). Participants in both groups thus experienced a measurable 345 

reduction in disease burden over the 11 weeks, as previously described [11]. This finding 346 

indicates that textural features could be a more sensitive method to detect changes in BME than 347 

methods based on visual inspection of images. DAS44 is a subjective measure of disease 348 

burden, and the changes in textural features may be accidental. Further studies that investigate 349 

the correlation of textural features with disease activity and include more patients with axial 350 

PsA are necessary.  351 

 352 

Limitations of this study include the small disease burden in the included patients and few 353 

patients with manifested PsA in the spine. A future longitudinal study including treatment 354 

follow-up, in a larger cohort with a larger disease burden, would further enable assessment of 355 

the methods sensitivity to change, and the potential for classification based on textural features 356 

It has previously been reported beneficial effects of HIIT in this patient cohort, with increased 357 

VO2max, reduced truncal fat, and less fatigue [11, 12]. Importantly, joint affection and pain 358 
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did not differ from the control group. The negative findings also in MR images strongly 359 

indicate no structural changes. The evidence of HIIT being safe to conduct for patients with 360 

PsA is thus stronger.  361 

 362 

MR imaging showed that 11 weeks of HIIT in PsA patients led to no changes in spinal bone 363 

marrow edema, supporting that HIIT is safe for these patients. This study indicate that texture 364 

analysis of spinal MR images could be more sensitive to changes in BME than radiological 365 

evaluation and SPARCC scoring.    366 
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Feasibility of contrast-enhanced MRI
derived textural features to predict
overall survival in locally advanced
breast cancer
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Abstract
Background: The prognosis for women with locally advanced breast cancer (LABC) is poor and there is a need for
better treatment stratification. Gray-level co-occurrence matrix (GLCM) texture analysis of magnetic resonance (MR)
images has been shown to predict pathological response and could become useful in stratifying patients to more
targeted treatments.
Purpose: To evaluate the ability of GLCM textural features obtained before neoadjuvant chemotherapy to predict
overall survival (OS) seven years after diagnosis of patients with LABC.
Material and Methods: This retrospective study includes data from 55 patients with LABC. GLCM textural features
were extracted from segmented tumors in pre-treatment dynamic contrast-enhanced 3-T MR images. Prediction of OS
by GLCM textural features was assessed and compared to predictions using traditional clinical variables.
Results: Linear mixed-effect models showed significant differences in five GLCM features (f1, f2, f5, f10, f11) between
survivors and non-survivors. Using discriminant analysis for prediction of survival, GLCM features from 2min post-
contrast images achieved a classification accuracy of 73% (P< 0.001), whereas traditional prognostic factors resulted in a
classification accuracy of 67% (P¼ 0.005). Using a combination of both yielded the highest classification accuracy (78%,
P< 0.001). Median values for features f1, f2, f10, and f11 provided significantly different survival curves in Kaplan–Meier
analysis.
Conclusion: This study shows a clear association between textural features from post-contrast images obtained before
neoadjuvant chemotherapy and OS seven years after diagnosis. Further studies in larger cohorts should be undertaken
to investigate how this prognostic information can be used to benefit treatment stratification.
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Introduction

Breast cancer is currently expected to constitute one-
third of all new cancer diagnoses in women (1). With
emergence of better and more targeted treatments,
mortality rates for female breast cancer has dropped.
However, prognosis for patients diagnosed with locally
advanced breast cancer (LABC) is still poor (2).
Current treatment for patients with LABC is multi-
modal and includes chemotherapy, irradiation, endo-
crine therapy, and surgical resection. Neoadjuvant
chemotherapy (NAC) is often offered before surgery
to downstage tumors and improve operability, and to
eradicate distant micro-metastases (3). NAC has been
linked with improved long-term prognosis in patients
who achieve pathological complete response (4,5), but
not all patients respond to treatment. Identifying prog-
nostic factors, even before initiating NAC, would be
beneficial for improved treatment stratification and
overall survival (OS) in patients with LABC.

