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Key points 

• Metabolomics can improve the understanding of the physiological responses to exercise 

training and determinants of sport performance.  

• While untargeted metabolomics studies with small sample sizes, invasive sampling 

methods and a focus on short term effects of exercise have dominated exercise 

metabolomics studies, there is currently a trend towards longer term, biomarker-based 

studies with larger numbers of subjects using noninvasive sampling. 

• Improvements in study design, method standardization and data 

integration/interpretation will be key to improving the quality of exercise metabolomics 

studies 

Abstract 

Background: Metabolomics is field of omics science that involves the comprehensive 

measurement of small metabolites in biological samples. It is increasingly being used to study 

exercise physiology and exercise-associated metabolism. However, the field of exercise 

metabolomics has not been extensively reviewed or assessed. Objective: This review on 

exercise metabolomics has three aims: (i) to provide an introduction to the general workflow 

and the different metabolomics technologies used to conduct exercise metabolomics studies; 

(ii) to provide a systematic overview of published exercise metabolomics studies and their 

findings and; (iii) to discuss future perspectives in the field of exercise metabolomics. Methods: 

we  searched electronic databases including Google Scholar, Science Direct, PubMed, Scopus, 

Web of Science and SpringerLink academic journal database between January 1st 2000 and 

September 30th 2020. Results: Based on our detailed analysis of the field, exercise 

metabolomics studies fall into five major categories: 1) exercise nutrition metabolism; 2) 

exercise metabolism; 3) sport metabolism; 4) clinical exercise metabolism and 5) metabolome 

comparisons. Exercise metabolism is the most popular category. The most common biological 

samples used in exercise metabolomics studies are blood and urine. Only a small minority of 

exercise metabolomics studies employ targeted or quantitative techniques, while most studies 

used untargeted metabolomics techniques. In addition, mass spectrometry was the most 

commonly used platform in exercise metabolomics studies with about 54% of all published 

studies. Our data indicates that biomarkers or biomarker panels were identified in 34% of 

published exercise metabolomics studies. Conclusion: Overall, there is an increasing trend 

towards better designed, more clinical, mass spectrometry-based metabolomics studies 
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involving larger numbers of subjects/patients and larger numbers of metabolites being 

identified.  
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1. Introduction  

Traditionally, exercise physiologists have only been able to study selected or small numbers of 

genes, proteins and/or metabolites and their response/adaptation to exercise or training (1, 2). 

Indeed, the standard approach to gathering metabolic data in exercise physiology studies has 

typically required the use of tissue or muscle biopsies (3-5). This highly invasive approach 

limits the number of subjects and the number of samples that can be analyzed, which further 

restricts the number of analytes that can be meaningfully measured. While these highly targeted 

and invasive approaches have been successful for identifying key physiological pathways  (6, 

7), they do not provide a comprehensive, unbiased approach to detect all exercise-induced 

changes in all tissues or all metabolic pathways (2). Because exercise leads to substantial, often 

profound changes in the metabolism of many organs and many tissues, the understanding of 

exercise-induced changes to large numbers of metabolites and large numbers of metabolic 

pathways is particularly interesting and challenging (3-5). Current estimates place the number 

of metabolites in the human body at more than 110,000 different compounds (8) and the 

number of metabolic or metabolite signaling pathways in the human body at more than 46,000 

(9). Given that most exercise metabolism/physiology studies simultaneously measure fewer 

than a dozen metabolites and examine only 1-2 pathways at a time (10-12), it is clear that only 

a tiny fraction of what can be measured is currently being explored. This narrow view of human 

metabolism has limited our understanding of the relationship between exercise, physiology and 

metabolism.   

To address these limitations in metabolic measurements, a route for better, more 

comprehensive and less invasive approaches has long been sought by exercise physiologists. 

In this regard, the emergence of metabolomics over the past 20 years has enabled the possibility 

of performing comprehensive, high-throughput, minimally invasive or non-invasive metabolic 

studies in a large number of fields, including exercise physiology. Metabolomics is defined as 

the comprehensive characterization of small molecules (molecular weight<1500 Da) called 

metabolites in biological samples (13). These small metabolites can serve as sensitive sentinels 

of genomically driven processes or states. Indeed, a single base change in a single gene can 

lead to a 10,000-fold change in the concentration of a metabolite in the metabolome (14). 

Because metabolites are effectively the end products of complex interactions occurring inside 

the cell (the genome, the transcriptome, and the proteome) and events or phenomena occurring 

outside the cell (the environment), the comprehensive measurement of metabolites (via 

metabolomics) allows one to measure interactions between genes and environment. This means 
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that metabolomics offers an ideal route for measuring both phenotype and physiology (15, 16) 

(Fig 1). 

 

Fig 1. The flow of information from genes to metabolites, their connections and omics related 

fields (Modified from Kasture et al (17), with permission). 

Metabolomic techniques have gained increasing traction in many fields of life sciences, 

including medicine and exercise physiology due to their ability to simultaneously probe both 

environmental and genetic interactions. One of the reasons for the growing popularity of 

metabolomics within biomedicine lies in the fact that metabolomics studies can be conducted 

in a variety of ways. They may be conducted on subjects to: 1) obtain “healthy” reference value 

measurements; 2) compare “cases” versus “controls” to explore how different perturbations 

can affect the metabolome; or 3) collect data over short or long periods of time to explore 

longitudinal effects. This makes metabolomics ideal for probing processes as they occur in real 

time or over the time scale of seconds, minutes, hours or even days (15, 18). This ability to 

probe an organism’s phenotype or physiology is the reason why metabolomics is increasingly 

being used by exercise physiologists (19, 20). As a result, a new branch of exercise physiology, 

called “exercise metabolomics” has emerged that brings metabolomics together with exercise 

research. Given its rapid growth over the past few years, we believe that a review of the field 

and an assessment of where it has been and where it is going is both timely and important. 

Genome (genomics) mRNA (transcriptomics) Proteome (proteomics) 

Metabolome (metabolomics) Physiology 

Non-genetic 

factor: 

Exercise 

Nutrition, etc. 
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This review on exercise metabolomics is separated into three parts. The first part is intended to 

provide a brief overview of metabolomics and to describe the different metabolomics 

technologies employed in exercise metabolomics. The second part provides a technical 

overview of previously published exercise metabolomics studies and attempts to identify 

existing or emerging trends in the field. This involved a detailed and systematic  analysis using 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standards, 

of more than 120 exercise metabolomics papers.  This systematic review allowed us to identify 

some of the challenges that exercise metabolomics researchers may face and possible solutions 

to these challenges, The third part of this review is more speculative and uses the information 

compiled in the first two sections to discuss future directions in the field of exercise 

metabolomics.  

