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Abstract

Lead metaniobate (PbNb2O6) can exist both as a stable rhombohedral and a meta-

stable orthorhombic tungsten-bronze-type polymorph. While the orthorhombic is a

well-known ferroelectric material, the rhombohedral polymorph has been far less stud-

ied. The crystal structure and energetic stability of the stable rhombohedral polymorph

of lead metaniobate is re-examined by powder X-ray diffraction and powder neutron

diffraction in combination with ab-initio calculations. We show that this structure is

described by the polar space group R3, in contradiction to the previously reported

space group R3m. The crystal structure is unusual, consisting of edge-sharing dimers

of NbO6/2 octahedra forming layers with six- and threefold rings of octahedra, and

lead ions in channels formed by these rings. The layers are connected by corner-sharing

between octahedra. Finally, the crystal structure is discussed in relation to other AB2O6

compounds with B = Nb, Ta.
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Introduction

Lead metaniobate (PbNb2O6 or PN) is one of the simplest compounds to crystallize in

the tungsten-bronze-type structure.1 The tungsten-bronze polymorph is orthorhombic

(denoted o-PN) and ferroelectric with a high Curie temperature of 570 ◦C.2 The para-

electric tungsten-bronze has a tetragonal crystal structure (t-PN). A large anisotropy

in electromechanical coupling factors and a very low mechanical quality factor makes

the material suitable for high-temperature electroacoustic applications.3 The t-PN poly-

morph is, however, metastable with respect to a rhombohedral polymorph (r-PN) below

a transition temperature reported at 1200–1250 ◦C,4–6 and this thermodynamically stable

low-temperature phase has not been reported to have attractive properties. The phase

transition between the t-PN and r-PN polymorphs is reconstructive and sluggish, so the

metastable tungsten-bronze phase can be obtained by quenching the material from above

the r-PN to t-PN transition at 1200–1250 ◦C.4

Numerous attempts have been done to stabilize the tungsten-bronze phase, e.g. by

molten salt methods,7,8 hydrothermal synthesis,9 or formation of solid solutions.10 The

rhombohedral polymorph, on the other hand, has received comparatively little attention,

although the possibility of attractive piezoelectric properties has been suggested also

for this polymorph, with one work reporting a possible ferroelectric phase transition at

815 ◦C.11 Still, investigations on the crystal structure and properties of the r-PN polymorph

are few.11–14 Here, we re-examine the crystal structure of r-PN by powder X-ray- and

powder neutron diffraction combined with density functional theory calculations, with

particular focus on determining the correct space group symmetry. We show that, contrary

to previous assumptions,12,13 R3m is not the correct space group symmetry for r-PN. Based

on experimental and computational data, we demonstrate that the structure is described

by the space group R3 or the closely related space group R3̄. We argue that R3 is the

more plausible of the two, based on reported high-temperature properties of r-PN which

indicate that the low-temperature space group symmetry is polar. The fact that the space

3



group is polar motivates further studies of possible piezoelectric properties.

Experimental work

Powders of lead metaniobate were prepared by conventional solid-state synthesis. PbO

(Aldrich, 99.999%) and Nb2O5 (Aldrich, 99.99%) powders were mixed in equimolar

amounts with a mortar and pestle, uniaxially pressed into 25 mm pellets and fired at

850 ◦C for 2 hours in a sealed alumina crucible. The pellets were crushed down, and

pressing and firing was repeated twice, for a total of three 2-hour firings at 850 ◦C. The

sample was finally crushed to a powder and annealed for 30 minutes at 550 ◦C prior to

structural analysis in order to remove possible strain from the crushing.

Powder X-ray diffraction was performed at room temperature with a Siemens D5005

diffractometer in Bragg–Brentano geometry, with Cu Kα1 radiation, a primary graphite

monochromator and a Braun position sensitive detector. Data was collected in a 2θ range

of 5°–110° with a step size of 0.015°.

Powder neutron diffraction data were collected with the PUS diffractometer at the

JEEP II reactor at Institute for Energy Technology at Kjeller, Norway. Neutrons with a

wavelength of 1.5555 Å were provided from a vertically focusing Ge monochromator using

the (511) reflection and a take-off angle of 90°. Data were collected at room temperature in

a 2θ range of 10°–130° in steps of 0.05° with two detector banks; each with 6 horizontally

stacked 3He-filled position sensitive detector tubes covering 20° in 2θ.15

Rietveld refinements were performed with both data sets simultaneously using the

Bruker AXS Topas 4.2 software, with structural data from Mahé13 used as starting point.

