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Abstract: Metabolite profiling has been established as a modern technology platform for 

the description of complex chemical matrices and compound identification in biological 

samples. Gas chromatography coupled with mass spectrometry (GC-MS) in particular is a 

fast and accurate method widely applied in diagnostics, functional genomics and for 

screening purposes. Following solvent extraction and derivatization, hundreds of 

metabolites from different chemical groups can be characterized in one analytical run. 

Besides sugars, acids, and polyols, diverse phenolic and other cyclic metabolites can be 

efficiently detected by metabolite profiling. The review describes own results from plant 

research to exemplify the applicability of GC-MS profiling and concurrent detection and 

identification of phenolics and other cyclic structures. 

Keywords: derivatization; food chemistry; gas chromatography; mass spectrometry; 

phenols; phenolic acids 

 

1. Introduction 

Chromatographic techniques for the detection and identification of metabolites in plant material have 

undergone major changes in recent years due to improvements of analysis time, detection limit and 

separation characteristics. Depending on the biological question, one might distinguish between targeted 

and non-targeted strategies. Gas chromatography (GC) in particular is characterized by sensitivity and 

reliability of separations and detection of complex sample mixtures. Coupling with mass spectrometry 

(MS) provides highly robust analysis platforms compared to liquid chromatography (LC-MS) and allows 
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for the identification of compounds based on the use of commercially or publicly available MS libraries 

and resources (Table 1) in combination with retention time index (RI) data. 

Table 1. Selection of commercially and publicly available MS libraries and resources for 

structure elucidation and compound identification of GC-MS data. Included is also a list of 

freely software tools for identification, deconvolution and alignment purposes.  

Product Supplier or Institution 

Commercial MS Libraries 

NIST—NIST/EPA/NIH Mass Spectral Library 
National Institute of Standards and 

Technology/Gaithersburg, MD, USA 

Wiley—Wiley Registry of Mass Spectral Data John Wiley & Sons, Inc./ Hoboken, NJ, USA 

FiehnLib—Fiehn GC-MS Metabolomics RTL Library Agilent Technologies, Inc./ Santa Clara, CA, USA 

Public MS Libraries & Resources 

GMD—Golm Metabolome Database 
Max Planck Institute of Molecular Plant 

Physiology/Golm, Potsdam, Germany 

MassBank—High Quality Mass Spectral Database National Bioscience Database Center/Tokyo, Japan 

MetabolomeExpress—Public MSRI Libraries 
Plant Energy Biology, ARC Centre of Excellence/Acton, 

Canberra, Australia 

ReSpect—Riken MSn spectral database (LC/MS) 
Metabolomics Research Division, RIKEN Plant Science 

Center,/Tsuruoka, Japan 

Metlin—Metabolite and Tandem MS Database Scripps Center for Metabolomics/La Jolla, CA, USA 

HMDB—Human Metabolome Database 
Genome Alberta & Genome Canada, University of 

Alberta/Edmonton, Canada 

m/z CLOUD—Advanced Mass Spectral Database HighChem Ltd. / Bratislava, Slovakia 

NIST—NIST Chemistry WebBook 
National Institute of Standards and 

Technology/Gaithersburg, MD, USA 

Free GC/MS Analysis Software & Tools 

AMDIS—Automated Mass Spectral Deconvolution and 

Identification System 

National Institute of Standards and 

Technology/Gaithersburg, MD, USA 

Tagfinder—GC-MS analysis software (free upon request) 
Max Planck Institute of Molecular Plant 

Physiology/Golm, Potsdam, Germany 

MetaboliteDetector—Data deconvolution & analysis TU Braunschweig, Germany 

OpenChrom—Software for chromatography and MS Dr. Philip Wenig/ Hamburg, Germany 

Free GC/MS Alignment Tools 

Metalign—Processing of LC-MS and GC-MS data 
Wageningen UR (University & Research 

centre)/Wageningen, The Netherlands 

MZmine—Processing of LC-MS and GC-MS data Turku Centre for Biotechnology/ Turku, Finland 

MetaboAnalyst—Comprehensive tool suite for 

metabolomic data analysis 

The Metabolomics Innovation Centre (TMIC)/University 

of Alberta, Canada 

SpectConnect—GC-MS data alignment and analysis 
Massachusetts Institute of Technology (MIT)/Boston, 

MA, USA 
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Recent technological advances in high-resolution and high-throughput methods generally termed as 

metabolomics, allow for large scale GC-MS profiling regarding the high number of measured 

metabolites and experiments carried out [1]. Gas chromatography time-of-flight mass spectrometry  

(GC-TOF-MS) provides fast scanning, high sensitivity and mass accuracy compared to common 

quadrupole (GC-QMS) or ion trap instrumentation (GC-ITMS), and is considered the standard GC 

platform in many metabolomics labs. Sample processing for GC-MS-based metabolite profiling include 

solvent extraction, concentration to dryness and consecutive derivatization, often carried out in a  

two-step procedure. In the first step, methoximation (also called methoxyamination) is achieved by a 

reaction of sample components with e.g., O-methoxylamine hydrochloride diluted in pyridine to stabilize 

thermolabile enolic aldehydes and ketones and to convert them into oximes or alkyl oximes. In the 

second step, extracted metabolites are derivatized with silylating reagents [1,2]. The latter step is crucial 

for the adequate derivatization of non-volatile compounds, in order to capture a huge variety of 

metabolites with polar characteristics and high boiling points on a GC-MS system. Detectable 

compounds comprise sugars (mono-, di- and trisaccharides), sugar alcohols/acids, amino and fatty acids, 

phosphorylated intermediates and many plant secondary metabolites such as phenolics, terpenoids, steroids 

and alkaloids. 

These efforts have finally led to the development of searchable databases and libraries such as the 

Golm Metabolome Database (GMD) and the MassBank MS Database, which provide mass spectral 

information about TMS derivatives (Table 1). In addition to instrument-based GC-MS software  

(e.g., Agilent ChemStation and Thermo Scientific’s Mass Frontier), a wide range of deconvolution and 

analysis programmes are freely available, either bundled with MS libraries such as AMDIS (NIST MS 

library) and Tagfinder (GMD), or stand-alone software such as MetaboliteDetector and OpenChrom. 

Consecutive alignment of vast numbers of sample files from large-scale experiments is an indispensable 

procedure generating huge output matrices of thousands or even millions of data points. The processing 

of single fragment ion information is a common feature of advanced GC-MS alignment tools. It further 

allows for the identification of conserved compounds and metabolite patterns present in all samples, or 

unique metabolite markers which can be traced based on characteristic ion fragments. However, the use 

of reference substances, and if not available, corresponding scientific literature and online tools are often 

inevitable, in order to receive information about molecular ions (M+) and common fragments for the 

detection of molecules of interest. The plant kingdom produces a vast number of different chemical 

structures, which is predicted to exceed 200,000 metabolites [3]. Moreover, MS information of silylated 

natural products is insufficiently represented in available compound libraries for GC-MS platforms 

based on electron ionization (EI). More suitable chromatographic profiling platforms such as LC-MS 

are available for analysis of metabolites with higher polarity and molecular weights up to 2000 Da [4]. 