 

2 Metabolomics and Metabolomics Methods 

Metabolomics as a field of omics science first emerged in the late 1990’s (21). However, the 

simultaneous analysis of multiple (typically 10s or 20s) metabolites in biological samples via 

techniques such as nuclear magnetic resonance (NMR) spectroscopy and gas chromatography 

(GC) mass spectrometry (MS) dates from the early 1970s (21). It has only been in the last 10-

15 years, primarily through the introduction of liquid-chromatography (LC)-MS, that 

metabolomics techniques have appeared permitting the detection and/or putative identification 

of thousands of metabolites at a time (21). Therefore, depending on the technological platforms 

used, the number of metabolites measured in each metabolomics experiment can range from a 

few dozen to thousands of molecules at a time. The number of metabolites detected in a 

metabolomic experiment can also depend on the sample size and sample type. Indeed, the types 

of biological samples analyzed in a metabolomic study may range from cells to tissues, organs, 

biofluids (such as urine, serum, plasma, saliva and cerebrospinal fluid) or an entire organism. 

Given the diversity of platforms and the diversity of samples. it is not surprising to learn that 

different “flavors” of metabolomics have emerged over the past two decades. These include: 

1) targeted metabolomics; 2) untargeted metabolomics; 3) metabolic fingerprinting; 4) 

metabolic footprinting; 5) metabolic profiling; and 6) lipidomics, along with several other 

varieties (22-24). Table 1 provides a brief description or definition of each of these 

metabolomic terms and how they can be differentiated from each other.   
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Table 1. List of different kinds of metabolomics-related terms and their definitions (22-24) 

Word Definition 

Metabolome  The complete set of low molecular weight metabolites (primary metabolites, 

secondary metabolites, endogenous and exogenous compounds) that can be 

found in a cell, a tissue, a biofluid or an organism. 

Metabolomics  The comprehensive characterization of metabolites (small molecules with 

molecular weight<1500 Da) and other chemical species (both exogenous and 

endogenous) in biological specimens in response to different perturbations 

or interventions. 

Metabonomics   Often synonymous to metabolomics. Metabonomics is generally focused on 

the application of metabolomic methods to study metabolic responses to 

therapeutic interventions or genetic modifications. 

Metabolic 

fingerprinting   

The characterization of metabolites of internal biofluids needed to sustain a 

living cell or organism (e.g. cell cytoplasm, serum, plasma, tree sap). This 

metabolomic method is commonly used in whole organism metabolomic 

studies as well as in cell, cell culture or microbial studies. 

Metabolic 

footprinting (Exo-

etabolomics)m   

Characterization of metabolites secreted by a living organism (urine, feces, 

saliva and other excreta) or found in cellular growth media. This method is 

commonly used in microbiology and biotechnology. 

Metabolic profiling  A synonym of metabolomics. It is a term that is normally reserved for 

metabolomic studies with a smaller, more defined set of metabolites that may 

have common physiochemical properties (such as carbohydrates, amino 

acids, organic acids and nucleotides) or are involved in specific metabolic 

pathways (such as glycolysis, gluconeogenesis, beta-oxidation, beta-

oxidation, and Krebs-cycle). 

Targeted 

Metabolomics 

A branch of metabolomics that is focused on the identification (and often 

exact quantification) of a specific, pre-defined collection or category of 

metabolites in a tissue, biofluid or biological matrix. Targeted metabolomics 

is widely used in clinical or biomarker applications. 

Lipidomics A branch of metabolomics that involves the comprehensive analysis of all 

lipids, fatty acids, and lipid-like molecules in a biological or environmental 

sample. 

Untargeted  

Metabolomics 

A branch of metabolomics that involves the broad, unbiased identification 

of the maximum number metabolites or metabolic features in a tissue, 
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biofluid or biological matrix. Untargeted metabolomics is widely used in 

biological discovery or hypothesis generation applications. 

 

Regardless of the type or “flavor” of metabolomics that is chosen for a given study, nearly all 

metabolomics experiments follow a similar workflow.  This workflow is illustrated in Fig 2.   

  

Fig 2. Metabolomics workflow of a metabolomic study. NMR: Nuclear magnetic resonance, LC-

MS: Liquid chromatography–mass spectrometry, GC-MS: Gas chromatography–mass 

spectrometry, PCA: Principal component analysis, PLSDA:  Partial least squares-discriminant 

analysis, OPSDA-DA: Orthogonal partial least squares-discriminant analysis 

While it is not the intent of this review to provide a detailed summary of metabolomics methods 

and technologies (other publications  have provided detailed information (21, 25)), we believe 

Exercise related exposure, 

equipment and intervention 

Sample collection 

(biofluid of tissue) 

Sample processing (extraction, 

degravitation, etc.) 

Chemical analysis (NMR, LC-

MS, GC-MS, etc.) 

Data reduction and statistical 

analysis (PCA, PLS-DA, 

OPLS-DA, etc.) 

Metabolite 

identification 

Metabolite 

identification 

Data processing (peak 

detection, de-noising, etc.) 

Biological interpretation 

(pathway analysis, etc.) 
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a brief summary explaining the main points highlighted in Fig 2 would be helpful, especially 

in understanding the information presented in the second part of this review which involves a 

systematic PRISMA analysis of published exercise metabolomics studies. 

2.1 Sample Collection 

As seen in Fig 2, the first (and perhaps the most important) step involves the collection and 

storage of biological samples. In human metabolomics studies, the most commonly selected 

sample types are serum/plasma, urine, saliva, sweat, and stool samples.  Muscle biopsies and 

other kinds of tissues biopsies are less frequently collected (26). The choice of sample type, 

the number of samples and the collection/storage conditions for samples are critical to the 

success of every metabolomics experiment. Indeed, the failure to properly plan or design the 

first step is the reason for the failures of many metabolomics studies. The selection of sample 

types should be made on the basis of sample accessibility (invasive, non-invasive, expensive 

or inexpensive) and the appropriateness of sample for the question being asked (27). As a 

general rule, in a metabolomics experiment biofluids or samples that bathe or surround the 

organ/tissue of interest should be chosen (28, 29). A summary of the advantages and 

disadvantages of different sample types that are typically used in exercise metabolomics studies 

is given in Table 2. 

Table 2. Advantages and disadvantages of the most commonly used biological samples in 

exercise and sport metabolomics studies. 