The datasets were refined according to the symmetry constraints of five distinct rhom-

bohedral space groups: R3̄m (166), R3m (160), R32 (155), R3̄ (148) and R3 (146). The

rhombohedral setting was used for all the space groups, and Pb was anchored at (0, 0, 0)

for the Pb1 Wyckoff position for the polar space groups R3m and R3 (see Table 1). The
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background intensity was fitted to a Chebychev polynomial, and peak shapes were fitted

to a Pearson type VII profile for X-ray data and a Thompson–Cox–Hastings pseudo-Voigt

profile for neutron data. Lattice parameters and atomic positions were refined according

to the atomic degrees of freedom described in Table 1, and isotropic thermal displacement

factors were refined under the constraint that all atoms of the same element on the same

Wyckoff site have the same displacement factors.

Table 1: Wyckoff sites and atomic positions for each of the five space groups considered
in this work (the notation (x, x, x) means x = y = z). The bottom line gives the atomic
degrees of freedom (DOF) for each space group, i.e., the total number of free variables in
the atomic coordinates. For the polar groups R3 and R3m, the atomic DOF is one less than
the number of free variables due to anchoring of Pb1 at (0, 0, 0).

Atom R3 R3̄ R32 R3m R3̄m

Pb1 1a 1a 1a 1a 1a
(x, x, x) (0, 0, 0) (0, 0, 0) (x, x, x) (0, 0, 0)

Pb2 1a 2c 2c 1a 2c
(x, x, x) (x, x, x) (x, x, x) (x, x, x) (x, x, x)

Pb3 1a — — 1a —
(x, x, x) (x, x, x)

Nb1 3b 6 f 3e 6c 6g
(x, y, z) (x, y, z) (1/2, y,−y) (x, y, z) (x,−x, 1/2)

Nb2 3b — 3e — —
(x, y, z) (1/2, y,−y)

O1 3b 6 f 3d 6c 6 f
(x, y, z) (x, y, z) (0, y,−y) (x, y, z) (x,−x, 0)

O2 3b 6 f 3d 3b 6h
(x, y, z) (x, y, z) (0, y,−y) (x, x, z) (x, x, z)

O3 3b 6 f 6 f 3b 6h
(x, y, z) (x, y, z) (x, y, z) (x, x, z) (x, x, z)

O4 3b — 6 f 3b —
(x, y, z) (x, y, z) (x, x, z)

O5 3b — — 3b —
(x, y, z) (x, x, z)

O6 3b — — — —
(x, y, z)

Atomic DOF 26 13 11 16 7
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Computational details

Density functional theory (DFT) calculations were done with the VASP code.16–19 Cal-

culations of the exchange-correlation energy were done both within the local density

approximation (LDA), and within the generalized gradient approximation (GGA) with

the functionals PBE20 and PBEsol.21 Projector-augmented wave potentials22,23 were used,

treating 14 valence electrons for Pb (5d106s26p2), 13 for Nb (4s24p64d35s2) and 6 for O

(2s22p4). Well-converged results were achieved when wave functions were expanded in

a plane wave basis set up to an energy cutoff of 550 eV, and Brillouin zone integration

was performed on a 2× 2× 2 Monkhorst–Pack grid.24 For geometry optimization, lattice

vectors and atomic coordinates were relaxed until the forces on the ions were less than

1× 10−4 eV Å−1.

The experimental structures, as obtained by refinement of diffraction data, were relaxed

using the three functionals described above. Three different contraints were applied:

(a) Ionic relaxation at the experimental lattice parameters; (b) relaxation of ions and

lattice vectors with the constraint that the unit cell volume be constant and equal to the

experimental volume; (c) full relaxation of both ions and lattice vectors with no constraints

on the unit cell volume (see Figure 2). The total energies were then compared between

cells of different space group symmetries.