Dynamic contrast-enhanced (DCE) magnetic reso-
nance imaging (MRI) involves the acquisition of a base-
line image and a series of images after the intravenous
administration of a contrast agent. DCE-MRI allows
three-dimensional (3D) visualization of angiogenic prop-
erties in breast cancer, making it a powerful tool for
detecting changes before morphological alterations (6).
Pre-treatment MRI of the breast provides characteristics
of the whole lesion and holds more comprehensive infor-
mation on heterogeneity than biopsies, which represent
only a small proportion of the tumor. DCE-MRI derived
pharmacokinetic model parameters have been used in
evaluating and predicting early response to NAC (7–
12) as well as OS for patients treated with NAC (13).
Another approach is gray-level co-occurrence matrix
(GLCM) texture analysis, which quantifies spatial varia-
tions in gray-level intensity and provides information
about intuitive qualities of the images, such as sharpness
and homogeneity. Texture analysis of DCE-MRI has
been used in breast cancer staging (14–19), for prediction
of invasive disease (20) and monitoring response to treat-
ment (21–25), while a recent study (26) examined the
potential to predict breast cancer survival using textural
features from pre-treatment DCE-MRI along with shape
features and traditional survival factors.

The main aim of this study was to assess the feasibil-
ity of GLCM features for prediction of seven-year OS in
patients with LABC, using the whole DCE time-series.

Material and Methods

Patients and treatment

This retrospective study includes 56 Caucasian women
with LABC treated with NAC, with available status

for OS at least seven years after diagnosis. The study
was approved by the Mid-Norway Regional
Committee for Medical and Health Research Ethics
(2009/112) and written informed consent was obtained
from all patients. Patients were treated at St. Olav’s
University Hospital, Trondheim, Norway in the
period 2007–2010 according to national guidelines
(24). In brief, patients received four cycles of FEC,
followed by four cycles of docetaxel, every three
weeks. After the fourth cycle of FEC, the response to
NAC was evaluated; if a decrease in the tumor longest
diameter "80% was achieved, the cycles of docetaxel
were either cancelled or replaced by two cycles of FEC.
After the last cycle of NAC, patients were appointed
for mastectomy and axillary lymph node dissection
with postoperative treatment according to national
guidelines (24). Histopathological analysis of the
resected breast mass and axillary nodes provided path-
ological response status. The hormone receptor status
of the tumors were determined from the diagnostic
biopsy obtained before onset of NAC, and classified
as estrogen (ER)-positive or progesterone (PgR)-
positive if "10% of the cells stained positive. Human
epidermal growth factor receptor 2 (HER-2) status was
defined as positive by immunohistochemistry (score
3þ) or by in situ hybridization (gene amplification
ratio >2) (24). We followed REporting recommenda-
tions for tumor MARKer (REMARK) prognostic
criteria (27).

Imaging acquisition and processing

Patients were imaged before NAC on a 3-T MR scanner
(Siemens Tim Trio, Erlangen, Germany, software plat-
form VB13A and VB15A) using a dedicated four-
channel bilateral breast coil. The MRI acquisition and
texture analysis are previously described (24). In brief;
T1-weighted DCE-MR images were acquired using a 3D
radiofrequency-spoiled gradient echo sequence. One
baseline image was acquired before administration of
contrast (0.1mmol/kg) (Omniscan, GE Healthcare,
Norway [47 patients]; Magnevist, Bayer Healthcare
Pharmaceuticals, USA [9 patients]). Seven post-
contrast images were acquired with a temporal resolu-
tion of 1min. The imaging protocol changed after scan-
ning 17 patients due to scanner software platform
upgrade, larger flip angle (from 6$ to 10$), and shorter
repetition time (from 3.50 ms to 3.22 ms). All images
were acquired with an in-plane resolution of 1.1mm2

and slice thickness in the range of 1.1–1.5mm. Images
were corrected for motion artefacts (FSL package,
Oxford FMRIB Centre, University of Oxford, Oxford,
UK). The tumors were manually segmented on motion-
corrected subtraction images. Texture analysis was per-
formed on the segmented tumors from all the slices
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containing tumors, from the baseline and post-contrast
images, using two-dimensional GLCMs. Textural fea-
tures from all slices were averaged, resulting in 16
GLCM features (f1 through f16) per patient per image.
Processing of the images is described in detail by Teruel
et al NMR Biomed (24). Representative MR images are
shown in Fig. 1.