Type of biological 

sample 

Advantages Disadvantages 

 

Contains all molecules secreted or 

excreted by different tissues 

Primarily includes endogenous 

metabolites 

Indicates and tracks temporal and 

physiological changes well 

Useable in all methods of analysis 

Contains high amounts of 

proteins and lipoproteins 

Invasive collection method 

Rapid reaction of blood 

analytes with enzymes in the 

sample (metabolic 

degradation)  

Difficult to detect small 

metabolites by NMR 

 

Contains stable compounds 

Generally free of proteins and 

other macromolecules 

High salt and urea 

concentration (problematic 

in MS analysis) 

Blood (Plasma/Serum) 

Urine 
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Contains higher concentrations of 

waste, disease or toxic 

compounds 

Contains endogenous and 

exogenous metabolites 

Non-invasive collection methods 

available 

Large amounts of samples are 

readily available 

Simple storage and shipment 

possible 

Can be contaminated with 

bacteria 

Can be significantly affected 

by environmental/diet 

conditions 

Metabolically complex 

 

Provides a good reflection of the 

physiological conditions of the 

body 

Has a wide range of low 

molecular weight molecules 

Non-invasive collection methods 

available 

Simple storage and shipment 

possible 

Can be contaminated with 

bacteria and high molecular 

weight proteins 

Limited amounts of samples 

are available 

Has lower concentration of 

endogenous metabolites than 

blood 

Affected by oral intake, 

physiological and 

pathological conditions of 

the mouth 

 

Provides high concentrations of 

measurable metabolites 

Provides the most accurate 

representative of local metabolic 

conditions 

Composition can vary greatly 

depending on the sampling site 

May contain endogenous 

metabolites only 

Very invasive sampling  

Limited amounts of samples 

are available 

Often contaminated with 

high molecular weight 

proteins 

NMR: Nuclear magnetic resonance, MS: Mass spectrometry 

The total number of samples used for a metabolomics experiment is best determined using a 

power analysis (28), however for many kinds of discovery-based studies a power analysis is 

not possible or reasonable. As a general rule, at least 30-40 cases and 30-40 controls are 

Saliva 

Tissue 
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required to get sufficiently robust data. However, if the signals or differences are particularly 

strong, it is possible to work with much fewer (e.g. 5 to 10) samples (30).    

2.2 Sample Processing 

After collection of biological samples for a metabolomics experiment, they must typically be 

further processed or extracted to get them into a suitable state for further chemical analysis. 

The processing and extraction steps are dependent on the type of sample and the analytical 

platform being used. Solid samples (tissue, feces, cells, etc.) must typically be frozen, then 

grounded to powder (while frozen) and extracted with both hydrophobic (chloroform) and 

hydrophilic solvents (water and/or methanol) so that liquid extracts can be obtained (30). 

Liquid extracts are essential for metabolite analysis via standard analytical chemistry platforms 

such as NMR spectrometers or mass spectrometers. For samples that are already liquefied 

(serum, plasma, urine, saliva, etc.) the biofluid must usually be filtered to remove protein and 

cellular debris (or other macromolecules). The removal of proteins also prevents enzymatic 

reactions from occurring which may alter metabolite levels during metabolite analysis. An 

alternative to filtration, especially for samples to be analyzed by LC-MS or GC-MS, is solvent 

extraction. Solvent extraction, using organic solvents, is one of the most effective ways of 

precipitating proteins and extracting certain classes of metabolites. Polar solvents such as 

methanol or methanol/water (1:1) can be used to extract polar metabolites from serum, plasma, 

saliva and most tissues, while non-polar solvents such as chloroform (mixed with 

methanol/water 2:2:1.8 (v/v/v)) can be used to extract lipids or non-polar metabolites from 

most biofluids or tissues. Solvent extraction is an effective way of reducing the chemical 

complexity of both biofluids and tissue, which makes subsequent analytical steps somewhat 

easier.  Solvent extraction also ensures that samples are protein and/or enzyme free, which is 

critical to ensuring that no further enzyme-mediated metabolic processes can take place during 

analysis (i.e., metabolic quenching). For certain kinds of metabolomic analysis (such as GC-

MS or certain LC-MS methods), samples must also be chemically derivatized. Chemical 

derivatization involves chemically reacting metabolites with certain chemical moieties to either 

enhance their volatility (for GC-MS) or to isotopically label them for improved LC separation 

and enhanced MS differentiation (30). 

2.3 Chemical Analysis 

The two most common chemical analysis methods used in metabolomics are MS and NMR 

spectroscopy (15). MS is a chemical analysis method that has been used for more than a century 
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for measuring the mass-to-charge ratio (or m/z) of molecules or atoms. Most MS methods used 

in metabolomics incorporate at least one or several chemical separation steps prior to injecting 

the sample into the mass spectrometer. This is done to reduce the complexity of the mixture 

while at the same time increasing the sensitivity and enhancing the ability of the MS instrument 

to detect individual metabolites. The most common chemical separation methods are GC, LC, 

and capillary electrophoresis (CE) (31). Each of these methods separates molecules over time 

and space based on their physiochemical properties. GC separates molecules based on their 

boiling point, mass, polarizability, and molecular shape. LC separates molecules based on 

hydrophobicity, charge and size while CE separates molecules primarily on the basis of charge 

(30). Therefore, different molecules have distinct and uniquely characteristic retention times, 

the time it takes for a molecule to reach the detector from the chromatographic system entrance 

(15). GC-MS is commonly used for the detection and separation of lower molecular weight, 

less easily ionized metabolites while LC-MS or CE-MS are used for higher molecular weight 

and more easily ionized or charged metabolites (15). 

In addition to MS techniques, NMR spectroscopy is another commonly used chemical analysis 

method to identify and quantify metabolites. NMR measures the response of atomic nuclei to 

radio-frequency perturbations under strong magnetic fields (32). In NMR-based metabolomics, 

the separation of peaks due to chemical shift differences among different molecules means that 

the analysis of chemical mixtures by NMR does not require chromatographic or electrophoretic 

separation or chemical derivatization. This makes NMR-based metabolomics somewhat faster 

and easier than MS-based metabolomics (15). Nevertheless, the identification and analysis of 

thousands of NMR peaks in a complex biofluid such as urine or serum is challenging. 

Furthermore, unlike MS, NMR is not a very sensitive technique (15).  

Both MS and NMR can be used in targeted and untargeted metabolomics. MS is generally 

more sensitive while NMR provides more structural details and greater quantitative accuracy. 

Each of these methods have their strengths and weaknesses, which are outlined in Table 3 .  

Table 3. Advantages and disadvantages of MS and NMR techniques (15, 33-35). 