In addition, comprehensive mass spectral libraries (MS, MSn data) containing MS information about 

thousands of secondary structures, are readily accessible for compound identification, e.g., ReSpect for 

Phytochemicals, Metlin Metabolite and Tandem MS Database, and MassBank. However, GC-MS-based 

metabolite profiling of derivatized polar extracts is capable of capturing a huge variety of smaller 

secondary metabolites up to 800 Da as presented in the following sections.  
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2. GC-MS Profiling of Complex Chemical Matrices 

Beside parameters related to proper MS compound identification and use of retention index (RI) data, 

several aspects related to metabolite extraction and derivatization need to be considered in GC-MS-based 

metabolite profiling. Depending on the biological question, metabolite targets, and sample matrix, 

solvents of differing polarity and varying phases have been investigated for compound extraction. For 

global metabolomics approaches, the use of extraction mixtures covering a wide range from polar to 

apolar metabolites such as H2O:MeOH:CHCl3 (1:2.5:1) or H2O:MeOH are favoured [2,5]. In other cases, 

one might need to separate lipids from the polar phase as described by Lisec et al. [1], either for separate 

chromatographic study of the different fractions [6], or for a more targeted metabolite analysis. 

2.1. Extraction Methods and Metabolite Coverage 

While sample preparation and processing need to be individually adapted and customized, sample 

extraction often follows standardized procedures using established protocols for comprehensive 

metabolite profiling and non-targeted metabolomics approaches as already outlined at the beginning. An 

important parameter in high-throughput metabolite profiling is the high degree of miniaturization and 

automation in sample handling, requiring the processing of small or ultrasmall sample sizes as low as a 

few milligrams. Unless secondary metabolites are highly abundant, their potential recovery under such 

extraction conditions and GC-MS detection proves insufficient. Moreover, microextraction techniques 

such as sorbent-based solid-phase microextraction (SPME) [7], stirbar-sorptive extraction (SBSE) [8], 

and solvent-based methods such as e.g., single-drop microextraction (SDME) and liquid-liquid 

microextraction (LLME) [9] establish sensitive methods for the characterization of complex profiles of 

volatile compounds found in plant and food samples. Microextraction might also be successfully 

combined with derivatization techniques and subsequent gas chromatographic separation for the 

detection of a wide range of volatiles with different polarity [10–12]. In general, metabolomic 

approaches based on SPME extraction and detection of non-derivatized volatiles, emphasize the 

technique’s tremendous capacity to cover a broad range of different compound groups [13], also 

including aromatic structures, as shown for e.g., tomato [14] and peach [15]. 

2.2. Derivatization of Metabolites 

Derivatization prior to GC-MS is an essential preparatory step, which reduces polarity and increases 

volatility, and simultaneously, thermal stability of metabolites. Compound derivatization is either based 

on silylation, alkylation or acylation reactions, and a wide range of reagents with different properties are 

available. Comprehensive studies have shown the superior properties of silylation agents [16], which 

substitute protons bound to heteroatoms in functional groups (-OH, -COOH, -NH2, -NH, -SH,  

-OP(=O)(OH)2, etc.) and generate trimethylsilyl (TMS) and tert-butyldimethylsilyl (TBS) derivatives [17]. 

Though N-[dimethyl-(2-methyl-2-propyl)silyl]-2,2,2-trifluoro-N-methylacetamide (MTBSTFA),  

N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and N-methyl-N-(trimethylsilyl)trifluoroacetamide 

(MSTFA) are widely applied in biological analyses, the use of MSTFA as derivatization agent has been 

favoured by leading metabolomics labs worldwide. In specific cases, the use of other derivatization 

agents might be advised. Newer studies suggest alkylation with e.g., methyl chloroformate (MCF) 
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instead of, or in combination with compound silylation due to improved analytical performance [18]. 

MCF derivatization shows improved reproducibility and compound stability compared to silylation, and 

is suitable for the analysis of microbial-derived samples with matrices mainly composed of amino and 

non-amino organic acids, amines and nucleotides [18]. However, due to the wide range of compound 

structures being covered by combined methoximation and TMS derivatization [19], comprising amino 

acids, fatty acids, lipids, amines, alcohols, sugars, amino-sugars, sugar alcohols, sugar acids, organic 

phosphates, hydroxyl acids, aromatics, purines, and sterols, major metabolomics attempts towards the 

development of MS libraries have favoured the coverage of oximated and silylated metabolites. 

Despite the feasibility and power of combined oximation/silylation in global metabolite profiling 

approaches, several factors impair sample analysis and data quality. A major point is that silylation 

reactions have to be carried out under anhydrous reaction conditions [18], which requires an additional 

drying step of sample extracts (e.g., SpeedVacTM (Thermo Scientific, Waltham, MA, USA) or 

lyophilization). Excess derivatization reagents are commonly introduced in the GC injection port, 

potentially leading to additional peaks in the chromatogram. Moreover, also non-volatile non-derivatized 

metabolites or even macromolecules such as peptides, proteins or polysaccharides might be injected, 

depending on preceding sample clean-up conditions (precipitation, centrifugation and/or filtration) and 

thus, impede separation performance and GC data analysis. Nevertheless, the utilization of packed inlet 

liners and/or suitable guard columns circumvent these problems and can protect analytical capillary 

columns from sample impurities. 

Another important factor affecting the quality of metabolite data is the occurrence of artefacts of 

silylated compounds in GC-MS profiling [17]. Unexpected by-products might add to the complexity of 

peaks in a chromatogram and interfere with the identification process. This includes also conversion 

reactions of unstable intermediates, e.g., arginine to ornithine when using BSTFA or MSTFA, 

potentially leading to misinterpretation of metabolic data [4]. But more important, multiple peaks of one 

and the same metabolite, i.e., with different degree of TMS silylation of the original molecule, might be 

detected. This is particularly true for those metabolites with several functional groups such as amino acids 

(-COOH, -NH2, -OH) and monosaccharides which carry a high number of hydroxy groups. The amino 

acid serine e.g., shows four active hydrogens which might be exchanged by TMS groups (Figure 1). 

 

Figure 1. Trimethylsilylation levels of the amino acid serine commonly found in TMS 

derivatized samples. In serine (2TMS), the OH- and COOH-group are trimethylsilylated, in 

serine (3TMS) one OH-group of the amino group is exchanged, while in serine (4TMS) all 

active hydrogens are exchanged.  