Statistical analysis

Linear mixed-effects models (LMMs) were used to
assess time-related changes in individual GLCM fea-
tures related to OS, considering all post-contrast time
points simultaneously. LMMs (28) were built by
random-intercept models (R 3.1.1, function lme;
‘nlme’ package (29)) employing restricted maximum
likelihood. Log-transformed GLCM features (individ-
ually for f1–f16) from post-contrast images were used as
response variables, while patient ID was modelled as a
random effect. Fixed effects included survival status,
log-transformed pre-contrast GLCM features, MR
protocol used (1 or 2), and time-point (minutes post-
contrast). Multiple testing correction was performed
using the Benjamini–Hochberg method.

Multivariate analysis was performed by principal
component analysis (PCA) and orthogonalized partial
least squares discriminant analysis (OPLSDA) (PLS
toolbox version 8.2.1, Eigenvector Research, Inc.,
Seattle, WA, USA) in MATLAB (MathWorks,
Natick, MA, USA). PCA of autoscaled data was
used to assess natural clusters of the data and to
search for possible outliers. The benefit of applying
OPLSDA is its capability to handle datasets with
large numbers of variables compared to samples and
datasets where variables are correlated (collinearity),
typical characteristics of variables derived from texture

analysis. For discriminating survivors from non-
survivors, separate OPLSDA models were built using
GLCM features from the different time-points as input.
Models were also built based on clinical prognostic
factors alone and on the combination of clinical prog-
nostic factors and GLCM features from 2-min post-
contrast images (the time-point which was found to
best discriminate survivors/non-survivors by
OPLSDA based on GLCM features alone). Clinical
prognostic factors included were age at diagnosis, larg-
est tumor diameter (measured by calipers before treat-
ment), TNM stage, ER and PgR receptor status, HER2
status, type (invasive ductal carcinoma, invasive lobu-
lar carcinoma, or other), and histological grade. For all
models, the response variable was seven-year survival
status. GLCM features and clinical prognostic factors
were autoscaled before modelling. Models were vali-
dated by 10-fold cross-validation, where the dataset
was split into 10 random subsets that were each kept
out of model-building and used for validation. The
whole procedure was repeated with 20 iterations, with
average classification results presented. The signifi-
cance of the resulting model was evaluated using per-
mutation testing with 1000 permutations; models with
P values (pperm)< 0.05 were considered significant.
OPLSDA loading plots were colored according to the
variable’s importance in the projection scores (VIP),
reflecting the variable’s influence on the classification.
T-tests were used to assess whether classification accu-
racies of OPLSDA models built using GLCM features
only, clinical variables only, and a combination of both
were significantly different, by comparing the distribu-
tion of classification accuracies from the 20 iterations.

The mean values of the individual GLCM features
at the time-point that best discriminated between sur-
vivors and non-survivors (2min post-contrast) were

Fig. 1. MR image examples. Two minutes post-contrast dynamic contrast-enhanced MR images of (a) a survivor and (b) a non-
survivor of LABC. The tumor region is outlined in red. While the segmentation was performed on the subtracted images, the figure
shows the tumor volume in non-subtracted 2 min post-contrast images for better visualization.

Chronaiou et al. 3



calculated. Differences in GLCM features between
survivors/non-survivors at 2-min post-contrast were
assessed by multiple linear regressions, correcting for
the use of two acquisition sequences for DCE-MRI
(MATLAB, MathWorks, Natick, MA, USA). GLCM
features were log transformed before analysis to con-
form to normality.