Analytical platform Advantages Disadvantages 

Nuclear magnetic 

resonance (NMR) 

Quick analysis 

High resolution technique 

No need for derivatization 

Easy preparation 

Low sensitivity 

Has a very small library of 

reference compounds 
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High reproducibility 

Inexpensive 

Allows determination of 

structure 

Can be fully automated 

Non-destructive method 

More than one peak per 

metabolite 

Limited to detection of 

hydrophilic molecules 

Expensive instrumentation 

Gas chromatography-mass 

spectrometry (GC-MS) 

High sensitivity 

High distinguishing power 

High linear absorption 

range 

Suitable for volatile 

compounds (especially 

nonpolar) 

Has a large commercial and 

public library of reference 

spectra 

High level of 

reproducibility 

Can be mostly automated 

Less expensive 

instrumentation 

Lower throughput 

Usually needs chemical 

derivatization 

Unsuitable for thermally 

unstable compounds with high 

molecular weight 

Unusable for compounds that 

cannot be volatilized 

Complex preparation process 

Destructive method 

 

Liquid chromatography-

mass spectrometry (LC-MS) 

Usually, no need for 

derivatization 

Can work with many 

separation methods 

Allows one to 

simultaneously analyze 

many samples 

Applicable for a wide range 

of compounds (polar and 

non-polar) 

The most sensitive 

metabolomics technique 

Good automation capability 

Lower throughput 

Limited reference spectral 

libraries 

Expensive instrumentation 

Requires chromatographic 

separation 

Need for high level of training 

Destructive method 

Capillary electrophoresis–

mass spectrometry (CE-MS) 

High separation power 

Very sensitive 

Limited spectral reference 

library 
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Can be highly automated 

Quick separation and 

analysis 

Ability to analyze neutral 

compounds, cations, and 

anions  

Usually, no need for 

derivatization 

Destructive technique 

Instrumentation is challenging 

to work with 

 

2.4 Data Analysis Methods 

Regardless of the metabolomics platform used (MS or NMR) or approach employed (targeted 

or untargeted), all metabolomics data must go through a data analysis step that involves spectral 

cleaning, baseline correction, de-noising, peak picking and/or peak binning (see Fig 2). After 

this step, as shown in Fig 2, there are two options that branch off either for compound 

identification or further statistical analysis. As seen on the right side of Fig 2, metabolite 

identification for targeted metabolomics occurs after spectral processing or spectral “cleaning” 

and prior to statistical analysis and data reduction. As seen on the left side of Fig 2, metabolite 

identification for untargeted metabolomics occurs after the spectral processing step and after 

the statistical analysis and data reduction step. Indeed, the difference between targeted and 

untargeted methods is greatest when it comes to the metabolite identification step. In targeted 

metabolomics, all or nearly all of the metabolites that are targeted are typically identified and 

quantified. After the metabolites have been fully identified and quantified, then the task of data 

reduction, statistical analysis and data interpretation can take place (30).  

On the other hand, untargeted metabolomics uses data reduction and feature selection 

techniques prior to metabolite identification. This is because the amount of data generated by 

untargeted methods is many times greater than the amount of data generated by targeted 

methods. Untargeted metabolomics, especially LC-MS-based metabolomics, produces 

thousands to tens of thousands of spectral features for any given sample in a study. Statistical 

analysis and data reduction typically reduces this number down to a few dozen statistically 

significant features.  Once this feature list is winnowed down, the task of metabolite 

identification of these significant features can begin. It is important to note that the spectral 

features initially identified via untargeted metabolomics methods are only “potential 

metabolites” – they are not metabolites. Metabolite identification in untargeted metabolomics 
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follows a similar process to metabolite identification in targeted metabolomics. However, the 

spectral databases are less complete and therefore it is rare to identify more than 10% of the 

significant features in an untargeted metabolomic study. Furthermore, with untargeted 

metabolomics identified, metabolites cannot be absolutely quantified, and only relative 

quantification can be attained. After the metabolite identification step is completed in 

untargeted metabolomics, the task of data interpretation can begin. Both untargeted and 

targeted methods use similar methods for data or biological interpretation (14).  

One of the most important steps in metabolomic data analysis is statistical analysis and data 

reduction step (see Fig 2). The statistical methods used in this step can broadly be divided into 

two categories: supervised and unsupervised methods (36). In unsupervised methods, the data 

are not labeled, and the statistical methods are designed to find naturally existing clusters of 

samples sharing similar features, similar peak intensities or similar metabolite concentrations. 

Principal component analysis (PCA) is the most common unsupervised method used in 

metabolomic studies. PCA is a dimensional reduction technique that produces small numbers 

(two or three) principal components (PCs) that capture the main features explaining a dataset’s 

variance. PCA data is typically displayed as a two- or three-dimensional plot. A PCA scores 

plot typically shows multiple clusters of data points that share some degree of feature similarity. 

On the other hand, a PCA loadings plot displays the features (metabolites or spectral bins) that 

are most strongly differentiating between clusters. In this way, PCA plots may be used to 

extract the most important differentiating spectral or metabolite features in a metabolomic 

study. This reduces hundreds or thousands of features or metabolites to a manageable number 

of features (36, 37).  

Supervised methods require that the data (metabolite concentrations or feature intensities) be 

labeled or explicitly identified (such as case or control) prior to data reduction. Supervised 

methods are widely used in metabolomics as in most metabolomics studies samples can be 

easily labeled (cases vs. controls, healthy vs. sick). Supervised methods are primarily used for 

classification (which is different from clustering). Supervised methods “learn” to identify the 

main features, such as metabolites or spectral features, that differentiate certain groups (e.g. 

cases and controls) from one another. In this regard, supervised methods are much more 

effective at detecting subtle differences between apparently similar samples than simple 

clustering methods such as PCA. The most common supervised methods used in metabolomics 

are partial least squares-discriminant analysis (PLS-DA) and its optimized form, orthogonal 

PLS-DA (OPLS-DA) (36, 38). It is important to notee that classification methods need careful 
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validation and testing to confirm that the classification model is not being over fitted (38). 

Furthermore, biomarker discovery requires other complementary analyses, including tests of 

accuracy, sensitivity, and specificity.  

2.5 Biological Interpretation 

The last step in the workflow shown in Fig 2 involves biological interpretation. Many 

metabolomics researchers use pathway analysis as a part of the biological interpretation 

process. In particular, pathway databases such as Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (39), Reactome (40), MetaCyc Suite (41), and PathBank (9) are widely used to 

facilitate biological interpretation. MetaboAnalyst (42) is another commonly used web-

resource that provides a large number of tools for more sophisticated biological interpretation, 

multi-omic integration and general biomarker analysis. We would refer readers to several 

excellent reviews that provide easy-to-understand overviews of how biological interpretation 

in metabolomics is best done (43-46).  

