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Abstract: Existing accelerometer-based human activity recognition (HAR) benchmark datasets that
were recorded during free living suffer from non-fixed sensor placement, the usage of only one sensor,
and unreliable annotations. We make two contributions in this work. First, we present the publicly
available Human Activity Recognition Trondheim dataset (HARTH). Twenty-two participants were
recorded for 90 to 120 min during their regular working hours using two three-axial accelerometers,
attached to the thigh and lower back, and a chest-mounted camera. Experts annotated the data
independently using the camera’s video signal and achieved high inter-rater agreement (Fleiss’
Kappa = 0.96). They labeled twelve activities. The second contribution of this paper is the training of
seven different baseline machine learning models for HAR on our dataset. We used a support vector
machine, k-nearest neighbor, random forest, extreme gradient boost, convolutional neural network,
bidirectional long short-term memory, and convolutional neural network with multi-resolution
blocks. The support vector machine achieved the best results with an F1-score of 0.81 (standard
deviation: ±0.18), recall of 0.85± 0.13, and precision of 0.79± 0.22 in a leave-one-subject-out cross-
validation. Our highly professional recordings and annotations provide a promising benchmark
dataset for researchers to develop innovative machine learning approaches for precise HAR in
free living.

Keywords: physical activity behavior; human activity recognition; public dataset; benchmark;
machine learning; deep learning; accelerometer

1. Introduction

Physical activity behavior has a major influence on public health [1,2]. However, stud-
ies investigating the effect of physical behavior on disease risk often rely on self-reported
data, which are susceptible to bias and misclassification [3,4]. Objective measurements can
overcome some of the shortcomings of self-reported data [5,6]. Human activity recognition
(HAR) is a field of study that focuses on recognizing specific human physical activities and
postures based on sensor data [7,8]. Body-worn accelerometers are the most commonly
used data collection method to support HAR due to their low cost and small size [9].
Several studies have shown that body-worn accelerometers provide valid information
of human physical activity and postures [10]. Over the last ten years, machine learning
approaches have become common to classify sensor data for HAR [11–13].

Different studies have trained and tested their machine learning models on self-
recorded datasets, but only a few of these sets are publicly available [9,14–16]. How-
ever, an objective comparison between different machine learning approaches is only
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possible if such datasets become publicly available [17]. Additionally, most machine
learning studies for accelerometer-based HAR were performed in a laboratory setting or
controlled environment [18]. Several studies have shown that machine learning models
developed in laboratory conditions demonstrate poor performance when tested outside
the laboratory [13,19–21]. Only a few studies have been conducted in free-living condi-
tions, i.e., where participants are free to perform activities of their everyday life but have
to perform certain predefined activities at least once. Even fewer of these studies have
investigated data from two accelerometers [12,13,18], although several studies showed
that the utilization of more than one sensor could considerably improve the classification
performance [10,13,22,23]. The major drawback of existing free-living datasets is the
trustworthiness of the activity annotations, as the related publications do not report the
reliability of the annotation method [24–30]. Poor training data annotations hamper the
possibility of training machine learning models.

Free-living activity data from approximately 35,000 people have been recorded in the
fourth round of Norway’s biggest health study, the Trøndelag Health Study (HUNT4) [31,32].
The data was collected over seven days using two body-worn three-axis accelerometers
located on the participants’ thigh and lower back [31]. Performing HAR on this dataset
facilitates research that will bring new insights into the association between physical ac-
tivity behavior and public health. Hence, it is essential that HAR models are trained on
annotated datasets that resemble the HUNT4 accelerometer data.

Two contributions are made in this paper. First, we present the Human Activity
Recognition Trondheim dataset (HARTH). Twenty-two participants performed different
activities during their regular working hours while carrying out their everyday activities
as naturally as possible. Two experts annotated twelve activities in total. We used two
accelerometers placed on the thigh and lower back to collect sensor data. HARTH provides
high-quality acceleration measurements with fixed sensor placements and professionally
annotated labels. To the best of our knowledge, the combination of these three factors
is not yet considered by other accelerometer-based and publicly available free-living
HAR datasets. HARTH is publicly available to enable an objective comparison between
HAR models for future research (https://github.com/ntnu-ai-lab/harth-ml-experiments,
accessed on 16 November 2021). Second, we train seven different baseline classification
models on HARTH, including (1) the k-nearest neighbors (k-NN), (2) the support vector
machine (SVM), (3) the random forest (RF), (4) the extreme gradient boost (XGB), (5) the
bidirectional long short-term memory (BiLSTM), (6) the convolutional neural network
(CNN), and (7) a CNN with multi-resolution modules.

With this work, we want to encourage researchers to use the presented machine
learning models (or potential future models) to perform health studies based on physical
activity behavior. Previous works [12,13] and international projects [33–35] already showed
great interest in such studies, as they share the same recording setup used in this work.

This paper is organized as follows. Section 2 gives an overview of publicly available
free-living datasets as well as of related HAR works. The HARTH and the utilized baseline
machine learning models are presented in Section 3. The experimental setup and results
are presented in Section 4. We discuss our results in Section 5 and provide conclusions and
future work in Section 6.

2. Related Work
2.1. Public Har Datasets

According to Micucci et al. [14], and Reiss and Stricker [15] few accelerometer-based
datasets for HAR are publicly available. This was also confirmed in a recent survey [9],
showing that only 30 of 142 accelerometer-based datasets were publicly available. However,
few of these datasets can be considered to be recorded during free-living. We found
62 accelerometer-based HAR datasets, but only eight of them can be considered free-living.
We summarize these datasets in Table 1.

https://github.com/ntnu-ai-lab/harth-ml-experiments
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Table 1. This table shows the main characteristics of eight different publicly available HAR accelerometer-based datasets,
and our HARTH. We consider the symbol “#” as an abbreviation for “number of”, “PAs” for “physical activities” and
“accelero.” for “accelerometers”.