In GC-MS one might deal with both the 2TMS stage, where only the carboxy and hydroxy group are 

silylated, and the 3TMS and 4TMS stage with one or both H+ of the amino group exchanged. For this 
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reason, MS data of metabolites showing a varying numbers of TMS groups, and both oximate/ TMS 

metabolite derivatives have been included in MS libraries (e.g., GMD database, NIST, etc.). Such 

considerations play an important role if metabolites levels shall be quantitatively acquired. Expected that 

multiple compounds show the same detection response, their individual responses might be summed. 

Regarding secondary metabolites, it is likely to assume that artifact formation also occurs for these 

compounds depending on the number of active hydrogens and the given derivatization conditions. 

However, MS information of such by-products is scarcely, if at all, included in available TMS-MS libraries. 

2.3. GC-MS Metabolite Profiling—Applications, Performance and Reliability 

The term metabolite profiling has already existed for many years, but first the development of  

high-capacity and high-throughput chromatographic systems in recent years has established the basis to 

generate extensive amounts of profiling data, which is comparable in its extent to the output of 

proteomics and transcriptomic analyses. Moreover, the applicability and significance of particularly  

GC-MS metabolite profiling in functional genomics was early recognized using the plant model systems 

Arabidopsis thaliana and potato (Solanum tuberosum) [20,21]. Common for those reports is the low 

coverage of secondary structures which primarily include major phenolic acids, pyridines, tocopherols 

and sterols. The concept of metabolomics has been applied also for the study of crop plants in more 

recent years [22]. Using tomato (Solanum lycopersicum) as an example, breeding goals towards 

nutritional quality [23] and yield [24], impact of environment such as fertilization [25], and temporal 

metabolite patterns in molecular crop physiology have been addressed [26]. Also here, GC-MS 

metabolite profiling had major focus on central metabolism and less on secondary structures. However, 

phenolic acids commonly found in plant material have been detected in potato [27,28], maize [29], 

soybean leaves [30] and tobacco [31]. GC-MS profiling of lipophilic compounds including 

sterols/triterpenes and tocopherols has been described for tomato cuticles [32] and maize grain [29]. One 

important and necessary concept for the description of genetically modified (GM) crops is the so-called 

substantial equivalence based on the evaluation whether the chemical composition of a GM crop differs 

from the non-GM counterpart or not. Metabolite profiling is utilized as an essential tool for screening of 

GM crops with regard to quality and health requirements in order to investigate potential changes in 

metabolite profiles in e.g., wheat [33], rice [34], and maize [35]. 

Global metabolomic approaches based on derivatization techniques following GC-MS for the 

mapping of biosynthetic pathways and characterization of metabolic perturbations and genotypes appear 

to be less laborious and more cost-effective compared to metabolite targeting. The use of highly sensitive 

and fast-scanning GC-TOF-MS instrumentation in particular facilitates proper compound detection and 

resolution of co-eluting peaks. The latter point is a common feature in comprehensive metabolite 

matrices, and can successfully be addressed based on the acquired data information, including exact 

retention time, accurate mass, and characteristic MS fragmentation patterns and ion intensities. In GC-QMS 

or GC-ITMS, on the other hand, analysis time might be extended in order to improve separation 

performance and resolution of overlapping peaks. In recent years, more advanced extraction and 

separation methods have been added to the tool box of automated profiling techniques. Such advances 

include GC × GC-MS (or so-called 2D GC-MS), where samples are subsequently separated on columns 
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of different polarity, thus increasing separation capacity and performance in the detection of 

biomolecules [36]. 

However, even the use of accurate mass, MS spectra and RI values might lead to misidentification of 

compound structures, not least because mass spectra of different TMS derivatives might be notoriously 

similar (e.g., sugar alcohols), or totally different metabolites might have the same RI value. Another 

major problem when analysing complex sample mixtures is the fact that metabolite abundances can vary 

by many orders of magnitude. The linearity and detector response dynamics of metabolites from 

different structure groups differ greatly [18], thus impeding quantitation of absolute compound 

concentrations. For that purpose, levels of distinct metabolites might be determined by comparison with 

calibration standard curve response ratios of various concentrations of standard substance solutions as 

described by e.g., Roessner-Tunali et al. [37]. Moreover, variations in sample volume, i.e., when using 

a sample range with a defined maximal tolerance, only allows for relative quantitative detection of 

metabolites, in contrast to procedures using the same exact amounts of samples and allowing for absolute 

quantitation [38]—a fact which needs suitable consideration when working with small sample sizes. 

2.4. Secondary Metabolites in GC-MS-Based Metabolomic Approaches 

GC-MS-based metabolite profiling of TMS derivatives does not only generate vast chemical 

information about primary metabolism, but includes also extensive MS data about secondary metabolites 

and “unknowns”. In order to advance the identification process of less abundant structures in plant 

samples, comprehensive RI tables for cinnamic acids and other simple phenolic structures, flavonoids, 

tocopherols and sterols have been generated to provide useful information about the elution order of 

silylated secondary metabolites on a GC system [27,39]. Furthermore, MS fragmentation patterns have 

been reported for a wide range of secondary metabolites including phenols and phenolic acids [40–43], 

flavonoids [42,44,45], alkylresorcinols [46], phytoestrogens [47], secoiridoids and ligstrosides [41,48], 

diterpenes and diterpenic acids [49], phenolic diterpenes and pentacyclic triterpenes [50], sterols, 

stanols, and esters thereof [51,52], lignans [53], stilbenes [54,55], and alkaloids [56]. The utilization of 

relevant scientific literature reporting GC-MS information about phytochemicals is crucial for the 

tentative identification of less abundant chemical structures in profiling experiments. Regarding the 

restricted number of primary and major secondary metabolites, which are commonly included in spectral 

libraries of TMS analytes, several specific secondary structures are described based on case studies presented 

in Section 4. 

3. Detection of Plant Phenolics and Other Cyclic Structures 

The following classification of the quite diverse group of phenolic structures and other plant-derived 

cyclic compounds follows chemical structure characteristics rather than biosynthetic relationships, 

which makes it easier to discuss the topic from an analytical point of view. In a wider sense phenolic 

structures addressed here contain either one (Section 3.1) or several aromatic rings (Section 3.2) as part 

of the molecule. In order to cope with the tremendous variability of primary but also secondary 

metabolites detectable by GC-MS, several attempts have been made to facilitate identification through 

the construction of combined RI and MS databases of derivatized compounds, generally termed as mass 

spectral tags (MST) [57]. Retention time indices are a prerequisite for tentative metabolite annotation of 
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mass spectra showing high similarity such as pentoses and hexoses. Recent efforts have focused on the 

need for extended and comprehensive RI information by compiling RI values of TMS analytes of various 

phytochemicals including phenolic acids and flavonoids [39,45,51,58,59], diterpenes [49], sterols [51] 

and tocopherols [32]. 