 

3. Systematic Review of Exercise Metabolomics Papers 

The second part of this review is intended to provide an overview of previously published 

exercise metabolomics studies and to identify existing or emerging trends in this relatively 

young field. In conducting this review, we systematically surveyed all of the major 

bibliographic databases using the PRISMA guidelines (47). The bibliographic databases 

included Google Scholar, Science Direct, PubMed, Scopus, Web of Science and SpringerLink 

academic journal database. The period of the review spanned from Jan. 1, 2000 to Sep. 30, 

2020. The following keywords were searched in each of the bibliographic databases: 

‘Exercise/exercise nutrition and metabolomics/metabonomics’, ‘Physical activity/physical 

activity and nutrition and metabolomics/metabonomics’, ‘sport/sport and nutrition and 

metabolomics/metabonomics and sportomics’. The search was restricted to original peer-

reviewed studies published in English, with review articles excluded. Titles and abstracts were 

screened by two independent reviewers, potential conflicts or discrepancies identified, and any 

conflicts resolved by discussion with a third reviewer. The article selection process is described 

in Fig 3. Selected studies were thoroughly examined, and the information listed in the headings 

for Electronic Supplementary Material Table S1were compiled. Two different reviewers 

independently extracted data and disagreements regarding the selected information were 
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resolved by a third reviewer and discussion. As seen in Fig 3, initially a total of 312 articles 

were identified during the first screening phase. This was reduced to a final set of 130 studies 

after duplicate removal, title screening/filtering and abstract screening. This meant that 

publications that did not use the words “exercise”, “sport” or ”physical activity” in their title 

were excluded. Thereafter, we read the selected manuscript abstracts and removed those papers 

that did not study physical exercise, but rather psychological or other types of exercise, or were 

not written in English. In addition, some review papers that passed the previous steps were also 

manually removed because we did not include review papers. Another 8 articles were removed 

due to the lack of access to full text manuscripts. This left us with a total of 122 papers with 

full text access that met all our inclusion criteria.  
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Fig 3. PRISMA flow diagram displaying the identification, screening, and selection of relevant 

studies in this systematic review. PRISMA: Preferred Reporting Items for Systematic reviews 

and Meta-Analyses’. 

3.1 Study Types 

Based on the 122 studies published between 2007 (first ever published manuscript) and 

September 30th, 2020, we classified the studies into five general categories (Fig 4): 

1. Exercise nutrition metabolism (studies that examined the effect of any supplement or special 

diet on exercise metabolism)  

Records identified through 

database searching (n=312) 

Records identified through 

other resources (n=0) 

Records after duplicates 

removed (n=292) 

Records screened (n=177) 

Records excluded after title 

screening (n=115) 

Full-text articles assessed 

for eligibility (n=130) 

Studies included in the 

systematic review (n=122) 

Records excluded after 

abstract screening (n=47) 

 

Full-text articles not 

available (n=8) 
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2. Exercise metabolism (studies that examined metabolic responses/adaptations to a particular 

exercise protocol)   

3. Sport metabolism (studies that examined metabolic responses to a particular sport or a 

specific exercise test)  

4. Clinical exercise metabolism (studies that examined the effect of exercise on patients' 

metabolism)  

5. Metabolome comparison (studies that compared athletes/patients/animals’ metabolome)  

The number of papers identified in each of these five categories is shown in Fig 4 for each year 

starting from 2007 to the end of the present systematic review (September 2020). 

 

 

 

Fig 4. The number of studies published in each category in different years.  

As seen in Fig 4, the total number of exercise metabolism studies has been increasing since 

2007, with the highest number of studies being published in 2020. Indeed, the last 4 years 

(2017-2020) accounted for more than half of all exercise metabolomics studies published to 

date. This suggests that the field has experienced a rather significant surge of interest. Among 

the different categories of exercise metabolomic studies, we found that studies focused on 

“metabolome comparison” were quite rare, with one study reported in 2008 and 2020 and two 

studies in 2018 (for a total of four studies). Sport metabolism studies and exercise nutrition 
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metabolism studies were also relatively uncommon with just 16 and 20 studies, respectively. 

The two most common kinds of exercise metabolomics studies were exercise metabolism 

studies and clinical exercise metabolism studies with 55 and 27 studies, respectively. It is 

notable that the highest numbers of clinical exercise metabolism studies were published in 2019 

(N=10) and 2020 (N=8) which shows an increasing tendency of exercise metabolomics 

researchers towards clinical or patient-centered studies.   

3.2 Study Duration  

We classified all 122 exercise metabolomics studies into short-term (one week or less) and 

long-term (more than one week) duration studies. There were 73 short-term studies and 46 

long-term studies. Three studies used a mix of both short- and long-term methods. The relative 

ratio of short-term studies to long-term studies (roughly 2:1) appeared to remain constant 

throughout the time period assessed. The one exception appears to be for 2020 with 15 long-

term and 15 short-term studies. Whether this is the beginning of a trend towards longer term 

studies is unclear. 

3.3 Sample Types  

Our systematic review identified nine different types of biological samples that were used in 

these exercise metabolomics studies: plasma, serum, whole blood, urine, saliva, muscle/liver 

tissue, sweat, feces, and breath samples. The number of exercise metabolomics studies using 

each kind of sample were as follows: plasma:  41, serum:  26, urine: 21, muscle/liver 

tissue/other: 12, feces:  3, saliva: 4, sweat: 2, whole blood: 3, and mixed samples: 10. Ten 

studies reported using more than one sample type (such as serum and urine or tissue, 

exhaled breath condensate and plasma). The frequency with which a given sample type was 

selected aligns very closely to the frequency reported in other kinds of systematic reviews of 

human metabolomics studies (48). . Regarding the temporal trends in sample type selection, 

we found that plasma was the most frequently used sample over the past few years with the 

highest rates in 2019 (N=9) and 2020 (N=10). Interestingly, serum was not used very frequently 

until 2018 during which nine studies used it and it was also studied in 2019 (N=4) and 2020 

(N=6). Urine has seen steadily increasing use with the first reported urine study being in 2009 

and with an average of 3-4 studies per year employing urine between 2014 and 2020. We also 

noted that exercise metabolomics researchers only started to use muscular tissue in 2014, and 

sweat and feces in 2018 for metabolomic assessments.  

3.4 Analytical Methods  
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MS-based metabolomics was the most common analytical platform in exercise metabolomics 

studies with 66 (about 54% of all studies) published manuscripts that exclusively used MS-

based techniques. Among these 66 studies, we found that 39 studies used LC-MS and 27 studies 

used GC-MS.  NMR was used exclusively in 22 studies (about 17%) while 12 studies used 

other types of analytical platforms such as clinical analyzers, or high performance liquid 

chromatography (HPLC) coupled with ultraviolet-visible spectrophotometry and 21 studies 

used a combination of LC-MS and NMR. In one study, the type of the used chromatography 

was not specified (49). The number of studies using MS-based methods (e.g. LC and GC) 

showed an increasing trend over the past 10 years with 2020 having the highest number of 

reported MS-based studies.  This trend reflects the fact that MS methods offer exceptional 

sensitivity and that these methods maximize the detection of metabolites. Interestingly, we 

found that NMR was most frequently used to analyze urine samples. Another notable trend in 

terms of platform preference was the tendency of exercise studies to use multiple analytical 

platforms – especially in recent years (2018-2020). The combined use of GC-MS and LC-MS 

or NMR and LC-MS methods is known to broaden metabolite identification coverage (Fig 5).  

