
Signature authentication using graph edge labeling

Karl-Sverre Knutsen

2021

Abstract

Handwritten signatures are still widely used for authentication in today’s soci-
ety. Compared with other biometric features like fingerprint and face recogni-
tion, handwritten signatures are easier to falsify. It is especially difficult to de-
fend against scenarios where criminals know the victims signature shapes (called
skilled forgeries). Therefore, we need secure system implementations that is cap-
able of distinguishing between forgeries and legitimate users.

This project aims to investigate a new signature verification method where
the shape is converted into a labeled graph and we attempt to utilize information
about the edges. There are defined two types of nodes in the graph; endpoints and
crossing lines. The edges are labeled with different distance estimations related to
the connected nodes. Three edge labeling methods are tested; pixel distance, euc-
lidean distance and efficiency. Efficiency is a ratio between the other two methods.
In order to test this system implementation, we use the online dataset MCYT-100
and focus on the signature shape only. This study is a first contribution for the
utilization of labeling graph edges for signature authentication, and may create
foundations for further investigations in this area of signature analyses.

iii

Sammendrag

Håndskrevne signaturer er fortsatt utbredt i dagens samfunn for å gjøre autentiser-
ing. Sammenlignet med andre biometriske kjennetegn som fingeravtrykk og an-
siktsgjenkjenning, er signaturer lettere å forfalske. Det er spesielt vanskelig å fors-
vare seg mot hendelser hvor kriminelle kjenner til hvordan håndskriften ser ut på
forhånd (skilled forgeries). På grunn av dette trenger vi sikre systemimplementas-
joner som klarer å skille mellom forfalskede signaturer og legitime brukere.

Dette prosjektet undersøker en ny metode for å verifisere signaturer, der selve
formen blir omgjort til en graf og vi forsøker å utnytte informasjonen om kantene.
Det blir definert to typer noder i grafen; endepunkter og kryssede linjer. Kantene
er merket med forskjellige distanseutregninger basert på form og avstand mel-
lom tilhørende noder. Det er gjennomført tre typer utregninger; piksel-distanse,
euclidean-distanse og effektivitet. Effektivitet er forholdet mellom de andre to
metodene. Vi benytter et online-datasett kalt MCYT-100 for å teste implemen-
teringen av metoden, men utnytter bare informasjonen om selve signaturformen.
Denne oppgaven er et første bidrag for å se på utnyttelse av kantene til grafen for
autentisering av signaturer, og kan legge grunnlaget for videre forskning innenfor
feltet.

v

Preface

This thesis is the final part of a Master’s degree within Information security at the
Norwegian University of Science and Technology (NTNU). The school attendance
has been completed as a part-time study spread over three and a half years from
2018 to 2021. The last year and a half has been aimed towards this thesis, which
has given me great learning benefits in an exciting and growing field.

I would like to thank my supervisor, Patrick Bours at NTNU Department of
Information Security and Communication Technology. His continuous support,
guidance and ideas throughout the whole period, from the early stage of research
project planning until the finished Master’s thesis delivery, has been very valuable
and motivating.

My education at NTNU is now finished. Nevertheless, I’m motivated to con-
tinue expanding my knowledge within the field of information security in order
to keep up with growing cyber threats.

Lillehammer, Monday 6th December 2021
Karl-Sverre Knutsen

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xi
Tables . xiii
1 Introduction . 1

1.1 Topic covered by the project . 1
1.2 Keywords . 1
1.3 Problem description . 2
1.4 Justification, motivation and benefits 2
1.5 Research questions . 2
1.6 Planned contributions . 3

2 Related work . 5
2.1 Background . 5

2.1.1 Authentication . 5
2.1.2 Biometrics . 6
2.1.3 Graph theory . 9
2.1.4 Graph Edit Distance . 11
2.1.5 Backtracking . 14

2.2 State of Art . 15
2.2.1 Signature Authentication . 15
2.2.2 Signature authentication using GED 18

3 Signature processing . 21
3.1 Data . 21
3.2 Signature pre-processing . 22

3.2.1 Extract coordinates . 22
3.2.2 Collection of nodes . 22
3.2.3 Signature matrix . 25

3.3 Comparison algorithm details . 28
3.3.1 Cost estimation . 28
3.3.2 First estimation and Backtracking from cost map 29

4 Experiment . 35
4.1 Experiment details . 35

ix

x Contents

4.1.1 Choice of reference and probe samples 35
4.1.2 Main experiment setup . 36

4.2 Experiment execution . 38
4.3 Performance values . 39

5 Results . 41
5.1 Hostile scenario results . 41

5.1.1 First estimation for all 100 users 41
5.1.2 Backtracking vs First estimation 43

5.2 Friendly scenario results . 46
6 Discussion . 47

6.1 Comparisons within own results . 47
6.1.1 Comparison method . 47
6.1.2 Edge labeling . 48
6.1.3 Cost calculation methods . 49
6.1.4 Threshold vs Min-Max Normalization 50

6.2 Comparisons with other studies . 50
6.2.1 Hostile scenario . 51
6.2.2 Friendly scenario . 53

6.3 Performance evaluation and potentials 54
7 Conclusion . 55
Bibliography . 57

Figures

2.1 Examples of body traits that have been used for biometric authen-
tication [4] . 7

2.2 Similarity matrix [5] . 8
2.3 False-Match-Rate vs False-Non-Match-Rate [5] 8
2.4 Illustration of the graph definition [6] 10
2.5 Example of a labeled signature . 10
2.6 Adjacency matrix [9] . 10
2.7 String Edit Distance calculation . 11
2.8 GED between two graphs [14] . 12
2.9 SOM structure [14] . 13
2.10 N-Queens problem illustration [16] . 14
2.11 N-Queens backtracking illustration [17] 15
2.12 Signature Pre-processing [1] . 16
2.13 Local Binary Pattern . 17
2.14 Keypoint graph [1] . 18

3.1 Illustration of the MCYT-100 dataset with signature 0021f03 21
3.2 Example signature from the MCYT-75 dataset [27] 22
3.3 Problem with offline pre-processing . 23
3.4 Signature with collected nodes of degree 4 24
3.5 All captured nodes . 25
3.6 Signature with the corresponding Adjacency matrix where edges

are labeled by pixel distance . 26
3.7 Signature with numbered nodes and labeled edges by pixel distance 27
3.8 Signature 1 for comparison . 28
3.9 Mapping table and cost added by neighbours between S1 and S2 . 32

4.1 All 25 signatures of user-id 0021 ordered by naming convention in
the MCYT-100 dataset . 35

4.2 All 25 forgery signatures of user-id 0021 ordered by naming con-
vention in the MCYT-100 dataset . 36

4.3 Illustration of probe/reference definition for forgery scenarios . . . 37
4.4 Illustration of probe/reference definition for friendly scenarios . . . 37
4.5 Performance illustration with user ID 0 from MCYT-100 39

xi

xii Figures

5.1 Hostile scenario for all 100 users with first estimation 42
5.2 Different methods with the use of Backtracking calculation 44
5.3 Different methods with the use of First estimation calculation 45

Tables

3.1 Example of x and y coordinates from MCYT-100 dataset 24
3.2 Cost tables for node to node comparison 29
3.3 Cost map for comparison between signature 1 and 2 30
3.4 First estimation of cost between signature 1 and 2 30
3.5 Defining clusters between signature 1 and 2 31

4.1 Illustration of comparisons with different calculation methods . . . 38

5.1 Friendly results for all different methods 46

6.1 Average scores for graph based distance with backtracking and first
estimation . 47

6.2 Comparison between the different edge labeling methods for hos-
tile scenario . 48

6.3 Comparison between the different edge labeling methods for friendly
scenario with fist estimation on all users 49

6.4 Comparison between the different cost calculations 50
6.5 Difference between the cost comparison methods 50
6.6 Hostile scores [30][31][32] . 51
6.7 Result with the use of Random Forest classifier [30] 51
6.8 Friendly scores . 53

xiii

Chapter 1

Introduction

1.1 Topic covered by the project

Handwritten signatures have been a natural method of authentication for cen-
turies. This method is still widely used on systems, with different technical ap-
proaches of implementation.

There exist two types of signature verification approaches, Online and Offline.
Offline signature verification considers the shape of the signature only, while On-
line also considers information from the signing process. Examples of additional
signature data from online capturing are signing speed and pen pressure. This
project will use Offline signature information, and look closer into characteristics
related to the length of drawn lines. We are going to extract the shapes into graphs,
and label all lines in between each junction points and connected endpoints. The
equality between signatures will be defined by the line distance differences, re-
ferred to as the edge label.

Even though graphs give high representational power, graph based approaches
are not widely used for signature authentication systems. The reason for this might
be the high mathematical complexity for system implementation. There are some
studies using Graph Edit Distance (GED) for this purpose. GED finds the lowest
possible distance for converting one graph into another. The approach presen-
ted in this thesis is slightly different, but due to the lack of specifically related
studies we will introduce GED in order to explain important concepts of graph
based approaches. Previous studies focus on node labeling, while we are going to
investigate the performance of edge labeling.

1.2 Keywords

Authentication, Signature biometrics, Backtracking, Graph edge labeling

1

2 Chapter 1: Introduction

1.3 Problem description

Many companies are using handwritten signatures as proof of identity for contract
signing and other costumer-oriented services. Within the area of authentication,
there will always exist criminals willing to use a person’s identity for own personal
interest. A signature may seem easier to falsify than for instance a fingerprint.
There are mainly three different signature forgeries; random, simple and skilled.
Random forgeries don’t even bother writing the victim’s actual name, while simple
forgeries uses the name of the victim but is unaware of what the original signature
looks like. Skilled forgeries attempts to imitate the original signature in order to
make it look as close as possible to the original. Due to the increasing incidents
of forgeries, there is a definite need of strict signature authentication systems
that filters out criminals. If there cannot be developed improvements, handwritten
signatures may become disapproved as a method of verification in the future.

We know from previous studies [1] that the use of GED for signature authen-
tication increases the representational power and system accuracy. By extend-
ing this work, we may invent even better systems for protecting peoples iden-
tity. Therefore, we will introduce other attributes from the signature and try a
new method for comparing graph equality. The implementation compares edge
distances between two signatures, and afterwards creates a matrix based on all
possible edge transformation costs. A backtracking algorithm will find the low-
est possible combination for converting all edges from one signature graph into
another. Node neighbor equality between signatures will benefit the cost during
calculation. We will then see if this implementation increases or decreases the
system performance compared to existing techniques.

1.4 Justification, motivation and benefits

There will always be a race in information security between criminals and security
developers. Every system has weaknesses, and new methods must be developed
in order to deal with constant threats. Since signature is such a common way
of doing authentication, it is important to develop better techniques for today’s
systems.

This project will test new data from the signature in order to see if the tech-
nique gives better results than the already existing systems in literature.

1.5 Research questions

• Can a graph based approach with labeled edges be used for signature au-
thentication?

Sub-questions:

Chapter 1: Introduction 3

1. What distance-related edge labels could be used?
Short explanation: One could use the number of pixels on the signature
curve between two nodes as an edge label, or the Euclidean distance between
the two nodes. Alternatively one could have the edge label "efficiency" of the
edge. This could be the ratio between the direct distance and the number
of pixels on the signature curve.