Lattice dynamical calculations were performed with the force constant method,25 using

VASP for calculation of Hellmann–Feynman forces and the Phonopy code for calculation of

the approximate dynamical matrix and the full phonon dispersion. A 2× 2× 2 supercell

was used, and symmetry-inequivalent atoms displaced by 0.01 Å in each direction (see

Supporting information for details).
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Results

Diffraction experiments

The five space groups considered (R3, R3̄, R32, R3m and R3̄m) have the same selection

rules for diffraction, so the distinction between the different candidate space groups relies

only on the intensities of the Bragg reflections.

X-ray and neutron diffractograms are shown in Figure 1 together with Rietveld refine-

ments within space group R3, which gave the best fit both for the two datasets separately

and for simultaneous refinement (individual refinements and relevant parameters are

given in Supporting information). The goodness of fit for the different space groups is

summarized in Table 2 together with lattice parameters from the refinements. Space group

R3̄m yielded the worst fit, and gave rise to a systematic deviation for certain reflections

between experimental data and the fit. Also the previously reported12 space group R3m

gave systematic deviations for certain reflections, and a magnification of the representative

(321) reflection is shown in the insets of Figure 1, comparing the fit for space group R3m

and R3. Similar deviations of comparable magnitude are apparent also in other reflec-

tions throughout the Q range, notably the (14̄3̄) and (037̄) reflections at approximately

Q = 4.55 Å−1 and Q = 6.52 Å−1, respectively (see Supporting information). For space

group R3, which gave the best fit, both the experimental (joint refinement of X-ray and

neutron diffraction data) and the optimized atomic coordinates are given in Table 3.

For all space groups, the refined structures show distinct differences from the previously

reported structures, refined in space group R3m.13,14 The most pronounced difference is

that the NbO6/2 octahedra are far less deformed, with less variation in the Nb–O bond

lengths. This will be further discussed below.
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Figure 1: (a) Powder X-ray and (b) powder neutron diffractograms, showing observed
(blue circles) and calculated (red line) intensity for space group R3, and their difference
(black line) as a function of the scattering vector (Q = 2π/d). Black tick marks show the
position of individual Bragg reflections. Zoom-in to the right shows a comparison between
refinements within space groups R3 and R3m.
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Table 2: Lattice parameters at room temperature, and quality of fit for joint refinement
of X-ray and neutron data within each of the five space groups considered (estimated
standard deviations in parenthesis). Literature values for R3m (converted from hexagonal
setting) are included at the bottom.

Space group Lattice parameters Quality of fit

a (Å) α (°) Rp(%) Rwp(%) χ2

R3 7.17530(7) 93.9548(5) 6.62 9.05 1.89
R3̄ 7.17530(7) 93.9552(5) 6.85 9.29 1.94
R32 7.17508(9) 93.9566(6) 8.21 11.66 2.44
R3m 7.17521(8) 93.9555(6) 7.65 10.69 2.23
R3̄m 7.17516(10) 93.9564(6) 8.51 11.93 2.49

R3m12 7.183 93.94
R3m14 7.1654 93.908

Computational results

Additional information on the relative stability of the different space groups is obtained

from the calculated energies of the candidate structures. The energies of the possible

structures are shown in Figure 2(a)–(c), corresponding to the three different relaxation

constraints described above. For full relaxation with no volume constraints, the volume

after relaxation is shown in Figure 2(d). All energies are reported per formula unit of

PbNb2O6, and given relative to the structure with the lowest symmetry, R3. The energy

of the R32 structure is omitted from the figures, since this experimental structure relaxes

into the higher-symmetry space group R3̄m. Because of this apparent instability, and the

relatively poor goodness of fit for Rietveld refinement within this space group (Table 2),

R32 was not considered further as a plausible space group symmetry for r-PN at ambient

temperature.

For the three space groups R3̄m, R3m and R3, the calculated energies correlate with the

degree of symmetry, with R3̄m having the highest symmetry and the highest calculated

energy, R3m intermediate, and R3 the lowest. R3̄, however, does not follow this trend: It

has essentially the same energy as R3, while at the same time possessing a higher symmetry

and merely half as many atomic degrees of freedom as R3 (Table 3). This result is the

9



same for all the relaxation methods used. Lattice dynamical calculations similarly show

negligible difference between the dynamical stability of the R3̄ and R3 structures, while

the R3m and R3̄m structures have instabilities which correlate with their higher energy

(phonon dispersions are included in Supporting information).