Moreover, several research groups and consortia have addressed the complexity of compound 

structures, since commercially available libraries (e.g., NIST or Wiley) contained insufficient MS 

information about derivatized analytes, which are frequently acquired in metabolomics experiments. The 

Golm Metabolome Database GMD [60] comprise today online information of about >4600 MS analyte 

entries including >3500 analytes with valid spectra (TMS derivatives, tributylsilyl (TBS) derivatives, 

and isotopically-labeled compounds). However more than 1400 spectra have not been annotated 

underscoring the need for further chemical information in order to approach the metabolome of plants 

and other organisms. The downloadable and searchable GMD library contains about 3600 analytes and 

MST information about 1200 single metabolites. In comparison, the Fiehn GC-MS Metabolomics RTL 

Library [19] is based on 1400 analyte entries relating to 900 metabolites, while the Massbank database [61] 

contains 963 MSTs of TMS analytes relating to >700 single metabolites. Hopefully, public repositories 

of GC-MS-based spectral information such as MetabolomeExpress [62] might help to extend accessible 

MS library information also including secondary metabolites.  

Only those phenolic and cyclic structures which are commonly detectable in derivatized (silylated) 

samples following GC-MS profiling protocols applied by the majority of metabolomics labs  

worldwide [1,2,63,64], will be discussed in Subsections 3.1 through 3.6. Information about readily 

searchable and publicly available MS databases and libraries, providing MS spectra of silylated 

metabolites, presented and discussed in Sections 3 and 4, will be included in each figure. The following 

abbreviations (letters) are used: [G]—Golm Metabolome Database; [H]—Human Metabolome Database; 

[M]—MassBank; [N]—NIST Chemistry WebBook. For LC-MS-based analysis of phytochemicals in 

general, the reader is referred to recent studies and initiatives for the development of MS/MS libraries 

such as the accurate mass-time (AMT) tag approach [65] and the PRIMe platform of RIKEN Plant 

Science Center [66]. 

3.1. Simple Phenolics, Aromatic Acids and Related Structures 

In most cases phenolic structures are derived from aromatic amino acids such as phenylalanine and 

tyrosine. Detectable phenolic structures comprise monophenols such as thymol (an aromatic 

monoterpene), benzyl alcohols, phenylethanoids (e.g., tyrosol), and the coumarins (e.g., umbelliferone) 

(Figure 2). The huge class of aromatic acids include benzoic acid and cinnamic acid derivatives with 

different degree of hydroxylation and methoxylation. Metabolites with vitamin function such as vitamin 

E (tocopherols) and vitamin K (phylloquinone and menaquinone) represent minor groups of phenolic 

structures found in food materials. However, tocopherols like α-, β-, γ- and δ-tocopherol are readily 

detected in biological samples during profiling experiments. More complexly structured monophenolics 

comprise phenolic diterpenes (e.g., carnosic acid), phenolic amides including the capsaicinoids with 

capsaicin as well-known representant, the phenolic lipids, e.g., alkylresorcinols, which are commonly 

found in cereals (wheat, rye, barley and sorghum), but also in certain tree species and bacteria, and 

finally benzothiazoles which are mentioned in Subsection 3.6. 
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Figure 2. Monophenolics and aromatic acids detectable in GC-MS profiling experiments. 

MS spectra included in publically available databases.  

3.2. Polyphenols 

The highly diverse group of plant flavonoids comprise flavonols (e.g., kaempferol and quercetin), 

flavanones (e.g., naringenin and hesperidin), flavones (e.g., luteolin and apigenin), flavan-3-ols (e.g., 

catechin and gallocatechin), and flavanonols (e.g., taxifolin) (Figure 3). All these structures, either as 

aglycon or glycoside, are characterized by a certain number of hydroxy groups which can be silylated. 

However, due to relatively higher molecular weight of glycosylated polyphenols, the detection and structure 

elucidation of intact glycosides is preferably achieved on LC platforms, which is also true for hydolyzable 

tannins. Another closely related group of polyphenols, the phytoestrogens, comprise well-known structures 

such as isoflavonoids (e.g., genistein and daidzein) commonly found in species of the Fabaceae family, 

and the lignans (e.g., secoisolariciresinol and pinoresinol) derived from different plant food sources. 

Also the minor class of stilbenoids, hydroxylated stilbene derivatives such as resveratrol and piceatannol, 

are readily silylated and detectable if present in appreciable amounts in the sample. In contrast, the 

important group of anthocyanidins and their glycosylated counterpart, the anthocyanins, show high 

abundances in fruits and berries but also other plant tissues. These metabolites are normally detected on 

LC-MS systems not least due to the molecules’ positive charge. 
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Figure 3. Polyphenols detectable in GC-MS profiling experiments. MS spectra included in 

publically available databases. 

3.3. Terpenoids and Sterols 

The terpenoids including the biosynthetically-derived sterols establish a huge class of secondary 

metabolites which can be found in diverse organisms (Figure 4). Mono- and sesquiterpenes are volatile 

and lipophilic metabolites commonly found in high abundances in herbs and spices, conifers and other 

tree species. 

 

Figure 4. Terpenoids and sterols detectable in GC-MS profiling experiments. MS spectra 

included in publically available databases. 
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The lipophilic phase might preferably be analysed separately prior to GC-MS profiling. However, 

this step is not always practically feasible, and might result in detection of silylated derivatives of 

alcoholic mono- and sesquiterpenes, hydroxylated and/or carboxylated di- and triterpenes, and 

phytosterols including sterols and stanols. Structurally close related is the group of secosteroids 

including cholecalciferol (vitamin D) and derivatives which are also determined in profiling studies. 

3.4. N-Containing Cyclic Structures 

Alkaloids establish a chemically quite diverse group of basic, nitrogenous secondary metabolites, 

most of which are characterized by heterocyclic structures (Figure 5). Well-known metabolites include 

stimulant and/or medicinally significant compounds such as nicotine (based on pyrrolidine/pyridine ring 

structures), caffeine (a purine), morphine (an isoquinoline), serotonin (an indole), and cocaine (a 

tropane). Apart from alkaloids, tryptophan-derived indoles establish also the basic ring structures of the 

plant-hormone related auxines (e.g., indole-3-acetic acid) and several amino acids. Also the cytokinins 

are N-heterocyclic structures with zeatin (a purine) as an important representative compound. 

Furthermore, most B-vitamins are built up of N-heterocycles comprising detectable structures such as 

B3 niacin and B6 pyridoxine (both pyridines), B7 biotin (an imidazole), and B9 folic acid (a pteridine). 

Importantly, nitrogenous bases, their nucleosides and phosphorylated nucleotides, which are essential 

components of RNA and DNA in all organisms, are readily detected in profiling experiments. Cyclic 

structures comprise pyrimidines (thymine, uracil and cytosine) and purines (adenine and guanine). The 

vast diversity of N-containing cyclic metabolites from plants does not allow to present all structural 

classes here. However, it is noteworthy that only a minor fraction of potentially detectable compounds 

is included in MS libraries of silylated compounds. 