2. How should the specific characteristics of a signature-based graph influence
the implementation of the graph comparison algorithm?
Short explanation: The signature graphs have specific characteristics, e.g.
nodes have only degree 1 (endpoints), 2 (change of direction) or 4 (crossing
of lines).

1.6 Planned contributions

This thesis will attempt to create a more secure method for signature authentic-
ation. The planned contribution is an experiment with the signature verification
technique and a program that is capable of comparing signature patterns with this
method.

Chapter 2

Related work

This chapter introduces different topics that are relevant for solving the research
question. We will at first take a look at fundamental biometric theory, give a gen-
eral introduction into graphs, explain backtracking and illustrate the concept of
Graph Edit Distance (GED). Afterwards, this chapter will focus on State of the Art
theory where signature authentication, general theory about GED and the com-
bination of these two approaches are in focus.

2.1 Background

This chapter introduces the fundamental knowledge in order to understand the
research question. We will first talk about biometrics in general and how a bio-
metric system is constructed. The chapter will also include general graph theory,
the concepts of backtracking and an introduction into GED as a concept.

2.1.1 Authentication

"Authentication is the process of validating the identity of someone or something"
[2] (also refereed to as verification). This area have massively increased focus for
the last decades, and people rely on authentication during many daily activities.
Access into phones, computers, physical areas and payments with bank cards are
some examples of daily authentication processes. All these examples may differ in
their authentication method, but the concept of approving that you are the person
you claim to be is still fundamental. We will now look closer into three different
classes of authentication [3].

Something you know

This is something you (and you only) know of. It is typically a secret that is not
to be shared with others. A very common example is passwords. The benefit of
using passwords is that it is administratively inexpensive, and you don’t need any
physical equipment that could be lost or broken. A strong password demands a

5

6 Chapter 2: Related work

certain complexity of characteristics and length. Nevertheless, people tend not to
use strong passwords for different reasons (like fear of forgetting, laziness etc.).
This makes it easier for an attacker to guess the password, which will also give the
attacker access. Common passwords are often including date of births, pet names
and other dictionary words that relate to that person. If the person creates a really
strong password, they tend to use the same password on many different accounts
and even write the password down.

Something you have

This class uses physical equipment for authentication. Examples are ID-cards,
keys, SIM cards etc. Unlike passwords, this form of authentication is slightly safer
because it is harder to steal physical items than guessing passwords. People are
also less likely to lose an item than to forget a password. The downside is the
administration required and expenses for the production of new, lost or broken
physical authentication devices. When someone loses their authenticator, the item
must also be deactivated immediately in order to maintain security.

Something you are

This is a naturally acquired physical or behavioural characteristic which is unique
for each individual. During the last decades, many IT companies have implemen-
ted this class into daily authentication use cases. Smartphones may be the leading
area, where both fingerprint and face recognition are widely used for both access
into main systems, but also implemented for third party applications like bank
authentication.

Combining classes

In order to make authentication systems even more secure, it is very common to
combine these classes. For instance, in order to pay in the grocery store where
transactions exceed a specific value, you need both the card itself (something you
have) and a PIN code (something you know). Nowadays, it is also common to use
smartphones as the physical object. In these scenarios, biometric authentication
(something you are) is commonly used for accessing the virtual bank card.

2.1.2 Biometrics

A biometric system measures one or more physical or behavioral characteristics
[4]. These characteristics are unique for each individual and separates people
from one another.

Figure 2.1 illustrates different human biometrics. Examples of biological bio-
metrics are fingerprint, vein, face and iris. Other, more environmentally developed
characteristics called behavioural biometrics are for instance signature, gait and
keystroke dynamics.

Chapter 2: Related work 7

Figure 2.1: Examples of body traits that have been used for biometric authentic-
ation [4]

A biometric system will never result in a 100 percent perfect match between
two samples, even from the same individual. For fingerprint capturing, there are
many different sources of modifications; level of pressure on the finger while the
sample was taken, direction of the finger, where on the finger the pressure was
focused and so forth. We differentiate between two types of samples. The probe
is the unidentified sample to be compared against the system database, while the
reference is the system’s trusted samples linked up with individuals [4]. Comparing
two biometric samples results in a comparison score. Similarity scores are compar-
ison scores that increases with similarity, while dissimilarity scores decreases with
similarity.

Figure 2.2 illustrates a similarity matrix with N number of instances. Probe
samples are compared with references, resulting in either a genuine score (green)
or imposter score (red). The genuine scores represent instances where the probe
sample and reference sample originates from the same biometric feature of an
individual. Imposter scores are instances of probe samples and references that do
not originates from the same individual. A threshold is set in order to find a value
low enough to allow as many genuine scores as possible, but high enough to deny
as many imposter scores as possible. The value is defined in order to conclude
whether the instance is equal enough to originate from the same person [4].

The accuracy measurement of biometric systems are referred to as False-Non-
Match-Rate (FNMR) and False-Match-Rate (FMR). FNMR refers to the expected

8 Chapter 2: Related work

Figure 2.2: Similarity matrix [5]

Figure 2.3: False-Match-Rate vs False-Non-Match-Rate [5]

Chapter 2: Related work 9

propability that a probe and a reference sample obtained from the same individual
feature will be falsely declared as a non-match. FMR is the expected propability
that two non-mate samples will be incorrectly recognized as a match [4]. Figure
2.3 illustrates imposter scores (red) and genuine scores (green). It is impossible
for this system to prevent all imposter attempts and simultaneously accept all
genuine attempts. The threshold decides level of FNMR and FMR for the system.
Systems of different purposes must adjust the threshold in order to fit their use
cases. For instance, a system that controls access into a fitness gym may need a
lower FNMR than other systems. In order to maintain reputation, it is important
that all costumers get access into the gym facilities without any problems. Be-
cause of that, they will accept some level FMR instead of possible complains and
unsubscriptions. On the other hand, companies in possession of classified inform-
ation available for authorized personnel only, need a very accurate authentication
system with low FMR. In biometric performance testing we are interested in a
threshold that can optimally separate the two different classes; genuine samples
and imposter samples. The two most common methods are:

• Total Error Rate (TER)

◦ Where the sum of FMR and FNMR is lowest

• Equal Error Rate (EER)

◦ Where FMR and FNMR are closest to each other.

2.1.3 Graph theory

A graph is a set containing a finite number of points, called nodes. These nodes
are connected by lines called edges [6]. Let L be a finite set of labels for nodes and
edges. A labeled graph g is defined as a four-tuple [7]

g = (V, E,µ, v)

• V is the finite set of nodes.
• E ⊆ V × V is the set of edges.
• µ : V → LV is the node labeling function.
• v : E→ LE is the edge labeling function.

Figure 2.4 illustrates a basic graph represented by the definition above. We
can see that functions µ and v are defining the labels of nodes and edges.

By converting human written signatures into graphs, they can be labeled based
on predefined criteria. Nodes are representing characteristic keypoints in the sig-
nature, and edges connect these nodes [1]. Figure 2.5 illustrates an example of
how nodes can be defined in a signature. In this scenario, we have defined three
types of characteristics in the graph that is converted into nodes:

• Order 1: Endpoints
• Order 2: Change of direction
• Order 4: Crossing lines

10 Chapter 2: Related work

Figure 2.4: Illustration of the graph definition [6]

Figure 2.5: Example of a labeled signature

Red nodes are endpoints with the order of 1 because one edge is connected to
those nodes. Yellow is order 2 with change of direction and two edge connections,
while green is order 4 with crossing lines and four edges connected to the node.
The edges are labeled with a distance calculation between the connected nodes.
These calculations could be for instance number of edge pixels or straight line
distance between the connected nodes.

There are different methods for representing a graph without the graphical
expression. One method is an Adjacency matrix [8]. The elements of a squared
matrix indicates whether nodes in the graph have edges connected to one another
or not.

Figure 2.6: Adjacency matrix [9]

Chapter 2: Related work 11

From figure 2.6 we see a graph with nodes numbered from one to six. These
numbers corresponds to the rows and columns in the matrix. If we want to see re-
lations to node 5 for instance, we either check row number five or column number
five. Values not equal to zero determines edges between nodes. Value 2 in figure
2.6 indicates an edge loop.

2.1.4 Graph Edit Distance

Graph Edit Distance (GED) operates in a two-dimensional space. In order to get an
understanding of Edit Distance as a concept, we are going to start with explaining
the one-dimensional String Edit Distance.

String Edit Distance

Given two strings X and Y over a finite alphabet, String Edit Distance (SED)
between X and Y can be defined as the minimum weight of transforming X into
Y through a sequence of weighted edit operations. These operations are usually
defined in terms of insertion of a symbol, deletion of a symbol, and substitution of
one symbol for another [10]. Scientist V. I. Levenshtein introduced the distance
back in 1966 [11]. It is commonly known as Levenshtein distance.

Figure 2.7: String Edit Distance calculation

Figure 2.7 illustrates the SED between repair and repeat. Each of the cells in
the table represent a sub-problem. By calculating each one of them we get the
global optimal edit distance. First row and column represent an empty string, and
the edit distance is represented with the number of insertions to get from empty
string into each words. The three operations are illustrated to the left in Figure
2.7. By placing current position inside a sub-problem cell, the cost of insertion is
the value above, deletion to the left etc. You always chose the lowest cost and add
by one for each operation. The SED between repair and repeat is 3.

Instead of computing the number of operations, different weights for different
operations could be used. For example, it is possible to weigh the cost for deletion
of a character higher than replacing it with another character [12]. Text editing
programs with an implemented error correction function verifies words up against
the dictionary. For keyboard typing, the distance between e and r should be lower

12 Chapter 2: Related work

than e and m because the physical distance on the keyboard is shorter and causes
a higher chance of miss-typing.

Graph Edit Distance

GED measures the amount of distortion needed to transform one graph into an-
other graph [13]. There is a specific set of possible operations in order to perform
the transformation:

• Node insertion: Introduces a single new labeled node to a graph.
• Edge insertion: Introduces a new edge between a pair of nodes
• Node deletion: Removes a single node from a graph.
• Edge deletion: Removes a single edge between a pair of nodes.
• Node substitution: Changes the label of the node.
• Edge substitution: Changes the label of the edge.

GED attempts to find the lowest possible cost by using a combination of the dif-
ferent operations. Instead of only having to deal with characters (SED), there are
two possible labels of error; nodes and edges. This results in a higher level of
complexity for the Edit Distance calculation.

Figure 2.8: GED between two graphs [14]

Figure 2.8 illustrates two graphs that are not identical. In order to transform
graph 1 into graph 2, there must be a number of edit operations. One possible
solution is:

– Edge substitution between node 3 and 5
– Node 6 deletion
– Node a insertion
– Edge substitution for node 4, redirecting edge to node a
– Node 1 substitution
– Edge insertion between node a and 1

There is a defined cost function for each operation, and the entire edit opera-
tion cost value is the sum of all operations in the sequence. Important definitions
are how to determine similarity of components and cost of edit operations [14].
GED separates two different types of graphs: attributed graphs and non-attributed
graphs. The difference is that attributed graphs labels nodes and/or edges, while
non-attributed graphs does not. We will now give a short explanation of two dif-

Chapter 2: Related work 13

ferent approaches for GED calculation. One is based on machine learning and the
other is graph-based.

