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A B S T R A C T

In the context of learning systems, identifying causal relationships among information presented to the user,
their behavior and cognitive effort required/exerted to understand and perform a task is key to building effective
learning experiences, and to maintain engagement in learning processes. An unexplored question is whether our
interaction with presented information affects our cognitive effort (and behaviour), or vice-versa. We investigate
causal relationship between information presented and cognitive effort (and behaviour) in the context of two
separate studies (N = 40, N = 98), and study the effect of instruction (active/passive task). We utilize screen-
recordings and eye-tracking data to investigate the relationship among these variables. To investigate the causal
relationships among the different measurements, we use Granger’s causality. Further, we propose a new method
to combine two time-series from multiple participants for detecting causal relationships. Our results indicate that
information presentation drives user focus size (behaviour), and that cognitive load (a measure of cognitive
effort exerted) drives information presentation. This relationship is also moderated by instruction type and
performance-level (high/low). We draw implications for design of educational material and learning technol-
ogies.

1. Introduction

Interaction between learners and learning technologies, also re-
ferred to as Learner-Computer Interaction (LCI), is a discipline that aims
to understand and support users’ learning experiences (Giannakos et al.,
2018). Designing technologies to enhance human learning is a complex,
multi-layered challenge, which requires input from interdisciplinary
fields such as Human-Computer Interaction (HCI), Software En-
gineering, Psychology, and the Learning Sciences. Moreover, as the
systematic use of learning technologies is becoming increasingly pop-
ular in the learning sciences, various technologies (e.g., learning man-
agement systems, intelligent tutoring systems) have already been
adopted for teaching and learning practices. However, most con-
temporary learning systems are still oblivious to users’ needs and ca-
pacities, and the usage data generated by these new technologies re-
mains mostly unused in improving end-user interactions.

Humans do not use technology solely in the context of learning (i.e.,
to attain new knowledge). For example, humans use mobile phones to
navigate, communicate, and shop; Internet of Thing (IoT) devices to
optimize their living space and everyday activities; in-car entertain-
ment, and so on. Hence, as humans’ reliance on ubiquitous devices
grows, so does the need for seamless integration of these type of devices
in our daily lives. In other words, humans need technology that blends
into the environment, adapts to users’ cognitive capacities, and works
towards fulfilling users’ needs. This has been an active area of research
following Weiser’s vision of Ubiquitous Computing (Weiser, 1991).
Therefore, research on the assessment of users’ cognitive load1 has
made use of sensor devices to generate findings used to improve the
interaction between users and computing devices (Gjoreski et al., 2018;
Haapalainen et al., 2010). Moreover, despite challenges in inferring an
individual’s cognitive load, there has been considerable progress in the
development of context-aware systems which built upon the
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advancements in the physiology-sensing technology (Matkovič and
Pejović, 2018; Tag et al., 2017). Considering these technological de-
velopments and the importance of cognitive load in learning
sciences (Sweller, 1994), our study aims to use the advances in phy-
siological sensing to investigate the relationship between information
flow2 and cognitive load (and consequently learners’ behaviour, that is
focus and attention change). Our subsequent goal is to derive guidelines
that researchers could follow to improve the design of learning systems
and the overall learning process.

When learning, users’ cognitive processing of instructional materials
needs to be at a correct level; too little processing could results in
below-par learning (as well as users’ boredom), whereas too much
processing could lead to a high cognitive load (and users’ frustration),
potentially inhibiting learning altogether (Mayer and Moreno, 2003).
Thus, information flow is one of the critical factors to consider when
designing digital learning materials (Churchill, 2014). In fact, cognitive
theory of multimedia learning (Mayer and Moreno, 2003) poses twelve
design principles, one of which calls for presenting information ap-
propriately (i.e., the information flow) to enhance processing and en-
able learning. Although it is widely accepted that the information flow
is central to the field of learner-computer interaction, the casual re-
lationship (which causes which) between information flow and users’
cognition remains inconclusive. Thus, we aim to assess users’ cognitive
load in two different learning contexts (i.e., a video-based learning
activity and a problem-solving task) for the purpose of increasing our
understanding of humans as learners and the ways they immerse in a
learning activity based on the information flow. These insights, in turn,
might yield new information not currently reflected in performance-
based measures (Paas et al., 1994).

In the past, researchers have used gaze data to better understand
and quantify information flow (Grant and Spivey, 2003). Gaze data has
been extensively used to explore different actions and conditions when
users interact with learning systems (Bondareva et al., 2013; Kardan
and Conati, 2013). In particular, gaze has been used to understand
various cognitive processes underlying learners’ behavior: cognitive
load during planning and editing tasks(Prieto et al., 2015a); decision
making when confronted with visual objects (Martínez-Gómez and
Aizawa, 2014); attention and split or change of attention during dif-
ferent learning activities (e.g., reading, problem-
solving) (Kizilcec et al., 2014); user focus size in complementing remote
collaboration (Zhang et al., 2017). These examples show that gaze has
been accepted as an accurate proxy of cognitive behavior during LCI.
However, one of the major gaps in these studies is the correlational
nature of the analyses, and even the frequent confusion of correlation
with causation when researchers claim direct causal connections be-
tween two variables (Ferguson and Clow, 2017). The confusion be-
tween causality and correlation and the difficulty in identifying the real
evidence has been discussed in several fields (Bollen and
Bauldry, 2011). This misuse of evidence has also been encountered in
learning technology and learning analytics, for instance with mea-
surements of attainment in numeracy or literacy to be used to provide
evidence of the effectiveness of teachers, schools, or even the states
(Ferguson and Clow, 2017; Klenowski, 2015). In the same vein, our
contribution emphasises a shift from correlation to causality, as an
important step in establishing cause and effect between variables. Be-
fore describing the main contributions of the paper, we would answer

two important questions here:
Why causality is important? Finding out the causal relation between

two measurements is essential to understand the “active connection”
between those measurement Spirkin (1983). A causal relation tells us
about the generation and determination of processes involved, which is
much more information than what is embedded in a correlation. A
correlation only tells us about the mutual association of the processes.
For example, it is widely known that there is a correlation between the
cognitive load experienced by users and the amount of information
provided Mayer and Moreno (1998). However, in absence of a causal
link between the two measurements (i.e., cognitive load and informa-
tion content) it becomes difficult to design real-time adaptive systems
to support processes that enable efficient consumption of the
information Oppewal (2010). Causal relations provide the decision
makers (e.g., teachers, educational technology researchers) a stronger
basis (as compared to correlations) to decide upon the necessary actions
for a given desired result Oppewal (2010).