Name #Labels #PAs #Subjects #Accelero. Sensor Type Annotation
Real-life-HAR [24] 4 2 19 1 Smartphone User

SHL [36,37] 8 5 3 4 Smartphone User and expert
HASC-PAC2016 [25] 6 6 81 1 Smartphone User
WISDMv2.0 [26,27] 6 6 225 1 Smartphone User

DailyLog [28] 19 7 7 2 Smartphone & Smartwatch User
ExtraSensory [29] 51 8 60 2 Smartphone & Smartwatch User

TMD [30] 5 3 13 1 Smartphone User
SDL [38] 10 4 8 1 Smartwatch User

HARTH (ours) 12 9 22 2 Axivity AX3 Human experts

Garcia-Gonzalez et al. [24] proposed an orientation-, placement-, and subject-indepen
dent dataset, called Real-life-HAR, where 19 participants performed four activities while
carrying a smartphone (Real-life-HAR available at: https://lbd.udc.es/research/real-life-
HAR-dataset (accessed on 22 April 2021)). They did not specify the smartphone placement.
The participants were free to perform the activities whenever they wanted during their
everyday life. They were only asked to annotate the beginning and the end of the activity
using an app on their smartphone. The activities were: inactive (not carrying the phone),
active, walking/running, and driving. “Active” means that the person carried the phone
but did not walk (e.g., standing while doing laundry). Driving includes all types of engine-
based transportation. The dataset considers two physical activities, namely walking and
standing/sitting (included in driving and active).

In the Sussex-Huawei Locomotion (SHL) dataset [36,37], three subjects carried four
smartphones and a camera (chest-mounted) while performing eight different transportation
activities, namely: being still (no transportation), walking, running, cycling, driving a
car, taking the bus, taking the train, and being in a subway (SHL dataset available
at: http://www.shl-dataset.org (accessed on 22 April 2021)). Annotations were created
during the data collection using one smartphone. The labels were validated after the data
collection using the camera’s video signal. The data were recorded over several days,
and instructions were given on what to perform each day. However, the subjects were
able to decide when and where to perform the activities. Furthermore, they were free
to perform activities of their everyday life. Four physical activities are considered in the
dataset: walking, running, cycling, and sitting/standing. The transportation activity “still”
includes both standing and sitting, making it impossible to distinguish them.

The HASC-PAC2016 [25] is a collection of previously published HASC-PAC
datasets [39–42] (The HASC-PAC2016 is available at: http://hub.hasc.jp/corpora (ac-
cessed on 22 April 2021)). Eighty-one subjects were recorded in an everyday life setting.
They were free to perform six activities whenever they wanted in their daily lives as long
as they were performed between landmarks, i.e., user-defined start and end geographical
locations. The activities were no activity (standing/sitting/lying), walking, running, skip-
ping, and walking stairs. A smartphone accelerometer was used for data acquisition, and
annotations were performed via an app. It was not specified where to wear the smartphone
or which manufacturer to use.

A smartphone and an app were also used to record accelerometer data for the WIS-
DMv2.0 dataset [26,27] (WISDMv2.0 available at: https://www.cis.fordham.edu/wisdm/
dataset.php#actitracker (accessed on 22 April 2021)). Users recorded data during everyday
life while carrying the smartphone. They were free to annotate particular activities by
themselves [17] or leave specific movements unlabeled. The annotated activities include
walking, running, stair climbing, sitting, standing, and lying. At the time of writing this
work, 323 users provided acceleration data, while 225 of them annotated parts of their daily
activities. The activity types standing, lying, and sitting are distinguished.

https://lbd.udc.es/research/real-life-HAR-dataset
https://lbd.udc.es/research/real-life-HAR-dataset
http://www.shl-dataset.org
http://hub.hasc.jp/corpora
https://www.cis.fordham.edu/wisdm/dataset.php#actitracker
https://www.cis.fordham.edu/wisdm/dataset.php#actitracker
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Several parameters were recorded and annotated in the DailyLog dataset [28], includ-
ing the environmental context, the sensor position, and nineteen activities with 33 sub-
activities (DailyLog available at https://sensor.informatik.uni-mannheim.de/#dataset_
dailylog (accessed on 23 April 2021)). The seven considered physical activities are: climbing,
jumping, lying, running, sitting, standing, and walking. Higher-level activities like sports
were examined as well but not considered different physical activities as they combine
multiple basic activities. A smartphone and a smartwatch were used for recordings. Seven
participants recorded their daily routine (≈10 h) for several days and annotated the data
via an app on the smartphone.

In the ExtraSensory [29] dataset, 60 participants used an app on their smartphones to
annotate different labels during approximately one week of their everyday lives (ExtraSen-
sory available at http://extrasensory.ucsd.edu (accessed on 12 May 2021)). Acceleration
data were recorded using the smartphone and a smartwatch. Recordings were performed
in 20-s windows every minute. Hence there are gaps between measurements. The dataset
includes 51 different labels, with eight of them being physical activities, namely sitting,
lying, standing, walking, cycling, running, and walking upstairs/downstairs.

The TMD dataset of Carpineti et al. [30] is primarily created for transportation mode
detection tasks with four different types of transportation (bus, car, train, and walking)
and standing still (TMD available at http://cs.unibo.it/projects/us-tm2017 (accessed on
12 May 2021)). However, as the dataset comprises the three physical activities walking,
standing still, and sitting (in a car), we consider it here. Smartphone sensors were used to
record multiple modalities, including acceleration. The 13 participants used a smartphone
app to label the data during their daily activities.

Herrera-Alcántara et al. [38] created a dataset containing ten different daily-living
activities of eight students. We refer to this dataset as Students’ Daily Living (short: SDL)
(Students’ DailyLiving available upon request to the corresponding authors). Acceleration
data were recorded using a smartwatch, and annotations were performed by the students
using a smartphone app. The activities are eating, running, sleeping, classroom-session,
exam, job, homework, transportation, watching TV (series), and reading. We can identify
four possible physical activities, namely, sitting, standing, running, and walking. Currently,
this dataset is only available upon request to the corresponding authors.