Self-Organizing Maps (SOM) based algorithm [15] networks consists of two
layers: input layer and competitive layer. The input layer places nodes in a space
based on their features. These nodes are connected to all neurons in the competit-
ive layer. Neurons compete in order to be the closest one to the inputs. Figure 2.9
illustrates the structure of SOM, and how an input (hollow node) is connected to
each neuron (red nodes) in the competitive layer. Neurons are also connected to
each others neighbors. There is a specific process in order to create the competitive
layer of neurons [14].

Figure 2.9: SOM structure [14]

In the context of GED, SOM is created for use on attributed graphs and is
based on the already mentioned definition g = (V, E,µ, v) for objects to be pro-
cessed. Every node and edge labels are m-dimensional and n-dimensional vectors,
respectively. The labeled nodes and edges of a graph is placed into the input layer
of a SOM network, and the competitive layer will afterward become trained [15].
The actual edit costs are derived from a distance measure for labels that is defined
with the distribution encoded in SOM [14].

Bipartite approximation [7] reduces the problem of graph edit distance to an
instance of a linear sum assignment problem (LSAP). Two graphs are proposed
with each of its node set. These node sets are calculated from the graph normal-
ization and is defined as V1 = {u1,...,un} and V2 = {v1,...,vm}.

14 Chapter 2: Related work

Matrix C calculates the cost of each operation. Variable ci j denotes the cost
of a node substitution (ui → v j), ciε denotes the cost of a node deletion (ui →
ε), and cε j denotes the cost of a node insertion (ε→ v j) [7]. The operations that
results in the lowest sum are used.

2.1.5 Backtracking

In order to understand backtracking, the fundamental concept will be briefly ex-
plained first. Afterwards, these concepts will be set into context by solving a typical
backtracking calculation approach; the N-Queens problem.

A backtracking algorithm attempts to find all, or some, or the most optimal
solution(s) to computational problems by systematically searching through paths
and continuously checking if conditions are valid before either exploring further,
choosing another direction or going backwards [16]. All solutions that does not
satisfy the given conditions will be removed. The algorithm is based on a trial and
error method, which means that many error attempts causes higher inefficiency.
Compared with brute-force approach that attempts all possible paths, backtrack-
ing will be much more efficient due to its validation of conditions at every phase.

The N-Queens problem [17][18]: Given an N x N square chess board, how can
N queens in the respective rows and coloums be placed while not threatening
or attacking each other? In chess, queens can attack vertically, horizontally and
diagonally.

Figure 2.10: N-Queens problem illustration [16]

Figure 2.10 illustrates a 4 x 4 board with 16 different fields. If the first queen
is placed in field (1,1), the remaining non-threatened fields are 7, 8, 10, 12, 14
and 15. There are many decision points throughout this problem solving, which
benefits the backtracking approach. In order to program backtracking, there are
three important aspects of the code; the choice that has to be made at each stage,
indications of when the program must stop that path or not even considering it,
and defining the target goal of the operations. For this scenario, the backtracking
algorithm must decide which path to do next.

The decision tree (figure 2.11) shows how the algorithm must run through the
different possibilities until it finds a valid path that meets the required conditions.
At each stage, it systematically determines next path and checks if that choice

Chapter 2: Related work 15

Figure 2.11: N-Queens backtracking illustration [17]

leads to any conflicts with other queens on the table. If so, no further investigations
are done within that path. If the choice does not lead to any conflicts, the program
will investigate that path further. We see from figure 2.11 that no valid paths were
found during the investigation from starting-point (1,1) on the table. Starting-
point (1,2) on the other hand discovered one valid set of queen placements for a
possible solution of 4-Queens problem. In comparison, brute force attempt tries all
different paths from top to bottom and does not check the queen conditions until
after all stages. This may not be too comprehensive for this scenario with 4 Queen,
but with 8 x 8 8-Queens problem there will be a total of 64× 63× 62× ...× 57=
178,462, 987,637, 760 different cases [18]. Backtracking is an efficient way of
finding valid paths.

2.2 State of Art

This chapter illustrates detailed knowledge related to the project. The first and
second part go in-depth on offline signature authentication and GED separately,
while the last section combines these two subjects.

2.2.1 Signature Authentication

There are two main implementation methods for signature-based biometric sys-
tems. Online signature authentication uses dynamic features from the signing pro-
cess in combination with the actual signature. These features are collected with a
digital capturing device, measuring pen pressure, tilt of pen, writing speed along
with others [19]. Offline considers the shape of the signature only [20]. There are
some fundamental pre-processing steps in order to prepare the signature data,
and they are briefly illustrated below. [21].

16 Chapter 2: Related work

Data Acquisition

Since offline signatures are written with pen and paper, the data must be converted
into a digital format for further analysis. Common techniques are scanning or
digital images of the signature. If the main interest is the signature pattern, an
online signature electronic device could be used for shape capturing.

Signature Pre-processing

The complexity of the pre-processing part depends majorly on whether to use
online or offline samples. Image processing is necessary for all offline samples
because the signature shape must be extracted from surrounding noise in the
photo. This process is called binarization and gives each pixel two possible values;
zero and one. For optimal binarization, there should be a major color difference
between surrounding background and the signature text (e.g black and white).
This is to avoid any misclassifications from the pixel leveled threshold. For even
more precise representation of the signature, the binary sample is converted into
a skeleton. This process makes the signature lines one pixel wide. Figure 2.12 il-
lustrates an example of binary and skeleton image pre-processing from an original
offline signature.

Figure 2.12: Signature Pre-processing [1]

Feature Extraction

There exist many different feature extraction algorithms used for gathering in-
formation from signature images. One approach called Local Binary Pattern (LBP)
will be explained in more detail. LBP is a general and widely used method for de-
scribing certain parts of an image. The approach labels pixels of an image as a bit
string [22]. The binary string is based on one pixel’s surrounding neighbor pixels.
Subtracting this center pixel by each neighbor gives an either positive or negat-
ive encoding. Positive values are encoded as one, while negatives as zero. These
steps are illustrated in figure 2.13. Descriptors like LBP are capable of recognising
different features of a signature, e.g. number of holes, distributions, projections,
number of branches in the skeleton, tortuosities and many others [1].

Below are some specific and common features extracted from the signature
shape:

Chapter 2: Related work 17

Figure 2.13: Local Binary Pattern

• Dominant angle [21]

◦ Evaluates the angle of the written signature. Some people tend to not
write in a straight line, and valuable information are possibly extracted
from this analysis.

• Signature triSurface feature [23]

◦ Evaluates the surface area of the signature. The signature is separated
into three equal parts, vertically. The surface area is the surface covered
by the signature, including the holes. All black pixels in each surface
are counted and compared with all background pixels from the entire
signature image, resulting in a percentage score between the three
surfaces.

• Length feature [23]

◦ Represents the signature length after scaling all signatures from the
database into the same height. In order to normalize the length into
values between 0 and 1, the shortest signature in the database are
valued 0, while the longest are valued 1. All other signatures are con-
verted into values somewhere in between.

• Texture feature [24]

◦ Analyses the pixel pattern. In order to extract the texture feature group,
the co-occurrence matrices of the signature image is used. For a bin-
ary signature image, the co-occurrence matrix pd[i,j] is defined by first
specifying the displacement vector d= (dx, dy) [21]. This vector could
for instance go through the middle of the signature horizontally and
counting all pairs of pixels. The co-occurrence matrix is 2 × 2 and de-
scribes the transition between black and white pixels and is defined
as

Pd[i, j] =

�

p00 p01
p10 p11

�

Where p00 is the number of instances with two white pixels connected,
p01 is from white to black, p10 is black to white and p11 is two black
pixels.

18 Chapter 2: Related work

Matching

After the extraction of the signature features, the data is ready to be compared
with other signatures in the database. A matching-technique is required to per-
form this comparison calculation. One approach is to use distance metrics. This
could for instance be Euclidean distance or Manhattan distance [25]. Other, more
advanced approaches are classification algorithms such as the binary classifier
Support Vector Machine or the multi-class k-Nearest Neighbors.

Biometric datasets come with a given number of samples from each individual.
The online signature dataset MCYT-100 [26] has samples from 100 different in-
dividuals. Each individual has 25 genuine and 25 skilled forgery samples each.
MCYT-75 [27] is an offline dataset containing 75 users with 15 genuine samples
and 15 skilled forgeries each.

A good matching algorithm can reliably distinguish between original and for-
gery samples. The database must be split up into probes and references. The
probe samples should include the majority, but the defined references must con-
tain enough samples in order to represent the user in a satisfactory manner. When
a probe signature is provided, it is compared with each of the signature samples in
the reference. Each comparison will result in a separate score. There are different
approaches for selecting the final comparison score between one probe and the
references. Examples are the lowest, the highest or the average score.

2.2.2 Signature authentication using GED

This sub-chapter goes in depth on specific published literature related to the com-
bination of signature authentication with the use of graph edit distance. The lit-
erature is mainly based on two papers; [1] and [7].

Figure 2.14: Keypoint graph [1]

As mentioned in chapter 2.2.1, the first step of signature pre-processing for off-
line signatures is skeletonization. By using the definition of labeled graphs from
chapter 2.1.3, g = (V, E,µ, v), a signature can be labeled based on certain cri-
teria. [1] defines keypoint graphs as labeled graphs, where the labels are based on
characteristics extracted from an image of handwriting. Figure 2.14 illustrates an
example of keypoint graph from a skeleton image. Two types of points are con-
verted into nodes: characteristic keypoints in the signature pattern and consistent
points between those characteristics. The characteristic keypoints are carried out

Chapter 2: Related work 19

by looking at each black pixel in the skeleton image. Black pixels with exactly
one neighbored pixel are end points. If the pixel has more than two neighbored
pixels, it is defined as possible junction points. Incidents of multiple possible junc-
tion points next to each other confirms a junction point. The average of these pixels
are chosen as the exact position. When the signature is a whole circle without any
end points or junction points, the left outer pixel is chosen as keypoint. A distance
parameter is chosen in order to fill the rest of the signature with additional nodes
between the keypoints.
[1] defines different forms of graph normalization. One approach is to exclude

normalization and use the raw node labels only. Another approach is to move all
nodes such that the center of the signature becomes the point of origin. It is also
possible to extend the center normalization by scaling the signature such that the
standard deviation is 1 in both x - and y - direction.

Both [1] and [7] uses bipartite approximation as introduced on chapter 2.1.4.
The cost function is an important decision during the calculation of GED. For [1],
in case of substitution the cost model is based on the coordinate labels of the
nodes. The Euclidean distance is used between two node labels:

c(u→ v) =
Æ

(xu − xv)2 + (yu − yv)2

In case of insertion or deletion, the cost model uses average edge length. This
is the weighted average length of all edges in the current reference graph, defined
as m(g1). The calculation is as follows:

c(u→ ε) = c(ε→ v) = γnode ·m(g1)

where γnode ∈ R+

The cost of edge insertion and deletion is defined as follows:

c(e1→ ε) = c(ε→ e2) = γed ge ·m(g2)

where γed ge ∈ R+. The cost of edge substitution is set to zero, defined c(e1 →
e2) = 0.

