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Abstract

Malware poses a severe threat to people, companies, and governments. To search
for malware in real-time is the main task of an Intrusion Detection System (IDS)
to be able to prevent the malware from causing any damage to the system. With
an increasing amount of data and more extensive high-speed networks, the IDS’
ability to search through data fast becomes more important.

A way to make the IDS faster is to change the search algorithm. Events during
the last two decades have also shown that it is possible to launch attacks against
the IDS to neutralize it before penetrating the system it protects. Hence, a search
algorithm used in an IDS has to be both fast and resilient to possible algorithmic
complexity attacks.

This thesis takes a closer look at the very fast Set Backward Oracle Matching
(SBOM) search algorithm and its effectiveness in an IDS. The results show that it is
up to 6 times faster than the commonly used Aho-Corasick search algorithm. The
results also show that it is possible to launch a successful algorithmic complexity
attack against an IDS that uses the SBOM search algorithm. Further on, the results
show that if implemented with the Aho-Corasick search algorithm, it is possible
to get full advantage of the SBOM search algorithm’s speed while making it more
resilient to algorithmic complexity attacks.
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Sammendrag

Skadevare utgjgr en alvorlig trussel overfor enkeltpersoner, selskaper og myn-
digheter. A kunne sgke etter skadevare i sanntid er en av hovedoppgavene til et
Intrusion Detection System (IDS) for & forhindre at skadevaren forarsaker skade
pa systemet. Med en gkende mengde data og flere omfattende hgyhastighets-
nettverk, blir evnen til a hurtig kunne sgke gjennom data en viktig faktor.

Ved & endre hvilken sgkealgoritme som brukes i en IDS kan man gjgre den
raskere til & spke gjennom data. Hendelser de siste to tirene har vist at det er mu-
lig & angripe en IDS for & sette den ut av spill for videre penetrering av systemet
som den beskytter. Pa bakgrunn av dette méa det settes krav til spkealgoritmen som
brukes i en IDS. Sgkealgoritmen ma, i tillegg til & vaere rask, ogsa vaere motstands-
dyktig overfor algoritmiske angrep, sakalte ”algorithmic complexity attacks”.

Denne masteroppgaven tar en nermere kikk pd den svert raske sgkealgor-
itmen ”Set Backward Oracle Matching algorithm” (SBOM) og hvor effektiv den
kan veere brukt i en IDS. Resultatene viser at den er opp til 6 ganger sa rask som
Aho-Corasick sgkealgoritmen som ofte blir benyttet i dag. Resultatene viser ogsa
at det er mulig & gjennomfore et vellykket algoritmisk angrep mot SBOM algor-
itmen. Videre viser resultatene at hvis SBOM algoritmen implementeres sammen
med Aho-Corasick algoritmen er det mulig a utnytte hastigheten til SBOM sgkeal-
goritmen pa en svart god méte og samtidig gjgre den mer motstandsdyktig mot
algoritmiske angrep.
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Chapter 1

Introduction

To be able to find a pattern in a string is one of the oldest problems in com-
puter science[1]. With the increasing amount of data, an efficient way to search
for the pattern in a given string gets more and more important. Several search
algorithms have been developed throughout the years to address this problem,
each of them addressing different scenarios and, therefore, better in different
areas. All algorithms strive to be as fast as possible, but some algorithms are faster
when the alphabet is short, others have multiple patterns, and some use approx-
imate searches. Because of that, the choice of the search algorithm is important
for achieving satisfactory efficiency of the overall system.

In Intrusion Detection Systems (IDS), a system developed to detect malicious
activity in a system or device, pattern recognition is one of the most important and
most used ways to detect malicious activity. Efficiency is a high priority in IDS’,
but equally important is that the algorithm is resistant to algorithmic attacks. An
algorithmic attack is an attack that aims at taking down the security device (mostly
an IDS) in the network by exploiting vulnerabilities in the search algorithm used in
the IDS. Today, the most used algorithm in IDS’ is the Aho-Corasick algorithm[2].
The algorithm is a multi-pattern algorithm, but it is not very fast. The reason this
algorithm is widely used in IDS is mainly because of the fact that it is impossible
to launch an algorithmic attack against it[2]. Over the years, several different
algorithms have been proposed as a replacement for the Aho-Corasick algorithm,
but the algorithm has not been changed or replaced in IDS.

The Set Backwards Oracle Matching (SBOM) algorithm is a version of the
Backward Oracle Matching (BOM) algorithm that is able to recognize sets of
strings from a text. The SBOM algorithm has proven to be very fast and performs
better when alphabet size, pattern length, and the number of patterns grow. How-
ever, it has a worst-case complexity different from the average-case complexity,
which means it may be vulnerable to Algorithmic Attacks, though this does not
mean that it is feasible to launch such an attack in practice.
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1.1 Problem description

Consider a practical case that illustrates the problem:

On a warm summer afternoon, an IT administrator in the Danish company A.P
Mpgller-Maersk prepares a software update for their network when his computer
suddenly turns black. Looking up from his desk, he can see that he is not the
only one in the room as one computer after the other turns black, some of them
showing a message that their computer was encrypted. To decrypt it, they would
have to pay a ransom[3]. A few minutes later, the whole company network was
down. Either the computers were infected with the malware, or the computers
were taken of the network to prevent infection[3].

The Maersk company had been infected by the ransomware NotPetya, a type of
malware, which encrypted all files on the machine[3][4]. This malware also had
worm capabilities which means it was capable of spreading to entire networks
and encrypting large amounts of data[4][5].

Malware has existed as long as computers[6]. The first malware created were
relatively harmless made either as an experiment or as fun for developers and
annoyance for the infected users[6][7]. However, during the 1990s and the rise
of the Internet, the malware was adopted by criminal groups. As the amount of
data in networks increased, Cyberspace also became a domain for intelligence and
manipulation. The incidents reported in recent years, [8][9], have shown that
malware is not only made for research or annoyance but is today a significant
threat to persons and even governments.

The Norwegian research Mgrketallsundersgkelsen is a research aiming to shed
light on information security, its extent, and the consequence of not taking it seri-
ously[10]. An extract of types of information security incidents are shown in table
1.1. What is even more interesting is that 44% of the companies saying they have
experienced one or more information security incidents say that the incident was
detected by a coincidence[11]. In 2020, only 11% of these companies reported the
incident to the police, which means that these types of attacks practically never
get prosecuted[10].

Threat 2016 | 2018 | 2020
Attempted databreach/hacking 8% | 13% | 14%
Virus and/or other malware attacks | 20% | 21% | 11%

Databreach/hacking 2% 5% 4%
Penetration of security systems 2% 2% 1%
DDoS or threats about DDoS 4% 7% 3%

Table 1.1: Extract from Mgrketallsundersgkelsen 2020, different information se-
curity incidents at Norwegian companies during 2016, 2018 and 2020, adapted
from [11].

To be able to detect information security incidents, several measures have to
be undertaken. One of these measures is the use of IDS that can detect and alarm
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about a possible attack. But even though the IDS have been considerably better
during the last decades, malware is still successful in some situations. It is tak-
ing advantage of new technologies making the attack surface bigger (see figure
1.1)[6]. The increased amount of malware circulating the Internet combined with
new attack vectors puts pressure on the IDS. More extensive high-speed networks
require fast IDS to achieve intrusion detection in real-time, and new types of mal-
ware require flexible search algorithms that quickly adapt to new search patterns.
At the same time, the algorithm has to be robust to deal with large amounts of
data over a long time and handle possible algorithmic attacks.

Figure 1.1: The top attack vectors observed in November 2020, adapted from
[12].

1.2 Motivation

This thesis aims to see if the SBOM search algorithm can be considered a better
choice used in an IDS compared to the Aho-Corasick algorithm based on speed
and robustness.

IDS importance increase alongside the increase in the amount of data, size of
networks, and amount of targeted and untargeted malware[6]. The IDS therefore
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must handle large amounts of data rapidly to be able to achieve real time intrusion
detection. This can be done by changing the hardware or software of the IDS.
Many algorithms existing today are faster and more efficient than those used in
IDS, but many of them are not robust enough and can be used by targeted attacks
to make the IDS crash.

1.3 Research questions

In this thesis, we test the following hypothesis:

The SBOM algorithm is a better choice of a search algorithm in an Intrusion
Detection System

To test the validity of this hypothesis, three research questions have to be
answered:

1. How much better does the SBOM perform compared to the Aho-Corasick
algorithm, regarding pattern length and numbers of patterns?

2. How can we use an algorithmic attack to attack the IDS using the SBOM
search algorithm?

3. How can we make the SBOM search algorithm more resilient to attacks?

1.4 Contribution

The main contributions of this thesis are as follows:

1. This thesis investigates the effectiveness of algorithmic complexity attacks
used on the SBOM algorithm.

2. This thesis develops a combination of the SBOM search algorithm and the
Aho-Corasick search algorithm that preserves the speed of the SBOM search
algorithm, but in the same time makes it more resilient to algorithmic com-
plexity attacks.

3. This thesis shows how algorithms can be combined in an IDS to better utilize
different characteristics of different algorithms.
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1.5 Thesis Outline

The rest of the thesis is organized as follows:

1.

Chapter 1 gives a brief overview of the topic of the thesis as well as a problem
description. The chapter also describes the motivation for the thesis.
Chapter 2 presents necessary theory and research on the topic.

Chapter 3 presents the research methods used to solve the research ques-
tions. The chapter also presents how the experiments are set up and per-
formed so the experiments can be replayed.

Chapter 4 looks at ways to modify the SBOM search algorithm making it
more suitable for IDS.

Chapter 5 presents results from the experiments.

Chapter 6 takes a closer look at the results and its validity and possible
errors. Combined with chapter 2, the results are discussed to try to answer
the research questions.

Chapter 7 will conclude the thesis and outlines future work.






Chapter 2

Literature Review

This chapter addresses the relevant theory to give insight into the main hypothesis
and the research questions. The chapter firstly addresses malware, before looking
into Intrusion Detection Systems (IDS), its history and general structure. Then
we look into algorithmic attacks before this thesis’ relevant search algorithms are
presented. In the end, related work relevant for this thesis is presented.

2.1 Malware

Malware has existed as long as computers[6]. The word malware is short for ma-
licious and software and is software used or created by attackers to gain a purpose
on a network or system. In many cases, this can be some sort of financial gain, but
it can also be access to the system to either manipulate data, read data or disrupt
computer operations[13]. Malware is also a general term used for several differ-
ent types of malicious software, such as computer viruses, trojans, worms, rootkits,
keyloggers, ransomware and so on[13]. Today, most malware consists of two or
more different types, like the NotPetya malware[4].

The first known computer virus was developed already in 1971[7]. The mal-
ware could move from system to system (but not clone itself), displaying a mes-
sage[7]. The first malware found on a personal computer was the program called
Brain[13]. The malware spread through floppy disks but as the Creeper Worm, it
did no harm. The intention of the creators was to show that a computer was not
a safe platform[6][13]. At the beginning of the 1990’s and the emerging of the
Internet, delivery of malware became much easier and in the beginning of the
2000s the use of exploit kits led to a rapid increase in malware delivered over In-
ternet[6]. Then the first financial scams emerged[6]. In the next two decades, it is
expected that the number of malware attacks will grow exponentially by doubling
or more each year (see Figure 2.1)[6].