The presented datasets have several limitations. First, most of them were recorded
using smartphones. Smartphone accelerometers generally suffer from low sensitivity and a
high output noise level [43]. Second, their exact positions were not always fixed [24,25,28].
Without a fixed sensor placement, the same activity can look considerably different in the
signal, which can lead to high intra-class variance and poor HAR performance [44]. Third,
except for the SHL, none of the publications related to the available datasets report the
reliability of the annotation method. This is because the users annotated the labels. Poor
quality of the training data may hamper the possibility to train machine learning models
for HAR.

2.2. Human Activity Recognition Approaches

Few HAR research papers investigate more than one accelerometer, even though
classification performance can be improved if doing so [10,13,22,23]. We present related
machine learning-based HAR works that examine more than one accelerometer but do not
use additional sensors (e.g., gyroscopes). We further focus only on activities similar to ours.

Stewart et al. [12] trained an RF classifier using an in-lab recorded dataset of 75 (42 chil-
dren, 33 adults) participants wearing two Axivity AX3 (Axivity Ltd., Newcastle, UK) [45]
accelerometers on the thigh and lower back. The six activities, sitting, lying, standing, slow
walking, fast walking, and running, were predicted with a balanced accuracy of 99.1% for
adults and 97.3% for children. A similar study was made by Narayanan et al. [13]. Free-
living data of 30 participants (15 children, 15 adults) that wore the same AX3 accelerometers
on the thigh, lower back, and wrist, were recorded. After different sensor position combina-
tions were compared, the thigh/lower back combination led to the best balanced accuracy

https://sensor.informatik.uni-mannheim.de/#dataset_dailylog
https://sensor.informatik.uni-mannheim.de/#dataset_dailylog
http://extrasensory.ucsd.edu
http://cs.unibo.it/projects/us-tm2017
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of 95.6% (adults) and 92% (children) using an RF classifier. Bao and Intille [46] investigated
up to five bi-axial accelerometers (right hip, dominant wrist, non-dominant upper arm,
dominant ankle, non-dominant thigh) worn by 20 subjects who performed 20 activities.
Four classifiers were compared, while the decision tree showed the best results (84%). Bao
and Intille [46] concluded that even though five accelerometers led to the best results, two
sensors are sufficient for certain activities. A similar conclusion was made by Olguín and
Pentland [23]. They used acceleration data of up to three sensors (wrist, hip, chest). Using
all three led to the best accuracy (92.1%), but using only two can show similar results of
87.2% (wrist, hip). Hip/wrist configurations were also examined in [20]. The authors
trained an RF classifier on free-living data of preschool-aged childrens’ activities.The com-
bination of hip and wrist accelerometers showed a better F-score than the two sensors
individually. Shoaib et al. [47] used a smartphone and smartwatch for data acquisition and
an SVM, a k-NN, and a decision tree to recognize seven activities. The combination of both
sensors outperformed the individual ones for certain activities. By training four classifiers
(k-NN, SVM, decision tree, naïve Bayes), Gao et al. [48] showed that a combination of
thigh-, chest-, side-, and waist-mounted accelerometers performed better than each sensor
individually. Shoaib et al. [49] investigated seven machine learning models (naïve Bayes,
decision tree, RF, Bayesian network, SVM, logistic regression, k-NN) to classify seven
activities. For data acquisition, five smartphones (right/left trouser pocket, belt, right
upper arm, right wrist) were used. Nine accelerometers (left/right ankle, left/right hip,
left/right upper arm, left/right wrist, spine) were used in the work of Fullerton et al. [10].
A k-NN, a decision tree, an SVM, and an ensemble-bagged tree method were trained to
predict six activities. The former model achieved the best results with 97.6% accuracy.
Baños et al. [50] also investigated nine sensors (each body limb and upper back) and trained
a k-NN (best), a decision tree, and a nearest class center classifier. Maurer et al. [51] trained
a k-NN, a decision tree, a naïve Bayes, and a Bayesian network on a dataset recorded with
six bi-axial accelerometers. Six subjects performed six activities. Each sensor position is
analyzed separately. The best acceleration-based results were 76.6% (wrist), 79.5% (pocket),
87.2% (bag), 72.6%, (necklace), 78.0% (shirt), and 77.2% (belt) using the decision tree. An
AdaBoost classifier and four accelerometers were used by Ugulino et al. [52] to classify
five activities. The best overall weighted accuracy was 99.4%. Zubair et al. [53] used the
same dataset as Ugulino et al. [52] to train an RF and AdaBoost classifier. The former
outperformed the latter with an overall accuracy of 99.9%, an averaged precision, and
recall of 99.8, respectively. More recently, Gupta et al. [54] proposed a combination of time
CNN and stacked LSTM model and compared it with three other deep learning models on
a dataset containing nine activities. It was recorded using three accelerometers placed on
the backs of seven subjects. The proposed model outperformed the others with an average
accuracy of 99.77%. Further studies investigating multiple accelerometers are [55,56] (six
sensors), [57,58] (four sensors, dataset of Ugulino et al. [52]), [59] (nine sensors, dataset of
Baños et al. [50]), and [60] (two sensors).

Most presented works used more than two sensors, but as Bao and Intille [46] and
Olguín and Pentland [23] mentioned, doing so does not improve the HAR results consider-
ably. Furthermore, using a lower number of sensors also creates a better level of comfort
for participants.