Chapter 3

Signature processing

3.1 Data

As already mentioned in chapter 2.2.1, MCYT-100 [26] is an online signature data-
set with signatures from 100 different individuals. Each one of the 100 individuals
had provided 25 samples, and 25 samples were skilled forgeries trying to simulate
the original signatures. The signatures were stored as fpg-files. In order to extract
the file information into a visible drawing, the dataset included an attached script.
This script extracted and visualized information related to online signature values
as well. Since we were interested in the shape only, the extended online data was
excluded from our calculations.

Figure 3.1: Illustration of the MCYT-100 dataset with signature 0021f03

Figure 3.1 is an example from the MCYT-100 dataset. From a close look it is
possible to see that the signature is constructed from multiple straight lines. The
graphs to the left are the environmental data. We are going to use this particular
signature (0021f03) for explaining the processing steps throughout this chapter.

In comparison, the offline dataset MCYT-75 [27] uses photos of the signatures.
An example is illustrated in figure 3.2.

21

22 Chapter 3: Signature processing

Figure 3.2: Example signature from the MCYT-75 dataset [27]

3.2 Signature pre-processing

This section will go through every step in the pre-processing part, from the raw
fpg-file until we have captured all valuable information about the signature.

3.2.1 Extract coordinates

We collected all valuable information about the signature by using a Matlab-script
attached to the MCYT-100 dataset called FPG_Signature_Read.m. This function
returned x and y coordinates captured with a distance interval, and the Matlab-
function plot drew straight lines in between for signature visualization. We used
Bresenham’s line algorithm [28] for constructing the remaining in-between co-
ordinates. The new set of coordinates gave a complete representation of the signa-
ture, and could simply be converted into an image for offline signature calculation
or be used for pixel distance estimations between nodes. At this point, we have
extracted the signature coordinates into an unlabeled graph without any defined
characteristics.

3.2.2 Collection of nodes

One way to estimate where nodes of degree 1 and 4 were placed in the signature
was to use the offline approach. The signature was then processed as a binary
skeletonized image. Nodes of degree 4 were captured with the use of LBP [22]
estimations. Since this method didn’t result in 100 percent accurate calculations
in our tests, we chose to instead use the online approximation. This method calcu-
lated the crossing lines based on plotted lines between the coordinates captured
from FPG_Signature_Read.m. This gave endless scalability, so there was no doubt
in whether or not two lines were crossing each other.

Figure 3.3 illustrates scenarios where offline pre-processing of node detection
struggled. When two lines were near each other without touching, it was difficult
for the offline pre-processing tools to not consider these as crossing lines. On the
right scenario in figure 3.3, we experienced multiple false detections of degree 4
nodes with LBP.

Chapter 3: Signature processing 23

Figure 3.3: Problem with offline pre-processing

Degree 1 nodes

As already mentioned, signature pattern information from the MCYT-100 dataset
were pure coordinates. Degree 1 nodes will always be endpoints of these coordin-
ates. As you can see from table 3.1, when the pen was lifted and moved to another
location, the coordinates were represented by Not a Number (NaN). This meant
that endpoints were collected when:

– It was the first coordinate in the table
– It was the last coordinate before NaN value
– It was the first value after NaN has occurred
– It was the last value in the table of coordinates

Degree 4 nodes

As mentioned earlier, by analyzing the signature from a graph plot instead of an
offline image, the node calculation became 100 percent accurate. The Matlab-
function polyxpoly returned coordinates of every intersection. This function also
returned coordinates when the graph changed direction. Since we were interested
in intersections of crossing lines only, we used the Matlab-function setdiff in order
to exclude coordinates of the signature itself. The return value of this function
gave all crossing lines in the signature graph.

Figure 3.4 shows an example of a signature graph with collected nodes of
degree 4. The image to the right (inside figure 3.4) is an enlarged clip of the graph,
where you can see that the online signature representation gave advantages when
it came to accuracy since the sample did not rely on image resolution.

At this point, we have collected all nodes of degree 1 and 4 in the signature.
Figure 3.5 also illustrates the corresponding numbers. The graph coordinates were
systematically organized and ordered as the signatures were written, and our pro-
gram numbered the nodes as they occurred in the analyzing process. This is due
to the input coordinates as described in chapter 3.2.1. If we follow the numbering,
we can see the user path of writing the signature.

24 Chapter 3: Signature processing

Table 3.1: Example of x and y coordinates from MCYT-100 dataset

Figure 3.4: Signature with collected nodes of degree 4

Chapter 3: Signature processing 25

Figure 3.5: All captured nodes

3.2.3 Signature matrix

Information about the signature needed to be captured in a format that gave a
clear understanding of the graph structure, as well as the edge labels. In section
2.1.3 we introduced Adjacency matrix [8]. We chose this method as the signature
information storage format. Figure 3.6 illustrates how the signature graph was
stored as a matrix.

Construction

We wanted to store all information about the signature in the adjacency mat-
rix. Normally, Adjacency matrices only collects information about whether or not
nodes are connected. The matrix row/column has value 1 if there is a connection
with another node and value 2 if its connected to itself or if there are two possible
routes between nodes.

Instead of collecting information about connections only, we stored the edge
labeling information inside the matrix. Figure 3.6 shows the signature and the
corresponding adjacency matrix. If we wanted to find the distance between node
1 and 2, we checked at row 1 and column 2 (or row 2 and column 1). In this
example the distance was 293 pixels.

Since we changed the normal adjacency matrix setup, we had to make some
considerations. As mentioned above, when there are two possible routes between
two nodes, the standard value inside an adjacency matrix is 2. This is not possible
to represent in our matrix approach. Instead, we chose to split one of the two
routes and created a new set of nodes. These nodes were all marked with green
in figure 3.6 (for instance node 10 and 11). The distance between the original

26 Chapter 3: Signature processing

Figure 3.6: Signature with the corresponding Adjacency matrix where edges are
labeled by pixel distance

Chapter 3: Signature processing 27

node and the new one is set to 1 pixel, which is visible in the adjacency matrix
between node 3 and 10. The distance between node 10 and 11 is in this example
represented by the other possible path between node 3 and 4.

We have focused on three different methods of labeling the edges in the sig-
nature; pixel distance between nodes, Euclidean distance and the efficiency ratio
between these two.

Calculation of edge labels

The signature itself is not based on pixels due to the online signature implement-
ation. We considered two possible options for finding the actual typing distance
between two nodes. One way was the estimation of Euclidean distance between
all coordinates from one node to another. Another approach was to calculate all
coordinates in each line with the use of Bresenham’s line algorithm [28] and then
count the number of coordinates between the nodes. This method is transferable
to pixel distance for offline signatures. We chose the pixel distance approach for
our estimation, without arguments for or against one over the other. This method
gave good performance when it came to execution speed. Euclidean distance was
implemented with the use of the formula mentioned in section 2.2.2. The final
edge labeling implementation we chose to investigate further was the efficiency
ratio between Pixel distance and Euclidean distance. In this approach Euclidean
distance was divided by Pixel distance.

Figure 3.7: Signature with numbered nodes and labeled edges by pixel distance

We have now completed the pre-processing part, and the result is illustrated
in figure 3.7. All nodes have been detected with either a degree of 1 or 4. Cor-
responding edges with labeled distance values are also defined and stored in the
adjacency matrix.

28 Chapter 3: Signature processing

3.3 Comparison algorithm details

This section talks about how the cost estimations were made, and goes through
the calculations of the node mapping cost. We are going to explain the comparison
techniques by comparing the already familiar signature (figure 3.6), now defined
as signature 2, against signature in figure 3.8, now defined as signature 1.

Figure 3.8: Signature 1 for comparison

3.3.1 Cost estimation

In order to calculate a similarity score between two signatures, we first had to look
closer into node similarities and their connected edge labels. When we compared
two nodes with a difference in number of connected edges, they were so dissimilar
that a mapping would be inefficient. Therefore, a very high cost was given for each
insertion/removal of edges. Finding a valid cost for changing the edge distance
from one node to another was solved with an exponential approach. The higher
distance, the higher the cost. For Pixel and Euclidean distance, the costs were
calculated with the following formula:

COST = 2|Ea−Eb|÷1000

Chapter 3: Signature processing 29

where Ea and Eb are the edge distances to be compared.
For Efficiency calculation, the values were somewhere in between zero and

one. More similar Efficiency ratio resulted in lower transformation cost. We used
the formula:

COST = 1.5|Ea−Eb|×100

Table 3.2: Cost tables for node to node comparison

Table 3.2 illustrates three scenarios of node comparison between signature 1
and 2 with pixel distance as edge labeling. In the table headlines, S1 stands for
signature 1, N1 stands for node 1 etc. The underlying columns are edge values for
their corresponding node. These edge values can be found in table 3.6 and 3.8.
Values of zero represent no edge. From the left table we see that the two nodes
have one connected edge only. By using the formula above, we get a cost of 18,9
for transforming S2 N1 into S1 N1. In the middle table, we see a scenario where
both nodes have four connected edges. We wanted to map edges that were most
similar to each other in order to minimize the cost. One approach was to compare
each and every edge mapping opportunity. That would require much processing
and the execution time would be significantly longer. Instead, we sorted the edges
in ascending order, which gave an estimation of lowest mapping cost. By adding
the cost of all four edge transformations, we got a final cost of 13,6. The right
table illustrates a comparison with a mismatch in the number of edges between
the nodes. For each and every addition/removal, a cost of 100 000 was added.
Since we needed to add three edges in this scenario, that cost became very high
and would most likely not become a preferred option.

The entire comparison of all nodes between S1 and S2 resulted in the cost map
illustrated in table 3.3. From this table, we collected each and every transforma-
tion cost between the two signatures. Node numbers from S1 are represented as
columns, while node numbers of S2 are rows. The corresponding cell is the trans-
formation cost. For instance, if we want to check the node comparison between
S1 N5 and S2 N7, we check row 7 column 5. This cost was 15,8.

3.3.2 First estimation and Backtracking from cost map

The final step was to find the lowest possible cost for mapping all nodes from
one signature into another. We could not reuse any nodes, so it was important

30 Chapter 3: Signature processing

Table 3.3: Cost map for comparison between signature 1 and 2

to optimize the mappings to get the overall lowest cost when all transformations
were added together. An efficient method was to use the first estimation approach
where the lowest available transformation costs were used for mapping.

Table 3.4: First estimation of cost between signature 1 and 2

Table 3.4 illustrates how first estimation was calculated for mapping nodes
from S1 into S2. Excessively high mapping costs were excluded from this table in
order to save space. The brown left column represent all 13 nodes from S1. Grey
columns represent the node IDs of S2, with the corresponding cost value to the
right. This table is sorted so that the cheapest transformation costs for each S1
nodes from Table 3.3 are closest to the left. If we then follow the row, we see the
second cheapest and so on. By taking S1 N1 (which is the first row) as an example,
we see that the cheapest transformation cost was S2 N19 with a cost of 8,07. The
second cheapest was S2 N1 with a cost of 18,88 and so on. We started off this
first estimation calculation by selecting the lowest cost across all nodes. This was
the transformation of S1 N13 into S2 N19 with a cost of 2,61. As illustrated in
the table, we first marked this action as number 1 (in yellow) besides the S2 node
ID and then marked that cost cell with green which means it was taken. Action
number 2 occurred at S1 N5 where S2 N16 had a cost of 6,34. Third lowest cost
happened at S1 N1 where S2 N19 had a cost of 8,07. The problem was that S2
N19 already had been taken at action 1. Because of that, we could not complete

Chapter 3: Signature processing 31

this mapping and marked the cell with red. These procedures were executed until
all S1 nodes were mapped.