A report from Cybersecurity Ventures estimated that ransomware attacks alone
cost the world $5 billion USD in 2017[14]. The same report also predicted that this
cost would increase to $20 billion in 2021[14], and another report predicts that
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cybercrime, in general, will cost $6 trillion USD in 2021, continuing to increase
by 15% over the next five years[15].

Number of new malware specimen
(count in millions)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Figure 2.1: The increase in new malware, adapted from [16].

2.2 Intrusion Detection Systems (IDS)

2.2.1 Brief History

At the beginning of the IDS development, the detection included a lot of manual
labor by system administrators[ 17]. With an increase in the amount of data and at-
tacks, ways to make the detection more efficient were needed. In 1980, Anderson
published a study on how to improve surveillance at customer sites. This marks
the beginning of automated Intrusion Detection[18]. A few years later, the first
real-time IDS was developed[18]. During the 1990’s the development happened
quickly and different types of IDS emerged, as host-based IDS and network-based
IDS[18].

2.2.2 Structure

The goal of an IDS is to monitor network assets in order to detect malicious be-
havior[19]. This behavior can be detected in two different detection modules:
Misuse detection or anomaly detection, which is one way to classify the IDS. An
anomaly-based IDS learns the system’s normal behavior over time and uses this
to recognize possible intrusions. Anomaly-based IDS is capable of detecting at-
tacks on the system that have not been seen before, so-called zero-day attacks,
but it also has the disadvantage of giving more False Positive Alarms (FPA, gener-
ate an alarm for normal traffic) and False Negative Alarms (FNA, not generating



Chapter 2: Literature Review 9

alarm/not recognizing the traffic as malicious). A misuse-based IDS uses signa-
tures in the form of text strings or patterns to detect intrusion. These patterns are
characteristics of former known attacks, which means this type of IDS only detects
attacks that have happened before[19]. Since the algorithm studied in this thesis
looks for patterns in a search text, it is natural to implement it in a Misuse IDS.

In a misuse-based IDS, the most common way of matching patterns is by ex-
act search[2]. With an exact search, each attack is recognized by a signature. A
signature is, in this context, a distinctive mark or characteristic being present in
a known attack/exploit[20]. These signatures can be strings, fixed offsets, or de-
bugging information[20]. This means that the IDS only detects attacks seen before
and that small changes to the attack that results in changes in the signature makes
the IDS not recognize the attack[2]. To avoid this, it is possible to perform approx-
imate search. In approximate search, the IDS will accept up to a given number of
mistakes so that minor changes to an attack still will be recognized by the same
signature[2]. Approximate search in IDS is still in an experimental state and has
not been widely used[2].

An IDS can also be classified by the scope of protection, in other words, what
it protects. The IDS can be a Host-based IDS (HIDS), which is similar to antivirus
programs. The IDS can also be a Network-based IDS (NIDS). The NIDS is placed
strategically in the network to monitor all traffic in/out of the network or between
certain points of the network[21]. Both NIDS and HIDS can be either misuse-based
or anomaly-based.

An IDS consists of mainly two parts. A preprocessor and a detection algorithm.
It takes the incoming traffic and detection module as input (Figure 2.2). The pre-
processor collects and formats data so it can be analyzed by the detection al-
gorithm. The detection algorithm uses one or several detection models to determ-
ine if the traffic is normal or intrusive[21]. If the detection algorithm recognizes
an intrusion, an alert is sent.

Incoming data

Pre-processor

Detection

model Detection algorithm

Figure 2.2: Components of an IDS[21]
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In a misuse-based IDS, several factors are included to find the optimal search
algorithm. Efficiency is important but also handling larger alphabets, and several
patterns are key properties. In addition to this, the algorithm has to be resistant
to attacks.
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2.3 Algorithmic Attacks

Algorithmic attacks are attacks used to neutralize the security device in the net-
work, in most cases the NIDS, [22]. The attack has in recent years become a part of
a trend of a two-phased attack where the security device is taken down before the
assets it was protecting is attacked[22]. These types of two-phased attacks makes
the victim at least less able, and in many cases not able, to detect the actual attack.
An example is the attack against SONY in 2011, where account information from
up to 101 million users where stolen. In this attack, the IDS was overwhelmed by
the amount of data making it drop - or not inspect - all packets. This is called a
Distributed Denial of Service (DDoS) attack aimed at the IDS[23].

Another type of algorithmic attack is complexity attack. These attacks exploit
the gap between the average-case complexity, which is the amount of resources
(memory, cache, etc) the system requires when processing normal packets, and the
worst-case complexity, which is the amount of resources the system requires when
processing special crafted packets[22]. Up to the early 2000s, it was common
to choose an algorithm only based on the average-case complexity, believing the
worst-case complexity would not occur in practice[24].

The last way to bypass the IDS is not by attacking the IDS itself but by cam-
ouflaging the true positives in an enormous amount of false positives by sending
packets that trigger the IDS signatures[25].

2.4 Search algorithms

To solve the string matching problem, finding all occurrences of a given pattern
or patterns[1], a search algorithm is used. Several search algorithms have been
presented over the last decades, some new, and some variants of already existing
ones. Each one focuses on either being faster, simpler, better worst-case complex-
ity, or better average-case complexity. These properties decide in which area the
algorithm can be used. As mentioned, the Aho-Corasick algorithm is, because of
its properties, the most commonly used algorithm in IDS [26]. With rapid devel-
opment in technology and continuing increase in data, a faster algorithm to use
in IDS is needed.

2.4.1 Terminology

String matching can roughly be divided into three different approaches of how
they search through the text[1]. The first approach is to read each character, one
by one at each step, check if it matches the pattern and if the whole pattern is
found. The other approach is to divide the text into windows of the same length
as the pattern p and search for a suffix of the pattern backward in the window.
The third approach also divides the text into windows of size p, but algorithms
using this approach search for a factor of the pattern. This approach makes these
algorithms the most efficient algorithms in practice[1].
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The search algorithms can also be classified according to how they build the
trie of the search pattern or patterns. Most algorithms build the trie consisting of
nodes. These nodes are linked together with unidirectional links. The first node in
the trie is called the zero node or the root node. The rest of the nodes are numbered
so the lowest number is closest to the root. If there are several branches in the trie,
the second node is in most cases the second child node to the trie and so on (see
Figure 2.3). This is called traversal order[1].

ﬁ‘é}%@

0

\_g

Figure 2.3: A rooted trie

The nodes with no child node are called leaves or terminal nodes. These are
marked with thick black lines in Figure 2.3. How the nodes are linked together
determines the algorithms automaton. The algorithm is a Deterministic Automaton
if for an input symbol a there exists only one transition to the next state. If there
exist several transitions to several different states for the same input symbol a
the algorithm is called a Nondeterministic Automaton[1]. If the algorithm also is
a Finite State Machine, which means it has a finite number of states and it can
only be in one state at any given time, the algorithm is also called a Finite Auto-
maton. These are mostly combined and shortened down to Deterministic Finite
Automaton (DFA) or Nondeterministic Finite Automaton (NFA).

Most search algorithms have the same general structure: A preprocessing phase
where necessary calculations are performed in addition to build the trie or table
used for determining shifts between nodes. This phase is followed by a search
phase or matching phase where the search text T is searched through using the
trie or table to determine if the pattern p is present or not[27].

In the rest of the thesis, the given terminology is frequently used, together
with the definitions given in Table 2.1.
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Abbreviation Explanation

p The pattern searched for

P =pq,py...0r The set of patterns searched for

r Number of patterns in P

m The length of pattern p, or the length of the

shortest pattern in the set of patterns P
The search text

n The length of the search text T

> The alphabet used in the search

pos The starting point of the search window in
T

j An incremental value determining what
character in the search window or text is
read

Table 2.1: Abbreviations

(a) Deterministic Automaton (b) Nondeterministic Automaton

Figure 2.4: Rooted trie for Deterministic and Nondeterministic Automaton for
the patterns can, ace.
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2.5 The Knuth-Morris-Pratt (KMP) Search Algorithm

The KMP search algorithm was developed by D.E. Knuth, J.H. Morris and V.R. Pratt
already in 1977[28]. In this algorithm, the search for the pattern p in the search
text T is done from the beginning by comparing the first character in p with the
first character in T. If a match occurs, p; =T;, the search continues by comparing
po=T,. If there is a mismatch at the first character, p is moved along the text by
one character and the comparing continues by checking if p; =T, see Figure 2.5.

<

Y (‘T u ‘“ r e n o t qg u i t ot i n g
q u 1 t t 1 n g
Y o u ‘“ r e n o t u it t i n g

q
q u i t t 1 n g

Y .

Figure 2.5: Search through the text You're not quitting.

How far the pattern is going to shift is based on a table, next[j ] produced in
the preprocessing phase[28]. The j’ is the current number in p. The pattern is
slid j - next[j], see Table 2.2. If the value is zero, the pattern will slide past the
current character. To compute the next[j ], the program shown in Figure 2.6 is run.
In addition, next[1 ] always equals O.

j = 12 3 456 7 8
pfi] = q u i t t i n g
fil] =011 111 1 1

nextjl] = 0 1 1 1 1 1 1 1

Table 2.2: The pattern shift table

The KMP algorithm has several different extensions making it either faster or
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ji=1;51t:=0; next[1] = 0;
while j <m do
begin comment ¢ = fT];

! ‘_-. f[f]’ . while 7 > 0 and pattern[ j]# pattern[t]
while >0 and pattern[j]# pattern[t] do ¢ == next[1];
= . t=t+1;j=j+1;
. dﬂ ¢ nﬂxt[f], if pattern[ j]= pattern[t]
f[; + 1] =t+ 15 then nexr[j] == next[r]

else next[j]:=1t;

end.

(a) KMP processing of fj]
(b) KMP processing of next/[j ]

Figure 2.6: The processing of f[j ] and next[j]

j=k=1;
while j=m and k =n do
begin
while j >0 and fext[k]# pattern[]
do j = next(J];
k=k+1;j=j+1;
end;

Figure 2.7: Search with the KMP algorithm

detecting several matches. It can also be extended to searching for several pat-
terns, which was done by Aho and Corasick in 1975, creating the Aho-Corasick

algorithm[1][28].
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2.6 The Aho-Corasick Algorithm

The Aho-Corasick algorithm uses a special automaton which is called the Aho-
Corasick automaton[1]. The algorithm uses three functions; a GOTO transition
function, a failure transition function (or failure pointer) and an output func-
tion[26]. In the following examples, the patterns snow, snowball,wonder; outside
will be used, along with the text It’s snowing outside, I want to make a snowball.
This gives the following Aho-Corasick Automaton (see Figure 2.8). The yellow

» 1 sl 4 o» T —wb+ 13 —a» 16 —I» 19 |@
S | 3
y

0 w- 2 —06» 5 n 8 —d» 11 —e» 14 r@
N .
o » o
> S us 6 —t» 9 “s» 12 —i» 15 —d» 18 e

Figure 2.8: Aho-Corasick Automaton for the set of strings
snow,snowball,wondering,outside

circle is the initial state. The blue states with a thick black circle are terminal
states. They will trigger the output function. Each dashed line represents a trans-
ition in the failure-function. If there’s no dashed line out of a state, the transition
goes back to zero and is for simplicity not shown in this figure.

When the search algorithm searches through the text, it will get the result
shown in Table 2.3, corresponding to the example given above.