 

Figure 5. Selected N-containing cyclic compounds detectable in GC-MS profiling 

experiments. Names of the basic heterocyclic structures are given in brackets. MS spectra 

included in publically available databases. 
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3.5. O-Containing Cyclic Structures 

Silylated carbohydrates comprise the largest group of GC-MS detectable oxygen-containing cyclic 

metabolites. Pentoses and hexoses and oligosaccharides thereof occur in all biological samples showing 

cyclic structures either as furanoside or pyranoside (Figure 6). Furan structures, in particular lactones 

derived from sugar acids (e.g., ascorbic acid) but also amino acids are readily determined. This includes 

the potentially detection of glycosylated compounds such as terpenes, aromatic structures and purines 

during profiling experiments. Benzopyran structures have already been mentioned in the context of 

tocopherols (see subsection 3.1). 

 

Figure 6. O-containing cyclic structures detectable in GC-MS profiling experiments. MS 

spectra included in publically available databases. 

3.6. S-Containing Cyclic Structures 

Though nature produces a vast diversity of S-containing metabolites, only few cyclic structures have 

been included in MS libraries of silylated compounds. Those mentioned here both include natural 

products but also compounds which are not biosynthesized by organisms (Figure 7). Lipoic acid and its 

derivatives represent dithiolane structures with characteristic disulfide bonds in a pentacyclic structure. 

Though normally covalently bound in mitochondrial enzyme complexes, these compounds might 

potentially be detected in profiling experiments. This is also true for thiazoles, i.e., pentacyclic N- and 

S-containing structures, heterocyclic compounds such as natural and synthetic benzothiazoles (e.g., the 

artificial sweetener saccharin), and S-containing polycyclic thioxanthenes used as photoinitiators (e.g., 

2-ITX) in paper and packaging materials. 

 

Figure 7. S-containing cyclic structures detectable in GC-MS profiling experiments. MS 

spectra included in publically available databases. 
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4. Case Studies—GC-MS Profiling of Plant Samples 

GC-MS is one of the most efficient technology platforms to approach complex mixtures of organic 

compounds based on a combination of MS database search and the use of calculated RI values. Suitable 

MS and RI resources have been developed and are well established for the analysis of e.g., essential oil 

constituents [67–69], and investigation of environmental samples using either the comprehensive NIST 

or Wiley MS libraries or vendor-specific and customized databases. In the case of silylation-based 

derivatization techniques which cover a broad range of molecular masses and different polarities, the 

information base regarding phenolic and other cyclic structures, belonging to the complex group of plant 

secondary metabolites, is rather limited. This is particularly true for higher molecular weight compounds 

(≥300) as pointed out by Isidorov and Szczepaniak [39]. However, the specificity of molecular structures 

and thus MS fragmentation patterns in most cases allow for the assignment of distinct compound groups 

and sub-classes. 

In the following Subsections from 4.1 to 4.4, these aspects will be addressed by using examples from 

the analysis of various plant raw materials and processed plant food to emphasize the applicability of  

GC-MS profiling for the separation, detection and identification of phenolics and cyclic structures with 

respect to metabolic phenotyping and quality assessment purposes. Extraction, derivatization and  

GC-QMS conditions followed procedures for plant samples as described earlier [35,70–72]. 

4.1. Fresh Plant Samples: Flavonoids and Derivatives 

Flavonoids represent a highly diverse class of polycyclic secondary structures commonly found in 

the plant kingdom. In addition to their function as pigments for insect attraction, seed dispersal and UV 

light absorption, flavonoids serve as antioxidants and radical scavengers, in plant signaling and as 

defense compounds. Chemically, flavonoids are characterized by a C6-C3-C6 flavone skeleton (A-C-B 

rings) enclosed with oxygen in the 3-carbon bridge (C-ring) between the phenyl groups. The different 

sub-classes of flavonoid structures include flavones, flavonols, flavanones, flavanols, flavanonols, 

anthocyanidins, isoflavones, chalcones and neoflavonoids, as reviewed by Tsao and McCallum [73]. 

Depending on desaturation and oxidation status of the C-ring and moreover, hydroxylation, 

methoxylation, and/or prenylation patterns of the flavone backbone (for examples refer to Figure 3),  

EI-based fragmentation is expected to generate quite stable MS fragments with distinct molecular 

masses, thus providing sufficient identification capability for structure elucidation. 

Strawberry (Fragaria × ananassa Duch.) is renown as a marketable fruit due to its pleasant taste and 

flavour [74], and its high content of health-beneficial polyphenolic compounds [75–77]. Also other plant 

parts of different Fragaria species were shown to contain high levels of phenolic structures as studied 

in flowers [78], leaves [79,80] and roots [81,82]. Moreover, GC-MS profiling has been recently applied 

for the characterization of shifts in metabolite pools in leaf and crown tissue of strawberry plants exposed 

to cold temperatures [70,72,83] in order to identify those compounds uniquely linked to cold acclimation. 

Published chemical information was related to primary metabolites in the first place, however a large 

number of secondary structures could be deduced easily based on the available high-resolution MS 

information from crown [83], and leaf and root samples [72]. Besides cinnamic acid- and benzoic  
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acid-derived structures, vegetative tissue contains reasonable amounts of flavan-3-ols (catechin 

derivatives) and flavonols as presented in Figures 8 and 9. 

 

Figure 8. The upper figure shows a chromatogram cut from the analysis of a strawberry 

crown sample (vegetative tissue) of Fragaria x ananassa Duch. cv. “Elsanta”. The MS 

spectra of commonly found TMS derivatives of polyphenolic structures such as catechin 

(5TMS) (CT), epicatechin (5TMS) (ECT) and unidentified flavonoid structures (F1 to F4) 

are depicted in the figures below. MS spectra of CT and ECT can be found in the Golm 

Metabolome Database [G], Human Metabolome Database [H], MassBank [M], and/or NIST 

Chemistry WebBook [N]. 
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Figure 9. The upper figure shows a chromatogram (TIC), cut from the analysis of a 

strawberry leaf sample (Fragaria vesca L., genotype “Ukraina”). Several MS spectra of 

TMS derivatives of flavonoids such as quercetin (5TMS) (QT), quercetin derivative (5TMS) 

(QTd), and other flavonoid structures (FL1 and FL2) are depicted below. CT = catechin 

(5TMS) and ECT = epicatechin (5TMS). MS spectra of CT, ECT and QT can be found in 

the Golm Metabolome Database [G], Human Metabolome Database [H], MassBank [M], 

and/or NIST Chemistry WebBook [N] (see also Figure 8). 