3. Methods
3.1. Human Activity Recognition Trondheim Dataset

The main characteristics of HARTH are summarized in Table 1. We used two tri-axial
Axivity AX3 accelerometers (Axivity Ltd., Newcastle, UK) [45] for data acquisition. The
AX3 is a small (23× 32.5× 7.6 mm) and lightweight (11 g) sensor. The sampling rate
(12.5–3200 Hz), the measurement range (±2/4/8/16 g), and the resolution (up to 13 bit)
are configurable. Accelerometer data are stored locally on a 512 Mb flash memory chip
and can be transferred via a Micro-B USB connector. Additionally, each AX3 is equipped
with a temperature and ambient light sensor. There are several reasons why we use two
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sensors. First, Cleland et al. [22] investigated up to six sensors but observed no significant
increase in performance compared to two sensors. The same findings are observable in the
work of Awais et al. [61]. Hence, two sensors provide high accuracy, higher comfort for
the participants [15], and reduced costs [13]. Second, previous works showed promising
results using two AX3 with similar sensor positions [12,13]. Third, a classifier trained on
HARTH can lead to promising predictions on the previously mentioned HUNT4 dataset.
The term “HARTH” is the abbreviation for “Human Activity Recognition Trondheim.” It is
named after the place it was recorded.

As illustrated in Figure 1, one sensor was attached to each participant’s right, front
thigh (≈ 10 cm above the upper kneecap), and the other to their lower back (approximately
3rd lumbar vertebra). The AX3 are aligned vertically, with the USB connector pointing
downward and the side without writing mounted against the skin. Hence, seen from the
participant’s perspective while standing upright, the lower back sensor’s x-axis points
downward, the y-axis to the left, and the z-axis forward. For the thigh sensor, the y-axis
points to the right and the z-axis backward.

x

z

y

(a)

x

z

y

(b)

Figure 1. This figure shows the two sensor positions (highlighted with orange lines) used for our
dataset. (a) The lower back sensor is positioned at approximately the 3rd lumbar vertebra. The z-axis
of the coordinate system points forward. (b) The thigh sensor is positioned approximately 10 cm
above the upper kneecap. The z-axis points backward.

A video camera (GoPro Hero3+ [62]) was placed on each participant’s chest using a
chest harness, pointing downwards to record leg movements, later used for annotation.
We recorded with a frame rate of 30 fps and a resolution of 1280× 720 pixels. Twenty-
two healthy adults (eight female) were recruited via word of mouth between university
and hospital staff. They were on average 38.6 ± 14 years old (range: 25–68), had an
average height of 177.3± 8.3 (range: 157–191) cm, an average weight of 72.9± 10.6 (range:
56.0–92.0) kg, and an average BMI of 23.1± 2.3 (range: 19.2–28.4) kg/m2. Each participant
gave written informed consent, and we obtained ethical approval from the Regional
Committee for Ethics in Medical Research (Mid-Norway [2015/1432]).

We recorded the dataset in two sessions. In the first session, 15 (six female) participants
were told to perform their everyday life as normally as possible, during a recording
period of 1.5–2 h. They were instructed to perform the activities sitting, standing, lying,
walking, and running (including jogging) for at least two to three minutes. During this
time, the two sensors recorded acceleration data with a sampling rate of 100 Hz (which
we later downsampled to 50 Hz) and a measurement range of ±8 g. At the beginning
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of the recordings, each participant performed three heel drops (i.e., dropping the heels
firmly on the floor), which helped synchronize the acceleration and video signals later.
In total, approximately 1804 min (≈30 h) were recorded in the first session. The average
recording duration was around 120± 21.6 min. When the recordings were finished, the
videos were converted to 25 fps and 640 × 360 pixels and annotated frame-by-frame.
Besides the introduced five activities, participants carried out further activities, which
we labeled as follows: stairs (ascending), stairs (descending), shuffling (standing with
leg movement), cycling (standing), cycling (sitting), transport (sitting) (e.g., in a car), and
transport (standing) (e.g., in a bus). This resulted in twelve different labels in total. The
labeling was done following a coding scheme with definitions for the different activities,
shown in Table A1. After the first session, we observed high imbalances in the class labels;
i.e., the distribution was skewed towards light activities. A second data collection session
in a free-living setting was therefore carried out with the aim of mainly collecting data on
walking, running, and cycling (sitting and standing). All activities included flat, uphill,
and downhill sections. There were no further instructions on where and when to carry out
the activities. Thus, participants also performed other activities (i.e., sitting, lying, walking
stairs), which also were annotated. The second session includes around 417.6 min (≈7 h)
of recorded data with an average duration of approximately 60± 9 min per participant.
The accelerometers’ sampling rate was set to 50 Hz and the measurement range to ±8 g.
Human experts annotated the data independently using the ANVIL annotation tool [63].
As a result, they achieved a Fleiss’ Kappa of 0.96. Each file was annotated by at least
one expert using the raw data and another person verifying the annotations. Figure 2
summarizes the time distribution of the dataset’s activities in minutes. Although we added
the second session, the dataset still shows an imbalance in the labels, making it more
challenging to train reliable machine learning models.
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Figure 2. This bar plot shows the total amount of recorded minutes for each activity in the dataset.

Figure 3 illustrates ten seconds of back and thigh acceleration of one particular subject.
The shaded areas represent the different activities of walking, shuffling, and standing in
green, yellow, and gray. It is observable that walking exhibits a repeating pattern in all six
axes, corresponding to the participant’s steps. After that, the acceleration stabilizes but is
not constant. In particular, the thigh_y and thigh_z axes show small repeating patterns,
which are expected during shuffling. Standing shows a nearly constant acceleration in all
six axes.
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Figure 3. This figure shows ten seconds (x-axis) of the acceleration signals (on the y-axis and in m/s2)
of all three axes of the back and thigh accelerometers. We focus on the subject with subject ID 28. The
background is shaded according to the activity label, in this case walking (green), shuffling (yellow),
and standing (gray).

3.2. Human Activity Recognition Models

We consider seven supervised machine learning approaches for HAR, namely k-NN,
SVM, RF, CNN, bidirectional LSTM, extreme gradient boost (XGB), and CNN with multi-
resolution modules (multi-resolution CNN). This allows us to provide a good benchmark
on how different types of machine learning models perform on HARTH. We cover often-
used (former four) and seldom-used (latter three) machine learning approaches for HAR. It
also enables the comparison of deep learning and traditional machine learning approaches.