Input text | I t > |s s|in|o|w/| i ni|eg o|u S
State - - -|11]-(1|4]|7]10] - - - -13]6 12
Output - - -l -1-l-1-1-110] - - - - - - -
Inputtext | i | d | e |, I w|a|n|t t |o a
State 1518 (20| -|-|-]-12] - - - - - 13- -
Output - - 1200 -01-1-1-1- - - - - - - - -
Inputtext | k | e a s|nfo|w]|b]| a 1 1
State - - - -] - 4171101316 |19 |21
Output - - CE I R B A - - - - 121

Table 2.3: The search for the patterns in the text (note that the text is devided
into three rows)

The strength of the algorithm is that it can detect multiple patterns in one
pass [26], which means it reads every character in the search text only once. This
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makes it impossible to apply an algorithmic attack[2], but it makes it relatively
slow [26].

2.7 The Set Backward Oracle Matching (SBOM) Algorithm

As mentioned previously, one of the factors that are important when considering
an algorithm for an IDS, is that it can look for a set of patterns. The Backward
Oracle Matching (BOM) algorithm only takes one pattern as input. A version of
the BOM algorithm, the Set Backwards Oracle Matching algorithm (SBOM), has
been developed[1] to handle multiple search patterns. In this section, the Factor
Oracle, which the SBOM search algorithm is built upon, is described in detail.
Then the BOM algorithm is presented before it’s described how the BOM algorithm
is extended into SBOM to be able to search for several patterns.

2.7.1 Factor Oracle

A factor u of a pattern p is a part of the pattern p so that p=xuw, where x, u and w
are substrings of p. The factor oracle of a string p is the automaton where all the
states are terminal[1]. A string w is recognized by the oracle in the i-th state if it
labels a path from state 0 to i[1].

The oracle always consists of m+1 states. The oracle is built by reading the
letters of p one by one from left to right, updating the automaton at each step.
At each step, it checks if there is a transition out of state [ for the given character
x. If it exists, no new transition is made. If not, the transition to the current state
is made[1]. This way of building the factor oracle by adding external transitions
between each position in p is very memory efficient[1], but this also makes it re-
cognize more than the factor of p, as seen in Figure 2.9. The factor automaton, a
deterministic automaton able to recognize factors of the pattern[27], only recog-
nizes factors of the pattern. The factor oracle also recognizes aba, which is not a
factor of the pattern abbbaab.

Figure 2.9: The factor automaton (A) and the factor oracle (B), from [27].

The factor oracle can be used in string matching to find the occurrences of p
in T, as it is done in the Backwards Oracle Matching algorithm[1].
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2.7.2 The Backward Oracle Matching Algorithm

The Backward Oracle Matching algorithm (BOM) is a deterministic acyclic auto-
maton[1]. It takes as input the pattern p of length m and builds the trie, or factor
oracle, with m+1 states. The trie is built from the reversed pattern (see Figure
2.10). For each transition, the algorithm only cares about what state it is in and
what character the next input character is. This makes the algorithm recognize
more than the pattern p and factors of p. As an example, in Figure 2.10, if we are
in the state 3, the character read before was i. The Factor Oracle has two trans-
ition functions out of state 3. If t comes, it goes to the state 4. If u comes, it goes
to the state 7. Based on this, the algorithm recognizes, in addition to the pattern
D, qui, quing, quiting and so on. This is called weak factor recognition and is done
to gain simplicity and save memory[29]. The fact that it will recognize more than
the pattern means that it will also read more characters before reaching an empty
state, but efficiency lost by reading more characters is recovered by doing fewer
shifts[1].

i
—n—» 2 —i—» 3

[0 }|—g—»

Figure 2.10: Factor Oracle of the reverse pattern quitting.

The BOM search algorithm is a so-called skip algorithm. This means that it
is capable of skipping larger amount of the text where it knows it will not find
an occurrence of the pattern. When the algorithm searches through the text, a
window of size m is slid along the text while the search is done backwards in the
window. If it comes to a character that has no valid transitions out of the current
state, it fails and moves the window to after that character, see Figure 2.11. The
basic idea of this is that after reading a text u, and then failing at the character
o, it is sufficient to know that ou is not a factor of p to move the window to after
the character o[1]. As seen in figure 2.11, it skips reading the rest of the window
at once a mismatch occures and the pattern cannot be found in the window. This
makes the BOM algorithm extremely fast for longer patterns[1].

2.7.3 The Set Backward Oracle Matching Algorithm

The algorithm takes as input a set of strings P = p;, p,...p,- The trie is built in
a very similar way to the Aho-Corasick algorithm. The difference is that all the
patterns are shortened to the same length as the shortest p. This "new” P is called
Py in- The reason for this is to be able to search through the text with a fixed
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|Y|o‘u|’|r’e‘|n|ot qgui tti ng!

|Y|o‘u|'|r’e|.ot qgui tti ng!

Y ou 'r e uu. t i ng!

pos=0

j=m=8

Goes to state 2
Current=2, j=j-1=7

Fails on «space»
=6
pos=pos+j+1=0+6+1=7

Fails on «space»
j=3
pos=pos+j+1=7+3+1=11

Reads g:

Current=8

j=0

Marks occurance at
pos+1=12
pos=pos+j+1=11+0+1=12

Figure 2.11: Search through the text "You're not quiting!”.

19

window size as with the BOM algorithm[30]. So to continue the example used
in the Aho-Corasick algorithm, the shortest p is snow. This gives the following

Pjmin = sSnow, wond, outs.

When searching through the text, the window size is that of the shortest p,

which in this case is 4. The window slides through the text, searching from the
end of the window towards the beginning. If a match occurs, the text is compared

with the strings that may match at this position.

The SBOM algorithm has a worst-case complexity of O( n x |P| ), but is sub-
linear on average[1]. This means that the algorithm in some situations will work
slower and because of this it is theoretically possible to attack the algorithm with

special crafted packets.
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» 1 —o0» 4 —n» [ —s

: \t

S

\UA\b

> 3 t> 6 -us 9 —o»

Figure 2.12: The Factor Oracle for the reversed strings P,,,;, = snow,wond, outs.

Fails at «'»
J]I]". s nowing out s i de, | want t o j=2
ma k e a s nowhbal |l . pos=pos+j+1=0+2+1=3

Fails at «space»
out s i de, | want t o =1
| pos=3+1+1=5

Match in F(10), checks for all
possible matches at this position
out s i de, | want t o (snow, snowball) and reports a
match with p=snow
=0
pos=5+0+1=6

Match in F(11), checks for all
possible matches at this position

It ' s s nowing _i d e , I want t o (outside) and reports a match with
p=outside

ma k e a s nowhbal | .
j=0
pos=13+0+1=14

Mateh in F(10), checks for all
possible matches at this position
y . (snow, snowball) and reports a
It s s nowing outs | de, I want t o N
match with p=snow and
al |
p=snowball
i=0
nos=39+0+1=40

Figure 2.13: Search through the text It’s snowing outside, I want to make a snow-
ball.
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2.8 Related work

To search for - and find - patterns in a search text is the main task for a Misuse

based IDS. Several algorithms with different variations have been proposed[1][31][32][33],
yet the field is still a popular subject of study and research. This section looks into

what have been proposed in previous research considering the SBOM algorithm,
algorithmic attacks and IDS.

2.8.1 SBOM search algorithm

The factor oracle was first mentioned in 1999 by Allauzen et. al[30]. Algorithms
based on the factor oracle turned out to have very good average time complex-
ity and used far less memory than earlier solutions based on the implementation
of the Directed Acyclic Word Graph (DAWG)[30]. In the same paper, they pro-
pose the Backwards Oracle Matching (BOM) algorithm and also how it is pos-
sible to make this algorithm linear in the worst case by using the Knuth-Morris-
Pratt (KMP) search algorithm to make forward reading of some characters in the
text[30]. This version of the BOM algorithm was called Turbo-BOM and was in
the tests performed in [30] the only algorithm that could be used in real-time[30].

In 2002, the SBOM algorithm was proposed by Navarro and Raffinot[1]. The
algorithm proved to be very fast when the patterns were long, and the fastest
algorithm to handle many patterns (over 1000)[1].

In 2009, Faro et al. presented two variants of the BOM algorithm, making it
more flexible than the original BOM algorithm[27]. They also showed in their
tests that one of the suggested variants, the Extended-BOM algorithm outper-
formed bit-parallel algorithms when the alphabet size was of medium length and
the search patterns were short[27].

Jianlong et. al proposed a new version of the SBOM algorithm in [34]. This
version looked at what partial string of each pattern gave the minimum time cost
when searching for the partial string. This method proved to be 5-20% more effi-
cient than other alternative methods used by other algorithms.

To make the SBOM algorithm more flexible regarding dropping and adding
patterns, Zhou suggested an improved SBOM algorithm[35]. This was done by
modifying the data structure of the algorithm and showed that the Modified SBOM
has greater adaptability and on average is faster than the Aho-Corasick algorithm[35].

In [36], Liu showed that the SBOM algorithm is much faster than the Aho-
Corasick algorithm, and also uses less memory. These tests only considered speed
in an average time complexity and memory consumption.

In 2006, James Kelly examined several pattern matching algorithms and con-
sidered their use in an IDS[37]. He also developed the proposed solution men-
tioned by Alluzan by using the Aho-Corasick algorithm to perform forward read-
ing of some characters[37]. This version was called Multi-BOM or MBOM and had
a sublinear running time on average and linear in worst case since the algorithm
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never will read each character more than twice[37]. Kelly also proposed a solu-
tion, AUTO, that consisted of several algorithms. This was proposed based on the
claim that "no one algorithm can best suit all situations”[37]. In this solution, the
algorithm used is decided based on the shortest pattern in the pattern set. Either
MBOM or AC-Full (a proposed modification of the Aho-Corasick algorithm) was
used in preprocessing and searching[37].

2.8.2 Algorithmic Attacks

In 2009, Durian et al. published an article on the Backwards Nondeterministic
DAWG Matching (BNDM) search algorithm. In [38] they tuned the algorithm with
q-grams making it search through the text even faster than the original BNDM al-
gorithm[38]. This algorithm was later implemented in Suricata. Suricata is an
independent open source threat detection engine combining IDS with intrusion
prevention and network monitoring[39]. This was done without further testing
regarding security[40]. They later found out that it was possible to attack the
algorithm using an algorithmic attack, and the algorithm was removed from Sur-
icata[40]. This is one example of an incident where the average case complexity
was the only factor when considering what algorithm to use. Related work con-
sidering algorithms are mostly concentrated around how fast the algorithm is or
how much resources it consumes. Far less work have been conducted regarding if
the algorithm can be misused in an Algorithmic Attack.

Corsby and Wallach showed in 2003 how Algorithmic Complexity Attacks can
be used as Denial of Service attacks against the security systems in a network[24].
They showed how different common applications have weaknesses where they in
worst case were able to crash these applications. They also showed how we could
perform algorithmic attacks against hash tables in general and warned about how
easy the worst case complexity could be triggered when knowing what algorithm
is used[24]. Until then, most algorithms used were chosen based on the average
case complexity, assuming worst case complexity would never or very rarely occur
in practice.

One early solution to algorithmic attacks was to find a way to detect packets
trying to exploit the worst case complexity and drop these packets at an early
state. This was done by Khan and Traore[41]. The packets could either be dropped
during execution, as delayed drop, or before execution, called early drop. Different
factors could be used to make the decision whether to drop the packet or not, such
as the length and size of the packet, a pre-scan of the packet or execution time
during the scan of the packet[41].