Who will benefit from knowing the causal relations? Causal relations
provide the decision makers (e.g., teachers, educational technology
researchers) the opportunity to take appropriate actions so that the
users (e.g., students) access the information presented to them in an
efficient and effective manner. The knowledge of the causal relations
between the different measurements can provide content/technology
design guidelines/recommendations (Sarsenbayeva et al., 2020;
Sugihara et al., 2012) to the teachers and educational technology re-
searchers. The understanding of causal relationships could help the
teachers and researchers in avoiding unforeseen situations in the digital
learning settings (Sugihara et al., 2012).

In this paper, we 1) describe the causal relation between informa-
tion flow (as inferred from the screen output), users’ cognitive load (as
inferred from users’ gaze), and users’ behavior (focus and attention
change) in technology enhanced learning (TEL); 2) identify potential
differences from this relation across learning performance/gains; and 3)
identify potential differences in this relation between passive (i.e.,
video-based learning) and active (i.e., problem-solving) tasks. To do so,
we run two distinct studies (i.e., a video-based learning activity and a
problem-solving learning activity) across which we collect screen
output and users’ gaze.

In sum, we make the following contributions:

• We present insights from two studies in which information flow,
users’ cognitive load, user focus size, and attention were captured
during a video-based learning activity and a problem-solving task.
• We show that information flow drives users’ focus and cognitive
load drives the information flow.
• We identify that the causality between these variables is stronger for
low performing students as compared to high performing students.
• We identify that the causality between these variables is stronger for
passive learning task (i.e., video-based learning) as compared to an
active learning task.
• We showcase how we can investigate the causal relationships among
the different measurements in the context of digital learning, and
discuss its potential in learning technology research.

2. Related work

Over the past few decades, researchers have focused on developing
an understanding of how people learn (Mayer, 2008). However, a better
understanding of how people learn does not automatically yield clear
specifications on how to design effective instructional methods and
content (Mangaroska et al., 2018; Mayer, 2008). Taking into account
the advances of learning sciences, interactive technologies, and sensing
technologies (Di Lascio et al., 2018; Giannakos et al., 2019a; Jeremy
et al., 2017), there is a critical need for understanding how people learn
in and by interacting with contemporary learning
environments (Giannakos et al., 2018). Doing so might support the

2 Information flow indicates the actual information content present on the
screen at any given moment (Gray, 2011). Intuitively, it is translated to the
amount of storage required (in terms of bits). Thus, the higher the amount of
storage required to store the current content on the screen, the higher would be
the information flow to the learner. For example, in a video-lecture, if the text
and/or graphics cover two-thirds of the screen, the information flow would be
higher than the condition in which the text and/or graphics cover only a half of
the screen.
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design and development of future learning systems that take full ad-
vantage of a learner’s cognitive capacities.

2.1. Information processing in multimodal learning

Contemporary learning environments are highly interactive and
utilize various communication channels (Moreno and Mayer, 2007). In
the past, their design was often theory-driven, but at present, their
design tends to follow a data-driven approach (Mangaroska and
Giannakos, 2018). However, designing learner-centred environments
requires convergence of techniques and methods from interdisciplinary
fields such as HCI, software engineering, cognitive sciences, and tech-
nology enhanced learning (TEL) (Balacheff and Lund, 2013). Moreover,
analyses of such environments need to utilize representative, objective,
diverse, and accurate data which allows researchers to understand
users’ cognitive capacities and design relevant learning
technologies (Giannakos et al., 2018). To achieve this, researchers re-
quire a holistic understanding of how users interact with the learning
environment in a given context, as well as their associated learning
outcomes.

State-of-the-art learning resources encompass multiple types of
media to deliver learning content to the users (learners) such as,
videos (Sharma et al., 2015a), digital educational
games (Prensky, 2003), and narrated animations (Mayer et al., 2005).
Different media types trigger different senses of the learner. For ex-
ample, videos transmit the information using audio and video
channels (Paivio, 1990), games might trigger motion, gestures of the
body, and problem solving elements in the brain (Giannakos et al.,
2019b). Hence, multimodal learning allows learners to integrate in-
formation from different stimuli into one meaningful
experience (Ochoa et al., 2018). Research in multimedia learning shows
that learners’ understanding can be enhanced if information from more
than two modes is effectively combined (Fletcher and Tobias, 2005;
Mayer, 2002; Paivio, 1990). For example, learners can watch a video of
an experiment in chemistry while listening to their instructor ex-
plaining the expected outcomes. This example conveys the instructors’
responsibility to combine different modes, verbal (e.g., spoken words)
and non-verbal (e.g., images, animations), to achieve a content pre-
sentation that fosters learning and controls the listener’s cognitive
load (Mayer and Moreno, 2003). Because of this, learners are required
to switch between content presented using different modalities; a si-
tuation which could result in learners experiencing substantial in-
formation processing while having limited learning
capacity (Mayer and Moreno, 2003).

Human information processing, in typical problem solving settings,
considers two dimensions: obtaining the required amount of informa-
tion, and the level of cognitive effort required to solve the problem-at-
hand (Simon, 1978). A typical information-processing model consists of
three stages: attention, elaboration, and behavior (Simon, 1978). Ac-
cording to this theory, every human processes information differently
due to the innate differences in their cognitive capacities.