Since there were many different variants of mapping, we also needed to ensure
that the calculation estimated the lowest possible cost. In order to make the script
more efficient, we had to avoid checking all possible combinations. In order to
do that, we used backtracking. Lowest collected cost from first estimation was
always used as comparison for the backtracking algorithm in order to skip paths
with higher cost. Once a higher cost was detected, the script stopped without
further calculations and calculated a new possible route. Once a lower cost route
was found, the backtracking algorithm used that value as benchmark. We decided
to always transform the signature with highest number of nodes into the smallest
one. Among other things, this had to do with the wider specter of possibilities for
node transformation instead of adding fake nodes.

Even when we were using efficient techniques for backtracking in order to
save processing time, most of the signatures contained so many nodes that one
comparison could take days to calculate. For instance, a comparison between two
signatures with 50 nodes each have 50! ≈ 3.04 × 1064 possible solutions. The
backtracking algorithm excluded many irrelevant solutions, but it was still far
from acceptable performance. To put this into a time perspective, the compar-
ison between S1 and S2 with 13 and 19 nodes lasted for approximately 1 hour
and 7 minutes. Some signatures in the dataset had over 100 nodes each after
pre-processing, so we needed to find an increased calculation performance. After
further analysis of the cost map (e.g table 3.3), we saw clearly that some node
transaction costs were so high that it was not worth carrying in the calculations.
We checked each and every reference node in order to see which probe transaction
costs were below a certain threshold, which was set to 10 000.

Table 3.5: Defining clusters between signature 1 and 2

While using S1 and S2 as example, we see from table 3.5 that S1 nodes are
numbered at the first row, while the second row contains all S2 nodes that can
be transformed with a cost below 10 000. With a closer look, we could see three
clusters of nodes from S2. One cluster contained node 1 and 19. These could only
be mapped into 1 and 13 in order to get the cost below 10 000. Another cluster was
node 14, 15, 17 and 18. These were preferably mapped into node 11 and 12. The
last cluster in this example contained all S2-nodes that could be mapped into node
2 - 10 in S1. By doing this partitioning of nodes, we could minimize the number of
backtracking possibilities. Instead of having over 13! different combinations, we
were now at approx 9!. This made a large impact on time efficiency, and shrinked
the completed backtracking processing time for comparing S1 and S2 to below 10
seconds.

32 Chapter 3: Signature processing

During backtracking, we were not only considering the transformation cost
between nodes, but also their corresponding neighbors. Similar node neighbors
meant that the signatures had more similar characteristics. This was one of the
main weaknesses in the first estimation approach, since neighbor information was
not taken into account. Information about neighbor nodes were already collected
in the adjacency matrix, and we used this information during the mapping with
backtracking.

Figure 3.9: Mapping table and cost added by neighbours between S1 and S2

Figure 3.9 shows the completed mapping table for comparison between S1
and S2. In the very early stages, it was harder to determine whether or not two
mapping nodes had corresponding neighbours. This information became clearer
for each completed mapping. The scenario in figure 3.9 considered the thirteenth
and last mapping. We divided the process into four stages, marked with numbers
in the figure:

1. Checks which nodes are neighbors with signature 1 node.

Chapter 3: Signature processing 33

2. Checks which of the signature 1 neighbours are mapped earlier in the map-
ping table

3. Checks which nodes are neighbors with signature 2 node.
4. Counts the number of corresponding neighbors based on the previous map-

pings.

The example from figure 3.9 resulted in three shared neighbours. Neighbor
costs were estimated by the formula

COSTneighbours = 5Ntotal−N

where Ntotal is the number of neighbors and N is the number of shared neigh-
bours. This cost was added upon the previously calculated cost of node transform-
ation. Since only one neighbor was missing in this scenario, we added a cost of
51.

The final step in the comparison calculation added additional cost for remov-
ing nodes. The formula used for this purpose was

COSTnodeDelete = 2(|N1−N2|)/((N1+N2)/2)

where N1 and N2 is the number of nodes of each signature. This calculation
took into account how many nodes there were in total, so signatures with low
number of nodes got a higher cost with the same difference than with high number
of nodes.

Chapter 4

Experiment

This chapter explains the experiment setup in detail.

4.1 Experiment details

The research question will be answered by experimenting with various methods
of comparing signatures by edge labels.

4.1.1 Choice of reference and probe samples

In order to compare signatures, we needed to define reference and probe samples
in the dataset. It was important that probe samples were the large majority, but
there needed also be enough references in order to fully represent the user. In the
experiment starting phase of selecting probe/reference, the first 5 samples were
picked as reference, while the remaining 20 became probe.

Figure 4.1: All 25 signatures of user-id 0021 ordered by naming convention in
the MCYT-100 dataset

35

36 Chapter 4: Experiment

Figure 4.2: All 25 forgery signatures of user-id 0021 ordered by naming conven-
tion in the MCYT-100 dataset

As figure 4.1 shows, the person changed signature patterns slightly every 5
sample in the dataset. Signature 1-5 were fairly similar, as well as signature 6 -
11 and so on. This was because the signatures of every user in MCYT-100 were
collected as sets of 5 samples [29]. We could not get a complete representation
of the user by selecting a cluster of signatures close to each other as references.
Therefore, every fifth sample from 1 to 25 (1,6,11,16 and 21) were defined as
references for each and every individual. This method ensured that one reference
signature were represented for each set of samples. Figure 4.2 shows all skilled
forgery samples attached to that user. The forgery scenario was also divided into 5
sections, where 5 different users attempted to falsify the signature with 5 samples
each [29].

4.1.2 Main experiment setup

The main experiment was divided into two different categories; hostile and friendly.
The hostile scenario looked at the system accomplishment of separating legitim-
ate samples from skilled forgeries. This was the most difficult task when it came
to performance, but may also be the most relevant one. In the friendly scenario,
we attempted to separate samples between genuine users. Since we wanted to
compare three different edge labels (Pixel distance, Euclidean distance and Effi-
ciency), the execution of each one of these scenarios were accomplished at least
three times in order to complete a full experiment.

Hostile

This experiment compared the signature samples within the same user. Figure
4.3 illustrates how the calculation took place. There were defined five reference

Chapter 4: Experiment 37

Figure 4.3: Illustration of probe/reference definition for forgery scenarios

signatures (R1 - R5). All remaining genuine samples (P1 - P20) as well as the 25
forgery samples (F1 - F25) were compared against each of the 5 references. We
needed to repeat this for i = 1..100. A full execution of the whole dataset with
100 users gave a total number of 5 (number of reference signatures) x 45 (total
number of probe samples, genuine and forgery together) x 100 (number of users)
= 22 500 comparisons. This calculation was executed three times, one for each
edge labeling method.

Friendly

Figure 4.4: Illustration of probe/reference definition for friendly scenarios

The experiment of friendly scenario compared each and every genuine probe
signature against all reference signatures in the dataset (figure 4.4). All forgery
samples were excluded during this experiment. This gave 500 comparisons per
probe signature (5x100). The number of probe signatures per user was 20, which
gave a total number of probe signatures at 20 x 100 = 2 000. The total number
of comparisons were 500 x 2 000 = 1 000 000 for each edge labeling method in
the friendly scenario.

38 Chapter 4: Experiment

4.2 Experiment execution

The overall goal of the backtracking comparison script was to find the optimal
mapping that gave the lowest possible cost. Unfortunately, this method proved to
be inefficient with large graphs due to the high level of mapping possibilities. Even
after pre-processing, many clusters were too large for using backtracking within
a reasonable execution time.

Table 4.1: Illustration of comparisons with different calculation methods

From table 4.1, we see comparisons between first estimation method and the
backtracking method. Probe-ID 3 was a genuine sample, while probe-ID 26 was an
imposter sample. These two probe-samples were compared against all 5 reference
samples for user 21, referred to as comparison 1 - 5 in the table. By first looking
at probe-ID 3, we saw relatively small differences between the methods in com-
parison 1, 2, 4 and 5. Some optimisations in path and/or neighbor compositions
have been discovered by the backtracking algorithm in order to slightly decrease
the cost values. The most significant difference between these methods appeared
in comparison 3. In that comparison, the backtracking method found a node path
that resulted in almost 4 times lower cost. The same situation occurred at probe-
ID 26, but in that scenario the comparison 3 cost had decreased with almost 29
times with the backtracking method. These results gave valuable information for
the further work in this study. In most scenarios, first estimation would give cost
values slightly higher than the backtracking method. Nevertheless, there may oc-
cur cost estimations that are very different. Based on the comparisons from table
4.1, we concluded that the first estimation method would in most cases cause a
slightly higher cost. Since we assumed that this tendency would be consistent,
first estimation was satisfactory as the only estimation method for the largest ex-
periments.

For the performance testing, we tested different cost calculation methods. Each
probe sample had 5 different comparison values based on the 5 reference samples
(as described in table 4.1). We tested the performance of:

• Mean cost of all 5 comparisons
• Lowest detected cost value
• Highest detected cost value
• Median cost of all 5 comparisons

We ran the entire dataset for both hostile and friendly scenarios with the use

Chapter 4: Experiment 39

of first estimation due to its high efficiency. For backtracking, we needed to col-
lect less complex signatures for testing because of processing time limitations. We
verified the complexity both visually and by checking node size on the first sample
from each user ID. The backtracking algorithm was executed on 26 collected user
IDs on the hostile scenario. If the execution time of one comparison extended 15
minutes, the program returned without any calculations. This resulted in signa-
tures with lack comparisons.

4.3 Performance values

From chapter 2.1.2 we introduced two methods of biometric performance testing;
EER and TER. We are now going to explain them in more detail and describe how
they were used in our results.

Figure 4.5: Performance illustration with user ID 0 from MCYT-100

The difference can be illustrated in figure 4.5, which is the performance of
hostile scenario with the use of first estimation on user ID 0. The 45 different
thresholds are selected from the lowest detected cost-values on each probe com-
parison with the five references. Blue bars represent FNMR, while FMR is rep-
resented by red bars. The vertical axis is the FMR/FNMR in percentage, and the
horizontal axis illustrates the 45 different sample thresholds. From the definition
of EER, we see that FMR and FNMR are closest at sample 22. This leaves and EER
of approx 45%. It is harder to see the TER from this figure because we have to add
the two bars together. The TER value can be found at sample 13 with an estima-
tion of 80%, meaning that four out of five samples are either false match or false
non-match. Because studies switches between different performance metrics, we
need to find a way to easily compare TER and EER. Based on the differences, we
say that EER= T ER÷ 2.

40 Chapter 4: Experiment

The hostile and friendly scenarios were slightly different in terms of the num-
ber of compared samples (section 4.1.2). Since there were relatively few samples
for the hostile scenario (22 500), we used Total Error Rate (TER) in order to de-
termine the best threshold. As already mentioned, friendly scenario included as
much as 1 000 000 comparisons, and because of that we used EER as method for
those testings.

We captured Standard deviation during the performance testing. This estima-
tion evaluates the level of spreading in a dataset, and how close to the mean. One
standard deviation represents 68,2% of the dataset, two standard deviations are
95,4%, three are 99,6% etc.