Afek et. al proposed in 2016 a system that would switch between two differ-
ent algorithms based on the incoming packet[22]. If the packet was considered
normal, it would use the Full Matrix Aho-Corasick algorithm, but if the incoming
packet was considered heavy, which was a special crafted packet made to trigger
the worst case complexity, the system would use the Compressed Aho-Corasick al-
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gorithm[22]. This system shifts between processor cores so that heavy and normal
packets can be processed simultaneously. This showed to have several advantages,
as improving the overall throughput and being able to shift amount of resources
allocated to each process.

In 2013, Yu Zhang et. al. published a paper on how to use algorithmic com-
plexity attacks on the SBOM algorithm and WuManber algorithm[42]. Their tests
show that these attacks are effective with special crafted packets containing the
patterns, but also special crafted packets when only parts of the pattern is known.

2.8.3 IDS

Throughout the years, a considerable amount of research has also been conduc-
ted to the IDS, both within signature based IDS, anomaly based IDS and hybrid
IDS which is a combination of the two[43]. The main focuses regarding this re-
search has been signature generation[44][45], construction of anomaly detection
model[46][47] and how to combine signatures and anomalies to be able to detect
more intrusions[48][49].






Chapter 3

Methodology

Research is a systematic process of collecting, analyzing, and interpreting inform-
ation. It is performed to increase the understanding within an area of interest[50].
The choice of research approach and methods are essential to obtain the most re-
liable and correct results. This chapter looks into how the research is conducted
to answer the research question and consequently either accept or reject the main
hypothesis. The choice of research approach, design, and methods are explained,
as well as how the data are analyzed. In the end, different problems and limita-
tions to this thesis are discussed.

3.1 Research Approach

The general research approach used in this thesis is a Deductive Research Ap-
proach[51][52]. What recognizes the Deductive Research Approach is the quant-
itative research design, described in the next section, and the "top-down” reason-
ing, shown in Figure 3.1.

Observation Confirmation

Figure 3.1: Deductive research approach

The researcher first finds and learns relevant theory. Based on this, the re-
searcher develops a hypothesis and research questions and tests these in several
experiments, surveys, etc. Based on these results, the hypothesis is either con-
firmed or rejected.

25
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3.2 Research Design

Based on the fact that this thesis compares two algorithms against each other, the
thesis mostly makes use of quantitative research. The comparison is mostly carried
out by comparing numeric data in the form of an experiment, which is a quant-
itative research design. A quantitative research design is defined as a systematic
investigation of a phenomena[51]. Variables are observed through the research
and either controlled or not controlled, depending on the research method. The
thesis also has features of qualitative research design carried out in Chapter 2 and
used to compare the experimental results in Chapter 6.

3.3 Research Methods

With a quantitative research design, it is chosen to use a quantitative hypothesis,
or closed-ended questions[51] with additional three research questions as seen in
section 1.3. To test this hypothesis, quantitative experiments were performed as a
research method. In a quantitative experiment, the theory is tested by examining
the relationship among variables[51]. In this thesis, the suitability for the SBOM
algorithm in an IDS is tested by implementing the algorithm in code and compar-
ing the results from different datasets against the commonly used Aho-Corasick
algorithm. The results are measured in processing time, and the algorithms are
tested by manipulating the different independent variables:

e Pattern length

e Length of input text

e Numbers of patterns

o Content of input text (complete pattern match and algorithmic complexity
attack)

Several tests are implemented where one variable is manipulated at the time
and the others controlled. In that way, we can see how each variable affects the
performance of the algorithm itself and also how it affects the performance com-
pared to the other search algorithm. This is called experimental research or a
true experiment[53]. The experiment was also performed with a pretest-posttest
design[53], which means that tests were performed before an independent vari-
able was manipulated to be able to see what effect the independent variable had
on the algorithm. These tests were also used as a pilot study to confirm that the
implemented algorithms worked as intended.

3.4 Literature Study

The literature describing the BOM and SBOM algorithm was provided by the
thesis’ supervisor. Other scientific papers were found in scientific paper collec-
tions. In addition, some other sources, such as Information Security reports and
lectures, were used.
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3.5 Methods of Data Analysis

The results from the experiment had a Ratio Scale of measurement[50]. This
means that the scale used in this experiment, the processing time, has an absolute
zero point and has equal measurement units. These characteristics make it easy
to analyze the data mathematically. The results are processed and visualized in
diagrams.

3.6 Problems and Limitations

The author of this thesis had the option of implementing the algorithms in an IDS,
but building a whole IDS is beyond the scope of the research. Thus, it was decided
to implement only the search algorithms in C++ as a state-of-the-art experiment.

The author had to do a thorough pilot study to verify that the algorithms
worked as intended to avoid biases influencing the results. The pilot study was
also used to find a systematic way of measuring the processing time to be able to
discover deviations or other scenarios that influenced the processing time. In that
way, the author would be less doubtful if the results were not as expected.






Chapter 4

Proposed modification of SBOM

This chapter describes the proposed solution to make the SBOM algorithm a
preferable choice in an IDS and the work to implement the solution for testing.

The related work that has been implemented on the SBOM algorithm shows
that it is in most cases faster than the Aho-Corasick algorithm and uses less memory
[34][36]. Many research papers have also been published on how to make the
BOM algorithm or SBOM algorithm even faster[27][35]. But, as the example with
the BNDM algorithm implemented in Suricata with g-grams[38][40] in Section
2.8, speed is not the only factor to consider when choosing which algorithm to
implement in an IDS. Research has also shown that the SBOM algorithm is vul-
nerable to algorithmic complexity attacks[42].

The SBOM algorithm is vulnerable to algorithmic attacks because of its worst-
case complexity. Ideally, the algorithm used in an IDS should have the same average-
case complexity and worst-case complexity. This is difficult to achieve, though
there are several ways to improve the worst-case complexity of the SBOM al-
gorithm:

1. Use more resources on a general basis. This is not cost-effective and will
most likely only push the problem into the future. The attacker has to make
more effort, but it is still very feasible to attack the IDS.

2. Use different algorithms. This solution builds on the system proposed by
Afek et al. in 2016, where two different algorithms work in parallel[22].
Which algorithm to use on the text is based on an evaluation of the text.
In this solution, more resources are required to be able to implement the
system, but no additional changes have to be done to the algorithms in the
system.

3. Find a combination of algorithms. This is the solution proposed by Kelly in
[37]. This solution can be realized in several ways to get the most out of the
algorithms used. It is implemented in the software, and therefore it can be
easily changed and adapted to each system.

This thesis’ proposed solution combines the SBOM algorithm and the Aho-

29



30 Bodil Mokkelbost: A study of the SBOM algorithm used in Intrusion Detection Systems

Corasick algorithm. The proposed solution combines the two algorithms in a way
to gain a faster average-case complexity, but still the linear worst-case complexity
to the Aho-Corasick algorithm. The goal of the proposed solution is to get as much
advantage of the SBOM algorithm speed as possible.

The new algorithm builds the automaton for Aho-Corasick and the factor or-
acle for the SBOM algorithm. It always starts to search through the text using
SBOM but switches over to Aho-Corasick if one or more different conditions are
met. These conditions can be set individually for each system to be optimized for
each system’s needs, but it is necessary to examine different thresholds.

The disadvantage of this solution is that it most likely demands more memory
than the solutions available today. The gain is that we can predict the maximum
consumption because of the linear worst-case complexity, making it as predict-
able as the Aho-Corasick algorithm. Moreover, it is almost as fast as the SBOM
algorithm in average-case complexity.

4.1 Implementation

The first step towards testing this solution is implementing the SBOM algorithm
and the Aho-Corasick algorithm in code. To simplify this process, an already exist-
ing implementation of the Aho-Corasick algorithm in C++ is taken from [54]. To
be able to run the tests on the algorithm, some modifications were implemented:

1. The algorithm had to take a pattern file as input

2. The algorithm had to take a text file to search through as input

3. The algorithm had to be able to process, as a minimum, all characters in the
standard ASCII table

With a functional Aho-Corasick algorithm, the SBOM algorithm has to be im-
plemented in C++ with the same requirements (1-3) as with the Aho-Corasick
algorithm. To simplify the implementation, the factor oracle is implemented as a
Ax(m+1) table, as recommended in [ 1], where A is the alphabet size. Each letter
is also converted into an ASCII value and then converted down by subtracting 32
so that ”space”, with ASCII value 32, obtains the new value 0 and the first column
in the table. In Table 4.1, the Factor Oracle shown in Figure 2.12 is implemented.
For simplicity, only the rows and columns used are shown. The complete table
consists of 95 rows and 12 columns (10, 11, and 12 are terminal states). Each
column represents a state, and for each possible input, e.g. [0,79], the number of
the next state is written, which in this case is state 4. Each terminal state is saved
in an array F for each pattern in the set.

When searching through the text and a terminal state is reached, all patterns
with the same terminal states are checked with the search text. If a match is found,
an action is initiated.



Chapter 4: Proposed modification of SBOM 31

d (100-32=68)
n (110-32=78)
0 (111-32=79)
s (115-32=83)
t (116-32=84)
u (117-32=85)
w (119-32=87)

12

10 10

=IO WAl DN O
N
(0]

11 11

Table 4.1: The factor oracle represented in a table for the reversed strings
Pjmin =snow,wond, outs.. This is the same factor oracle as illustrated in 2.12.

4.2 The SBOM-AC combination

This solution starts searching through each packet with the SBOM algorithm. If
a condition is met, the packet is considered to be an attempt of an algorithmic
attack, and the IDS continues the search using the Aho-Corasick algorithm.

Two different conditions were considered when constructing this combina-
tion:

1. The IP packet has a certain amount of “almost matches”.
2. The IP packet has a certain amount of terminal states that are not a match.
3. A combination of 1 and 2.

With option 1, the search does not have to exceed the P;,,;, to begin use the
Aho-Corasick algorithm, but it switches algorithm if it reaches a certain point in
the window a given set of times. Tests performed on the SBOM algorithm and
the Aho-Corasick algorithm shows that the pattern match has to be about 150
characters to make the SBOM algorithm perform worse than the Aho-Corasick
algorithm shown in Figure 4.1, but these tests do not account for the P;,,;, length.
With a shorter Pj,,,;,,, it would in theory be possible to make the SBOM algorithm
work slower with a shorter part of a pattern.

Option 2 counts each time the pattern match exceeds the P;,,;, and the search
reaches a terminal state. Then it has to search for the whole pattern and if no
match is found a certain amount of times, the IDS continues the search with the
Aho-Corasick algorithm.

Depending on the pattern set, and the results from own tests, it might be useful
to use both solutions 1 and 2. This combination starts using the Aho-Corasick
algorithm if thresholds in option 1 or option 2 are reached.

4.3 Construction of an algorithmic attack

As mentioned in [42], the attacker does not need the whole pattern to perform
an algorithmic attack against an IDS using the SBOM algorithm. The advantage
of all skip algorithms is that it is not needed to scan the whole search text to
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Pattern match length
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Figure 4.1: Search time for same pattern set when search text contains different
lengths of the pattern. Time is measured in us.

determine if the pattern is present or not, they can skip larger parts of the pattern
by determining that the pattern cannot be found in the search window. So by
making the algorithm skip as little of the text as possible, it will not be able to use
the advantage.