When designing multimodal learning activities, it is not just the
modes that increase the intricacy of the learning (information proces-
sing system); the contextual set up of the learning process (passive vs
active tasks) adds an additional layer of complexity (James et al.,
2002). A passive task (e.g., watching a video) is primarily concerned
with information internalization through some form of memorization
and storage in the working memory (Vecchi and Cornoldi, 1999). An
active task (e.g., debugging code) is a task in which a learner trans-
forms, integrates, and/or manipulates the content, so the task demands
are primarily concerned with processing in working
memory (Vecchi and Cornoldi, 1999). Furthermore, on the one hand, in
a passive task (e.g., watching a video) most of the information is re-
ceived by the user and there is seldom a reciprocal of the information
from the user’s end (the reciprocity is achieved via the user feedback in
videos) (Van Gerven et al., 2002). On the contrary, in an active task the

information is transmitted back and forth between the user and the
system (James et al., 2002). Therefore, while making an attempt to
comprehend the relationship between the information presented to
learners, their information processing behaviour and cognitive efforts,
it is important to take the context (i.e., task type) into account to obtain
a holistic understanding of the interplay between these variables.

2.2. Measuring cognitive load

Information processing inherently requires a certain level of cog-
nitive load (Mayer, 1997; Paas et al., 1994). cognitive load is a multi-
dimensional construct representing the level of perceived effort for
thinking and reasoning while performing a particular task (Paas et al.,
2003). In the learning context, one of the probable causes of cognitive
load might be learners’ interaction with the learning technology (the
content and system itself) (Mayer and Moreno, 2003). Managing cog-
nitive load is helpful in improving learning and avoiding stress, errors,
and low performance (Prabhakharan et al., 2012; Sweller, 1994). Effi-
ciently managing cognitive load would require an effective way of
measuring the cognitive load (Brunken et al., 2003).

The methods used for measuring cognitive load can be divided into
four broad categories (Brunken et al., 2003): subjective direct (self-re-
ported stress), subjective indirect (self-reported mental effort), objec-
tive direct (brain signals and dual task performance), and objective
indirect (physiological). Subjective indirect methods like post-hoc self-
reports of cognitive load (Kaiser et al., 2016; Paas et al., 2003), NASA
task load index (NASA-TLX) (Hart and Staveland, 1988; Prieto et al.,
2015a) have an innate limitation of not occurring in real-time (Prieto
et al., 2017). Subjective direct methods (Jovanović et al., 2019;
Van Gog et al., 2012) are considered to be favourable, however because
they are done at a specific frequency and at multiple intervals during
the task performance, they are susceptible to being distracting in
learning contexts. Moreover, identical timing and frequency might not
work for tasks with different requirements and/or complexity. Both the
subjective direct and indirect methods of measuring cognitive load
cannot account for rapid changes in the learner’s cognitive load, as for
example encountered when learning programming or reading a pop-up
information during a video streaming (Palinko et al., 2010).

Objective direct measures of the cognitive load (Peitek et al., 2018;
Siegmund et al., 2014) through EEG or fMRI devices, negatively affect
the interaction space and ecological validity of the study (Funk et al.,
2016; Kosch et al., 2018). For example, modern off-the-shelf EEG caps3

might be discomforting for the users over a long period of interaction,
while fMRI machines limit the motion and the interaction with the
learning technology. Another objective direct way of measuring cog-
nitive load is primary and secondary task (dual-task performance)
techniques (Brünken et al., 2002; Verwey and Veltman, 1996). In this
technique, participants are required to solve an additional task with
increasing complexity along with the primary task. The cognitive load
is measured by the performance on the secondary task. This is not ideal
for the motivation and attention of the learner while interacting with
the learning technology.

Finally, the objective indirect measures of cognitive load overcomes
these aforementioned limitations. Objective indirect measures support
the automated measurement of cognitive load, even when no apparent
change in task performance can be detected (Brunken et al., 2003). For
example, a model combining the median of electrocardiogram and heat
flux has shown high accuracy at distinguishing low and high levels of
cognitive load (Haapalainen et al., 2010); pupilometric data was used
to measure fluctuating levels of cognitive load in drivers (Palinko et al.,
2010); galvanic skin response (GSR) was found to demonstrate changes
in germane cognitive load levels (Gjoreski et al., 2018; Shi et al., 2007);
and even real-time automatic cognitive load measured from

3 https://neurolite.ch/en/products/eeg/enobio-wireless-eeg.
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speech (Yin et al., 2007).Overall, task-invoked pupillary response is a
reliable and sensitive measurement of cognitive load (Granholm et al.,
1996).

One of the often used physiological measures (objective indirect) of
cognitive load is eye-tracking (Buettner, 2013; Klingner et al., 2008;
Poole and Ball, 2006). For example, in the past Backs &
Walrath (Backs and Walrathf, 1992) used a person’s Number of fixa-
tions, Fixation duration mean, and Fixation rate (fixations/s) to mea-
sure cognitive load. Hyona et al. (Hyönä et al., 1995) used pupil dia-
meter in language-related tasks (not just visual). Later,
Boucsein (Boucsein, 2000) used pupillary diameter, saccadic move-
ments, and eye-blink rate to measure cognitive load. Their findings
were confirmed by Poole (Poole and Ball, 2006). In their review, they
highlight how pupil diameter can be used for computing cognitive load.
Furthermore, Klingner et al. (Klingner et al., 2008), through both re-
plications and new studies, strengthen the relation between pupillary
response and cognitive load in a variety of visual and non-visual
(reading) tasks. More recently, Buettner (Buettner, 2013); Prieto (Prieto
et al., 2017; 2015b), and Gollan (Gollan et al., 2016) combined pupil
diameter mean, SD, saccade speed, and number of fixations (>500ms)
to compute an overall measurement of cognitive load and demonstrated
this to be a reliable and accurate objective indirect measurement of the
same.

Consequently, observing learners’ interactivity with and in a
learning technology using eye-tracking measures, has shown to be an
appropriate technique in measuring cognitive load, as such measure-
ments can be done in real-time without interrupting the learning
(problem solving) process, limiting the interaction space, or sacrificing
on a study’s ecological validity.