 

Fig 5. Different analytical methods used in exercise metabolomics studies from 2007 to September 

2020. LC-MS: Liquid chromatography–mass spectrometry, LC-MS/MS: Liquid 

Chromatography with tandem mass spectrometry, HNMR: Hydrogen nuclear magnetic 

resonance, GC-MS: Gas chromatography-mass spectrometry, GC-MS/MS: Gas chromatography 

with tandem mass spectrometry, Other: Other analytical methods, Multiple: Multiple analytical 

methods 

3.5 Targeted vs. Untargeted Methods 
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Our data indicates that 82 studies used untargeted methods (15 NMR-based studies, 63 MS-

based studies and 4 studies that used other analytical methods), 33 studies used targeted 

methods (9 NMR-based studies, 22 MS-based studies and one using other analytical methods) 

and 7 studies used a combination of both targeted and untargeted methods. A total of just 25 

papers provided absolute metabolite quantification while 97 provided only qualitative (or 

relative concentration) metabolite data. In the last three years (2018-2020), 51 out of 69 studies 

(74%) used untargeted methods, highlighting the increasing trend towards untargeted 

metabolomic methods over targeted methods in recent years. Preferences for 

untargeted/targeted studies in the 5 different exercise metabolomics categories was as follows: 

(i) sport metabolism: 9 untargeted vs. 6 targeted (one study used mixed methods), (ii) clinical 

exercise metabolism: 17 untargeted vs. 8 targeted (2 studies used mixed methods), (iii) exercise 

metabolism: 32 untargeted vs. 19 targeted (4 studies used mixed methods), (iv) sport nutrition: 

14 untargeted vs. 5 targeted (one study used mixed methods), and (v) metabolome 

comparisons: 4 untargeted studies. 

3.6 Metabolites and Pathways/Physiological Processes Identified 

According to Electronic Supplementary Material Table S1, the average number of metabolites 

identified in the targeted exercise metabolomic studies was 31, while the average number of 

“features” having statistical significance in untargeted exercise metabolomic studies was 48.  

The biofluid or biological matrix that yielded the highest average number of metabolites or 

features was urine. The biofluid or biological matrix that yielded the lowest average number of 

metabolites or features was sweat. Generally, exercise metabolomic studies identified more 

metabolites in urine relative to serum or plasma.  The lowest number of metabolites identified 

having a significant change in any exercise metabolomic study was two as reported by Arthur 

et al. (50) for a study looking at metabolic changes in saliva after 60 minutes of cycling (45 

minutes at an intensity of 70% of maximum power (Pmax) and greatest distance possible for a 

further 15 minute-period) in 11 healthy male athletes using targeted liquid chromatography 

flow injection analysis tandem mass/mass spectrometry (LC-FAIMS-MS). The highest number 

of metabolites identified in any exercise metabolomic study was 743, as reported by Al-

Khelaifi et al. in 2018 (51) for a study looking at the serum metabolic profiles between 

moderate- and high-power and endurance elite athletes. Of the published studies, 68 (~56%) 

identified specific metabolic or signaling pathways. The average number of pathways 

identified as having significant metabolic changes in these exercise metabolomic studies was 

six. The lowest number of identified or significantly changed pathways was one, as reported 
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by five different studies (52-56). The highest number of significantly changed pathways 

identified was 23 as reported by Contrepois et al. (2020) (57), which was described earlier. As 

expected, these pathways were mostly related to energy, fatty acids, carbohydrates or amino 

acid metabolisms. 

3.7 Statistical and Data Reduction Methods  

Most of the reported exercise metabolomics studies used a mix of multivariate statistical 

methods including PCA and PLS-DA/OPLS-DA (N=51). However, 5 studies used PCA alone, 

7 studies used hierarchical clustering analysis (HCA) alone, 10 studies used PLS-DA alone and 

9 studies used OPLS-DA alone. Furthermore, 21 studies used univariate statistical analysis 

(such as Student’s t-test and volcano plots) and 19 studies used other statistical methods. In 

addition, 41 studies identified specific metabolite biomarkers including 9 studies involving 

urine, 10 studies involving serum, 14 studies involving plasma and 8 studies involving other 

kinds of biological samples. Fifteen of the 41 biomarker studies provided sensitivity and 

specificity values while 26 studies provided receiver operating characteristic (ROC) curves or 

area under the ROC curve information. 

3.8 Historical Review of Published Studies 

All published exercise metabolomics studies that were reviewed in our study, are summarized 

in the Electronic Supplementary Material Table S1. This very extensive table includes details 

on each study’s citation, duration and category, biological sample type, analytical platform, 

study protocol, subject types, number of metabolites identified or altered, number of pathways 

affected, study type (targeted or untargeted), and year of publication. As can be seen in this 

table, there is considerable diversity in the study types and study categories, participants 

(diabetic, elderly, elite athletes), the types of samples analyzed, the analytical methods and the 

breadth of metabolite coverage. Despite this diversity, some broad trends were detectable and 

worthy of a few brief comments. For instance, those studies that focused on endurance training 

consistently detected an increase in glycolysis products, TCA cycle intermediates, nucleotide 

metabolites, acylcarnitines and BCAAs. These classes of metabolites are frequently associated 

with aerobic energy production pathways. On the other hand, those studies that focused on 

resistance training showed a consistent increase in the levels of creatine, anabolic hormones 

(or their metabolites), choline, guanidinoacetate, and hypoxanthine along with a reduction in 

creatinine levels. These metabolites are typically associated with anaerobic energy production, 

muscle growth, intracellular buffering, and methyl-group regulation.  We would also note that 
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a recent systematic review prepared by Schranner et al. (58)  provides an excellent summary of 

the metabolite shifts seen after exercise in humans. 

Rather than attempting to identify or summarize collective metabolite changes across all 

studies, in this section, we will briefly highlight some of the most notable exercise 

metabolomics studies and summarize some of the most interesting or important findings 

collected over the past 14 years. This is done to provide some historical context as well as to 

provide some perspective on the emerging trends and notable findings in exercise 

metabolomics studies.  

The first study to bring metabolomics into exercise physiology was published in 2007 (2). In 

this early study, 24 healthy and active men performed 90 minutes of stationary bicycle pedaling 

(9 sets of 10 minutes as follows: 2 minutes at 40%, 6 minutes at 60% and 2 minutes at 80% of 

VO2max).  420 potential metabolites were identified using a GC- time-of-flight (TOF)-MS 

platform and the authors noted significant changes in 34 of these metabolites. The authors 

focused on glycerol and asparagine as the most useful biomarkers. This study proved that 

untargeted GC-MS-based metabolomics could provide a thorough, unbiased approach to study 

the metabolic effects of exercise interventions (2).  