3.2.1. K-Nearest Neighbors

Given a previously observed training set X and an unlabeled data sample x, the k-
nearest neighbors (k-NN) [64] algorithm classifies x by computing the (Euclidean) distance
to all xtr ∈ X and choosing the majority label of the k closest training samples. A distance-
based weighting can also be applied to increase the closer points’ influence on the final
label prediction [65].

3.2.2. Support Vector Machine

The support vector machine (SVM) [66] algorithm creates one or more hyperplanes
(decision boundaries) in the n-dimensional input feature space while ensuring that the
distance to the nearest samples of each label is maximal. This requires the data to be linearly
separable. If the data are not linearly separable, one can project the training data into a
higher, N-dimensional space (N > n) and find an optimal hyperplane there. However,
such a projection can be computationally expensive. The SVM algorithm uses the kernel
trick to avoid this problem. Instead of projecting the data points directly into a higher-
dimensional space, a kernel function is used that describes the dot-product of data points
in that N-dimensional space, which is enough to find an optimal decision boundary.

3.2.3. Random Forest

The random forest (RF) [67,68] algorithm is an ensemble learning technique. Hence,
multiple “weak” machine learning models (in this case, decision trees) predict the labels
of new input data. The majority label of the weak classifiers’ predictions is then the final
prediction of the RF. In addition, random feature selection/subsampling is performed
during training. Therefore, each decision tree is only trained on a subset of input features to
decrease the correlation between decision trees and increase the generalization capabilities.
Furthermore, each weak classifier can be trained on only one subset of randomly selected
samples to improve the performance further [68]. This technique is called bootstrapping.
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3.2.4. Extreme Gradient Boost

Although the extreme gradient boost (XGB) is seldom used in HAR, it achieves state-of-
the-art performance in many other research fields [69]. XGB is a particular implementation
of the gradient boosting algorithm [70], an ensemble learning algorithm similar to RF.
However, instead of training each weak classifier independently, a sequential learning
strategy is utilized. Each weak classifier (in this case, decision trees) tries to correct the
previous weak classifier’s errors by minimizing a predefined loss function L using the
gradient of L with respect to the previous weak classifier’s prediction [70]. The final
prediction of the XGB is the sum of each weak classifier’s prediction, weighted by a
learning rate. The XGB adds additional features to the standard gradient boosting, e.g., L1
and L2 regularization.

3.2.5. Bidirectional Long Short-Term Memory

The bidirectional long short-term memory (BiLSTM) [71,72] is an extended version
of the standard LSTM [73,74]. An LSTM is a recurrent neural network. It uses both the
current input and past activations for training. This allows learning temporal features in
a time series across several time frames. Three different gates (input, output, and forget
gates) are used in each network cell [74] to mitigate the exploding and vanishing gradient
problem that standard recurrent neural networks often suffer from [73]. The different gates
control the activation flow through the units and determine how much information should
be memorized or forgotten. The BiLSTM uses past, present, and future information for
every point in the input time series, exhibiting a larger context, which can be helpful for
accelerometer-based HAR. This is achieved by presenting the input stream in forward
and backward directions to two separate recurrent hidden layers. Yu and Qin [75] and
Nafea et al. [76] investigated them in their works and achieved good HAR results.

3.2.6. Convolutional Neural Network

A major difference between convolutional neural networks (CNNs) and standard
neural networks such as like multilayer perceptrons is the weight sharing between suc-
cessive layers [77]. Instead of connecting each unit of the previous layer with each of the
next, a “small” frame of weights (filter) is moved across the input signal (or hidden feature
map) while performing a convolution/cross-correlation operation. Usually, a non-linear
activation function such as the Rectified Linear Unit (ReLU) is applied afterward [77]. The
resulting feature map represents the next layer on which additional filters can be applied.
Stacking multiple convolutional layers allows the extraction of low-level features in the first
layers and high-level features in layers close to the network’s output [78]. More than one
filter is often utilized in one layer to learn to extract multiple features, and the parameters
in these filters are trained during backpropagation [77]. Fully connected layers are usually
used at the end of the CNN, with the last being the prediction layer with an activation
function (e.g., softmax for classification). In contrast to recurrent neural networks, CNNs
assume no correlation between input windows and are, therefore, unable to learn long-
term dependencies [79]. Instead, they capture local and small changes in the signal using
the filters.

3.2.7. Multi-Resolution CNN

Nafea et al. [76] showed promising HAR results using multi-resolution modules,
which are based on inception modules proposed by Szegedy et al. [80]. This inspired
us to investigate them as well. Instead of utilizing one kernel size in a single layer, like
the standard CNN (see Figure 4a), multiple kernel sizes are used (see Figure 4b) and
concatenated afterward. Hence, features of different scales are extracted in a single layer.
Figure 4 illustrates this. Assuming a stride of 1 in our example, each kernel (of both
models) produces an 1× 50 output. Concatenating them results in a 4× 50 output of the
multi-resolution module.
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(a) (b)

Figure 4. This figure illustrates a single layer in a standard CNN (a) and a multi-resolution CNN (b).

3.3. Preprocessing

We performed five preprocessing steps before training the machine learning models,
as illustrated in Figure 5.

Back (B)

synchro-
nization

Thigh (T)

annot. video

BTannot. low-pass
filter

BTannot. BTannot. segmentation
+

majority voting

BTannot. BTannot. feature
creation

BTannot.
scaling

Fannot.

Figure 5. This figure illustrates the five preprocessing steps we performed. First, the two accelerometer signals and the
annotated (denoted as annot.) video are time-synchronized. Second, a 20 Hz low-pass filter is applied to the annotated
acceleration signals. Third, each signal is segmented into one-second windows, and a majority label voting is used. These
windows are fed into the deep learning models for training. Fourth, 161 features (denoted as F) are computed for each
window. Fifth, min–max feature scaling is applied. The resulting feature vectors are used to train the traditional machine
learning models.