4.2. Plant-Based Aquafeeds: Phenolic Acids 

Fish feeds are formulated from marine (fish meal and oil), animal (e.g., blood meal and poultry  

by- products), and plant (e.g., starchy grains, protein meals, and oils) feedstuffs, and additional amino acid 

and micronutrient supplements. Due to limited resources of fishmeal and fish oil and the over-exploitation 

of wild fish stocks, plant feedstuffs derived from seeds are considered more sustainable, cost efficient and 

highly valuable as protein ingredients in aquafeeds. On the other hand, seeds contain well-characterized 

and supposedly unknown phytochemicals (secondary metabolites), which might impair appetite, nutrient 

utilization, physiology, fish health and growth [84], particularly in carnivorous fishes. 

Therefore, these substances are also termed as antinutritional factors (ANF) because of their non-nutrient 

function [85]. In a recent study, GC-MS-based metabolite profiling was applied in order to gain detailed 

chemical information about plant derived feedstuffs with regard to nutritious small molecules 

(carbohydrates, lipids, amino acids and amines) and simultaneously potential ANFs [35], comprising 
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compounds from diverse structure groups such as phenolics, alkaloids, terpenes, and glycosides. Protein-rich 

seeds from the legume plant family (e.g., soybean and pea) or refined plant ingredients derived from 

industrial processes after vegetable oil or starch extraction (e.g., sunflower, rapeseed and corn) represent 

good sources of plant proteins (Figure 10). 

 

Figure 10. GC-MS-based metabolite profiling for the detection of phenolics and polycyclic 

structures in plant-derived aquafeed ingredients (sunflower meal, soy protein and corn gluten). 

Despite industrial refinement and concentration steps, plant ingredients such as sunflower meal, soy 

protein concentrate and corn gluten might still contain reasonable amounts of free and bound phenolic 

ANFs due to interactions with polysaccharides and/or proteins [86], showing a broad spectrum of 

compounds derived from benzoic acid, cinnamic acid and phenyl ethanol (Figure 11). Relatively high 

levels of vanillic acid (20–100 mg/kg), syringic acid (40–150 mg/kg), (E)-ferulic acid (20–60 mg/kg) 

and sinapic acid (20–60 mg/kg) were found in soybean meal and thus, underscore the potential ANF 

content related to non-flavonoid phenolics ranging between 660 to 2000 mg/kg in dehulled beans [87]. 

In comparison, sunflower seeds are known to contain relatively high levels of mono- and diacylquinic 

acids [88], which might negatively affect taste and nutrient uptake in humans [89].  
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Figure 11. The MS spectra of corresponding monocyclic/polycyclic TMS metabolites  

(see Figure 10) indicated by nos. 1 to 16, are depicted in the figures above. MS spectra can 

be found in the Golm Metabolome Database [G], Human Metabolome Database [H], 

MassBank [M], and/or NIST Chemistry WebBook [N]. 
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Levels of different caffeoylquinic acid structures including chlorogenic acid in sunflower meal 

(Figure 11) ranged between 600 to 2200 mg/kg and compared well with reported estimates in literature 

e.g., [90,91]. 

4.3. Cereals: Alkyresorcinols 

Cereal grains (wheat, rye, barley and oat) constitute one of the major sources of staple foods for 

human consumption worldwide due to their nutritious content of carbohydrates, proteins and lipids, also 

including minerals, vitamins and dietary fibre. 

 

Figure 12. In the GC-MS chromatogram of four-grain meal, commonly occurring 

alkylresorcinols are indicated. The corresponding MS spectra of C17- to C25- alkylresorcinols 

are depicted below. 
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Moreover, recent epidemiological studies have shown that intake of whole grain products is positively 

linked to prevention of metabolic syndrome, obesity, cardiovascular disease and type 2 diabetes [92]. 

Despite relatively high concentrations of phenolic antioxidants in fruits and berries, the impact of levels 

of phenolic compounds in grain products and cereals on human health is underestimated. In other words, 

based on Western food traditions the intake of health-beneficial plant phenolics is not necessarily and 

primarily based on the consumption of fruits and vegetables. Cereal products contain relatively high 

levels of benzoic acid and cinnamic acid derivatives [93], either free or in bound form esterified with 

cell wall components. Based on data from the multinational HEALTHGRAIN study, wheat, rye and oat 

grain show comparable levels of phenolics, while concentration levels in barley are somewhat lower [94]. 

The so-called alkylresorcinols (AR) establish a characteristic sub-class of phenolic compounds found 

in cereals. ARs are based on a 1,3-dihydroxy-5-alkylbenzene structure being linked with an odd-numbered 

alkyl or alkenyl chain (C17:0 to C25:0) [95–97], and have been suggested to be used as biomarkers for 

the estimation of whole grain consumption in humans [98]. Due to their unique chemical structure, ARs 

show distinct EI-MS fragmentation patterns generating a base peak of m/z = 268 and a molecular ion 

(M+) peak, depending on the length and degree of saturation of the side chain (Figure 12). These 

molecular features facilitate the straight-forward detection and identification also in comprehensive  

GC-MS metabolite profiles. Detected levels of ARs in industrially-processed grain and bakery products 

were clearly depending on coarseness and declined with the degree of refinement. AR levels in bread 

ranged from 10 to 300 mg/kg dry weight (DW) and 200 to 300 mg/kg DW in wholemeal bread, while 

levels in low-processed four-grain meals were estimated at 500 to 650 mg/kg DW, thus corresponding 

well with results from other studies [46,91,95–97]. 

4.4. Olive Oil: Simple Phenolic Structures and Secoiridoids 

Olive oil is a vegetable oil produced from fruits of the olive tree (Olea europaea L.) and its subspecies. 

The olive tree is a traditional wood species in Mediterranean countries, the main production region in 

the world, but olive oil is also produced in Asia, the Americas and Australia. The oil is commonly used 

in cooking, cosmetics, pharmaceuticals, soaps and as a fuel for oil lamps. Olive oil is considered as a 

highly-valuable and healthy oil because of its high content of glyceridic-bound monounsaturated fatty 

acids, mainly oleic acid (C18:1), linoleic acid (18:2) and α-linolenic acid (C18:3). In addition, olive oil 

contains sterols, triterpenic compounds, aliphatic alcohols and esters, and reasonable amounts of 

different phenolic structures. Tyrosol and its derivatives, namely oleuropeins and ligstrosides, represent 

characteristic phenolic structures found in olive exerting health-beneficial effects as reported by the 

European Food Safety Authority (EFSA) [99]. Other commonly detected phenolic compounds comprise 

hydroxybenzoic-, hydroxycinnamic- and hydroxyphenylacetic acids, lignans and flavonoids [91]. 

Phenolic patterns found in olive oil can be used to study regional and varietal differences [100], and 

effects of oil production and processing [101]. Different approaches towards extraction and 

chromatographic separation have been described [102,103], also including derivatization methods 

following GC-MS for the analysis of olive and other vegetable oils [41,104–106]. 

The quality of olive oils is mainly based on extraction and processing conditions, and distinct quality 

parameters such as acidity, taste and flavour characteristics. According to the classification system of 

the International Olive Council, oils can be divided into extra-virgin, virgin and the chemically-treated 
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refined oils which all are originally obtained by pressing, and the solvent-extracted pomace oils. 