Kaplan–Meier analysis (MATLAB, MathWorks,
Natick, MA, USA) was used to depict differences in
OS among patients with GLCM values above or below
median derived from 2min post-contrast images.
GLCM features tested were significant in LMM anal-
ysis and/or important in OPLSDA analysis (VIP score-
> 1.5); angular second moment (f1), contrast (f2),
correlation (f3), inverse difference moment (f5), entropy
(f9), difference variance (f10), difference entropy (f11),
and information measure of correlation 1 (f12). Log-
rank tests were performed to assess if the survival
curves were significantly different.

To assess correlations between GLCM features,
Pearson’s correlation coefficients were calculated. A
heat-map was established to visualize the correlations.

Results

Patient characteristics

One patient with multiple small and diffuse lesions was
an outlier with high residual variation in PCA of
GLCM features was excluded (Suppl. Fig. 1), resulting
in a final cohort of 55 patients. Of these, 38 patients
were survivors, while 17 patients were deceased within
seven years and classified as non-survivors. Table 1
presents clinical characteristics for the patient cohort.
Median follow-up time was 106 months for survivors
and 41 months for non-survivors.

Characteristics of textural features

Mean values and SD from 2min post-contrast are
shown in Suppl. Table 1. A heat-map visualizing the
Pearson’s correlation coefficients between the individ-
ual GLCM features at 2min post-contrast is shown in
Fig. 2. A strong and positive correlation was observed
of GLCM textural features f1 and f5, and of f2, f9, f10,
and f11. Simultaneously, f1 and f5 were negatively cor-
related with f2, f9, f10, and f11.

Differences in GLCM values according to
survival status

Table 2 shows the calculated P values from LMM anal-
ysis assessing differences in GLCM values between sur-
vivors and non-survivors. LMMs included GLCM
textural features from all time-points simultaneously

for assessment of significant differences using the
whole DCE time-series. The GLCM features angular
second moment (f1), contrast (f2), inverse difference
moment (f5), difference variance (f10), and difference
entropy (f11) were significantly different between survi-
vors and non-survivors before but not after multiple
testing correction. Additionally, entropy (f9) and cluster
shade (f15) approached significance. The change in the
MR protocol was found to significantly impact two of
the textural features: variance (f4) and cluster shade (f15).

Textural features show added value to clinical
prognostic factors in predicting overall survival

Classification accuracies for survival based on multi-
variate analysis of GLCM textural features from dif-
ferent time-points post-contrast are shown in Fig. 3.
Textural features provided classification accuracies in
the range of 60–73%, with the highest accuracy
(73.1%) obtained 2min post-contrast (sensitivity
65.3%, specificity 80.8%, pperm< 0.001). Scores and
loadings from the OPLSDA model for predicting sur-
vival status from 2min post-contrast images are shown
in Fig. 4. Higher levels of features representing corre-
lation (f3) and inverse difference moment (f5), and
lower levels of features representing contrast (f2), entro-
py (f9), difference variance (f10), difference entropy
(f11), and information measure of correlation 1 (f12)
from 2min post-contrast in non-survivors were the
most important differentiators. Clinical parameters
provided a classification accuracy for prediction of sur-
vival of 67.2% (sensitivity 82.8%, specificity 51.7%,
pperm¼ 0.005). The combination of clinical prognostic
factors and GLCM features from 2min post-contrast
yielded a significantly higher (P< 0.001) classification
accuracy for survival compared to clinical parameters
alone (accuracy 77.8%, sensitivity 79.0%, specificity
76.7%, pperm< 0.001).