Atomic positions for the R3 structure, both experimental (joint refinement) and after

computational optimization (full relaxation with the PBEsol functional), are given in in

Table 3.

Table 3: Atomic positions and unit cell parameters (R3, rhombohedral setting) based on
joint refinement of diffraction data, and after geometry optimization by DFT calculations
(PBEsol, unconstrained relaxation). Beq is the isotropic thermal displacement factors,
constrained to be the same for all atoms of the same element. Optimized atomic positions
from DFT calculations are reported with a numerical precision corresponding to the
uncertainty in the experimental data.

Experimental Optimized

Atom x y z Beq (Å2) x y z

Pb1 0 0 0 1.48(3) 0 0 0
Pb2 0.3527(4) 0.3527(4) 0.3527(4) 1.48(3) 0.3527 0.3527 0.3527
Pb3 0.6889(5) 0.6889(5) 0.6889(5) 1.48(3) 0.6764 0.6764 0.6764
Nb1 0.5338(11) 0.2006(9) 0.8384(10) 0.06(3) 0.5403 0.1965 0.8405
Nb2 0.1531(10) 0.5117(8) 0.8068(9) 0.06(3) 0.1562 0.5122 0.8123
O1 0.404(2) 0.947(2) 0.678(2) 0.40(3) 0.403 0.959 0.678
O2 0.9617(14) 0.3878(14) 0.668(2) 0.40(3) 0.9501 0.3941 0.675
O3 0.760(2) 0.773(2) 0.065(2) 0.40(3) 0.772 0.772 0.058
O4 0.055(2) 0.053(2) 0.5216(14) 0.40(3) 0.058 0.058 0.5129
O5 0.571(2) 0.580(2) 0.293(2) 0.40(3) 0.581 0.581 0.294
O6 0.292(2) 0.294(2) 0.8515(12) 0.40(3) 0.295 0.295 0.8398

a (Å) 7.17530(7) 7.15572
α (°) 93.9548(5) 94.0297
Vcell (Å3) 366.652(11) 363.551
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Figure 2: Calculated energy per formula unit for each of the space groups considered,
after (a) ionic relaxation at experimental lattice parameters; (b) relaxation of ions and
lattice vectors at constant experimental volume; (c) unconstrained relaxation of ions and
lattice vectors. Energies are given relative to the lowest-energy space group R3. (d)
Unit cell volume after unconstrained relaxation with the three functionals, including the
experimental volume.
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Discussion

Determination of space group symmetry

Both refinement of the diffraction data, and comparison of DFT energies, point to either of

R3̄ or R3 as the most likely space group symmetries for r-PN at ambient conditions. This is

in contrast to earlier works,12,13 which conclude that the space group is R3m. Figure 3 gives

the group–subgroup relations between all five space groups considered in this work. The

path involving space group R32 can be excluded based on the poor Rietveld fit (Table 2)

and the instability with respect to force-based geometry optimization.

The difference in quality of fit is quite small between R3 and R3̄, as is evident from

Table 2. A reasonable way of testing the significance of this difference is by Hamilton’s

R-ratio test,26 which is based on the well-known F-test. In our case, the ratio of Rwp factors

for the R3̄ and R3 refinements is R = 1.027. For the joint refinement, the total number

of (hkl) reflections is 730, with 60 parameters refined for R3 and 47 for R3̄ (the difference

of 13 corresponding to the difference in atomic degrees of freedom, as given in Table 1).

From Hamilton’s table,26 we read off R13,670,0.005 = 1.023, meaning that the probability

of R3 actually being a better model than R3̄ for this refinement, is higher than 0.995. The

same result is obtained if the X-ray and neutron diffraction data is refined and tested

individually, so we conclude that R3 is a significantly better model than R3̄.

In addition to the rhombohedral space group symmetries shown in Figure 3, one

could in principle also consider refinements within further subgroups of R3 and R3̄, i.e.,

the trigonal groups P3 (143), P31 (144), P32 (145) and P3̄ (147). P31 and P32, however,

can be excluded, as the 3-fold screw axes are not compatible with the stacking pattern

found in this structure (further described below). P3 and P3̄, although possible from a

structural point of view, do not yield a better fit than R3, despite a higher number of

refined parameters for the trigonal groups. Because of this, we see no reason not to keep

the rhombohedral lattice centering, restricting the possible space groups to those shown in
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Figure 3.