Depending on the physical and chemical extraction and processing steps utilized, the content and 

composition of phenolics shows a high degree of variation. Extra virgin oils often show two to three 

times higher levels of phenolic compounds compared to refined oil qualities [91].  

 

Figure 13. GC-MS chromatogram of the polar (phenolic) fraction of an example extra- 

virgin olive oil. The elution region of secoiridoids is highlighted, zooming in to a SIM 

chromatogram plot indicating separation patterns of ligstroside (m/z = 192) and oleuropein 

(m/z = 280) derivatives. MS spectra included in publicly available databases: [G]—Golm 

Metabolome Database; [H]—Human Metabolome Database; [M]—MassBank; [N]—NIST 

Chemistry WebBook. 
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Table 2. Lowest, highest and mean levels of phenolic and cyclic structures detected in commercial olive oils (mg/kg FW). Retention time (RT) 

and retention index (RI) are based on an apolar HP-5MS column. The relative intensity (in %) of mass ions is shown in parenthesis. MS spectra 

included in publicly available databases (DB): [G] Golm Metabolome Database; [H] Human Metabolome Database; [M] MassBank; [N] NIST 

Chemistry WebBook. 

RT RI Compound Masses DB Mean Low High 

15.05 1238 phenylethyl alcohol M+ 194(1), 73(100), 103(81), 179(68), 105(24) [N] 0.19 0.04 0.82 
15.40 1249 3,5-dimethylphenol M+ 194(39), 179(100), 194(67), 105(16) [N] 0.28 0.03 1.45 
15.64 1257 benzoic acid M+ 194(4), 179(100), 105(79), 135(62), 77(56) [G,H,M,N] 0.44 0.02 1.32 
17.13 1306 phenylacetic acid M+ 208, 73(100), 164(21), 193(9), 137(3) [G,H,M,N] 0.26 0.04 0.87 
17.80 1329 catechol M+ 254(100), 239(30), 151(20), 136(15), 166(13) [G,H,M,N] 5.15 0.45 28.52 
20.34 1419 hydrocinnamic acid M+ 222(24), 104(100), 207(46), 91(26), 132(4) [G,H,M,N] 0.60 0.01 3.25 
21.62 1466 hydroxybenzoic acid M+ 282(48), 73(100), 267(18), 179(14), 193(10) [G,H,M] 0.47 0.03 2.36 
21.82 1473 (E)-isoeugenol M+ 236(42), 206(100), 73(21), 221(19), 179(11), 103(6) [N] 0.81 0.02 4.65 
22.86 1513 salicylic acid M+ 282, 73(100), 267(92), 135(10), 193(5) [G,H,N] 0.17 0.01 0.49 
23.83 1551 syringaldehyde M+ 254(45), 224(100), 73(79), 209(45), 239(33) [N] 0.04 0.03 0.07 
24.26 1569 p-tyrosol M+ 282(19), 179(100), 267(13), 193(12) [H] 7.02 1.47 18.32 
25.23 1608 ligstroside deriv. M+ 192(100), 177(67), 179(24), 193(19) – 4.76 0.04 18.91 
25.62 1624 methyl homovanillic acid M+ 268(55), 73(100), 238(75), 209(46), 253(30) – 0.05 0.02 0.14 
25.95 1639 vanillin M+ 253(71), 223(100), 73(29), 238(22), 165(12) [N] 1.28 0.03 6.12 
27.45 1703 homovanillyl alcohol M+ 312(33), 73(100), 209(94), 103(22), 179(16) [N] 0.61 0.01 3.05 
28.49 1749 phloretic acid M+ 308(52), 73(100), 219(71), 293(65), 249(53) [N] 0.11 0.04 0.46 
28.63 1755 vanillic acid M+ 312(24), 267(49), 297(44), 282(34), 253(28) [G,H,N] 0.43 0.02 2.26 
28.76 1761 hydroxytyrosol M+ 370(44), 267(100), 193(19), 179(11) – 1.47 0.27 5.35 
29.77 1807 oleuropein deriv. M+ 340(13), 73(100), 280(96), 193(40), 179(14) – 7.19 0.17 35.98 
30.75 1853 p-coumaric acid M+ 308(35), 73(100), 293(53), 219(42), 249(23) [G,H,M,N] 0.04 0.02 0.06 
31.44 1887 syringic acid M+ 342(24), 327(100), 73(67), 312(64), 297(58) [N] 0.04 0.01 0.07 
32.11 1919 (Z)-ferulic acid M+ 338(49), 73(100), 308(43), 323(37), 249(33) [G,N] 0.08 0.02 0.26 
32.14 1921 (E)-coniferaldehyde M+ 279(27), 73(100), 248(56), 218(49), 232(14) [G] 0.06 0.04 0.15 
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Table 2. Cont. 

RT RI Compound Masses DB Mean Low High 

43.86 2596 ligstroside deriv.* 192(100), 177(26), 179(8) – 0.13 0.05 0.60 
44.12 2613 ligstroside deriv.* 192(100), 177(22) – 0.17 0.04 0.49 
44.41 2633 ligstroside aglycone (aldehydic form I) M+ 434(5), 192(100), 177(19), 179(7), 403(3) – 4.42 0.07 25.91 
44.57 2644 ligstroside aglycone (aldehydic form II) M+ 434(5), 192(100), 177(23), 179(7), 403(3) – 0.59 0.07 3.15 
45.48 2706 ligstroside aglycone deriv.* 192(100), 177(15), 179(5) – 0.34 0.03 1.51 
46.08 2749 ligstroside aglycone deriv.* 192(100), 177(22), 179(5) – 0.49 0.04 1.96 
46.39 2770 oleuropein deriv.* 280(100), 193(35), 179(14) – 0.09 0.02 0.36 
46.66 2790 oleuropein deriv.* 280(100), 192(74), 177(16) – 0.08 0.02 0.27 
46.92 2809 oleuropein aglycone (aldehydic form) M+ 522(3), 280(100), 193(18), 179(4), 267(3) – 3.48 0.07 20.45 
47.00 2814 ligstroside deriv. M+ 492(3), 192(100), 177(29), 280(13), 209(4), 461(2) – 0.81 0.03 4.66 
47.08 2820 ligstroside deriv. M+ 492(2), 192(100), 177(30), 461(21), 209(14), 280(9) – 0.52 0.03 2.91 
47.32 2837 ligstroside deriv. M+ 492(1), 192(100), 177(16), 179(5), 209(2), 280(1) – 2.57 0.07 14.28 
47.67 2863 ligstroside deriv.* 192(100), 177(18), 355(10), 179(8) – 0.23 0.03 1.15 
47.77 2870 oleuropein deriv.* 280(100), 193(26), 179(4) – 0.25 0.01 1.22 
47.91 2881 ligstroside deriv.* 192(100), 177(38), 179(19) – 0.08 0.02 0.26 
47.98 2886 ligstroside deriv.* 192(100), 177(16), 179(6) – 0.46 0.03 2.27 
48.07 2893 ligstroside deriv.* 192(100), 177(18), 179(9) – 0.20 0.02 1.01 
48.40 2918 oleuropein deriv.* 280(100), 193(23), 179(6), 267(4), 519(4) – 0.73 0.04 3.82 
48.63 2935 oleuropein deriv.* 280(100), 193(44), 192(41) – 0.05 0.01 0.08 
49.07 2968 oleuropein deriv.* 280(100), 193(28), 179(8), 355(7) – 0.14 0.02 0.66 
49.13 2973 oleuropein deriv.* 280(100), 193(28), 179(14) – 0.10 0.02 0.37 
49.22 2979 oleuropein deriv. M+ 580(2), 280(100), 193(21), 179(5), 267(4) – 0.33 0.03 1.80 
49.27 2984 oleuropein deriv. M+ 549(5), 280(100), 193(27), 179(8), 267(4) – 0.31 0.03 1.68 
49.35 2989 oleuropein deriv. M+ 551(2), 280(100), 193(21), 179(4), 519(1) – 0.88 0.04 4.94 
49.46 2998 oleuropein deriv. M+ 551(2), 280(100), 193(19), 179(4), 519(1) – 6.32 0.08 36.78 
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Table 2. Cont. 