2.3. Measuring user focus size and attention change

Eye-tracking provides researchers with a powerful method to cap-
ture a users’ attention and focus on the screen. Most of the methods
currently used to quantify user focus size and attention changes employ
eye-tracking techniques (Holmqvist et al., 2011). To measure user focus
size (i.e., what proportion of the screen the user is covering in a given
time window), two primary ways of quantification techniques are used:
fixation and saccades (Pappas et al., 2018; Radach et al., 2008) and
gaze data entropy (Olsen et al., 2018; Sharma et al., 2018a). The ratio
of fixation and saccade (Pappas et al., 2018; Radach et al., 2008) can
inform whether the user is focused (not the same as paying attention).
Several studies in different contexts such as reading (Radach et al.,
2008), web-usability (Pappas et al., 2018), and scene perception
(Unema et al., 2005), have shown that a high fixation to saccade ratio
indicates a local focus, meaning that the user is looking at a small part
of the screen; while a lower value of this ratio depicts a global focus,
meaning the user is looking at a wider part of the screen than the former
case. Another method used to quantify user focus size is through a
rectangular grid overlaid on the screen which was used to compute the
proportionality of gaze-time distribution and the entropy of this pro-
portionality vector (Sharma et al., 2018b). Previous work has shown
entropy to be a reliable objective indirect measurement of user focus
size in different contexts such as debugging(Sharma et al., 2018b),
collaborative problem solving (Sharma et al., 2018a), and in-
telligent tutors(Olsen et al., 2018).

To measure user attention change, transitions between Areas of
interest (AOIs) on the screen (Holmqvist et al., 2011) is one of the
widely used methods. The AOIs can be defined in three different ways:
hypothesis driven (when the researcher knows where the user needs to
pay attention) (Allopenna et al., 1998; Richardson et al., 2007), grid
based (overlaying a rectangular grid on the screen) (Foulsham, 2008;
Goldberg, 1999), and data driven (automatic unsupervised clustering of
areas of screen the users have been paying attention, e.g.,
heatmaps) (Blignaut, 2010; Hernandez, 2007). Hypothesis driven AOIs
and the transitions between them (i.e., attention change) have been

used to compare between experts/novices (Just and Carpenter, 1980),
high/low performers (Sharma et al., 2015b), high/low task
performance (Allopenna et al., 1998). One of the problems of this
method roots from the possibility of unexpected behaviour from the
users, which might lead to overlapping fixation distributions and thus
the researcher might need to alter the size of the predefined
AOIs (Orquin et al., 2016). The data-driven method of creating AOIs has
been used mostly for visualizations such as,
heatmaps (Hernandez, 2007) and attention maps (Blignaut, 2010).
Since, data-driven AOIs are mostly created in an unsupervised manner
and are susceptible to individual changes, hence they create a problem
in comparing different user groups (Wulff, 2007). A middle ground to
hypothesis-driven and data-driven AOI construction is overlaying a grid
onto the screen and measuring the attention change based on this
grid (Olsen et al., 2018). The grid AOIs are fixed from pre-gaze-analysis
phase; however, the researchers can modulate the size of the grid to fit
their requirements (Sharma et al., 2017). Grid based AOIs were used to
compare the attention change across users to distinguish experts from
novices (Sharma et al., 2013), high performing students from low
performing students and the different levels of task-based
success (Sharif and Maletic, 2010).

3. Research questions and rationale for the studies

As detailed in the previous section, there are a number of previous
studies (Foulsham, 2008; Mayer, 1997; Radach et al., 2008; Reingold
et al., 2001; Sharma et al., 2015a) showing evidence of a relation be-
tween information presented to learners, their cognitive load, attention
shift, and focus. Moreover, these studies established eye-tracking as a
practical method to measure a user’s cognitive load, attention shift, and
focus. However, the results from these studies are, to the best of our
knowledge, correlation-based. Thus, in this contribution, we propose a
shift from correlational to causal analysis in multimedia learning stu-
dies. We study the same measurements as in the previous research, but
from a different statistical lens i.e., information flow (Mayer, 1997),
cognitive load (Paas et al., 2003), attention shift (Holmqvist et al.,
2011) and user focus size (Sharma et al., 2018b). The main reason for
choosing these particular measurements was to show how we can arrive
at different implications using the same measurements as before but
using a analytical shift from correlation to causation.

To present our method of how the causation among different vari-
ables could be established from the already collected data, we ground
the methodology in two different studies. Theses studies were con-
ducted in different years, preliminary hypotheses, and covered different
population of learners. The learning contexts were also different: the
first study was contexualized in a video based learning paradigm, while
the second study was setup in a code-debugging learning by problem
solving paradigm. These two studies share three basic commonalities:
1) both are based on individual learning practices (e.g., video based
learning and debugging); 2) both have been investigated within the
multimedia-based learning paradigm; and 3) both learning settings
require deep visual information processing from learners to achieve
high learning outcomes. However, these two learning contexts present a
contrast in the way the information is presented to the learners and the
way learners interact with the tasks. In the video-based learning study,
the content is provided to the learners in a monologue with the content
changing every few seconds as the teacher writes on the blackboard.
The learners could manipulate the content only via the video playback
controls; thus, this study depicts a passive learning activity. Contrary to
this, the code-debugging activity is within the learning-by-problem-
solving paradigm. The information provided to the learners (i.e., the
code) is mostly textual and static, so learners are allowed to change the
content on the screen in order to solve the task; thus this study depicts
an active learning activity. By selecting two different learning activities
(i.e., active vs passive) in two different contexts (i.e., video-based vs
debugging), and with different ways of information presentation (i.e.,
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static vs dynamic), we aim to demonstrate our method of causal ana-
lysis. Consequently, through this contribution, we address the following
research questions:

1. What is the causal relation, if any, between the information pre-
sented to users, their behaviour (focus and attention change) and
cognitive load?

2. How does learning performance relate to the causal relation be-
tween the information presentation and the user behaviour?