Chapter 5

Results

In this chapter, we will submit results from our implemented experiments with
the use of MCYT-100 dataset. We will first look at hostile scenarios and afterwards
friendly scenarios.

5.1 Hostile scenario results

We are now going to present all results from the hostile scenario. Since hostile
results include both first estimation and backtracking approach, we will analyse
the differences closely. First, we start off by analysing the full comparison of the
first estimation approach. These results will be commented separately since we
don’t have directly comparable data. Each result is represented with a bar chart,
simulating the different TER-scores on each user ID with the average TER scores
and standard deviation noted below. The average TER scores for every experiment
is also displayed as a red line in their respective diagrams.

5.1.1 First estimation for all 100 users

The pre-processing and comparison calculations for first estimation approach between
two signatures were finished within half a second. Due to the quick computation,
we were able to collect result for all 100 users during this test. From figure 5.1, we
can see that the TER performances were very similar across the different meth-
ods. This applied to both edge distance labels and cost calculations. The results for
the pixel distance as edge labeling method had a spread of only 0.84% between
mean, median min and max, which is nearly irrelevant for the performance result.
Euclidean distance had a spread of 1.49% and the efficiency method 2.38%. By
comparing cost calculations between the three different edge labeling methods,
the median approach seemed to perform best in all three scenarios. For the re-
maining, there were no clear pattern in which performed second best, third best
and worst.

For standard deviation comparisons, we observed similarities within the cost
calculation techniques across the edge labeling methods. The minimum cost calcu-

41

42 Chapter 5: Results

Figure 5.1: Hostile scenario for all 100 users with first estimation

Chapter 5: Results 43

lation had the most consistent TER throughout all users with a standard deviation
of approx 17, while the remaining methods were slightly higher.

5.1.2 Backtracking vs First estimation

Chapter 4.2 explained why we used a subset of samples when we calculated the
backtracking algorithm. We collected the following 26 user IDs from the MCYT-
100 dataset:

0 3 4 7 9 14 15 16 21 22 26 28 31
36 39 47 48 57 63 68 69 73 76 82 85 88

Figure 5.2 illustrates all performance results from backtracking, which include
both edge labeling and their appurtenant cost calculations. Overall, we discovered
that edges labeled with efficiency performed best. This method combined with the
median cost calculation technique gave the lowest captured TER-value of 72.91%.
Furthermore, it was difficult to observe any clear patterns within the perform-
ances, especially not cost calculations between each labeling methods. The best
performance for pixel distance was (like for efficiency) median, but that gave
high TER for euclidean distance. Euclidean distance on the other hand achieved
the best result with the minimum cost calculation.

The standard deviation scores were also very unpredictable in between the
different approaches. The repeatedly lowest values were found in the minimum
cost calculations. Signatures labeled by pixel distance seemed to fluctuate more
between its user performances combined with the other two, and had the overall
highest standard deviation values.

The reason for having 25 user IDs for backtracking with efficiency labeling
(and not 26) was because of the few completed calculations. One signature was
too complex for the backtracking algorithm, which lead to very few completed
transformation cost calculations. Therefore, we had to exclude that signature.

First estimation results for similar user IDs as applied in the backtracking
method are illustrated in figure 5.3. For the pixel - and euclidean distance, the
TER-results were more consistent for similar cost calculations compared with
backtracking. On the other hand, efficiency performed overall much worse for the
first estimation. All 26 user IDs were utilized for efficiency labeling, compared to
the 25 for backtracking. The median and minimum cost calculations, which gave
best performance for backtracking, also showed best results for first estimation.
On the other hand, the TER values were approx. 7% higher on first estimation.

For standard deviation, we observed lower values for the efficiency method.
It is important to notice that standard deviation automatically will decrease when
overall TER scores are becoming higher.

44 Chapter 5: Results

Figure 5.2: Different methods with the use of Backtracking calculation

Chapter 5: Results 45

Figure 5.3: Different methods with the use of First estimation calculation

46 Chapter 5: Results

5.2 Friendly scenario results

We are now going to look closer into the performance of the friendly scenario.
After the calculations of signature transformation costs, we discovered large differ-
ences between each user IDs in terms of lowest and highest cost scores. Signatures
with more nodes/edges got overall higher costs because there were more trans-
formation operations needed. Because of that, we needed to make the cost scores
comparable across users. We used two techniques; estimation by best personal
threshold on each user and min-max normalization. For the first approach we cal-
culated EER performance values based on every user’s best thresholds, where the
final score was an average of these values. In the second approach, we compared
all cost values directly between the users by using a normalization mechanism.
Within the area of normalization techniques, there were two well known meth-
ods; z-normalization and min-max normalization. A major disadvantage with z-
normalization in our scenario was that outlier values were smoothed out. That
was not ideal because a lot of valuable information were placed there. Because of
that, we chose the min-max normalization.

Table 5.1 shows an overview of the friendly scenario results. One clear obser-
vation was that the EER scores were very consistent within the similar cost calcula-
tion approaches. An example was min-max normalization between pixel distance
mean, euclidean distance mean and efficiency mean scores. These edge labeling
methods had almost identical values. The only outstanding exception from this
pattern was the minimum cost calculation for efficiency labeling within the estim-
ation by best threshold. Here we discovered an EER performance score of 40.11%,
which was around 10% better than all comparable calculations for threshold and
also the best overall score in our test. Nevertheless, we could not see that this
performance resulted in any noticeable difference on standard deviation.

Table 5.1: Friendly results for all different methods

Chapter 6

Discussion

In this chapter we will analyse and discuss the results that were presented from
chapter 5. We will both compare the different techniques used in this study and
also look at results from other studies that have been using the MCYT-100 and
MCYT-75 datasets. From now on, our implementation approach is referred to as
graph based distance (using backtracking/first estimation)

6.1 Comparisons within own results

We will now analyse the different methods in order to see if there are patterns of
better performances across test results. The performance values of the upcoming
tables are average scores for every method. By doing this, we want to see if any
of the implementations stands out.

6.1.1 Comparison method

This chapter looks at similarities and differences between the two comparison
methods; backtracking and first estimation. The method comparison could only
be executed for the hostile scenario. This is because friendly scenario used first
estimation only, and we had no data from the backtracking method.

Table 6.1: Average scores for graph based distance with backtracking and first
estimation

47

48 Chapter 6: Discussion

The average scores from table 6.1 did not give any clear performance differ-
ence between backtracking for selected users and first estimation for all users.
As mentioned in section 4.2, signatures that were calculated by using backtrack-
ing were hand-picked in order to be smaller of size and complexity. This was
to increase the execution speed and cause a feasible processing time. So even if
the performance scores between backtracking for selected users and first estima-
tion for all users gave fairly equal results, there were quite different quantum of
data that was handled. For instance, backtracking did not calculate any large and
complex signatures. It would have been interesting to see the difference for that
scenario also.

We noticed over 3% worse performance on first estimation for selected users
than the other two approaches. Since first estimation for all users performed bet-
ter than the selected smaller ones, it looked like large and complex signatures
were achieving slightly better performance scores for the first estimation method.
This could potentially be the scenario for backtracking as well if we were able
to calculate that. Maybe backtracking for all users would increase much more,
or at least the 3% advantage like it had during this test. One reason for the in-
creased performance may be that backtracking also considered node neighbors
when calculating the final cost. This information may become more valuable for
larger signatures with more existing nodes.

Based on scores from table 6.1 and the discussion in this section, we also as-
sumed that the friendly scenario would perform slightly better by using the back-
tracking comparison method. Both performance scores were far from optimal, but
we may see some potential in this method by adding additional label information
about the edges as well.

6.1.2 Edge labeling

For edge labeling, we were interested to see performances for both hostile and
friendly scenario. These values are illustrated in table 6.2 and 6.3.

Table 6.2: Comparison between the different edge labeling methods for hostile
scenario

For the hostile scenario (table 6.2), we registered very consistent performances
between pixel distance and euclidean distance within equal circumstances. The
margin was so small that we could not consider which one of them that performed
best. This pattern was also transferable to the friendly scenario (table 6.3). Our
conclusion was that pixel distance and euclidean distance gave approximately
equal results with the use of our cost estimation formula (section 3.3.1).

Chapter 6: Discussion 49

Table 6.3: Comparison between the different edge labeling methods for friendly
scenario with fist estimation on all users

The efficiency labeling did stand out with slightly better performance with
backtracking for selected users (table 6.2) and for best threshold on each user
(table 6.3). On the other hand, efficiency performed worse for hostile scenario
with first estimation and selected users (table 6.2). The fact that efficiency per-
formed significantly worse (4.84%) for the selected users compared with all users
for hostile scenario, may again indicate that more complex signatures favoured
this edge labeling method. The friendly scenario result should in theory give most
reliable results because of its 1 000 000 signature comparisons on each edge la-
beling performance scores. In comparison, hostile first estimation for all users had
22 500 and backtracking/first estimation for selected users had 5 850 signature
comparisons for each scores. This information emphasizes the performance of the
efficiency approach in table 6.3.

There could be various reasons why efficiency labeling performed slightly dif-
ferent from the other two. Pixel distance and euclidean distance used the exact
same cost distance formula, while efficiency used a different approach. This is be-
cause edge values were in between zero and one, and not related to the distance
itself. Another interesting difference between these edge labeling approaches was
the signature scaling. In the pre-processing part, we did not perform any type of
scaling in order to ensure that the samples were treated as equal sized signatures.
There would be scenarios where users had written their signatures in different
sizes, which of course affected the edge label comparisons. The efficiency method
differences from pixel - and euclidean distance because of its signature size inde-
pendence. We were calculating with a ratio and not the distance itself.

Because of this, we could not conclude whether it was the edge labeling method
that performed better for efficiency, the mathematical formula itself that fitted bet-
ter for the specific calculation or the scaling advantage that separated these edge
labeling methods. This can be investigated in further work.

6.1.3 Cost calculation methods

By comparing the different cost calculation approaches in table 6.4, we saw clearly
from both hostile and friendly scenarios that the median and minimum scores
did stand out with better performances. Minimum was slightly better for hostile
scenarios, while median was 0.32% better for the friendly.

If we look at figure 5.2 once again, we did not see any clear patterns between
mean, median, minimum and maximum for backtracking. The reason for this may

50 Chapter 6: Discussion

Table 6.4: Comparison between the different cost calculations

be caused by the lack of calculation costs between the probe sample and refer-
ences. As described in Section 4.2, when the backtracking calculation processing
time exceeded 15 minutes, the program cancelled that calculation, leaved behind
no cost and moved forward. Fewer cost estimations within one probe sample may
cause more varying results since there were overall fewer comparisons. For in-
stance, if multiple probe-samples for a user-ID only got one or two completed
transformation costs with the reference-samples, the calculations of mean/medi-
an/min/max would become less valuable.

6.1.4 Threshold vs Min-Max Normalization

Table 6.5: Difference between the cost comparison methods

There was a noticeable gap between the average threshold approach and the
Min-Max Normalization (table 6.5). One reason for this could be that we lost
much information by taking the average threshold between each user ID instead
of making the data comparable between all users as we did with Min-Max nor-
malization.