The SBOM algorithm also has a disadvantage that makes it easier to attack.
If the algorithm reaches a terminal state after scanning the whole window, it will
check the search text for each pattern that has this state as terminal. As an ex-
ample, we use the pattern set annual, annually, year. Pj,;, =4 => annu, year.
is what will be searched for. If the search text only contains "annu”, the SBOM
algorithm will scan the whole window, and for each time check the text for both
annual and annually:

[annu]annuannuannuannuannuannu

In this case, it checks if the search text annuan=annual and if the search text
annuannu=annually before the window is moved and the same check will happen
again.

annu[annu]annuannuannuannuannu

By doing this, each search window is read at least twice and, because of this, it is
the most effective way to perform an algorithmic attack.
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4.4 Threshold definition

An IP packet can have various lengths. The minimum length is the header size
which is 20 Bytes for IPv4 and 40 Bytes for IPv6. In addition, both IPv4 and IPv6
have a payload field that can be up to 65 535 Bytes long[55][56]. To be able to
perform an algorithmic complexity attack, each packet inspected should have a
time significantly worse than the average time complexity for a data packet of the
same size. The time should also be considerably worse than the time searching
through the same packet with the Aho-Corasick algorithm. When the worst time
complexity is defined for both Aho-Corasick and SBOM, it is possible to tune the
SBOM-AC combination to find the thresholds for when to use the Aho-Corasick
algorithm and when to use the SBOM algorithm.

The threshold value can vary from options 1 and 2 and from system to system,
depending on the pattern set. Because of this, the thresholds found in these tests
are not absolute.






Chapter 5

Experimental work

In this chapter, the results from the tests performed on the different algorithms
are presented. The tests were performed to help answering the research questions
formed in Chapter 1. The chapter also describes how the tests were performed in
order to enable reproduction of the tests.

5.1 Testing algorithms

How to test Intrusion Detection Systems (IDS) is a widely discussed topic and
there is no universal methodology to test IDS[25]. In this thesis, the goal is to
find a way to make the SBOM algorithm more resistant to attacks. This is done
by comparing performance measured in time, which is one of the measurable IDS
characteristics described in [57]. In addition to time, True Positives (TP), False
Positives (FP) and False Negatives (FN) are made account for.

To test these algorithms, several datasets are used. Each dataset is made out of
an original dataset containing URLs known to spread malware, phish, spam and
defacement. These datasets were created by the Canadian Institute for Cyberse-
curity[58].

5.1.1 Tests on algorithms

To test the algorithms, several different tests were performed:

1. Run tests on the dataset with no matching patterns.
These tests are performed to visualize the average case complexity and the
difference between the SBOM algorithm and the Aho-Corasick algorithm in
performance. In addition, it is interesting to see how the SBOM-AC combin-
ation performs compared to the SBOM algorithm.

2. Run tests on special crafted datasets.
We already know from Section 2.8 that the SBOM algorithm is vulnerable
to algorithmic attacks and that we do not need to know the entire pattern to
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perform an algorithmic attack. The aim for these tests is to try to find how
much of the pattern is needed and if the length of P;,,;, is significant.

3. Run tests on the SBOM-AC combination with special crafted datasets.
The results from 2 are used to decide which conditions to use in the SBOM-
AC combination. In these tests thresholds are tuned to make the combina-
tion as effective as possible. When the thresholds are decided, the tests in
1 and 2 is repeated to test the SBOM-AC combination on both general per-
formance (average case complexity) and its resilience to algorithmic com-
plexity attacks.

5.1.2 Test Session

The test objective is to define how the SBOM algorithm is vulnerable to algorithmic
complexity attacks and if there are ways to mitigate these attacks as a software
solution.

The source code for the different algorithms is appended to this thesis (Ap-
pendix A). The source code for the Aho-Corasick algorithm is retrieved from [54].
The source code for the SBOM algorithm is written by the author of this thesis,
along with the SBOM-AC combination. All source code is written in C++.

The tests were performed on a Hewlet Packard Z-book G6 i7vPro 9th Gener-
ation with 32GB RAM.

All tests were performed six times, where an average value was calculated.
An overview of each dataset used and raw results are appended in the appendix
(Appendix B and C).
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5.2 Experimental Results

5.2.1 Performance
As seen in Figure 5.1, SBOM’s performance is much more time efficient than the
Aho-Corasick (AC) algorithm on an average basis. Some of these datasets had true
positives, which were discovered by both algorithms. None of the algorithms gave
false positives or false negatives.
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Figure 5.1: Performance of the two different algorithms - Aho-Corasick (abbre-
viated to AC) and SBOM - on different datasets, measured in time.
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5.2.2 Algorithmic attack

From the results, it is clear that the SBOM algorithm is vulnerable to algorithmic
attacks. As long as the pattern match exceeds the Py,,;,, it does not matter how
long the match is. The tests also showed that with shorter P,,,;,, the attack is
more effective. The test was, in addition to the two datasets shown in Figure 5.2,
performed on a dataset (dataset 17) with P;,,,;,=3 and the pattern match=4. The
SBOM algorithm had an average time of 1.596.608us, wich is 86 times worse than
the AC algorithm, and 65 times worse than the SBOM-AC combination.

100000

90000 & — =
80000

70000

60000

50000

Time, us

40000
30000

20000

10000
==

0
7 11

sl A\ C 13816.83333 6653.333333
=== SBOM 89640.33333 88890

Dataset

el AC SBOM

Figure 5.2: Algorithmic attack with P;,,;, length of 112 in dataset 7 and 40 in
dataset 11

Figure 5.3 also shows that it is possible to perform an algorithmic complexity
attack in the size of a data packet. An attack is also effective down to a packet size
of 10kB if the pattern match exceeds the P;,;,-

In Figure 5.4, the author tried to attack the SBOM algorithm with data packets
where the pattern match did not exceed P;,,;,- The data packet only consisted of
the letter "w” and had different size of P;,,;,-
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Figure 5.3: Algorithmic attack in the size of a datapacket in increasing size.
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Figure 5.4: Algorithmic attack where pattern match does not exceed Pj,,;,. In
these tests, P,,,;, has been 112, 60, 20, 10, and 4 respectively.
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5.2.3 Resilience to algorithmic attacks

In Figure 5.5, the results from dataset 20 were used to tune the threshold of the
SBOM-AC combination. The thresholds used is of option 2 from Section 4.2, where
the algorithm counts each time the Pj,,;, is exceeded, but no match is found. The
thresholds used is 100, 50, 25 and 10, where 25 gave the best results in these test.

16000
14000 - = - 3]
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3 10000
(1) 8000
£
= 6000
4000
i o o 8]
2000
0
100 50 25 10
= AC 2950.5 2950.5 2950.5 2950.5
=== SBOM 14276.83333 14276.83333 14276.83333 14276.83333
SBOMAC  5496.833333 4812.333333 3914.333333 4514.333333
Threshold
== AC ==l SBOM SBOMAC

Figure 5.5: The SBOM-AC combination with different thresholds.

From the results from algorithmic complexity attacks where P;,;, is not ex-
ceeded, the 24th dataset is used. Each time the search window is moved and the
number of characters in search window which is read is greater than 4, a variable
is incremented. This variable is used as the threshold for when to use SBOM and
Aho-Corasick. The thresholds used in these tests are 250, 500, 1000 and 2000.
This is an example of the option 1 from Section 4.2.
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Figure 5.6: The SBOM-AC combination with threshold=25.
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Figure 5.7: The SBOM-AC combination with different thresholds.
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Figure 5.8: The SBOM-AC combination with thresholds=500.



Chapter 6

Discussion

In this chapter, the findings and results from the previous chapter are discussed in
the context of the research questions. Lastly, the chapter discusses the relevance
of the thesis, the objectives of this thesis, as well as sources of errors and validity.

6.1 SBOM performance

Regarding the first research question, we know from related work that the SBOM
algorithm is very fast, especially when the patterns are long or it has to handle
many patterns[1], and that it uses less memory than many other algorithms[30].

Results from the performance tests visualized in Figure 5.1 shows that the
SBOM algorithm on average performs 6.3 times better than the Aho-Corasick al-
gorithm. It performs better when the P,,;,, is long (dataset 5, 6 and 8) and is better
than Aho-Corasick algorithm at handling larger pattern sets (dataset 3).

6.2 SBOM and algorithmic attacks

Since the SBOM algorithm has a worst-case complexity of O(n x |P|) it is theoret-
ically possible to attack the algorithm in the use of an algorithmic attack. Figure
5.2 shows that these attacks can be very effective, especially with a shorter P;,;,
and a pattern match that exceeds the Pj,;,.

Regarding the second research question "How can we use an algorithmic at-
tack to attack the SBOM algorithm”, the author has chosen to focus on algorithmic
complexity attacks and distinguish between a DDoS attack aimed at the Intrusion
Detection System (IDS) and algorithmic complexity attacks. Because of this, it is
not sufficient that it is possible to make the algorithm work slower. It has to be
possible to make it work slower in the size of a data packet, and the running time
has to be considerably worse than the Aho-Corasick algorithm. One cannot expect
to be able to perform an algorithmic complexity attack in one single data packet.
Still, if the algorithmic complexity attack is not efficient enough, the attack is more
like a DDoS attack.
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As shown in Figure 5.3, the SBOM algorithm is slower than the Aho-Corasick
algorithm with data packets down to 10kB. This might not be enough to make
the algorithm crash, but as the size of the data packet increases, the difference
between the running time for the SBOM algorithm and the Aho-Corasick algorithm
increase and is up to 4.8 times slower than the Aho-Corasick algorithm.

It is more difficult to create an algorithmic attack if the pattern match does
not exceed Pj,in, as shown in Figure 5.4. Even though it is possible to make the
algorithm work slow, it is not necessarily enough to make the algorithm crash or
drop packets. As shown in Figure 5.4, the only time the SBOM algorithm had a
worse running time than Aho-Corasick was with dataset 24 and a pattern match
that was at 30% of P;,;,,. Still, the algorithm was only 1.16 times slower than the
Aho-Corasick algorithm. The author means that this is not sufficient to perform
an algorithmic attack on the IDS.

Even though the author of this thesis has not been able to attack the SBOM
algorithm without exceeding P;,,;,,, it is not necessarily impossible, but it can be
more difficult than constructing an algorithmic attack where the pattern match
exceeds the Pj,;,. Since the patterns in an IDS can be very short, only a little
knowledge of patterns used is sufficient to create this type of attack, and as the
results clearly showed, these attacks were increasingly efficient with a decreasing

lein'

6.3 The SBOM-AC combination

Testing for the thresholds for option 2 in Section 4.2 showed that using the threshold
of 25 gave the best results considering the running time of the algorithms. When
testing the SBOM-AC combination on the algorithmic complexity attacks, we see
that it has a running time considerably better than the SBOM algorithm. On aver-
age, it has a running time that is 1.88 times as fast as the Aho-Corasick algorithm,
and the running time is faster compared with Aho-Corasick with an increasing
data packet size.

Since the author of this thesis considers it possible to attack the SBOM al-
gorithm without exceeding the P,,,;,, it is still relevant to use option 3 from Sec-
tion 4.2. The results in Figure 5.8 did not look as good as the results from Figure
5.6. Still, the SBOM-AC has a running time that is on average 1.5 times the run-
ning time for Aho-Corasick, which is very good in case of a successful algorithmic
complexity attack.