3. How does this causal relation change with a different type of in-
struction?

In terms of learning, both studies consider an objectivist view of
learning. This is a class of cognitivist learning theory that considers
knowledge as an independent entity irrespective of the individual
learner (Hannafin, 1997; Phillips, 1998). The task for the learner is to
recognize, organize and integrate the new learning objects and events
with existing knowledge (Hannafin, 1997; Jonassen, 1991). Within the
objectivist view of learning the emphasis is on well defined learning
objects (Mergel, 1998; Phillips, 1998). One of the main strengths of
such an approach is the ability to address novice
learning (Phillips, 1998). In this contribution, these are learning the
content from the video in the first study and learning to debug a code in
the second study.

We measured the learning performance in both the studies. In the
video-based learning study the performance was measured by the dif-
ference between the pretest and the posttest scores (learning gain).
While in the debugging study, the performance was simply the number
of bugs rectified in the code by the students. In both the studies, ob-
taining the higher performance required the students to use the pre-
viously acquired knowledge (in case of the video-based-learning, re-
cent; and in the case of debugging, practice-based) to solve the given
problems (rectifying the bugs or answering the questions). Table 1 in-
dicates that the performance slightly varies across the two different
studies, but with no statistically significant difference. A chi-square test
between the two normalised distributions (using MinMax normal-
ization) shows that there is no significant difference in the two per-
formance measures (χ2 = 45, p = 0.34). Moreover, the mean values
and their standard deviations depict that there was a healthy distribu-
tion of the cognitive performance in each of the tasks (i.e., we did not
have a very difficult or very easy task). Another commonality between
the two tasks is that for the user to attain high cognitive-performance
score, students needed to devote the required levels of attentional and
cognitive processing.

To test relationships between variables in HCI, researchers have
adopted particular statistical tools. Most widely used is the frequentist
null hypothesis significance testing. Similarly, researchers have em-
braced various quantitative standards, such as p-values and dichot-
omous testing procedures, which have ultimately proven to be poor at
investigating bi-directional, simultaneous, and continuous
relationships (Dragicevic, 2016; Dunlop and Baillie, 2009). A new
practice of analysing the causal relations between observable variables
is becoming popular in scientific domains such as neuroscience (Ding
et al., 2006; Goebel et al., 2003), user consumption (Narayan and

Smyth, 2005), stock market (Hiemstra and Jones, 1994),
economics (Joerding, 1986; Thornton and Batten, 1985), and also
emerges in HCI (Kirk et al., 2016; Ziabari and Treur, 2018).

4. Granger causality: Approach

Hill (1965) (Bradford Hill, 1965) provided certain criteria for any
two time series to be considered having a causal relationship between
them. These are regarded as the empirical conditions for causality be-
tween two time-series. In this section, first we will first explain these
‘empirical’ conditions for the causality between two time-series. Then,
we will introduce Granger’s definition of causality, and further show
how and to what extent this definition satisfies conditions for causality.
Finally, we will show how Granger’s causality can be extended to a
group of participants.

4.1. Hill’S criteria for causality

Bradford Hill (Bradford Hill, 1965) proposed the following criteria
for causality between two observational time-series, stating that If a set
of necessary and sufficient causal criteria could be used to distinguish
causal from non-causal associations in observational studies, the job of
the scientist would be eased considerably. With such criteria, all the
concerns about the logic or lack thereof in causal inference could be
forgotten: it would only be necessary to consult the checklist of criteria
to see if a relation were causal – Hill, 1965 (page
1) (Bradford Hill, 1965). Following is the list of the conditions proposed
by Hill:

• Strength: A relationship is more likely to be causal if the correlation
coefficient is large and statistically significant.
• Consistency: A relationship is more likely to be causal if it can be
replicated.
• Specificity: A relationship is more likely to be causal if there is no
other likely explanation.
• Temporality: A relationship is more likely to be causal if the effect
always occurs after the cause.
• Gradient: A relationship is more likely to be causal if a greater
exposure to the suspected cause leads to a greater effect.
• Plausibility: A relationship is more likely to be causal if there is a
plausible mechanism between the cause and the effect

4.2. Granger’S definition of causality

Granger causality (Granger, 1969) tests for the ability of one series
to predict another one – in our case, whether information flow provides
sufficient information to predict 1) user focus size, 2) cognitive load,
and 3) user attention flow. Granger causality investigates bi-directional,
simultaneous, and continuous relationships and has been employed to
several studies in HCI (e.g., (Abdullah et al., 2015; Madan et al., 2010)).
The basic definition of Granger causality has two
assumptions (Granger, 1969). First, it assumes that the cause occurs
prior to the effect. Second, the cause contains information about the
effect that is more important than the history of the effect itself. Al-
though Granger causality is defined for linear and stationary time-series
contexts, variations for non-linear (Ancona et al., 2004; Chen et al.,
2004) and non-stationary (Ding et al., 2000; Hesse et al., 2003) data
exist.

The main idea behind Granger’s definition of causality is that if the
lag (past values) of variable one predict the current value of variable
two in a better manner than the lags (past values) of the variable two
itself, we can infer that variable one causes variable two. To arrive at
such an inference, there is a simple method to be followed. Let us take
the case of two variables X and Y. To determine whether X Granger-
causes Y or the other way around, we create two models. The first
model predicts the current value of Y using the past values of Y (Eq. 1),

Table 1
Table showing the descriptive statistics of the two learning performance mea-
sures. Dip test was used to test the bi-modality of the two distributions (with the
null hypothesis of having uni-modal distribution).

Indicator Study 1 Study 2

Mean 3.35 4.42
SD 1.87 3.13
Median 3 4
Bimodality test Statistic 0.10 0.08
Bimodality test p-value 0.0001 0.001
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while the second model predicts the current value of Y using the past
values of X (Eq. 2). We then compare the quality of the prediction for
both models; if the second model outperforms the first model, we infer
that X Granger-causes Y.