Kaplan–Meier analysis shows correlation between
GLCM textural features and survival

Survival curves for f1, f2, f9, f10, and f11 were signifi-
cantly different when dividing the patients in two
groups using median values for GLCM textural fea-
tures from 2min post-contrast images as cut-off
(P values 0.015, 0.001, 0.041, 0.007, and 0.0015, respec-
tively). Survival curves for f1, f2, f10, and f11 remained
significant after multiple testing corrections (q values
<0.05; Fig. 5).

Discussion

In this paper, we have demonstrated the possibility to
assess patient prognosis from pre-treatment DCE-MRI
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using GLCM textural features. Five out of 16 GLCM
textural features were significantly different (before
multiple testing) between survivors and non-survivors
at seven years of follow-up using LMMs; angular
second moment (f1), contrast (f2), inverse difference
moment (f5), difference variance (f10), and difference

entropy (f11), while entropy (f9) approached signifi-
cance. Importantly, OPLSDA provided significant
classification of survival status from 2min
post-contrast images, with the same GLCM textural
features in addition to correlation (f3) and information
measure of correlation 1 (f12) being the most important

Table 1. Description of the patient cohort: clinical characteristics before administration of NAC for survivors (n¼ 38) and non-
survivors (n¼ 17) of LABC.

Survivors (n¼ 38) Non-survivors (n ¼17) P

Mean age (range) at diagnosis (years) 56 (35–82) 52 (35–73) 0.239*
Largest tumor dimension (mm) 62 (30–100) 70 (30–100) 0.010*
Clinical stage† <0.001‡

IIB (T3 N0 M0) 17 (45) 5 (30)
IIIA (T2–3 N1–2 M0) 12 (32) 2 (11)
IIIB (T4a–d N0–2 M0) 9 (23) 3 (18)
IIIC (T1–2 N3 M0) 0 1 (6)
IV (T3–4c N1–2 M1) 0 6 (35)

T 0.069‡

2 1 (3) 1 (6)
3 28 (74) 10 (59)
4 9 (23) 6 (35)

N 0.008‡

0 21 (55) 6 (35)
1 13 (34) 6 (35)
2 4 (11) 4 (24)
3 0 1 (6)

M <0.001‡

0 38 (100) 11 (65)
1 0 6 (35)

Receptor status
ERþ 25 (66) 13 (76) 0.749‡

PgRþ 17 (45) 7 (41) 0.777‡

HER2þ 14 (37) 3 (18) 0.209‡

Unknown 1 (3) 0
Histopathological type of breast cancer 0.784‡

IDC 35 (92) 15 (88)
ILC 2 (5) 1 (6)
Mucinous carcinoma 1 (3) 1 (6)

Grade of breast cancer 0.127‡

Grade 1 3 (8) 1 (6)
Grade 2 19 (50) 4 (23)
Grade 3 16 (42) 12 (71)

Response to treatment 0.543‡

Stable disease 13 (34) 5 (30)
Partial response 12 (32) 8 (47)
Complete response 13 (34) 4 (23)

Presence of lymph node metastasis 17 (45) 11 (65) 0.245‡

Values are given as n (%) unless otherwise specified.
Significant P values (p%0.01) are given in bold.
*P value calculated using independent t-test for two variables.
†T2, tumor is >2 cm but <5 cm across; T3, tumor is >5 cm across; T4, tumor has either spread to the skin, the chest wall or both, or inflammatory
carcinoma is present; N0, no nearby lymph node metastasis; N1–2, metastasis to movable/fixed ipsilateral axillary nodes; N3, metastasis to ipsilateral
internal mammary lymph nodes; M0, no distant metastasis; M1, distant metastasis is present.
‡P value calculated using Fisher’s exact test.
ERþ, estrogen receptor negative; HER2þ, herceptin receptor positive; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; LABC, locally
advanced breast cancer; NAC, neoadjuvant chemotherapy; PgRþ, progesterone receptor positive.
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Fig. 2. Heat-map of correlations between textural features. The heat-map based on Pearson correlations between the textural
features illustrates correlations, ranging from strong negative (&1) to strong positive (þ1), between GLCM features f1–f16 obtained
from 2 min post-contrast images.