In average-case complexity, the SBOM-AC combination has a running time
as fast as the ordinary SBOM algorithm, see Figure 6.1. On average, it is 1.02
times slower than the SBOM algorithm. It is never faster than the Aho-Corasick
algorithm in worst-case complexity since it transits from an algorithm working
slower due to an algorithmic attack to the Aho-Corasick algorithm. The switch
between algorithms also implements several extra operations in the code, which
naturally slows the algorithm down. The goal is to get the combination as close
to the worst-case complexity of the Aho-Corasick algorithm as possible. In this
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case, the gain in an algorithmic attack is already satisfactory, though, with an
implementation in an IDS with the tuning of the values based on the pattern set
used, we expect a more significant gain. The results achieved in this thesis show
that this combination have a linear time complexity in the worst case, which also
makes it very difficult to attack through an algorithmic complexity attack.
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Figure 6.1: The SBOM-AC combinations performance compared to SBOM and
Aho-Corasick

6.3.1 Other possible solutions

As mentioned in Section 2.8, several different solutions have been proposed to
avoid possible algorithmic attacks on Intrusion Detection Systems. To compare
this solution against these is a possible task for future work, but this section will
discuss the different solutions compared to this combination.

The MBOM solution proposed by Alluzan himself and implemented by Kelly
in 2006 is also a combination of the SBOM algorithm and the Aho-Corasick al-
gorithm. In this version, the search window is divided into two parts with a crit-
ical position. The search starts by scanning from right to left with the oracle. If
a mismatch occurs, the critical position is moved to the character to the right of
the mismatch and the search continues from critical position with Aho-Corasick.
If the critical position is reached, the search continues with Aho-Corasick from the
critical position. In this combination, the Aho-Corasick search continues at least
to the end of the window, and if it exceeds the window, it continues until there is
no prefix match of any pattern or a complete pattern match is found. The window

10
26136.83
5257.8333
4865.00
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is shifted to the right, and the search starts again with SBOM[37].

The strength of this combination is that it avoids the extra check the SBOM
has to take when a terminal state is reached at the beginning of the window.
As the results showed, this is the most effective way to perform an algorithmic
complexity attack against the SBOM algorithm. It also has a very good linear worst
time complexity. Its weakness is that this solution does not get the best advantage
of the SBOM algorithm speed as this thesis proposed solution. For each window
shift, it scans at least the amount of characters from the critical position and to
the end of the search window twice, and in the worst-case, it scans the entire
search text twice, once with SBOM and once with Aho-Corasick. In the solution
proposed in this thesis, the average-case complexity is the same as the SBOM,
which is very good. The worst-case complexity is not as fast as the MBOM solution,
but from the tests performed in this thesis, it is approximately linear. Considering
memory consumption, these two solutions should be the same since they combine
the same two algorithms, though this has not been tested in this thesis. However,
the memory consumption measured in [37] showed that if SBOM is implemented
with hash tables, the memory consumption is just slightly higher than the Aho-
Corasick algorithm alone[37].

Another possible solution is the solution by Afek et al.[22]. This is a hard-
ware solution, a multi-core platform, where each core runs one or more hard-
ware threads, some handling normal packets and other handling "heavy” packets
simultaneously[22]. If a packet is recognized as "heavy” and handled by a thread
for normal packets, it is switched over to a thread handling heavy packets. The
disadvantage of this is somehow the same as with MBOM. It does not get the
full advantage of the speed of the average-case complexity algorithm. When no
"heavy” packets are handled, the threads designed to handle these packets process
normal packets instead. A greater gain would have been achieved if the threads
could dynamically shift between the two algorithms.

6.4 Achievement of the objective

The objective of this thesis was to determine if the SBOM algorithm was suitable
for an Intrusion Detection System, as is, or in a combination of search algorithms.
Furthermore, the task was to implement the algorithm in code and compare it
with the commonly used Aho-Corasick algorithm. The author has also proposed
a combination of the SBOM algorithm and the Aho-Corasick algorithm as a more
suitable alternative to use in the IDS. As this research can be used to determine
what algorithm to use in an IDS, the research questions stated in Chapter 1 are
answered and the objective of this thesis has been achieved.
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6.5 Sources of errors and validity

The raw results from running the tests on the algorithms showed that the pro-
cessing time varies from each run. Because of this, it was determined to run each
test 6 times and use the average value of these 6 results. If one result had a dif-
ference from the other with more than 100%, it was considered a deviation, and
the results were discarded. It was then considered if a restart of the system was
needed or some processes stopped before the whole test was carried out again.

The tests were performed on a standard office computer. The processing time
can, because of this, be affected by other processes running on this computer. The
tests have been carried out in the same environment with the laptop on power
supply and only necessary processes running.

The tests of the algorithm were not performed on an IDS. The author still
considers these results to be comparable since all the tests were performed on the
same system and in the same environment.






Chapter 7

Conclusion

Speed has been the main focus for several years regarding creating new algorithms
or modifying existing algorithms[31]. Speed is an essential factor in Intrusion
Detection Systems (IDS), and is - as the amount of data increases - even more
important. When the algorithm is used in an IDS, it is equally important that the
algorithm is resilient to algorithmic attacks.

Regarding the first research question, the results from this thesis show that
the SBOM algorithm, on average, performs 6 times faster than the Aho-Corasick
algorithm considering speed. It also performs slightly better when the pattern is
long and with larger datasets. Tests have also shown how it is possible to use
an algorithmic complexity attack to attack an IDS running the SBOM algorithm.
One of the algorithmic complexity attacks also proved to be very effective, which
concludes the second research question.

Because of these results, the conclusion is that the SBOM algorithm is not
suitable for use in an IDS. The third research question deals with this problem,
and this thesis proposed solution is a combination of SBOM and Aho-Corasick.
The experimental results show that the combination does not affect the speed of
the algorithm on average as it performs as well as the SBOM algorithm. At the
same time, it has a worst time complexity that is linear, which makes it far more
resilient to attacks.

The SBOM-AC combination is a software implementation, which means it can
be implemented in most existing systems. The implementation can adapt to the
system and how it chooses which algorithm to use can be changed and tuned
to each system. It is also the only solution - as for the author’s knowledge - that
preserves the speed of the SBOM algorithm and still has a linear worst-case com-
plexity.

Based on this thesis results, the main hypothesis of this thesis can be partially
confirmed. The SBOM algorithm is vulnerable to algorithmic attacks and cannot
be used in an IDS as it is. Still, it has shown to be very effective if implemented in
a combination with the Aho-Corasick algorithm, which makes it very difficult to
attack using an algorithmic complexity attack.
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7.1 Future work

To continue the work of this thesis, the SBOM-AC combination should be imple-
mented in an IDS for further testing. Specifically, the tests should focus on what
resources the combination consumes, especially regarding memory consumption.

This proposed solution is a proof of concept. Further development and im-
provement of the code are necessary before a complete implementation. Other
ways of choosing the search algorithm can be considered and also combining this
solution with other proposed solutions, like the dual-core in [22] and the AUTO
proposed in [37].
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Appendix A

Source code of the implemented
algorithms

A.1 The Aho-Corasick Algorithm

ahocorasick.cpp

#include <iostream>
#include <sstream>
#include <string>
#include <chrono>
#include <fstream>

#include "aho corasick.hpp"

using namespace std;
using namespace std::chrono;

int main(){
string p; //name of pattern file
string t; //name of search text file
string text; //stores search text
vector<string> keywords;
cout << "Enter pattern file:\n";
cin >> p;
ifstream infile (p);
std::string line;
while (getline(infile, line)){ //reads line by line and pushes the pattern on to
//the keywords vector

keywords.push_back(line);
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cout << "Enter search file \n";

cin >> t;

ifstream file{t}; //opens file for reading

copy( istream iterator<char>{ file >> noskipws }, {}, back inserter( text ));
//saves text into 'text’

file.close();

vector<char> T;
int z=0;
for (int x=0;x<text.length();x++){//pushes text into vector and skips linebreaks
if (text.at(x)!'='\n"){
T.push _back(text.at(x));
Z++;

buildMatchingMachine(keywords, ' ', '~'");
auto start = high resolution clock::now();
int currentState = 0;
int 0=0;
for (int i = 0; i < T.size(); ++i) {
currentState = findNextState(currentState, T.at(i), ' ");
if (out[currentState] == 0) continue;
// Nothing new, let’s move on to the next character.
for (int j = 0; j < keywords.size(); ++j) {
if (out[currentState] & (1 << j)) { // Matched keywords[j]

0++;
//cout << "Match nr. " << 0 << " with keyword nr. "

//<< j+1 << " appears from "

// << i - keywords[j].size() + 1 << " to " << i << endl;

}

cout << 0 << '\n’;

auto stop = high resolution clock::now();

auto duration = duration cast<microseconds>(stop - start);
cout << "Execution time:" << duration.count() << "micros\n";

return 0;
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aho_corasick.hpp

#ifndef AHO CORASICK HPP
#define AHO CORASICK HPP

using namespace std;
#include <algorithm>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include <fstream>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <string>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>

const int MAXS

6 * 50 + 10; // Max number of states in the matching machine.
// Should be equal to the sum of the length of
//all keywords.

const int MAXC

94; // Number of characters in the alphabet.

int out[1000]; // Output for each state, as a bitwise mask.
// Bit i in this mask is on if the keyword with index i appears when the
// machine enters this state.

// Used internally in the algorithm.
int f[1000]; // Failure function
int g[1000] [MAXC]; // Goto function, or -1 if fail.

// Builds the string matching machine.
//
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words - Vector of keywords. The index of each keyword is important:
"out[state] & (1 << i)" is > 0 if we just found word[i] in the text.
lowestChar - The lowest char in the alphabet. Defaults to ’'a’.
highestChar - The highest char in the alphabet. Defaults to 'z’.
"highestChar - lowestChar" must be <= MAXC, otherwise we will
access the g matrix outside its bounds and things will go wrong.

Returns the number of states that the new machine has.
States are numbered 0 up to the return value - 1, inclusive.

int buildMatchingMachine(const vector<string> &words,
char lowestChar = ' ', char highestChar = '~") {

memset (out, 0, sizeof out);
memset(f, -1, sizeof f);
memset(g, -1, sizeof g);

int states 1; // Initially, we just have the 0 state

for (int i = 0; i < words.size(); ++i) {
const string &keyword = words[i];
int currentState = 0;
for (int j = 0; j < keyword.size(); ++j) {
int ¢ = keyword[j] - lowestChar;
if (glcurrentState]l[c] == -1) { // Allocate a new node
glcurrentState][c] = states++;

}

currentState = g[currentState][c];
}
out[currentState] |= (1 << 1i);

// There's a match of keywords[i] at node currentState.

// State 0 should have an outgoing edge for all characters.
for (int ¢ = 0; ¢ < MAXC; ++c) {
if (gl0][c]l == -1) {
glollc]l = 0;

// Now, let’s build the failure function
gueue<int> q;
for (int ¢ = 0; ¢ <= highestChar - lowestChar; ++c) {
// Iterate over every possible input

// All nodes s of depth 1 have f[s]

=0
if (g[0][c] != -1 and g[0][c] != 0) {
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flglo]l[c]] = 0;
q.push(g[0][c]);

b
while (q.size()) {
int state = q.front();

q.pop();
for (int ¢ = 0; ¢ <= highestChar - lowestChar; ++c) {
if (gl[state][c] '= -1) {
int failure = f[statel];
while (g[failure][c] == -1) {
failure = f[failure];
}

failure = g[failure]l[c];

flglstate][c]] = failure;

out[g[state]lc]l] |= out[failure]; // Merge out values
g.push(g[state][c]);

I3
}

}

return states;
}
// Finds the next state the machine will transition to.
//
// currentState - The current state of the machine. Must be between
// 0 and the number of states - 1, inclusive.
// nextInput - The next character that enters into the machine. Should be
// between lowestChar and highestChar, inclusive.