To conduct the data analysis, we follow a number of statistical steps.
First, we perform data treatment. We divide the dataset comprising of
information flow, user focus size, cognitive load, and user attention
change into 10 second windows for further analyses. We then test for
stationary time series: a Ljung-Box test is used to determine whether
there are significant non-zero correlation coefficients at lags 1–15.
Small p-values suggest that the time series data is stationary. We also
identify the optimum value for the ‘lag’: the number of previous data
points considered for modeling the causality. The value is identified
based on the Akaike information criterion (AIC) value of the model. We
create models with different values of lag that has to be taken into
account for the Granger causality consideration and select the model
with the lowest AIC value.

Next, we test for Granger Causality (Granger, 1969) to examine the
causality between the different variable pairs (information flow – user
focus size; information flow – cognitive load; information flow – user
attention change). As aforementioned, the basic principle of Granger
causality is to compare two models to test whether x causes y. The first
model predicts the value of y at time t using the previous n values of y.
The second model predicts the value of y at time t using the previous n
values of both x and y. The comparison of the two models can tell us
whether the history of x contains more information about y than the
history of y itself. If this is the case then we can say that x Granger-causes
y.

= + +
= =

y t x t j y t j t( ) ( ) ( ) ( )
j

p

j
j

p

j
1

11
1

12 1
(1)

= +
=

y t y t j t( ) ( ) ( )
j

p

j
1

22 2
(2)

Where,
p = model order, maximum lag included in the model
α = coefficients matrix, contribution of each lag value to the pre-

dicted value
ε = residual, prediction error
One might argue about the choice of our method to analyze the

causality between the different pairs of measurements. In this paper, we
used the definition of causality provided by Granger. There are three
other methods that could be used to show the causality between dif-
ferent variables: 1) Structured Equation Modelling (SEM, (Edwards and
Bagozzi, 2000)) 2) Cross-convergent mapping (CCM, (Sugihara et al.,
2012)) and 3) conducting an intervention experiment where the hy-
pothesized ‘cause’ is controlled and the hypothesized ‘effect’ is
measured (Shadish et al., 2002). SEM does not necessarily contain the
information required to consider a causal relationship. Statistically
speaking, testing a SEM is not a test for causality. There are certain
mathematical formulation under which SEM can be used for causal
inference (Steyer, 2013; Steyer et al., 2002); however, the solutions are
not available commercially. Bollen and Pearl (Bollen and Pearl, 2013)
provide a detailed account describing how SEM should not be used for
modelling causal relations between variables.

The second method, that is, CCM is useful only in the cases where
the time series is stationary (i.e., mean and variance of the variable do
not change over time) and non-linear (i.e., there is no auto-correlation
in the time series). Eye-tracking data is stationary (as revealed by the
Ljung-Box test) but auto-correlated (where users look at current time
instance vastly depends on where they were looking at previous in-
stances). This is why CCM is not an adequate method for such data.

In the case of identifying causal relations between two variables
through an experimental or pseudo-experimental setup, such setups are
typically costly or require an extensive duration in order to identify the

cause-effect relationship between the two variables in
question (Chambliss and Schutt, 2018). Moreover, it has also been
shown that for longer time series data the Granger causality outper-
forms other contemporary methods (Zou and Feng, 2009).

4.3. Intersection between hill and granger

Granger causality satisfies a subset of Hill’s criteria, such as strength
(selecting the model that is more explainable), consistency, temporality
(modelling the present value of hypothesised effect based on the lags of
the hypothesised cause), plausibility, and coherence (the relations can
be backed by the theory and behavioural explanations). Experiment
and Analogy are contextual. For example, during learning sessions, a
suggested (Granger) causal relation can be tested using an intervention
experiment while testing for Granger causality in analogous contexts is
possible based on the temporal data collected. Finally, the ‘gradient’
criteria cannot always be satisfied by the Granger’s definition for
causality because there is no guarantee that including more lags (a
longer history) from the suspected cause will increase the predictability
of the present value of the suspected effect.

5. Our proposed method: Combining data from more than one
participant

Granger’s definition and analysis of causality is conducted on a pair
of time-series. Consider two time-series “X” and “Y”. “X” is said to
Granger-cause “Y” if the past of “X” predicts the future of “Y” more
efficiently than the past of “Y” itself. Once we have established that “X
Granger-causes Y”, we require a measure of “by how much?” This is
computed as the efficiency of the model predicting the future of ”Y”
using past of “X”. At this point, one might ask what if the past of “Y”
predicts the future of “X” as well? In such case we consider the model
with higher efficiency and to answer “by how much”, we use the dif-
ference of the two efficiencies.

One contribution of this paper is to show how one could use the
same analysis proposed by Granger to establish a causal relation be-
tween a pair of variables measured for one ecosystem. In the case of
human studies, each participant could be considered as an ecosystem
producing the measurements. This requires an additional level of ana-
lysis that builds upon the results of Granger causality analysis for each
individual. To be able to compare groups of participants, we need a way
to represent the individuals on a Cartesian space (at least 2D). This has
a requirement of computing two variables from the Granger causality
analysis of each individual participant. Among the options for these two
variables are the effect size and the significance of the Granger causality
test for each individual participant.

For the effect size of the causal models, we calculate partial η2. The
difference between the η2 values of the two models (x causes y and y
causes x) gives us the overall effect size for the causal relationship be-
tween x and y (Section 4.2). The difference in the partial η2 values for
the two models tells us about how much more the variance is explained
by chosen causal model over the other mode. This could be an in-
dication of the ‘effect size’ of the causal relation between two variables.

Next, the difference from the linear inter-dependency (correlation)
is calculated by creating a simple linear model to measure the linear
dependency (i.e., correlation) between two variables. Again, we use
partial η2 to measure the effect size of the linear relation of two vari-
ables. One of the necessary conditions for the causality between two
variables is that they should be correlated. Hence, the difference be-
tween the causal and the correlational model would depict the sig-
nificance of the causal relation. The difference between the partial η2

values of a linear model and the causal model would indicate how much
more the variance can be explained by the causal model as compared to
the correlational model.