First, we synchronized the two sensors and the video labels with the help of the
aforementioned heel drops to get annotated acceleration signals. Second, we used a 20 Hz
low-pass fourth-order Butterworth filter on our dataset since human body movements are
below 20 Hz [81]. Third, we segmented the time series into non-overlapping one-second
windows (50 samples at 50 Hz). Such a windowing technique is often used in machine-
learning-based HAR [16,82]. It enables the extraction of several time- and frequency-
domain features. Furthermore, it is better suited for CNNs as they work on windows
rather than single data points. The majority of annotated labels in a single window are
used as the corresponding ground truth. It is important to mention that this strategy
can also introduce errors since activities shorter than half of the window size are not
considered. The influence of different window sizes on the prediction performance is not
easy to determine. To exemplify this, let a test set consist of a 100-s recording (5000 samples
at 50 Hz). Windowing with five seconds results in 20 test samples. On the other hand,
one-second windows lead to 100 test samples and, therefore, a higher probability of wrong
predictions. One possible solution to this problem is to extract features out of windows
of different sizes at once. Herrera-Alcántara et al. [38] investigated a promising approach
using wavelets of different scales for feature extraction. We think that this is an interesting
topic, but it would go beyond the scope of this paper. Banos et al. [83] showed that larger
windows are beneficial for complex activities, but not so much for the simple ones we
use. Additionally, they report that with a rich feature set (more than two per axis), shorter
windows (one to two seconds) exhibit better results. Due to the findings of Banos et al. [83]
and to reduce the loss of short activities while providing large enough windows for feature
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creation, we choose one-second windows for this work. Furthermore, it leads to a five
times larger dataset compared to five-second windows, which can be beneficial for deep
learning models. These windows are directly used to train the deep learning models as
they can learn features from raw data [84]. We stack the windows of the six axes (three for
each sensor) above each other, resulting in a 6× 50 matrix, used as the input for the deep
learning models.

Fourth, for the traditional machine learning models, we extracted time- and frequency-
domain features out of each window. We consider eight signals for feature computation,
the six axes (three for each sensor), and each sensor’s vector magnitude

√
x2 + y2 + z2.

Inspired by Stewart et al. [12], features of the human’s orientation and movement were
separated by computing the gravity and movement component of the raw accelerometer
signal. We applied a fourth-order 1 Hz low-pass Butterworth filter to estimate the former
component. Subtracting the resulting gravity component from the raw signal provides
the movement component. We computed the mean, the median, the standard deviation, the
coefficient of variation, the 25th, and 75th percentile, as well as the minimum and maximum for
each frame of the gravity components, to get orientation information. For the movement
components, we computed the skew, kurtosis, and signal energy, as well as the frequency-
domain features frequency-domain magnitudes’ mean, frequency-domain magnitudes’ standard
deviation, dominant frequency, dominant frequency’s magnitude, spectral centroid, and total
signal power. Narayanan et al. [13] showed that cross-sensory features have a strong
influence on the final machine learning performance. Hence, we further computed the
axis correlation between all six axes and between the two vector magnitude signals. In
addition, we computed the mean across the two sensors’ gravity components. In total,
we generated 161 features for each window. As a fifth and last preprocessing step, we
scaled the features through min–max scaling to the range 0–1 in order to avoid large range
differences between features. The target of each machine learning model is to learn the
twelve labels of our dataset.

4. Experiments and Results

The experiments are examined in two stages. First, we performed hyperparameter
optimization combined with cross-validation to find reasonable hyperparameters for each
machine learning model. Afterward, a leave-one-subject-out cross-validation was carried
out to compare the performance metrics between the different machine learning models.

4.1. Hyperparameter Optimization

The hyperparameter optimization with cross-validation was carried out by using
two randomly chosen subjects of each of the mentioned dataset’s two sessions for testing.
The remaining 18 subjects were used for training. By consistently using test subjects of
both sessions, we avoid a possible bias towards the larger one. This cross-validation
technique results in three iterations, each having different subjects in the test set. We
trained each hyperparameter assignment on these three iterations and averaged the results
for comparison. We focus here on the average F1-score (across all twelve labels) as a
performance metric since it is more robust to class imbalance than the accuracy [83].

We utilized 1D convolutional kernels in the first layers of the two CNN models to
enable a single kernel to learn to extract useful information of each axis. The bidirectional
LSTM, on the other hand, uses a fully connected input layer for the whole 6× 50 window.
For the CNN, we tune the learning rate (best: 0.001), the number of kernels, which is the
same for each layer (best: 128), the kernel shape/size in each layer (best: [6, 12, 12, 32]),
and the number of layers (best: 4). For the multi-resolution CNN, we also tune the learning
rate (best: 0.001), the number of kernels in each layer (best: 64), and the number of layers
(best: 2). Furthermore, different kernel sizes in the multi-resolution modules are utilized
(best: [3, 5, 7, 9]). The learning rate (best: 0.001) and the number of layers (best: 2) are also
tuned for the BiLSTM algorithm. Additionally, the number of units in each layer (same
for forward and backward) is examined (best: [32, 32]). The number of epochs for each
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deep learning model is fixed to 80. A dropout layer, with a rate of 0.4 and 0.2 for the
CNNs and LSTM, respectively, is used after each layer to mitigate overfitting. The last two
hidden layers of each deep learning model are fully connected 512-dimensional layers with
ReLU activation. They are followed by the 12-dimensional prediction/output layer with
softmax activation. The utilized optimizer is the stochastic gradient descent algorithm,
and the categorical cross-entropy is used as the loss function. The validation set of each
deep learning model is the same as the test set. Hence, no early stopping is examined. The
validation set is only used to monitor the models’ performance after each epoch. After
training, we use this information to ensure that no overfitting occurs.