6.2 Comparisons with other studies

One trustworthy way of making objective assumptions regarding system perform-
ance is to compare results with other studies that have used equal datasets. Other
studies with the implementation of MCYT-100 dataset utilized all included inform-
ation from the signatures (e.g. pen pressure and typing speed), while we were
processing the shape only. Because of this, we had to keep in mind that not all
features were used in this study. Therefore, we also compared performances with
studies that used the MCYT-75 dataset. The sub-sections will be split between hos-
tile scenario and friendly scenario, as well as comparison with the different types

Chapter 6: Discussion 51

of datasets. We divided the TER by two while comparing the results with other
studies that used EER (see section 4.3).

6.2.1 Hostile scenario

Table 6.6: Hostile scores [30][31][32]

Table 6.6 summarizes performance scores for the hostile scenario. These will
be discussed in detail below.

MCYT-100

The best performance of our study for hostile scenario was executed with the
use of efficiency method and backtracking for median scores between probe and
reference samples, illustrated in figure 5.3. This gave a TER of 72.91% (estimated
EER of 36.46%). Overall, the results from backtracking became slightly better
than the first estimation approach.

One study have used Random Forest classifier [30] for verification. They tested
two approaches of training the algorithm with skilled forgeries (see table 6.7):

• 5 genuine samples from the specific user and one genuine sample from each
of the other users. Average EER 5.66%.

• 20 genuine samples from the specific user and one genuine sample from
each of the other users. Average EER 1.89%.

Table 6.7: Result with the use of Random Forest classifier [30]

[30] used all signature data information available from the MCYT-100 dataset,
so the approaches may not be directly comparable. Nevertheless, the performance
difference was very large. An EER (with 5 genuine samples) of 5.66% gave very
accurate results and outperformed our experiment. One reason to this may be

52 Chapter 6: Discussion

that the actual analysis of the signature shape was performing much better with a
machine learning comparison approach. This claim may become more clear after
our comparisons with the MCYT-75 dataset where no other factors are involved.
Another theory on the very good performances from [30] is the utilization of on-
line data. It may be very difficult for skilled forgery attacks to bypass online sig-
nature systems by knowing the signature shape only. This seems especially hard
when an attacker cannot observe the typing process, which is the reality of MCYT-
100 skilled forgery samples. Elements such as pen pressure and typing speed are
very individual, and this information combined seems to be very powerful. If the
attacker for instance attempts to imitate the typing speed, it will likely be at ex-
pense of the pattern accuracy. Nevertheless, in a majority of today’s scenarios we
are not in obsession of this data since people use pen and paper, and online cap-
turing devices are not widely available. In later versions of smart phones, the
touch-screens are capable of sensing features like finger pressure. This is possible
to utilize for online signature capturing. On the other hand, verification on smart-
phones may be handled better by utilizing other already implemented biometric
authenticators like fingerprint and face recognition.

MCYT-75

All system performances with the MCYT-75 dataset have a pre-processing part
for skeletonization and feature extraction (section 2.2.1). This process will lead
to some errors as explained and illustrated in section 3.2. Therefore, other sys-
tem performances may have good signature comparison algorithms, but the pre-
processing could give some errors in determining key-points of the signature. This
error was irrelevant for our approach since MCYT-100 contained digital samples
(section 3.2), so we have to keep in mind that pre-processing will benefit our
implementation.

One study used a finite impulse response (FIR) system [31] to distinguish
between genuine samples and skilled forgeries. The result gave an EER of 7.04%.
Compared with our study (backtracking/median EER 36.46%), the system per-
formance was significantly better for the FIR system. Therefore, we can conclude
that graph based distance using backtracking don’t give good results for the hos-
tile scenario. From last chapter, we were not completely sure on how beneficial
the online data was for the performance. Now we also know that previous studies
have better performances based on the signature shape only.

Another study [32] also utilizes edge labels as signature representation. This
study used only euclidean distance between nodes as distance metric. For signa-
ture comparison, [32] used the original GED implementation. The overall best
performance was a TER of 47.4%, where the mean score for cost calculation were
used.

Chapter 6: Discussion 53

Table 6.8: Friendly scores

6.2.2 Friendly scenario

Table 6.8 summarizes the performance scores for the friendly scenario. Now, we’re
going to take a look at these values.

MCYT-100

In [30], they tested the Random Forest classifier for random forgeries (table 6.7),
which was comparable to our friendly scenario experiment. The average EER res-
ult was 1.66% with 5 reference samples. With the use of 20 reference samples
from each user ID, the classifier could successfully separate the users with an av-
erage EER of 0.17%. One weakness with 20 reference samples for training was
the few leftover probe samples. Since there were 25 legitimate samples from each
user, only 5 could be used as probes. This reference/probe ratio was from our
perspective skewed and gave artificial high performances. Therefore, we used the
5 reference performance score for comparison. The best performance from our
friendly scenario was an EER of 40.11%. As mentioned in section 6.2.1, [30] used
all online collected data. Nevertheless, it does not compensate for the big system
performance difference.

MCYT-75

In [33], they tested three different machine learning algorithms for random for-
gery with the MCYT-75 database; Decision Tree J 48, Naive Bayes Tree and k-
Nearest Neighbor. The performance values were presented slightly different from
the known TER and EER performance exposition. After the algorithms were trained
with the training samples, they performed "guesses" against the testing samples.
Performances were stated in accuracy scores and error rates based on how many
samples passes the threshold. The error rates would be equivalent to TER. By us-
ing the results from 10 users, 75% training and 25% testing, k-Nearest neighbor
performed significantly best with a total error rate (TER) of 10.67%. This is much
better than our best performance results with an EER of 40.11%. Nevertheless,
our test applied 20% of the genuine samples as references, which gave less user
information available in order to optimize the performance.

54 Chapter 6: Discussion

In [32], they calculated random forgeries with four different cost functions
and four different cost calculations. The best performance for every cost function
was by using the minimum cost calculation, where the lowest detected EER was
25.30%. As mentioned earlier, our study did not implement multiple cost func-
tions because of long processing time for the backtracking algorithm. Our best
single performance did also originate from the minimum cost calculation between
reference/probe, but the average best scores were with the median estimation.

6.3 Performance evaluation and potentials

After comparing own results with other studies, it is clear that our method did
not perform as good as the already existing approaches. So what could be the
reason for this? One clear source of error is the edge transformation cost functions.
These functions are fundamental in calculation of signature comparison costs. By
giving either higher or lower costs for differences in edge values and nodes, it is
highly likely that the performance will increase. It would be very interesting to
try optimizing the cost functions in order to fully see the potential of this method.
The disadvantage with backtracking through a cost matrix is the comprehensive
processing of data. Since the calculations are very time consuming, these tests will
need much computer power.

As mentioned in section 6.1.1, backtracking performs better than first estim-
ation, and one factor is that neighbor nodes are included in the cost estimation.
Since we’re working on an online dataset with more available information about
the signature, it would be possible to utilize the data as additional labels in our
graph based distance approach. We could for instance include typing speed and
pen pressure for the corresponding edges. Another interesting aspect is to gain
even more information from the signature graph by also implementing nodes of
degree 2, which could be change of direction.

Chapter 7

Conclusion

This thesis investigated the utilization of edge labels as characteristics for signa-
ture authentication. Signatures from the MCYT-100 dataset were transformed into
graphs, and edges were defined in between nodes. Nodes were either of degree 1
(endpoints) or 4 (crossing of lines). We investigated three edge labeling methods;
pixel distance, euclidean distance and efficiency. Efficiency is defined as a ratio
where euclidean distance is divided by pixel distance. The graph comparison al-
gorithm considered three main elements; length of the edges, number of nodes in
the signature graph and the neighbor relationship between nodes. All edges from
one signature were compared against all edges from the other one. This resulted
in a cost matrix.

In order to find the lowest possible combination of edges through the matrix,
we used backtracking. Since backtracking claimed very much computer processing
power especially on the larger signatures, most of the results were based on first
estimation calculation. First estimation found the lowest cost available through
the cost matrix at first attempt, and did not consider other possible paths. This
method gave generally higher costs, but the cost differences were consistently
higher with a certain margin throughout the result calculations.

Overall, the efficiency edge labeling performed slightly best between the three
approaches. One possible reason for this was that efficiency did not rely on sig-
nature normalization, compared with the other two edge labeling methods. Pixel
distance and euclidean distance achieved almost identical results and was con-
sidered as equivalent methods in this study.

The hostile scenario experiment attempted to separate genuine samples from
skilled forgeries. This is considered the most difficult task for a biometric sys-
tem, but also the most relevant one. The efficiency edge labeling scored a TER of
75.54% on the backtracking approach for hostile scenario, while euclidean dis-
tance scored 77.73% and pixel distance scored 78.08%. Neither of these results
were considered to be good in comparison to related studies. Since we used an on-
line dataset with the utilization of the signature shapes only, we will now present
the comparison with studies using the offline dataset MCYT-75. [31] used a finite
impulse response (FIR) system, which resulted in an EER of 7.04%. In comparison,

55

56 Chapter 7: Conclusion

by converting TER into EER, our best performance was an EER of 37.77%.
For the friendly scenario, where genuine samples were separated from ran-

dom forgeries, our best system performance gave an EER of 40.11% (with effi-
ciency edge labeling). In comparison, [33] delivered an TER of 10.67% by using
k-Nearest neighbor as machine learning technique which was a far more reliable
system result.

The research question was: Can a graph based approach with labeled edges be
used for signature authentication? Based on our implementation method, we can
conclude that the performance is not satisfactorily for a biometric system. A TER
of 75.54% for the hostile scenario will not justify the confidentiality of an indi-
vidual’s identity. On the other hand, we have only explored a few characteristics of
the signature with this method. There may be other elements from the signature
graph that in combination with the edge distance attribute would make signatures
samples much more unique for each individual.

This lead into the further work from the study. Since our method has not been
tested before, we discovered multiple areas of possible improvements. We defined
nodes as either degree 1 (endpoint) or degree 4 (crossing line). One suggestion
is to explore the implementation of degree 2 nodes (change of direction). By
implementing more graph characteristic features, we may find even more indi-
vidual uniquenesses in the shape of the signature. Since we used an online dase-
set (MCYT-100), there are many interesting aspects of utilizing online features in
combination with the signature shape. For instance, edges could have multiple
labels for even more uniqueness. Possible labels for further investigations are typ-
ing speed and pen pressure between nodes. This will on the other hand result in
even more calculations for the backtracking algorithm because of larger graphs.
Another aspect of implementation improvements from our study is signature nor-
malization. The signature size is important for edge distance labeling because we
are using physical distances. Variation of signature sizes will cause inaccurate res-
ults for edges labeled with pixel distance and euclidean distance.

Bibliography

[1] P. Maergner, K. Riesen, R. Ingold and A. Fischer, ‘A structural approach to
offline signature verification using graph edit distance,’ vol. 01, pp. 1216–
1222, 2017.

[2] J. Kizza, ‘Authentication,’ in Guide to Computer Network Security. Cham:
Springer International Publishing, 2020, pp. 207–225, ISBN: 978-3-030-
38141-7. DOI: 10.1007/978-3-030-38141-7_10.

[3] D. Pipkin, Information Security: Protecting the Global Enterprise, ser. Hewlett-
Packard professional books. Prentice Hall PTR, 2000, ISBN: 9780130173232.

[4] A. Jain, A. Ross and K. Nandakumar, Introduction to Biometrics, ser. Spring-
erLink : Bücher. Springer US, 2011, ISBN: 9780387773261. [Online]. Avail-
able: https://link.springer.com/book/10.1007/978-0-387-77326-1.