A general observation for all energy calculations, is that R3̄m has the highest energy,

R3m intermediate, and R3̄ and R3 are essentially at the same, lowest energy. This is true for

all methods of geometry optimization, and for all functionals, as shown in Figures 2(a)–(c).

In practice, the experimental R3 structure relaxes towards R3̄ symmetry, and the distinction

between them is ultimately a matter of tolerance during the symmetry analysis.27 For

the constrained relaxations (Figure 2(a)–(b)), the R3 structure is regarded as having R3̄

symmetry for tolerances higher than 3 · 10−4 if relaxed with PBE, and 3 · 10−2 if relaxed

with PBEsol. For the unconstrained relaxation (Figure 2(c)), the threshold values are

5 · 10−4 for LDA and 1 · 10−3 for PBEsol. In other words, the structures relaxed using

PBEsol give the largest structural differences between R3 and R3̄, although the two space

groups are hard to distinguish in all cases.

The graphs in Figure 2 confirm certain well-known properties of the functionals used.28

LDA has an inherent tendency to overbind, which is reflected in a relaxed cell volume

which is smaller than the experimental volume by around 5%, as seen in Figure 2(d).

The PBE functional, on the other hand, slightly overcorrects this deviation, producing

a unit cell volume which is around 5% larger than the experimental value. The PBEsol

functional is intended to improve on PBE for equilibrium properties of solids such as bond

lengths and lattice parameters, and the volume calculated with PBEsol comes very close to

the experimental volume. This difference between the functionals is also reflected in the

energies for the different space groups. As spontaneous polarization in solids requires a

certain volume for the displacement of ions, the underbinding PBE functional is expected

to favor polar space groups more than the overbinding LDA. For all calculations, PBE

gives the largest energy difference between the polar R3 and the non-polar R3̄m, and LDA

the smallest. The effect of this is most pronounced for the unconstrained relaxations as

shown in Figure 2(c).

While the diffraction data is convincing, R3 and R3̄ are still so similar in structure
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and energy that care must be taken to properly distinguish between them. The difference

between the space group symmetries R3 and R3̄ is the presence of an inversion center in

the latter, making the space group non-polar. This is obviously important for applications

of the material, as e.g., pyro- and ferroelectricity requires a polar space group. Lopatin11

suggested that a rhombohedral R3m polymorph might transform to the non-polar space

group R3̄m at high temperatures, based on an observed contraction of the polar axis

(hexagonal [001] direction, rhombohedral [111] direction) upon heating to 815 ◦C, followed

by normal thermal expansion. Such an anisotropic thermal expansion would be expected

to accompany the transition from a polar to a non-polar space group, e.g., from R3m to

R3̄m or from R3 to R3̄, while a transition between two polar (or two non-polar) space

groups is likely to be much more subtle. To explain the anisotropic thermal expansion

reported by Lopatin,11 it is therefore required that the ambient-temperature space group be

polar. This, in addition to the statistical significance of the Rwp factors from the refinement,

makes R3 the most probable space group symmetry.

R3

R32R3̄ R3m

R3̄m

Figure 3: Group–subgroup relations between the space group symmetries considered in
this study.

Description of the crystal structure

The main characteristic features of the crystal structure of r-PN are illustrated in Figure 4.

Rhombohedral lead metaniobate is not a “layered” structure in the usual sense, although it
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is natural to picture it as being built from layers due to the anisotropy in crystal structure,

polyhedral connectivity and bonding. The fundamental building blocks are dimer units,

made up of two edge-sharing NbO6/2 octahedra as shown in Figure 4(a). The dimers are

corner-linked, creating layers or sheets as shown in Figure 4(b). The layers have a point

group symmetry which is nearly hexagonal, although, as will be further discussed below,

the point group symmetry of the crystal is trigonal due to the stacking sequence and the

polyhedral connectivity between layers.

Three different kinds of rings of corner- and edge-sharing octahedra can be identified

in the layers: One hexagonal, and two triangular rings that are symmetrically inequivalent.