Exercise nutrition metabolism researchers started to use metabolomics in 2009. In the study 

described by Kirwan et al. (59), participants were invited to a laboratory after overnight fasting 

to perform an exercise training protocol (rowing at 70% of maximal oxygen uptake (VO2max) 

until exhaustion). In the first hour after exercise, participants received a dose of 4 g/kg (of body 

mass) carbohydrates. Participants also consumed 6 mg/kg caffeine immediately and 2 hours 

after the exercise period. Blood samples were collected before, immediately and 60, 120 and 

180 minutes after exercise and analyzed using NMR spectroscopy. The authors identified a 

significant reduction in blood glucose and a significant rise in ketone bodies (3-

hydroxybutyrate, acetoacetate and acetone) due to liver-derived ketogenesis. They also noted 

a significant rise in plasma levels of lactate and alanine, which are needed for gluconeogenesis 

(59). 

Another notable exercise metabolism study in 2010 was undertaken by Enea et  al. (60). In this 

study, they split their 22 participants cohort into two groups of trained and untrained women. 

Both groups performed the following protocols: 30 seconds of all-out exercise on a cycle 

ergometer followed by a test at 75% of their VO2max until exhaustion on the same ergometer. 

Urine samples were collected at rest and 30 minutes after completing the protocol and analyzed 
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by NMR spectroscopy. The results showed that creatine, lactate, pyruvate, alanine, beta-

hydroxybutyrate, acetate and hypoxanthine served as the most distinguishing metabolites 

between trained and untrained subjects. Urinary excretion of lactate, pyruvate, alanine, beta-

hydroxybutyrate, and hypoxanthine also increased in both groups after 30 seconds of intensive 

exercise, but acetate excretion was lower in the trained group.  

The term “Sportomics” was first used by Resende et al.in 2011 (61). Sportomics is the 

application of metabolomics in sports to investigate the metabolic effects of physical exercise 

on individuals, whether they are professional athletes or not (62). Here we classify this 

sportomics study as a sport metabolism study. In conducting this study, Cameron et al. (61) 

investigated the metabolic changes caused by two 30-minute windsurfing competitions, with a 

30-minute rest in between. The same windsurfing tests and blood sampling were repeated (as 

with the pretest) after 3 months of training and nutritional intervention. The combined 

nutritional and training intervention produced an increase in plasma levels of branched-chain 

amino acids, aromatic amino acids, alanine, glutamate, and glutamine during exercise. Both 

training and nutritional interventions reduced plasma levels of ammonia, uric acid and urea. 

Furthermore, they found that appropriate nutritional supplementation could reduce the 

significant potassium drop seen during exercise.  

In 2012, Neiman et al. (63) began using metabolomics in exercise nutrition metabolism studies. 

These authors examined the effects of banana consumption and isotonic carbohydrate 

supplementation in a 75-km cycling test on 14 participants. Urine samples were analyzed using 

a combination of LC-MS and GC-MS. In total, 103 metabolites were detected with 56 showing 

significant temporal changes (before, immediately and one hour after the sessions). Only 

dopamine showed significant variation between the banana-consumption and carbohydrate-

consumption groups. These 56 identified metabolites were mostly related to carbohydrate, 

protein and lipid metabolism as well as liver glutathione production. 

In 2014, Ra et al. (64) conducted the first large scale sport metabolism study, with 122 male 

soccer players participating in three soccer matches over a three-day period (one game per day). 

In this study, saliva samples were collected and analyzed by CE-MS methods.  Salivary levels 

of 3-methyl histidine, glucose-1-phosphate, glucose-6-phosphate, taurine and several  amino 

acids were significantly increased in the fatigued athletes compared to the non-fatigued 

athletes. These findings indicate that increased muscle breakdown, as well as glucose, lipid, 

amino acid metabolism, and overall energy metabolism was increased in the fatigued soccer 
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players. These metabolites were proposed as saliva-detectable metabolic indicators of fatigue 

in soccer (64).  

In 2017, another sport metabolism study by Prado et al. (65) looked at the metabolic changes 

induced among semi-professional soccer players playing a soccer game. Urine samples were 

collected for a total of 30 soccer players and studied using untargeted LC-MS/MS, comparing 

pre- and post-game samples. This study was significant for the large number of metabolites 

measured and evaluated. A total of 1091 metabolites were identified of which 526 metabolites 

showed significant changes, with the most significantly upregulated metabolites being fatty 

acyls, carboxylic acids, steroids and steroid derivatives. Parallels studies that looked at 

capillary blood metabolites noted a significant increase in blood glucose, uric acid and urea 

along with a sharp decrease in potassium in response to exercise.  Based on our data, this study 

appears to have been the most comprehensive metabolomic study undertaken in sport 

metabolism to date. 

One of the most interesting and practical exercise metabolomics studies was published by Al-

Khelaifi et al. in 2018 (51). In this study,191 elite athletes from different sports were divided 

into four categories (high endurance, moderate endurance, high power, and moderate power 

athletes) and blood samples were collected at rest to study the differences between blood 

metabolites among the four groups. Of the 743 metabolites detected, gamma-

glutamylglutamate and gamma-glutamylvaline were significantly lower both in athletes with 

superior strength and with better endurance than their counterparts, indicating that a more 

active glutathione cycle was present in endurance-trained or strength-trained athletes. Serum 

levels of sex hormones, such as testosterone and progesterone, were higher, but levels of 

diacylglycerols and eicosanoids were lower in endurance-trained athletes. In addition, strength-

trained athletes had higher levels of phospholipids and xanthine. Altogether, these findings 

showed that endurance-trained and power-trained athletes have significantly different 

metabolic profiles than their moderately trained or less-trained counterparts.  

In 2019, two exercise metabolomics studies stand out. One by Sato et al. (66) and another by 

Ezagouri et al. (67). Sato et al. (66) studied the time-dependent metabolic impact of exercise 

on skeletal muscle, revealing altered daily metabolic cycles after exercises that were specific 

to the time of day. Exercise in the morning was shown to robustly activate the hypoxia-

inducible factor 1 alpha (HIF1) pathway, followed by glycolytic activation, the use of 

alternative fuels, and adaptation of systemic energy expenditure. In the other study, Ezagouri 
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et al. (67) examined the daily variance in exercise capacity in both mice and humans. These 

authors found that the time-dependent effect of exercise was affected by exercise intensity and 

circadian clock proteins.  This led to a distinct muscle transcriptomic and metabolic signature. 