Fig. 1 shows how each individual could be represented as a 2D point
on the ‘effect size’ – ‘significance’ Cartesian space. To identify potential
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significant differences between study 1 (passive task) and study 2 (ac-
tive task), and the high/low performance/learning gain, we compare
the causal relationships for the two studies. Once we have the effect size
of the causal models for each study, we compare them using a Wilcoxon
test. We use a non-parametric test here because there is no theoretical
or practical basis for assuming that effect sizes would follow a known
statistical distributions (e.g., Gaussian, Poisson, Student-t). Using this
method we could combine multiple pairs of time-series into one ana-
lysis, which constitutes the main contribution of the paper. This method
provides a unique way to combine empirically collected time-series
data from multiple users while analyzing the causal relationships be-
tween the two time-series for each users.

In particular, we apply the proposed method to respond to the fol-
lowing Hypotheses (H) that are stemming from the RQs described in
Section 3.

• H1a: The information flow drives the learners’ focus size.
• H1b: Learners’ focus size drives the information flow.
• H1c: The casual relationship between learners’ focus size and in-
formation flow is different between video-based learning and de-
bugging.
• H2a: The information flow drives the learners’ cognitive load.
• H2b: Learners’ cognitive load drives the information flow.
• H2c: The casual relationship between learners’ cognitive load and
information flow is different between video-based learning and de-
bugging.
• H3a: The information flow drives the learners’ attention change.
• H3b: Learners’ attention change drives the information flow.

• H3c: The casual relationship between learners’ attention change and
information flow is different between video-based learning and de-
bugging.

6. Measurements

Eye position was measured in x-y coordinates of the display monitor
using the SensoMotoric Instruments (SMI) RED 250 tracker. The device
was mounted to the bottom of the computer monitor used by partici-
pants. It operates at a distance of 60–80cm and has a high accuracy of
0.5 degrees. The contact-free setup of the eye tracker allows for free
head movement of 40cm x 20cm at a 70cm distance. We calculated the
following measurements from the eye tracking data and the screen re-
cordings: Information Flow, Cognitive Load, user focus size, and
Attention Change.

6.1. Information flow

Information flow (i.e., stimulus entropy) was computed for each
frame of the screen recording in Study 1 and Study 2. This indicates, in
a direct manner, the amount of information transmitted to the student.
To compute the stimulus entropy for each frame (Eq. 3), using a
window of 10 seconds, we have used the three separate grey images
(one each for red, green, and blue channels). This gives us three 2D
arrays of values between 0 and 255. We then compute the Shannon
entropy of these three arrays using the following formula. This is a
widely used method to compute RGB image entropy in image proces-
sing applications (Gonzalez and Woods, 2007).

Fig. 1. A visualization of our approach to summarize causality results for multiple participants. For each participant we calculate the difference between the two
causal models (‘x causes y’ and ‘y causes x’) and the respective difference between causal model and correlational model. These two values become the (x,y)
coordinates of a data in our scatterplot. All retained values (blue dots) are used to calculate the x-axis mean, which represents the mean direction of interaction
between variables. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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=Entropy H X p X p X( ) ( )log ( ) (3)

Where X is the pixel intensity (between 0 and 255) and p(X) is the
probability of finding a pixel with intensity X.

The mean entropy4 of the three arrays gives us the stimulus entropy
(i.e., Information Flow). As indicated before, Shannon entropy is a di-
rect measurement of the information content of the communication
medium. This can be seen in the different cases shown in the Fig. 2 for
the first study and in the Fig. 3 for the second study. We can see how the
amount of information present on the screen changes with the content
of the screen. The entropy values increase in both the case of video
(Fig. 2) and IDE (Fig. 3) from top to bottom panels, as it can be also seen
from their color histograms, which show the information content on the
screen.

The basic intuition behind Shannon entropy (since it is key to un-
derstanding the information flow) is that an unlikely event contains
more information than a likely event. In the case of screen’s entropy,
the blank screen corresponds to events for which all the pixel values are
the same. Therefore, the blank screen will have least entropy and by
extension the least information content. Contrary to the blank screen, a
screen full of text and graphics will have a lot of different pixel values
and having a given combination of pixel values (which creates the
content on the screen) is highly unlikely. Therefore, a screen filled with
content will have high entropy and thus more information content.

6.2. Cognitive load

We use the same definition of cognitive load as Pass
et al (Paas et al., 2003), i.e., mental load (interaction between task and
learner characteristics), mental effort (capacity allocated due to the
demands of the task), and performance (learner’s achievements). To
measure the cognitive load of participants (Eq. 4), we calculate the four
measures proposed by Buettner (Buettner, 2013) (i.e., mean pupil
diameter, pupil diameter standard deviation, saccade speed, and
number of fixations longer than 500ms) for every participant. This way
we can estimate cognitive load as described in the existing
literature (Prieto et al., 2015a; 2015b; Schultheis and Jameson, 2004;
Szulewski et al., 2014). These measures are then combined into one
quantity to depict the cognitive load of the students. Pupil diameter
(mean and SD) and number of long fixations contribute positively to the
unified measure while the saccade speed contributes negatively.
Moreover, for the pupil diameter-based variables (Mean and SD), we
use the first 10 seconds of each participants’ data to normalize all the
data for that particular participant. This is done to avoid bias caused by
individual properties of the participant and the environmental prop-
erties, as they can severely impact the pupil diameter. For example, age,
time of the day, and caffeine levels have been shown to affect mea-
surements (for details see (Holmqvist et al., 2011). Based on the results
of Buettner (Buettner, 2013), we compute cognitive load using the
following formula. This formula was also used
in Giannakos et al. (2020); Prieto et al. (2017).

>
+

>
+

>
+

>

if PDM median PDM
if PDM median PDM

if PDS median PDS
if PDS median PDS

if NLF median NLF
if NLF median NLF

if SS median SS
if SS median SS

{0 ( )
1 ( )}

{0 ( )
1 ( )}

{0 ( )
1 ( )}

{1 ( )
0 ( )} (4)

Where PDM = Pupil diameter mean, PDS = Pupil diameter SD,
NLF = number of long Fixation, SS = saccade speed. This formula is
obtained from the affinity that the following measures display with the
cognitive load: mean pupil diameter, pupil diameter standard devia-
tion, saccade speed, and number of fixations longer than 500ms5. These
gaze measurements show the highest discriminating power when it
comes to cognitive load measured using a dual task (a dual task is a
procedure in which participants are given one task with increasing
difficulty as well as another basic task, and cognitive load is measured
as the rate of mistakes in the basic task (Brünken et al., 2002)).