Table 2. GLCM textural features with significantly different
levels between survivors and non-survivors.

Feature P value

Angular second moment (f1) 0.008
Contrast (f2) 0.034
Correlation (f3) 0.308
Variance (f4) 0.787*
Inverse difference moment (f5) 0.008
Sum average (f6) 0.122
Sum variance (f7) 0.470
Sum entropy (f8) 0.366
Entropy (f9) 0.050
Difference variance (f10) 0.024
Difference entropy (f11) 0.018
Information measure of correlation 1 (f12) 0.347
Information measure of correlation 2 (f13) 0.777
Maximal correlation coefficient (f14) 0.358
Cluster shade (f15) 0.087*
Cluster prominence (f16) 0.477

Linear mixed-effects model P values for the relationship of GLCM fea-
tures from all time-points to survival in patients with LABC are shown. P
values< 0.05 are presented in bold. No features were significant after
Benjamini–Hochberg correction for multiple testing (p<0.05).
*Feature affected by change in MR protocol.
GLCM, gray-level co-occurrence matrix; LABC, locally advanced breast
cancer; MR, magnetic resonance.

Fig. 3. Classification accuracy for the prediction of survival
using orthogonalized partial least squares discriminant analysis at
each timepoint. Classification accuracy by partial least squares
discriminant analysis using all GLCM features obtained from
post-contrast images of patients with LABC (n¼ 55) at
each time-point (0–7 min post-contrast). The circle marks
the maximum classification accuracy, which is at 2 min post-
contrast.
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Fig. 4. Scores and loadings from orthogonalized partial least squares discriminant analysis (OPLSDA) for OS. Scores (a) and loadings
(b) on latent variable (LV) 1 from OPLSDA predicting survival using as input all GLCM features obtained from 2 min post-contrast
images of patients with LABC (n¼ 55). In the loadings, variables are colored according to their importance for projection (VIP) score,
reflecting the variable’s importance for the classification. For this cohort, OPLSDA classified survivors and non-survivors with an
accuracy of 73.1% (pperm< 0.001).

Fig. 5. Kaplan–Meier survival curves for patients with high and low values of selected GLCM features. The recurrence-free
proportions are plotted against OS time for GLCM features dichotomized to above or below median values. Only survival curves for
features that remained significant after multiple testing corrections are shown (f1, f2, f10, and f11).
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variables. GLCM textural features predicted OS by
OPLSDA with accuracy comparable to clinical prog-
nostic factors. Interestingly, while classification using
clinical prognostic factors provided high sensitivity,
GLCM textural features provided classification with
high specificity. Combining GLCM features and clini-
cal parameters provided the most accurate classifica-
tion of survival, with both sensitivity and specificity
approaching 80%. Grouping patients based on high
and low values of textural features resulted in signifi-
cant Kaplan–Meier survival curves for four of the same
features, even when correcting for multiple testing.

Describing the underlying physiology that GLCM
textural features represent is challenging. The highly
positively correlated textural features f1 and f5
(Fig. 2) are, in general, associated with uniformity of
gray levels, with higher levels indicating a more homo-
geneous signal distribution within the tumor. In our
cohort, non-survivors were associated with higher uni-
formity. The textural features f9, f10, and f11, also pos-
itively correlated, are associated with heterogeneity,
and the non-survivors were associated with lower
values of these features. In terms of physiology, this
could point towards a fast, high and uniform uptake
of contrast in the more aggressive tumors, resulting in
more uniform signal distribution.