// lowestChar - Should be the same lowestChar that was passed to "buildMatchingMachine".

// Returns the next state the machine will transition to. This is an integer between
// 0 and the number of states - 1, inclusive.
int findNextState(int currentState, char nextInput, char lowestChar = ' ') {

int answer = currentState;

int ¢ = nextInput - lowestChar;

while (g[answer][c] == -1) answer = f[answer];

return gl[answer][c];

#endif //AHO CORASICK HPP
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A.2 The SBOM Algorithm

sbom. cpp

#include<string>
#include<iostream>
#include<algorithm>
#include<iterator>
#include<vector>
#include <sstream>
#include<fstream>
#include<cstdlib>
#include<chrono>
#include<cstring>

using namespace std;

using namespace std::chrono;

int main(){

string pfile; //name of pattern file

string tfile; //name of search text file

string text; //stores search text
int p=0; //number of patterns

int pmin; //length of shortest pattern

string pr;

vector<string> keywords;//patterns read from file
//vector<string> rkeywords;//patterns read from file reversed

cout << "Enter pattern file:\n";

cin >> pfile;

ifstream infile (pfile);

string line;

while (getline(infile, line)){
//reads line by line and pushes the
keywords.push _back(line);

pattern on to the keywords vector

if (p==0){//saves the length of shortest pattern in pmin

pmin=line.length();

}

else{

if (pmin>line.length()){
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pmin=line.length();

}

//reverse _copy(line.begin(), line.end(), rline.begin());
//rkeywords.push back(rline); //reversed patterns
p++;

/17177777777 7/7/7/7//7//7////7//PREPROCESSING/////////////////////////////////

int P[100][2000]={};//matrix with ascii value to each pattern
int Q[100][2000]={0};//outgoing states
int S[143][p*pmin]={0};//table of states
for (int x=0; x<143; x++){//sets hole table to empty value -1
for (int y=0; y< p*pmin; y++){
S[xIlyl=-1;

}

vector<string> rkeywords;
string pattern;
int F[pl={};//Saves terminal states for each pattern

for (int x=0; x<p; x++){
pattern= keywords.at(x);
string pshort;

for (int y=0; y<pmin; y++){
pshort.push back(pattern.at(y));
}
string pr=pshort;
reverse copy(pshort.begin(), pshort.end(), pr.begin());
rkeywords.push back(pr); //reversed patterns
for (int y=0; y<=pmin; y++){
if (y==0){
PIx]1lyl=-1;

}

else{
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unsigned char a = pr.at(y-1);
PIxI[yl=(int) a-32; //ascii value of each pattern saved in matrix

int current=0;
int s=0;//state number to put current state in

for (int y=1; y<=pmin; y++){

for (int x=0; x<p; Xx++){
if (P[x]1[y-1]==-1){//has no parent

s=0;
}
else {//has parent
s=Q[x][y-1];
Iy
if (s!=0){
if (S[P[x]lyll[0]==-1){
S[P[x][yll[0]=current+1;
}
}

if (S[P[x][yll[s]l==-1){//if no transition from the state to next state
S[P[x][yll[sl=current+1;
Q[x][yl=current+1;

for (int z=y; z>0; z--){
//checks for other possible transitions to current
for (int v=p-1; v>=0; v--){
if (P[v][z]==P[x1[y-1] && S[P[x][yll[Q[v][z]]==-
&& Q[vl[z]!=current+1){
S[P[xIlylllQlv]l[z]]l=current+1;

}

current++;

}

else{



Chapter A: Source code of the implemented algorithms 65

Q[x][yl=SI[PIx][ylllslI;
for (int z=current; z>0; z--){
//checks for other possible transitions to current
for (int v=p; v>0; v--){
if (P[v][z]==P[x][y-1] && S[P[x][yl1[Q[v][z]]==-1){
S[PI[x][ylllQlvI[z]]=current+l;

if (y==pmin){
F[x]=S[P[x][yll[s];//saves the terminal state for each pattern
}

}
/1/1117/7/7//7////////////////////END PREPROCESSING ///////////////////////

cout << "Enter search file \n";

cin >> tfile;

ifstream file{tfile}; //opens file for reading

copy( istream iterator<char>{ file >> noskipws }, {}, back inserter( text ) );
//saves text

file.close();

vector<int> TXT;
vector<char> T;
vector<int> C;
for (int x=0;x<text.length();x++){//transforms text to ascii
if (text.at(x)!='\n’){
T.push _back(text.at(x));
TXT.push_back(text.at(x)-32);

}
[1117777171777777777//7/7777/7///SEARCHING/////////////71//7///77/7/7//7///17//////177/
auto start = high resolution clock::now();

int pos=0; //Search window start pos
int 0=0;//occurances
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int a=0;//almost match
int nm=0; //no match after checking the plmin match with full p
int c=0;

while (pos<=T.size()-pmin)
{
current=0;
int j=pmin;
while (j>0 && current!=(-1))
{
char bla=T.at(pos+j-1);
int ntest=TXT.at(pos+j-1);
current=S[TXT.at(pos+j-1)][current];
j--i
C++;

}
if (current!=(-1)) {
int m=0; //to make it not incremate nm if it is a match with another password
for (int x=0;x<p; x++){
if (F[x]==current){
//Verify all the patterns in F(Current) one by one against the text
int pl=keywords.at(x).length();
string pm;
if (pos+pl<=T.size()){
for (int y=pos; y<pos+pl; y++){
pm.push _back(T.at(y));

}
int res=pm.compare(keywords.at(x));
if (res == 0){
o++;
m++;
//cout << "Match nr." << o << "at pos " << pos << "
//with pattern nr." << x+1 << ’'\n’;

}

else if (m==0){
nm++;

}
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}

else if (j<=pmin-1){
a++;

}

pos=pos+j+1;

}

cout << a <<
auto stop = high resolution clock::now();

auto duration = duration cast<microseconds>(stop - start);
cout << "Execution time:" << duration.count() << "micros\n";

1o

<< nm << ¢ << '\n’;

return 0;

67
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A.3 The SBOM-AC combination

SBOMAC. cpp
#include<string>
#include<iostream>
#include<algorithm>
#include<iterator>
#include<vector>
#include <sstream>
#include<fstream>
#include<cstdlib>
#include<chrono>
#include<cstring>

#include "aho corasick.hpp"
using namespace std;
using namespace std::chrono;

int main(){

string pfile; //name of pattern file

string tfile; //name of search text file

string text; //stores search text
int p=0; //number of patterns

int pmin; //length of shortest pattern

string pr;

vector<string> keywords;//patterns read from file
//vector<string> rkeywords;//patterns read from file reversed

cout << "Enter pattern file:\n";

cin >> pfile;
ifstream infile (pfile);
string line;

while (getline(infile, line)){
//reads line by line and pushes the
keywords.push _back(line);

pattern on to the keywords vector

if (p==0){//saves the length of shortest pattern in pmin

pmin=line.length();

}

else{

if (pmin>line.length()){



Chapter A: Source code of the implemented algorithms 69

pmin=1line.length();

P+

/11177777 77/77/7//7/7//////7/////////PREPROCESSING//////////////////////////////
buildMatchingMachine(keywords, ' ', '~");
//builds the matching machine for AhoCorasick

int P[100][2000]={};//matrix with ascii value to each pattern
int Q[100][2000]={0};//outgoing states
int S[143][p*pmin]={0};//table of states
for (int x=0; x<143; x++){//sets hole table to empty value -1
for (int y=0; y< p*pmin; y++){
S[x]lyl=-1;

}

vector<string> rkeywords;

string pattern;

int F[pl={};//Saves terminal states for each pattern

for (int x=0; x<p; x++){
pattern= keywords.at(x);
string pshort;
for (int y=0; y<pmin; y++){
pshort.push back(pattern.at(y));
}
string pr=pshort;
reverse copy(pshort.begin(), pshort.end(), pr.begin());
rkeywords.push _back(pr); //reversed patterns
for (int y=0; y<=pmin; y++){

if (y==0){
PIx1[yl=-1;
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else{
unsigned char a = pr.at(y-1);
PIx][yl=(int) a-32; //ascii value of each pattern saved in matrix

int current=0;
int s=0;//state number to put current state in

for (int y=1; y<=pmin; y++){

for (int x=0; x<p; x++){
if (P[x]1[y-1]==-1){//has no parent

s=0;
}
else {//has parent
s=Q[x][y-11;
}
if (s!=0){
if (S[P[x][yll[0]==-1){
S[P[x][yll[0]=current+1;
}
}

if (S[P[xI[yll[sl==-1){//if no transition from the state to next state
S[P[x][yll[s]l=current+l;
Q[x][yl=current+1;

for (int z=y; z>0; z--){
//checks for other possible transitions to current
for (int v=p-1; v>=0; v--){
if (P[v][z]==P[x][y-1] && S[P[x][yll[Q[v][z]]==-
&& Q[vl[z]'=current+1){
S[P[x1[ylllQ[v][z]]=current+1;

}

current++;
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else{
QIx1[yI=SIPIx][yl1ls];
for (int z=current; z>0; z--){
//checks for other possible transitions to current
for (int v=p; v>0; v--){
if (P[v][z]==P[x][y-1] && S[P[x][yl1[Qlv][z]]==-1){
S[PI[x][yll[QlvI[z]l]l=current+l;

}

if (y==pmin){
FIxI=S[P[x]1[ylll[s];//saves the terminal state for each pattern
}

}
}
//11777/17771/777//7/7///7/7/////7//END PREPROCESSING//////////////////////

cout << "Enter search file \n";

cin >> tfile;

ifstream file{tfile}; //opens file for reading

copy( istream_iterator<char>{ file >> noskipws }, {}, back inserter( text ) );
//saves text

file.close();

vector<int> TXT;
vector<char> T;
for (int x=0;x<text.length();x++){//transforms text to ascii
if (text.at(x)!'='\n’){
T.push _back(text.at(x));
TXT.push_back(text.at(x)-32);

}
/111777717177 7777777///777//7/77//7//SEARCHING////////////1////////////////////////
auto start = high resolution clock::now();

int pos=0; //Search window start pos
int 0=0;//occurances



72  Bodil Mokkelbost: A study of the SBOM algorithm used in Intrusion Detection Systems

int a=0;//almost match
int nm=0; //no match after checking the plmin match with full p

while (pos<=T.size()-pmin)

{

current=0;
int j=pmin;
while (j>0 && current!=(-1))
{
current=S[TXT.at(pos+j-1)][current];

j--;

b
if (current!=(-1)) {
int m=0; //to make it not incremate nm if it is a match with another password
for (int x=0;x<p; x++){
if (F[x]==current){
//Verify all the patterns in F(Current) one by one against the text
int pl=keywords.at(x).length();
string pm;

for (int y=pos; y<pos+pl; y++){
pm.push _back(T.at(y));
}

int res=pm.compare(keywords.at(x));

if (res == 0){
0++;
m++;
//cout << "Match nr." << o << "at pos " << pos << "
//with pattern nr." << x+1 << '\n’;

}

else if (m==0){
nm++;

}

}
else if (j<=(pmin-3)){
a++;
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pos=pos+j+1;

if (nm>=25 || a>=500){
cout << "Switching to AC\n";
int currentState=0;
for (int i = pos; i < T.size(); ++i) {
currentState = findNextState(currentState, T.at(i), ' ');
if (out[currentState] == 0) continue;
// Nothing new, let’s move on to the next character.
for (int k = 0; k < keywords.size(); ++k) {
if (out[currentState] & (1 << k)) { // Matched keywords[k]

o++;
//cout << "Match nr. " << o << " with keyword nr. " << j+1 <<
//" appears from "

// << 1 - keywords[k].size() + 1 << " to " << i << endl;

}

pos=T.size();

}

cout << a <<
auto stop = high resolution clock::now();

auto duration = duration cast<microseconds>(stop - start);
cout << "Execution time:" << duration.count() << "micros\n";

r o

<< nm << '\n’;

return 0;

}

aho_corasick.hpp
#ifndef AHO CORASICK HPP
#define AHO CORASICK HPP

using namespace std;
#include <algorithm>
#include <iostream>
#include <iterator>
#include <numeric>
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#include <sstream>
#include <fstream>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <string>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>

const int MAXS

const int MAXC

6 * 50 + 10; // Max number of states in the matching machine.
// Should be equal to the sum of the length
// of all keywords.