For the k-NN, different numbers of neighbors [1, 2, . . . , 12, 20, 30] are utilized, with
the best value of k = 11. We used the radial basis function as the kernel function for the
SVM. We investigated the regularization parameter C, with larger values causing a more
substantial penalty on wrongly classified samples (best: 10). Furthermore, we utilized
different γ values, a parameter of the radial basis function (best: 1

N·σ2
X

), with the variance

σ2
X of the training set X and the number of features N = 161. Bootstrapping is used for the

RF classifier. At each node in a decision tree,
√

N features are randomly sampled to find an
optimal split. Gini impurity is used to measure the quality of a split. Different numbers
of decision trees are considered for hyperparameter optimization (best: 80). Additionally,
different minimum samples required to split a node are examined (best: 10). The learning
rate (best: 0.1), the number of decision trees (best: 1024), and the maximal decision tree
depth (best: 3) are tuned for the XGB model. The fixed parameters are the regularization
parameters λ = 1 (L2) and α = 0 (L1). Neither bootstrapping nor feature subsampling is
performed. The loss function is the multi-class classification error rate.

4.2. Leave-One-Subject-Out Cross-Validation

For each of the seven machine learning approaches, we choose the hyperparameters
with the highest F1-score to perform a leave-one-subject-out cross-validation (LOSO).
Hence, we train each model on 21 subjects of our dataset and test them on the remaining
subject. We repeat this 22 times with a different test subject each time. LOSO shows
less subject-based bias than other cross-validation methods [12], which is essential as the
same activity can differ greatly between subjects [85]. For each iteration, we compute
the corresponding confusion matrix. We sum up the resulting 22 matrices to get a single
confusion matrix representing all activities in the dataset. This summed confusion matrix
is then used to compute the recall, precision, and F1-score. These three metrics averaged
across all twelve labels are shown in Table 2. The best results are shown as gray cells. We
observe that the SVM shows the best F1-score and recall. It further has the second-best
precision. Hence, it can be considered as the best model of our experiments. The second-
best model, under consideration of the F1-score, is the XGB, followed by the k-NN. All
deep learning approaches have comparably low values in all metrics. The worst model is
the RF. The standard deviation is high, independent of the model or the metric.

We are mainly interested in physical activity classification. Some of our labels involve
a similar physical activity even though they have a different label. Therefore, we can merge
certain labels. In particular, shuffling, transport (standing), and standing are fused to the
same physical activity standing. Sitting and transport (sitting) are merged into sitting.
This merging is achieved by summing up the corresponding columns and rows in the
summed confusion matrix, respectively, resulting in nine activity labels. Table 3 gives a
further overview of each model’s average F1-score, precision, and recall, focusing on the
nine physical activities. The performance of all models increased considerably for each
metric. Furthermore, a lower standard deviation is observable. Again, the best model is the
SVM. However, the deep learning models benefit from the label merging as they exhibit the
highest performance increase, e.g., the multi-resolution CNN now has the second-highest
F1-score.

Figure 6 shows the summed confusion matrices of the two best traditional machine
learning models (SVM and XGB) and the two best deep learning models (CNN and multi-
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resolution CNN). The rows represent the ground truth, and the columns represent the
model predictions. The matrices are normalized such that the values of each row sum up to
approximately one (with some rounding errors). The diagonal represents the proportion of
correctly classified samples. Nearly all activities are well predicted, with the highest value
of 99% correctly classified samples for sitting. Lying and running show similar high entries
of at least 95%, followed by walking (85–90% correctly predicted samples), cycling (sitting)
(83–93%), and standing (84–86%). However, three activities stand out due to their poor
results in each model. These are stairs (ascending) (50–64%), stairs (descending) (40–56%),
and cycling (standing) (42–56%). The former two are often confused with walking and
the latter one with cycling (sitting). The deep learning models distinguish better between
stairs (ascending)/stairs (descending) and walking. However, the prediction performance
is still low.

Table 2. This table shows the recall, precision, and F1-score of the leave-one-subject-out cross-validation, averaged across all twelve
labels, with the corresponding standard deviations. The best results are shown as gray cells. The term “mCNN” is an abbreviation for
“multi-resolution CNN”.

k-NN SVM RF XGB BiLSTM CNN mCNN
Recall 0.60± 0.36 0.63± 0.34 0.59± 0.39 0.62± 0.36 0.61± 0.37 0.61± 0.38 0.61± 0.37
Precision 0.70± 0.28 0.70± 0.29 0.66± 0.33 0.69± 0.31 0.64± 0.35 0.69± 0.30 0.65± 0.33
F1-score 0.63± 0.33 0.66± 0.32 0.61± 0.36 0.64± 0.35 0.62± 0.36 0.61± 0.36 0.62± 0.36

Table 3. This table shows the average recall, precision, and F1-score of the leave-one-subject-out cross-validation. Twelve labels are
merged into nine physical activities by summing up the corresponding rows/columns of the summed confusion matrix. The best
results are shown as gray cells. The term “mCNN” is an abbreviation for “multi-resolution CNN”.

k-NN SVM RF XGB BiLSTM CNN mCNN
Recall 0.75± 0.26 0.79± 0.22 0.73± 0.31 0.78± 0.24 0.77± 0.21 0.79± 0.20 0.79± 0.20
Precision 0.83± 0.15 0.85± 0.13 0.83± 0.14 0.84± 0.15 0.81± 0.17 0.82± 0.17 0.82± 0.15
F1-score 0.78± 0.22 0.81± 0.18 0.76± 0.25 0.80± 0.20 0.79± 0.19 0.80± 0.19 0.80± 0.18

Figure 6. This figure shows four summed confusion matrices of the leave-one-subject-out cross-validation. The four
considered models are the two best traditional machine learning approaches, SVM (left) and XGB (right of SVM), as well as
the two best deep learning models CNN (left of multi-resolution CNN) and multi-resolution CNN (left). The rows show the
ground truth labels and the columns the predictions. Additionally, the matrices are normalized such that each row sums up
to one. The diagonal represents the proportion of correctly classified samples. The leading zero of each entry is removed.
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5. Discussion