[5] C. Busch, P. Bours and G. Li, Biometric performance, University Lecture,
2020.

[6] H. Sharma, A. Alekseychuk, P. Leskovsky, O. Hellwich, R. Anand, N. Zerbe
and P. Hufnagl, ‘Determining similarity in histological images using graph-
theoretic description and matching methods for content-based image re-
trieval in medical diagnostics,’ Diagnostic pathology, vol. 7, p. 134, Oct.
2012. DOI: 10.1186/1746-1596-7-134.

[7] K. Riesen and H. Bunke, ‘Approximate graph edit distance computation by
means of bipartite graph matching,’ Image and Vision Computing, vol. 27,
no. 7, pp. 950–959, 2009, 7th IAPR-TC15 Workshop on Graph-based Rep-
resentations (GbR 2007), ISSN: 0262-8856. DOI: https://doi.org/10.
1016/j.imavis.2008.04.004.

[8] N. Tsapanos, I. Pitas and N. Nikolaidis, ‘Graph representations using adja-
cency matrix transforms for clustering,’ in 2012 16th IEEE Mediterranean
Electrotechnical Conference, 2012, pp. 383–386. DOI: 10.1109/MELCON.
2012.6196454.

[9] Adjacency matrix, en, Page Version ID: 1048154108, Oct. 2021. [Online].
Available: https://en.wikipedia.org/w/index.php?title=Adjacency_
matrix&oldid=1048154108 (visited on 07/12/2021).

57

https://doi.org/10.1007/978-3-030-38141-7_10
https://link.springer.com/book/10.1007/978-0-387-77326-1
https://doi.org/10.1186/1746-1596-7-134
https://doi.org/https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/https://doi.org/10.1016/j.imavis.2008.04.004
https://doi.org/10.1109/MELCON.2012.6196454
https://doi.org/10.1109/MELCON.2012.6196454
https://en.wikipedia.org/w/index.php?title=Adjacency_matrix&oldid=1048154108
https://en.wikipedia.org/w/index.php?title=Adjacency_matrix&oldid=1048154108

58 Bibliography

[10] A. Marzal and E. Vidal, ‘Computation of normalized edit distance and ap-
plications,’ IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 15, no. 9, pp. 926–932, 1993.

[11] V. Levenshtein, ‘Binary Codes Capable of Correcting Deletions, Insertions
and Reversals,’ Soviet Physics Doklady, vol. 10, p. 707, 1966.

[12] S. Schimke, C. Vielhauer and J. Dittmann, ‘Using adapted levenshtein dis-
tance for on-line signature authentication,’ in Proceedings of the 17th Inter-
national Conference on Pattern Recognition, 2004. ICPR 2004., vol. 2, 2004,
931–934 Vol.2.

[13] S. Bougleux, B. Gaüzère and L. Brun, ‘Graph edit distance as a quadratic
program,’ pp. 1701–1706, 2016.

[14] X. Gao, B. Xiao, D. Tao, L. Dacheng and Xuelong, ‘A survey of graph edit
distance,’ Pattern Anal. Appl., vol. 13, pp. 113–129, Feb. 2010. DOI: 10.
1007/s10044-008-0141-y.

[15] M. Neuhaus and H. Bunke, ‘Self-organizing maps for learning the edit costs
in graph matching,’ IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 35, no. 3, pp. 503–514, 2005. DOI: 10.1109/
TSMCB.2005.846635.

[16] S. Güldal, V. Baugh and S. Allehaibi, ‘N-queens solving algorithm by sets
and backtracking,’ in SoutheastCon 2016, 2016, pp. 1–8. DOI: 10.1109/
SECON.2016.7506688.

[17] Anonymous, Write a backtracking algorithm for the n-queens problem, Jan.
2018. [Online]. Available: https://www.transtutors.com/questions/1-
write-a-backtracking-algorithm-for-the-n-queens-problem-that-
uses-a-version-of-pro-2501435.htm.

[18] H. Priestley and M. Ward, ‘A multipurpose backtracking algorithm,’ Journal
of Symbolic Computation, vol. 18, pp. 1–40, Jul. 1994. DOI: 10.1006/jsco.
1994.1035.

[19] S. Ahmed, A. Ramasamy, A. Khairuddin and J. Omar, ‘Automatic online sig-
nature verification: A prototype using neural networks,’ in TENCON 2009
- 2009 IEEE Region 10 Conference, 2009, pp. 1–4.

[20] V. Bharadi and H. Kekre, ‘Off-line signature recognition systems,’ Interna-
tional Journal of Computer Applications, vol. 1, Feb. 2010. DOI: 10.5120/
499-815.

[21] H. Kekre and V. Bharadi, ‘Specialized global features for off-line signature
recognition,’ Jul. 2019.

[22] D. Huang and C. Shan and M. Ardabilian and Y. Wang and L. Chen, ‘Local
binary patterns and its application to facial image analysis: A survey,’ IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Re-
views), vol. 41, no. 6, pp. 765–781, 2011.

https://doi.org/10.1007/s10044-008-0141-y
https://doi.org/10.1007/s10044-008-0141-y
https://doi.org/10.1109/TSMCB.2005.846635
https://doi.org/10.1109/TSMCB.2005.846635
https://doi.org/10.1109/SECON.2016.7506688
https://doi.org/10.1109/SECON.2016.7506688
https://www.transtutors.com/questions/1-write-a-backtracking-algorithm-for-the-n-queens-problem-that-uses-a-version-of-pro-2501435.htm
https://www.transtutors.com/questions/1-write-a-backtracking-algorithm-for-the-n-queens-problem-that-uses-a-version-of-pro-2501435.htm
https://www.transtutors.com/questions/1-write-a-backtracking-algorithm-for-the-n-queens-problem-that-uses-a-version-of-pro-2501435.htm
https://doi.org/10.1006/jsco.1994.1035
https://doi.org/10.1006/jsco.1994.1035
https://doi.org/10.5120/499-815
https://doi.org/10.5120/499-815

Bibliography 59

[23] S. Armand, M. Blumenstein and V. Muthukkumarasamy, ‘Off-line signature
verification based on the modified direction feature,’ vol. 4, Jan. 2006,
pp. 509–512. DOI: 10.1109/ICPR.2006.893.

[24] H. Baltzakis and N. Papamarkos, ‘A new signature verification technique
based on a two-stage neural network classifier,’ Engineering Applications of
Artificial Intelligence, vol. 14, no. 1, pp. 95–103, 2001, ISSN: 0952-1976.
DOI: https://doi.org/10.1016/S0952-1976(00)00064-6.

[25] L. Greche, M. Jazouli, N. Es-Sbai, A. Majda and A. Zarghili, ‘Comparison
between euclidean and manhattan distance measure for facial expressions
classification,’ Apr. 2017, pp. 1–4. DOI: 10.1109/WITS.2017.7934618.

[26] J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. Gonzalez, M. Faundez-
Zanuy, V. Espinosa, A. Satue, I. Hernaez, J. Igarza, C. Vivaracho, D. Es-
cudero and Q. Moro, ‘Mcyt baseline corpus: A bimodal biometric data-
base,’ IEE Proceedings - Vision, Image and Signal Processing, vol. 150, no. 6,
pp. 395–401, 2003. DOI: 10.1049/ip-vis:20031078.

[27] J. Ortega-Garcia, J. Fierrez, D. Simon, J. Gonzalez, M. Faundez-Zanuy, V.
Espinosa, A. Satue, A. I. Hernáez, J. Igarza, C. Vivaracho-Pascual, D. Es-
cudero and Q. Moro-Sancho, ‘Mcyt baseline corpus: A bimodal biometric
database. iee proc vis image signal process spec issue biom internet,’ IEE
Proceedings - Vision Image and Signal Processing, pp. 395–401, Dec. 2003.
DOI: 10.1049/ip-vis:20031078.

[28] J. Bresenham, ‘Algorithm for computer control of a digital plotter,’ IBM
Systems Journal, vol. 4, no. 1, pp. 25–30, 1965. DOI: 10.1147/sj.41.0025.

[29] J. Ortega-Garcia, J. Fierrez, J. Rello and J. Gonzalez-Rodriguez, ‘Complete
signal modeling and score normalization for function-based dynamic sig-
nature verification,’ vol. 2688, Jun. 2003, pp. 658–667, ISBN: 978-3-540-
40302-9. DOI: 10.1007/3-540-44887-X_77.

[30] S. Dutta, R. Saini, P. Kumar and P. Roy, ‘An efficient approach for recognition
and verification of on-line signatures using pso,’ in 2017 4th IAPR Asian
Conference on Pattern Recognition (ACPR), 2017, pp. 882–887. DOI: 10.
1109/ACPR.2017.115.

[31] P. Thumwarin, J. Pernwong, N. Wakayaphattaramanus and T. Matsuura,
‘On-line signature verification based on fir system characterizing velocity
and direction change of barycenter trajectory,’ in 2010 IEEE International
Conference on Progress in Informatics and Computing, vol. 1, 2010, pp. 30–
34. DOI: 10.1109/PIC.2010.5687959.

[32] D. Do, ‘Offline signature verification using ged on labelled graphs,’ Norwe-
gian University of Science and Technology, Jun. 2021.

https://doi.org/10.1109/ICPR.2006.893
https://doi.org/https://doi.org/10.1016/S0952-1976(00)00064-6
https://doi.org/10.1109/WITS.2017.7934618
https://doi.org/10.1049/ip-vis:20031078
https://doi.org/10.1049/ip-vis:20031078
https://doi.org/10.1147/sj.41.0025
https://doi.org/10.1007/3-540-44887-X_77
https://doi.org/10.1109/ACPR.2017.115
https://doi.org/10.1109/ACPR.2017.115
https://doi.org/10.1109/PIC.2010.5687959

60 Bibliography

[33] A. Shah, M. Khan, F. Subhan and M. Fayaz, ‘An offline signature verifica-
tion technique using pixels intensity levels,’ International Journal of Signal
Processing, Image Processing and Pattern Recognition, vol. 9, pp. 205–222,
Aug. 2016. DOI: 10.14257/ijsip.2016.9.8.18.

https://doi.org/10.14257/ijsip.2016.9.8.18

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Introduction
	Topic covered by the project
	Keywords
	Problem description
	Justification, motivation and benefits
	Research questions
	Planned contributions

	Related work
	Background
	Authentication
	Biometrics
	Graph theory
	Graph Edit Distance
	Backtracking

	State of Art
	Signature Authentication
	Signature authentication using GED

	Signature processing
	Data
	Signature pre-processing
	Extract coordinates
	Collection of nodes
	Signature matrix

	Comparison algorithm details
	Cost estimation
	First estimation and Backtracking from cost map

	Experiment
	Experiment details
	Choice of reference and probe samples
	Main experiment setup

	Experiment execution
	Performance values

	Results
	Hostile scenario results
	First estimation for all 100 users
	Backtracking vs First estimation

	Friendly scenario results

	Discussion
	Comparisons within own results
	Comparison method
	Edge labeling
	Cost calculation methods
	Threshold vs Min-Max Normalization

	Comparisons with other studies
	Hostile scenario
	Friendly scenario

	Performance evaluation and potentials

	Conclusion
	Bibliography