94; // Number of characters in the alphabet.

int out[1000]; // Output for each state, as a bitwise mask.

//

// Bit i in this mask is on if the keyword with index i appears when the
// machine enters this state.

Used internally in the algorithm.

int f[1000]; // Failure function
int g[1000][MAXC]; // Goto function, or -1 if fail.

//
//
//
//
//
//
//
//
//
//
//

Builds the string matching machine.

words - Vector of keywords. The index of each keyword is important:
"out[state] & (1 << 1)" is > 0 if we just found word[i] in the text.
lowestChar - The lowest char in the alphabet. Defaults to ’'a’.
highestChar - The highest char in the alphabet. Defaults to 'z’.
"highestChar - lowestChar" must be <= MAXC, otherwise we will
access the g matrix outside its bounds and things will go wrong.

Returns the number of states that the new machine has.
States are numbered 0 up to the return value - 1, inclusive.

int buildMatchingMachine(const vector<string> &words,

char lowestChar = ' ', char highestChar = '~") {
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memset(out, 0, sizeof out);
memset (f, -1, sizeof f);
memset(g, -1, sizeof g);

int states = 1; // Initially, we just have the 0 state

for (int 1 = 0; i < words.size(); ++1i) {
const string &keyword = words[i];
int currentState = 0;
for (int j = 0; j < keyword.size(); ++j) {
int ¢ = keyword[j] - lowestChar;
if (glcurrentState][c] == -1) { // Allocate a new node
glcurrentState][c] = states++;

}

currentState = g[currentState][c];
}
out[currentState] |= (1 << i);

// There’'s a match of keywords[i] at node currentState.

// State 0 should have an outgoing edge for all characters.
for (int ¢ = 0; c < MAXC; ++c) {
if (glellc] == -1) {
glOl[c] = 0;

// Now, let’s build the failure function
queue<int> q;
for (int ¢ = 0; c <= highestChar - lowestChar; ++c) {
// Iterate over every possible input
// All nodes s of depth 1 have f[s] = 0
if (g[0][c] != -1 and g[0][c] != 0) {
flglollcl]l = 0;
q.push(gl0][c]);

}
while (q.size()) {
int state = q.front();

q.pop();
for (int ¢ = 0; ¢ <= highestChar - lowestChar; ++c) {
if (g[statel[c] != -1) {

int failure = f[state];
while (g[failure]l[c] == -1) {
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failure = f[failure];
}
failure = g[failure][c];
flglstate]l[c]] = failure;
out[g[state]l[c]] |= out[failurel; // Merge out values
q.push(g[state][c]);

}
}

}

return states;
}
// Finds the next state the machine will transition to.
//
// currentState - The current state of the machine. Must be between
// 0 and the number of states - 1, inclusive.
// nextInput - The next character that enters into the machine. Should be
// between lowestChar and highestChar, inclusive.

// lowestChar - Should be the same lowestChar that was passed to "buildMatchingMachine".

// Returns the next state the machine will transition to. This is an integer between
// 0 and the number of states - 1, inclusive.
int findNextState(int currentState, char nextInput, char lowestChar = ' ') {

int answer = currentState;

int ¢ = nextInput - lowestChar;

while (g[answer][c] == -1) answer = f[answer];

return g[answer][c];

#endif //AHO CORASICK_HPP
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Dataset used for testing

Nr | Size search text | Size pattern file | P;,,;, | Number of positives | Number of hits
0 | 98KB 723B 112 | 2 8(7+1)
1 | 969KB 723B 112 | 2 8(7+1)
2 | 969KB 998B 32 0 0

3 | 969KB 909B 188 | 0 0

4 1641KB 723B 112 1 10000
5 1880KB 723B 112 | O 0

6 1662KB 723B 112 | O 0

7 1112KB 723B 112 | O 0

8 1932KB 723B 112 0 0

9 1444KB 723B 112 0 0

10 | 1715KB 723B 112 0 0

11 | 528KB 650B 40 0 0

12 | 991KB 585B 260 |0 0

13 | 528KB 585B 260 | O 0

14 | 1512KB 585B 260 | O 0

15 | 1809KB 585B 260 | O 0

16 | 1539KB 585B 260 | O 0

17 | 630KB 590B 3 0 0

18 | 10KB 585B 112 | O 0

19 [ 19KB 585B 112 | O 0

20 | 37KB 585B 112 | O 0

21 | 55.5KB 727B 112 | O 0

22 | 55.5KB 674B 60 0 0

23 | 55.5KB 634B 20 0 0

24 | 55.5KB 625B 10 0 0

25 | 55.5KB 619B 4 0 0
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Appendix C

Raw Results

C.1 Aho-Corasick

Dataset | Run Average

1 2 3 4 5 6
1 12002 | 11994 | 12000 | 11923 | 12996 | 12004 | 12153.16667
2 10999 | 10973 | 21515 | 2006 | 11052 | 11999 | 11424
3 11999 | 12001 | 11940 | 12058 | 10999 | 16953 | 12658.33333
4 19999 | 19964 | 19983 | 20990 | 19973 | 19938 | 20141.16667
5 21999 | 22037 | 21938 | 21999 | 21999 | 23003 | 22162.5
6 21938 | 21619 | 33115 | 21819 | 21939 | 21963 | 23732.16667
7 13952 | 13996 | 13963 | 13993 | 12996 | 14001 | 13816.83333
8 26231 | 28249 | 23861 | 23260 | 27074 | 25542 | 25702.83333
9 17679 | 18586 | 23162 | 20705 | 20408 | 19026 | 19927.66667
10 29122 | 23739 | 23853 | 24920 | 23158 | 32029 | 26136.83333
11 5999 | 7149 | 5690 | 6962 | 7035 | 7085 | 6653.333333
17 15472 | 18697 | 19756 | 22525 | 17424 | 16964 | 18473
18 346 604 839 979 1344 | 529 773.5
19 1219 | 1319 | 1289 | 1232 | 1373 | 3303 | 1622.5
20 3957 | 3180 | 2178 | 2950 | 2450 | 2988 [ 2950.5
21 1991 1992 | 1992 | 1996 | 1994 | 1993 | 1993
22 1992 | 1995 | 997 998 1995 | 1994 | 1661.833333
23 1980 | 996 2994 | 1995 | 1996 | 1993 | 1992.333333
24 2993 | 995 3000 | 1994 | 2992 | 996 2161.666667
25 1990 | 1960 | 2994 | 1992 | 1993 | 1995 | 2154
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C.2 SBOM

Dataset | Run Average
1 2 3 4 5 6

1 1939 1973 8938 1961 1963 1962 3122.667
2 4519 3712 5610 3810 4762 6415 4804.667
3 1891 3900 2009 1829 2228 4107 2660.667
4 85001 85998 84983 90001 86000 84984 86161.167
5 3987 3030 3170 3010 3068 2940 3200.833
6 1998 3000 0 0 2963 0 1326.833
7 88939 90000 89971 89952 88977 90003 89640.33
8 3006 4507 5735 6752 6893 7205 5683
9 3239 3615 2914 4731 3672 5610 3963.5
10 7240 3792 4233 5794 4494 5994 5257.833
11 92260 86001 86213 93807 87998 87061 88890
17 1422508 | 1435800 | 1616981 | 1865282 | 1692767 | 1546309 | 1596607.83
18 3896 3377 3754 3349 4068 4065 3751.5
19 4567 5491 6622 6623 5320 4768 5565.167
20 11822 13698 13852 11415 22033 12841 14276.833
21 2574 1002 2174 994 1002 998 1457.333
22 1991 1437 996 966 1995 998 1397.167
23 999 1993 999 1996 2863 1328 1696.333
24 1994 2991 2087 2991 1961 2959 2497.167
25 1991 1997 997 1994 1882 1994 1809.167
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C.3 SBOM-AC Combination
Dataset | Run Average Comment

1 2 3 4 5 6

1 2030 2000 | 1967 | 2962 | 3013 | 2173 | 2357.5
2 7186 5082 | 10539 | 2198 | 2798 | 3068 | 5145.167
3 2277 4878 | 2946 | 2434 | 3247 | 1891 | 2945.5
4 102978 | 90711 | 90159 | 88885 | 92006 | 86680 | 91903.167
5 4118 4216 | 5457 | 2124 | 3742 | 5926 | 4263.833
6 1072 0 1945 | 0O 1963 | 2000 | 1163.333
7 20162 | 16130 | 15964 | 15959 | 14985 | 20257 | 17242.833
8 4854 3641 | 6466 | 9540 | 4010 | 10556 | 6511.167
9 2480 4684 | 5786 | 5479 | 1816 | 3191 | 3906
10 5189 5257 | 5323 | 4004 | 5439 | 3978 | 4865
11 8143 4181 | 9981 [ 8279 | 7999 | 8414 | 7832.833
17 18143 | 28651 | 22512 | 32836 | 27652 | 17079 | 24478.833
18 2962 1994 | 1993 | 1993 [ 1994 | 1993 | 2154.833 | nm=25
19 2993 1999 | 1994 | 2995 [ 1994 | 2958 | 2488.833 | nm=25
20 5358 3306 | 5114 | 2561 | 4260 | 8275 | 4812.333 | nm=50
20 2713 4585 | 4110 | 2482 | 5066 | 4530 | 3914.333 | nm=25
20 4993 5221 | 6258 | 7076 | 4552 | 4881 | 5496.833 | nm=100
20 4633 4387 | 5785 | 4618 | 3866 | 3797 | 4514.333 | nm=10
21 3986 1995 | 1997 | 2594 | 1001 1996 | 2261.5 a=500
22 2992 2989 | 2065 | 2992 | 2993 | 2989 | 2836.667 | a=500
23 2839 4988 | 2991 | 2989 | 2995 | 3993 | 3465.833 | a=250
23 3159 4350 | 3011 | 2993 | 2683 | 2520 | 3119.333 | a=500
23 2994 2958 | 3991 | 2727 | 2992 | 2960 | 3103.667 | a=1000
23 1994 3000 | 3988 | 2000 | 2958 | 2991 | 2821.833 | a=2000
24 3957 2998 | 3649 | 2960 | 2991 | 3958 | 3418.833 | a=250
24 2994 2989 | 2991 | 3514 | 3342 | 3957 | 3297.833 | a=500
24 3989 2991 | 2994 | 2993 | 3956 | 2996 | 3319.833 | a=1000
24 3991 2996 | 2958 | 2994 | 3992 | 2994 | 3320.833 | a=2000
25 2993 3956 | 2992 | 2991 | 2957 | 3531 | 3236.667 | a= 500
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