In Figure 4(b), the hexagonal ring (yellow) is in the middle, surrounded by six triangular

rings (red and blue). Each of the triangular rings is pointing either up (red) or down (blue)

within the plane of the figure, thereby distinguishing the two types. In a single layer of

ideal hexagonal symmetry (P6/mmm), the two triangular rings would be equivalent.

The layers are stacked as shown in Figure 4(c), with a repeating sequence of three layers.

The rings in each layer form channels parallel to the hexagonal c axis. Lead cations are

positioned inside these channels, between the layers. In the three-dimensional structure,

every hexagonal ring has a triangular ring both above and below. This stacking sequence,

with mixing of hexagonal and triangular rings, lowers the symmetry of the crystal from the

ideal 6-fold, to the 3-fold symmetry observed. It can be noted that each of the three rings is

associated with one of the three Wyckoff positions for lead in space group R3 (Table 1).

In addition to the stacking sequence, the polyhedral connectivity itself introduces tilts

and distortions that prevent the ideal hexagonal symmetry from being realized. Between

the layers, only corner-sharing connects the NbO6/2 octahedra, whereas both corners and

edges are shared within the layers. It is not possible to connect the layers as shown in

Figure 4(c) without introducing symmetry-breaking distortions of the octahedra.

The octahedral deformation in the crystal structure reported here, is much less than

reported in the previous work by Mahé.13 He pointed out the large variation in Nb–O bond
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lengths, but remarked that this variation was not significant considering the experimental

uncertainty in the oxygen positions. The uncertainty in oxygen positions in Mahé’s work13

was on the order of 0.1 Å, while here it is an order of magnitude less (Table 3), as a

consequence of the neutron scattering cross section of oxygen being comparable to those

of lead and niobium.

Structures built from BO6/2 dimer units are well known for niobates and tantalates

of AB2O6 stoichiometry, with A = Ca, Sr or Ba.29 In particular, the hexagonal high-

temperature form of BaTa2O6
30 bears a resemblance to the layer-like structure of r-PN

described here, with a combination of dimers and corner-sharing octahedra. The hexagonal

BaTa2O6 structure is arguably even more complex than r-PN, containing both three-, five-

and six-membered rings. Half of the TaO6/2 octahedra in hexagonal BaTa2O6 share only

corners with other octahedra, while in the r-PN structure, every NbO6/2 octahedron is part

of a dimer.

The particular crystal structure found in r-PN is not commonly encountered, and is

rather unique. It was not reported to exist for other compounds in a recent review31 of

AB2O6 compounds, although PbRe2O6 has previously been reported32 as isotypic with r-

PN, with space group R3̄m. PbTa2O6 has also been reported33 to exist in a non-ferroelectric

rhombohedral form, analogous to r-PN, but no detailed structural study of this compund

has to our knowledge been performed.

The presence of a polar space group symmetry in r-PN is interesting, since it is a require-

ment for pyro- and ferroelectricity. It thereby opens up for possible device applications,

such as in piezoelectric sensors.

Conclusion

The ambient-temperature phase of lead metaniobate has been investigated by powder

X-ray diffraction and powder neutron diffraction in combination with ab-initio DFT calcu-
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(a)

(b)

(c)

Figure 4: Layered structure of PN: (a) Single dimer consisting of two edge-sharing NbO6/2
octahedra. Experimental Nb–O bond lengths for space group R3 given in Å; edges colored
as in (b) and (c). (b) Single layer showing the hexagonal rings (yellow) and the two types
of triangular rings (red and blue). Black line marks one hexagonal unit cell. (c) Stacking
sequence of layers. The layers are stretched apart along the hexagonal (001) axis for clarity.
Lead ions (grey spheres) are situated inside channels formed by openings in the layers.
Figure created with VESTA.34
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lations. It is found that the space group symmetry of r-PN is most likely the polar group R3,

in contrast to previous assumptions of R3m being the correct space group for this structure.

Furthermore, the new data on atomic positions in r-PN shows a structure with significantly

less deformation of the NbO6/2 octahedra than in previous works. Rhombohedral lead

metaniobate has a highly anisotropic structure, and is conveniently described as being

built from layers. Within the layers, NbO6/2 octahedra share edges to form dimers, which

are connected by corner-sharing, at the same time forming triangular and hexagonal rings

in the layers. The layers are connected by corner-sharing, with the rings in each layer

forming channels that accomodate the lead cations.
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