Our results show that the SVM is the best model. However, all trained methods have
similar high performance, indicating well-chosen hyperparameter assignments. Addition-
ally, all seven models seem to struggle with the same issues. First, when the activities are
not merged (see Table 2), a high standard deviation in all metrics is observable. As the
results are averaged across the twelve labels, this high standard deviation indicates a big
difference in the prediction performance of different activities. Hence, some labels can be
well predicted, others not. We assume that the similar nature between certain activities
causes this. Merging the classes results in lower standard deviations, which confirms
our assumption. Second, in general, stairs (ascending), stairs (descending), and cycling
(standing) are often misclassified, independent of the model. This independence indicates
that the confusions are rather an aspect of the dataset and not the machine learning models.
The fact that both the deep learning and traditional machine learning models have this
issue strengthens this assumption, as both use different signal representations. We assume
that the main reason for the low performance is that these three labels exhibit the lowest
number of minutes in the dataset. Hence, future work can tackle this issue by develop-
ing machine learning models that can handle class imbalances, e.g., by performing class
weighting to strengthen the influence of minor classes. The deep learning models seem to
distinguish stair walking and walking better than the XGB and SVM. This aspect indicates
that certain features necessary to differentiate these activities are not captured by our 161
features, requiring the investigation of more features in future work. However, the deep
learning models do not show the best results. This might be caused by the relatively small
dataset, compared to datasets of other fields such as computer vision or automatic speech
recognition, where deep learning approaches excel. However, recording similar large HAR
datasets is not trivial. Hence, for future deep learning-based HAR, we recommend using
models that do not require a vast dataset.

Our dataset shows a strong resemblance to the HUNT4 data regarding used sensors,
sensor positions, and recordings in free living. With its professionally annotated activities,
it serves as a qualified training dataset to train HAR machine learning models that can be
used for physical activity-based public health studies using the HUNT4 data.

6. Conclusions

An accelerometer-based HAR dataset needs two essential properties for physical ac-
tivity behavior-based public health research. First, accurate acceleration measurements are
required, including fixed sensor positions, noise robustness, and professionally annotated
physical activities. Second, the data need to be recorded under free-living conditions. To
the best of our knowledge, there is currently no benchmark accelerometer-based HAR
dataset publicly available that has both properties. We make two contributions in this
work. First, we fill this gap in existing benchmarks by introducing the human activity
recognition Trondheim dataset (HARTH), a professionally annotated dataset, recorded
under free-living conditions using two accelerometers attached to the participants’ back
and thigh. Our second contribution is the training of seven baseline machine learning
models. The HARTH dataset and the source code of our models are publicly available.
Thus, they can be used as a reference for further development in future research.

The window size plays a crucial role in the HAR performance. Future work can
investigate the usage of dynamic windows as well as the temporal relation between
windows. Another approach is to extract features of different window sizes at once, similar
to the work of Herrera-Alcántara et al. [38]. A challenging aspect of HARTH is that
the classes are highly imbalanced, which is not tackled in this work. In future research,
techniques such as class balancing or augmentation can improve the results.

Due to the high-quality recordings and annotations of our dataset, as well as its chal-
lenging nature, we provide a promising basis for different research directions such as data
augmentation, class balancing, and single data sample prediction. Our results show that
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there is still room for improvement for researchers to develop innovative machine learning
approaches to facilitate a more precise human activity recognition in free-living environments.
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Appendix A

Table A1. The definitions of all twelve activities used during annotation.

Activity Definition

Sitting When the person’s buttocks is on the seat of the chair, bed, or floor. Sitting can include some movement in the upper body
and legs; this should not be tagged as a separate transition. Adjustment of sitting position is allowed.

Standing

Upright, feet supporting the person’s body weight, with no feet movement, otherwise this could be shuffling/walking.
Movement of upper body and arms is allowed. If feet position is equal before and after upper body movement, standing can
be inferred. Without being able to see the feet, if upper body and surroundings indicate no feet movement, standing can be

inferred.

Lying The person lies either on the stomach, on the back, or on the right/left shoulder. Movement of arms, feet, and head is
allowed.

Walking Locomotion towards a destination with one stride or more, (one step with both feet, where one foot is placed at the other
side of the other). Walking could occur in all directions. Walking along a curved line is allowed.

Running
Locomotion towards a destination, with at least two steps where both feet leave the ground during each stride. Running can
be inferred when trunk moves forward is in a constant upward-downward motion with at least two steps. Running along a

curved line is allowed.

Stairs (asc./desc.) Start: Heel-off of the foot that will land on the first step of the stairs. End: When the heel-strike of the last foot is placed on
flat ground. If both feet rests at the same step with no feet movement, standing should be inferred.

Shuffling
Stepping in place by non-cyclical and non-directional movement of the feet. Includes turning on the spot with feet

movement not as part of walking bout. Without being able to see the feet, if movement of the upper body and surroundings
indicate non-directional feet movement, shuffling can be inferred.

Cycling (sitting)
Pedaling while the buttocks is placed at the seat. Cycling starts at first pedaling, or when the bike is moving while one/both
feet are on the pedal(s). Cycling ends when the first foot is in contact with the ground. If one/both feet are placed on the
pedal(s), the buttocks is placed at the seat, with no pedaling and the bike is standing still, this should be tagged as sitting.

Cycling (standing) Standing with both feet on the pedals, while riding a bike. Cycling (standing) starts when the buttocks leave the seat, and
ends when the buttocks is placed on the seat.

Transport (sitting) When sitting in a bus/car/train among others.
Transport
(standing)

When standing in a bus/train among others. Movement of feet while standing is allowed and should not be tagged
separately.

https://github.com/ntnu-ai-lab/harth-ml-experiments
https://github.com/ntnu-ai-lab/harth-ml-experiments
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