A few studies have assessed prognostic outcomes in
breast cancer using pre-treatment DCE MRI data
(13,26,30,31). A strength of the current study is the
seven-year follow-up, which allows the assessment of
long-term outcomes. Our results are in accordance
with the study of Kim et al. (31), who found that
patients with breast cancers that appeared with less het-
erogeneity (lower entropy) on contrast-enhanced T1-
weighted subtraction images exhibited poorer outcomes.
Further, Pickles et al. (26) evaluated the prognostic
values of pre-treatment DCE-MRI-based parameters
for breast cancer patients, including the same textural
features as explored in our study. GLCM textural fea-
tures representing heterogeneity of contrast enhance-
ment; sum variance (f7) and sum entropy (f8), and
symmetry of contrast enhancement; cluster shade (f15)
and cluster prominence (f16) were consistently higher in
patients with shorter survival (26). None of these fea-
tures appeared as significantly different between the
patient groups in our study; however, cluster shade
(f15) was found to be significantly affected by the
change in the MR protocol, which could mask differ-
ences. Interestingly, one of the features with most signif-
icant association to survival in our cohort, f10 (also
related to heterogeneity), was previously shown to cor-
relate with treatment response in the same dataset, with
lower values reported for the non-responders (24). An
association between f10 and treatment response was also

detected in an independent patient cohort (21), but then
with higher values for the non-responders reported.

Several factors related to acquisition parameters and
image processing can affect the robustness, reproduc-
ibility, and reliability of textural features (32–34). This
may explain why studies report different textural fea-
tures as important for similar classification purposes.
Statistical analysis (LMM) showed differences by MR
protocol in two of the features (Table 2), but these had
limited importance in the classification of survival. This
is supported by previous research showing that textural
features are increasingly sensitive to acquisition param-
eters variation with increasing spatial resolution, but
that the effect on pattern discrimination still isminimal
provided sufficiently high spatial resolution (35).
However, software platform upgrades are natural and
necessary events in maintaining clinical scan protocols.
Identifying robust features less affected by such
changes could improve clinical translation of texture
analysis. A different contrast agent was used for nine
of the patients (24). However, differences in image con-
trast due to different contrast agents have been found
to be negligible (36), and we assumed this difference
had no significant impact on the texture feature
values. Before the extraction of textural features, we
performed histogram equalization tominimize the
effects of the differences in acquisition protocol. A pre-
vious study by Siki€o et al. (37) has shown some textural
features to depend on the size of the segmented area
used for the analysis. Larger tumor size is associated
with a poorer prognosis in breast cancer and the largest
tumor diameter was significantly higher in the non-
survivors of our cohort. However, none of the textural
features correlated to tumor size in our study (results
not shown).

Our study is based on a small patient cohort
(n¼ 55). A larger patient cohort would allow to con-
struct more robust models, including validation using
independent data. However, this study still demon-
strates the feasibility of predicting patient prognosis
in LABC using texture analysis of baseline DCE-
MRI, before all clinical prognostic factors can be deter-
mined. Our results should be verified using larger
cohorts and reproducibility of the textural features
should be assessed, preferably using data from a mul-
ticenter cohort to address the impact from differences
in acquisition parameters.

A strength of our study is that the use of LMMs
allowed information from the whole enhancement
time-curve to be included in the analysis. However,
the most significant associations for textural features
and survival were still observed in the 2min post-
contrast images (Fig. 3), as also reported when associ-
ating textural features to treatment response (21,24)
demonstrating the clinical importance of using the
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textural features from the time-point where the con-
trast uptake is at its peak. In addition, previous studies
pinpoint the potential of the enhancement curve type to
predict survival (30), where tumors with a high propor-
tion of the aggressive curve type III voxels (38) were
associated with a poorer prognosis. The fast and high
contrast uptake in addition to the rapid wash out is the
major features of this curve type.

In conclusion, textural features derived from
contrast-enhanced MRI before NAC in breast cancer
patients are associated with a seven-year survival out-
come. Furthermore, the textural features show added
value to the clinical prognostic factors in the prediction
of long-term survival. This is in accordance with previ-
ous studies, where textural features have been associat-
ed with long-term outcome and treatment response,
and show a valuable potential to obtain more person-
alized treatment for breast cancer patients. However,
our results need validation in a larger, independent
cohort.
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