RT RI Compound Masses DB Mean Low High 

49.79 3023 oleuropein deriv. M+ 551(2), 280(100), 193(18), 179(5), 267(4) – 0.47 0.02 2.62 
49.98 3038 oleuropein deriv.* 280(100), 355(30), 193(20), 368(4) – 0.30 0.02 1.60 
50.04 3043 oleuropein deriv.* 280(100), 193(18), 179(5), 355(2) – 0.64 0.04 3.43 
50.15 3051 oleuropein deriv.* 280(100), 193(17), 179(7), 267(5) – 0.23 0.01 1.16 
51.78 3182 luteolin M+ 559(100), 73(54), 487(8), 272(7) [G,H] 0.05 0.01 0.09 
53.26 3306 pinoresinol M+ 502(59), 223(100), 73(75), 209(56), 235(43) – 0.08 0.02 0.16 
53.34 3313 β-sitosterol M+ 486(25), 129(100), 357(97), 396(92), 73(63), 381(40) [G,H,N] 0.12 0.03 0.24 
53.76 3348 acetoxipinoresinol M+ 560(18), 276(100), 245(53), 73(37), 209(34), 261(20) – 1.06 0.04 5.40 
55.59 3509 uvaol M+ 496(89), 216(100), 73(58), 203(51), 188(25), 161(24) – 0.32 0.02 0.96 
56.65 3607 oleanolic acid M+ 585(6), 203(100), 73(53), 320(35), 189(33), 482(24) [G,H] 1.36 0.05 3.77 

  Total Phenolics   59.96 4.22 286.99 
  oleuropein structures   21.61 0.72 117.21 
  ligstroside structures   15.78 0.52 79.08 
  tyrosols   8.49 1.74 23.67 
  phenolic acids   2.69 0.36 11.56 
  alcohols   7.04 0.58 38.49 
  aldehydes   1.37 0.10 6.34 
  lignans   1.13 0.07 5.56 
  flavonoids   0.05 0.03 0.09 

* no molecular peak detected; – no database MS spectrum available 
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As an effect of oil processing, refined oils generally show higher abundance of simple tyrosol structures 

due to the degradation of oleuropeins and ligstrosides. On the other hand, oleuropein and ligstroside 

content is generally much higher in extra-virgin and virgin oils, not uncommonly exceeding levels above 

300 mg/kg. Based on a quality screening of different commercially available olive oils and olive extracts, 

variations in phenolic metabolites could easily be characterized using liquid-liquid extraction techniques 

and compound derivatization. Due to EI fragmentation patterns, secoiridoid aglyca could be easily traced 

using selected ion monitoring (SIM) plots depicting the distinct MS base peaks related to ligstroside  

(m/z = 192) and oleuropein (m/z = 280) structures (Figure 13). A total of 55 phenolic metabolites and 

three other cyclic structures could be detected, of which 28 compounds were tentatively identified based 

on a combination of MS database search and retention index values (Table 2). 

5. Conclusions 

GC-MS is frequently applied to characterize the chemical complexity of analytical samples based on 

its separation and identification capacity. Recent developments in GC-MS technology have facilitated 

global metabolomics approaches in order to approach biological functions and perturbations of 

biological systems, and for diagnostics and quality assessment purposes. However, one should be aware 

of the limitations of global GC-MS metabolite profiling. Processing, automated sample handling, and 

analysis conditions need to be strictly defined and controlled in order to minimize data variation and 

allow for quantitative calculations. When using standard protocols which are adapted to cover a broad 

range of biochemical structures, single metabolites or groups of compounds might be discriminated due 

to generalized compound extraction and derivatization conditions and thus, negatively affect compound 

recovery rates. Moreover, GC-MS analysis of highly complex mixtures of derivatized metabolites might 

impair separation and detection capacity with regard to the level of confidence in compound 

identification due to co-eluting peaks and similarity of MS spectra. For determination of absolute 

metabolite concentrations, the use of standard compounds is required, otherwise targeted methods need 

to be applied for the proper quantitation of compounds of interest. Despite limitations in GC-MS with 

respect to the mass range and polarity of metabolites, the utilization of derivatization techniques and 

automation technology have extended the range of separable and detectable compounds in  

high-throughput profiling experiments. Beside the qualitative and quantitative analysis of trimethylsilyl 

derivatives of highly abundant compounds found in plant samples such as sugars, amino acids and 

polyols, instrument sensitivity and resolution also allows for the successful detection of minor 

constituents such as plant secondary metabolites. Even though mass spectral information about 

monophenolic, polyphenolic and other cyclic compounds in MS libraries is limited, structure-specific 

MS fragmentation patterns enable to trace and identify low-concentration metabolites, often based on 

and in combination with published MS data from targeted GC-MS analyses. Current limitations in  

MS-based metabolomics due to the relatively small number of compounds included in MS databases, in 

particular secondary metabolites, and hurdles in compound identification, might be overcome by on-going 

and future efforts. These include in silico derivatization, retention indices and mass spectra matching [107], 

in silico enzymatic synthesis of biochemical compounds for non-targeted metabolomics [108], and 

endeavours such as web-based and shared collections of experimental metabolomics datasets, MS 

spectra and RI values for the processing and interpretation of GC-MS data [62]. Based on experimental 
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data from own research, the present review has emphasized the capabilities of GC-MS to deduce 

chemical information on phenolics and cyclic compounds found in complex mixtures of plant metabolites. 
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