Specifically, they demonstrated that 5-aminoimidazole-4-carboxamide ribonucleotide (ZMP), 

an adenosine monophosphate-dependent protein kinase (AMPK) activator, was induced by 

exercise in a daytime-dependent manner.  

in 2020, Contrepois et al. (57) used a multi-omics approach (targeted and untargeted 

metabolomics, lipidomics, proteomics and transcriptomics) including an untargeted LC-MS 

metabolomics assay that analyzed more than 600 serum metabolites. Their metabolomics data 

showed that energy metabolism, oxidative stress, inflammation, tissue repair, and their 

regulatory pathways were significantly affected by exercise in diabetic patients. In addition, 

elevated plasma levels of interleukin 1beta (IL-1), interleukin 5 (IL-5) and transforming 

growth factor-beta (TGF-) as a “fitness inflammatory signature” were identified. Finally, 

these authors reported that while triacylglycerol and BCAAs are associated with low VO2max, 

transporters of thyroxine and retinol transthyretin (TTR), hydroxy-fatty acids, corticosterone, 

hippuric acid, bile acids and leptin are associated with a high VO2max.This work highlights the 

importance of molecular-based exercise adaptation study designs in both clinical and elite 

athlete studies as well as the advantage of using multi-omics techniques in such studies.  

3.9 Limitations of previous studies and potential improvements 

As with all other metabolomics disciplines, exercise metabolomics is constantly evolving and 

constantly improving. Based on our analysis of the published data, it is clear that many of the 

earlier exercise metabolomics studies lacked the statistical rigor (extensive use of multivariate 

statistics, under-powered, small sample sizes, no correction of false discovery rates) that is 

expected of most metabolomic studies published today. Similarly, the level of metabolite 

coverage of many early studies (prior to 2014) was often very modest with relatively few 

studies using more than one platform or providing sufficient information about the quality (via 

Metabolite Standards Initiative ratings) or certainty of their metabolite identifications. The 

trend with more recent studies towards greatly expanding their metabolite coverage, using more 

than one analytical platform and increasing their sample sizes is an encouraging sign. Overall, 

in conducting this review, we found a disturbing lack of metabolite quantification in many 

published exercise metabolomics studies. This lack of absolute quantification makes 

comparisons across labs, across studies or across platforms (NMR vs. LC-MS vs. GC-MS) 
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almost impossible. Certainly, if exercise metabolomics is to move beyond the “stamp 

collecting” phase of conducting highly specialized but largely irreproducible studies it will be 

important for the community to adopt more rigorous and more standardized approaches to 

metabolite identification and quantification as is now widely done in the clinical metabolomics 

field.  Indeed, most of the clinical metabolomics field has moved exclusively to fully targeted, 

absolutely quantitative metabolomics studies. 

Among the biomarker studies reported by most published exercise metabolomics studies 

published over the past 15 years, we found insufficient use (or reporting) of sensitivity, 

specificity and receiver-operating characteristic curves. These kinds of statistics have become 

standard in most biomarker studies in other disciplines, but metabolomics still seems to lag far 

behind. Likewise there appears to be almost no reporting of the logistic regression equations, 

cut off values (or thresholds) or parameters used to generate the biomarker performance curves. 

This omission not only limits biomarker reproducibility but it also limits biomarker utility. 

Once again, if the exercise metabolomics community could adopt the standards now widely 

used in clinical metabolomics or clinical biomarker fields, the quality and reproducibility of 

many exercise metabolomics biomarker studies could be improved.  

Interestingly, we found that almost no exercise metabolomic study deposited its data into 

standard metabolomics data repositories, such as MetaboLights (68) or the Metabolomics 

Workbench (69).  The tendency for many exercise metabolomics labs to avoid data deposition 

into public databases will likely come to haunt this field, especially as issues of scientific rigor 

and reproducibility become more of a concern for many other omics disciplines. Certainly if a 

database, specific to the field of exercise metabolomics, could be established then some of the 

issues concerning method standardization, proper experimental design (and reporting), 

statistical rigor and general scientific reproducibility could be addressed.  

While it is clear that the study design for many sports metabolomics studies has significantly 

improved over the past decade, further improvements are certainly possible. In particular, sport 

metabolomics researchers need to pay much more attention to exercise-related parameters or 

measurements, such as intensity and duration, as these factors strongly influence the metabolic 

changes following exercise training. Including these parameters in the study design and 

quantifying them more consistently would enable more facile comparison between different 

studies. Additional development of more standardized data collection, data analysis, data 

deposition and data reporting protocols would also help improve the overall quality and 
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comparability of exercise metabolomics studies. Another important goal for exercise 

metabolomics studies will be the routine use and integration of additional omics (proteomics, 

genomics, transcriptomics) techniques in the study design. Metabolomics should not be an 

“island” and a true understanding of biology or physiology involves an understanding of the 

interplay of genes, proteins and metabolites with the environment. There is a clear trend for 

many recently published metabolomics studies to include multi-omics methods and to perform 

multi-omic data integration.  Exercise metabolomics needs to embrace this concept if it wishes 

to evolve and grow. Other potential improvements and other encouraging trends in the field of 

exercise metabolomics are discussed below.   

4. Conclusion and Future Perspectives 

Overall, our data shows that there is an increasing trend towards better designed, more clinical, 

MS-based metabolomics studies involving larger numbers of subjects or patients and larger 

numbers of metabolites being identified. While the first exercise metabolomic studies mainly 

focused on finding biomarkers related to the effects of “simple exercise” on a stationary 

bicycle, improvements in experimental design and sample collection, combined with a 

generally improved understanding of the implications of various metabolites have gradually 

allowed the application of metabolomics to a wider range of areas both in sport and clinical 

settings. The most recent and best-designed exercise metabolomics studies now provide a very 

comprehensive metabolic picture enabling researchers to study metabolism more completely 

and more accurately, and to more thoroughly investigate the clinical consequences for 

prevention and treatment of metabolic disorders. It is also evident that metabolomics studies 

can be used to look at very specific sports or sport themes to better understand associated 

metabolic changes. This can provide much more practical data that can be applied to sport-

specific conditioning programs. It is hoped that this information could enable coaches to design 

“precision sports training” programs to help maximize an athlete’s performance and hopefully 

minimize injuries (62, 70).   

Over the next five to ten years, we foresee an increasing trend for metabolomics studies being 

undertaken in both elite sport performance and clinical exercise settings.  We also expect to 

see greater interest in the area of metabolomics and sport nutrition, with an emphasis on using 

the results to design personalized, precision nutrition regimens for maximizing the effects of 

both sport performance and exercise-based health benefits. Overall, the use of well-designed 

metabolomic or multi-omic studies would allow sport coaches to train their elite athletes more 
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efficiently and clinicians to refine and improve their exercise plans for patients or seniors. From 

a technical standpoint, we suggest that more emphasis in exercise metabolomics needs to be 

placed on human studies with more focus on practical-oriented and realistic designs using non-

invasive sample collection methods focused on collecting urine and saliva. Such a trend would 

certainly make exercise metabolomics studies much more informative, much more welcomed 

by the subjects (c.f. non-invasive investigation), bringing newer, better and more actionable 

information to patients and physicians as well as athletes and coaches.  
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