6.3. User focus size

To measure user focus size we consider gaze entropy (Eq. 5). We
overlay a 50-by-50-pixels grid on the screen, and we consider the whole
experimental session in 10-second time windows. Then, we compute
the proportion of time spent in each window looking at each block on

Fig. 2. Typical examples for stimulus information flow calculation (video-
based-learning-study). We can visually notice that the top figure has the least
amount of information and the bottom figure has the most amount of in-
formation. This can also be observed in the respective histogram representa-
tions next to each image. This figure shows that Computing the entropy of these
images can give us an estimate of the information presented on the screen.

4 We also analyzed the data using the sum of the entropy of the three chan-
nels, and the overall results remain consistent. The main reason for similar
results using both methods could be because of the scale invariant nature of the
Granger causality (using the sum instead of the average just increases the range
of the measurement).

5 In addition, we took the weighted average of the four values (using the
inverted values for saccade length, since it has negative impact on the cognitive
load) and re-analyzed the data. The results remain consistent as before. The
main reason for similar results using both methods could be due to the fact that
the linear regression in continuous case would be replaced by a quantile re-
gression in the discrete case. In both the cases the differences between various
models should not change drastically.
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the grid. The process results in a two-dimensional proportionality
vector for each window. Consequently, the gaze entropy is calculated as
the Shannon entropy of the proportionality vector. The decision for
using the 10-second window for computing the proportionality vector is
inspired from previous work (Prieto et al., 2015b; Sharma et al., 2017;
2018a).

=
=

user focus size p log p_ _ ( )
i

M N

i i
1

*

(5)

where, pi is the proportion of time spent looking at the ith block on the
grid that has M rows and N columns.

This measure tells us about the focus size of the participant. A value
of 0 indicates that the participant is looking at only one block on the
grid during the specified window. Hence, we measure the level of un-
certainty of a random variable: the objects looked at by the participants.
Theoretically, the highest possible entropy value is the logarithm of the
number of blocks in the grid, in our case 2.76. This is the maximal value
that would indicate a uniform distribution of gaze time over the grid.
Thus, a high entropy indicates that the participant was looking at a
wider range of objects on the screen; in other words, the participant had
a broader focus area or ’user focus size’.

Finally, it is worth mentioning that the ’user focus size’ is not related
to ‘attention level’. The user focus size merely captures the number of
objects the participant is looking at during a fixed time window. Fig. 4
shows two typical examples (Contrasting case) of entropy values. This

measure has been used previously to quantify visual focus (Olsen et al.,
2018; Sharma et al., 2017; 2018b). We can see in the left panel of Fig. 4
that the user is looking at almost everything present on the screen (i.e.,

Fig. 3. Typical examples for stimulus information flow calculation (debugging-study). We can visually notice that the top figure has the least amount of information
and the bottom figure has the most amount of information. This can also be observed in the respective histogram representations next to each image. This figure
shows that Computing the entropy of these images can give us an estimate of the information presented on the screen.

Fig. 4. Typical examples for user focus size calculation. In this example the
screen contains the example code and the rectangular grid is overlaid on the
screen. The circles are the fixations, the arrows are the saccades and the di-
rection of the arrows shows the direction of the gaze movement. Both the panels
represent the gaze of two learners in the same time window. In the left panel,
we can observe that the learner’s gaze covers more content than the learner’s
gaze in the right panel. Therefore the focus size of the learner on the left panel is
higher than the focus size of the learner on the right panel.
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a large number of elements on the screen) and hence the user focus size
would be high in this case because the Shannon entropy of the part
looked at by the user would be high. Conversely, in the right panel of
Fig. 4 the user is looking at a limited number of elements on the screen,
therefore in this case the user focus size would be low. We would like to
empathizes at this point that we do not claim any relation (present or
absent) between attention and user focus size.

6.4. User attention change

To calculate changes in users’ attention we consider gaze stability.
Again, we utilize the grid and proportionality vectors used to compute
the user focus size. The only difference is that gaze stability is computed
for pairs of consecutive 10-second windows. Gaze stability represents
the similarity between the objects looked at by the participant across
two consecutive windows (Sharma et al., 2018b). The inverse of the
gaze stability represents ‘User Attention Change’. In our analysis we
compute the cosine similarity between proportionality vectors of the
two windows. The value ranges from 0 to 1 (while inverting we take
precaution to not divide by zero). A stability value of 1 indicates that the
participant was looking at the same set of objects during two con-
secutive windows (i.e., no user attention change), whereas a stability
value of 0 indicates that the participant was looking at a completely
different set of objects during two consecutive windows (i.e., complete
user attention change). Fig. 5 shows the contrasting cases for the User
attention change computation. On the top panels we can see that in the
two consecutive time frames the user is looking at different set of ob-
jects (in other words the user is gazing upon different sets of grids
during two consecutive time frames). In this case the cosine similarity
value for the 2D proportionality vector will be low and the user at-
tention change will be high. Whereas, in the bottom panels of Fig. 5,
there is a considerable overlap in the objects looked at (or the grids
gazed upon) during the two time frames. Therefore, the cosine simi-
larity value will be high and the user attention change will be low.

7. Study 1

The first study is contextualized in a video-based learning en-
vironment (i.e, a typical MOOC). In particular, watching a video is a
passive task, although the information presentation with respect to time
is dynamic. This learning setting requires participants to understand
and memorize information using their auditory, visual, and cognitive
capacities in their working memory. However, this environment does
not engage participants in higher-order thinking, such as apply, ana-
lyze, and evaluate, nor do they receive any immediate feedback.
Moreover, once the participant decides to be exposed to particular in-
formation utilizing a video, they can exercise little control over that
information. In other words, the participant has no control over the
content of the information, or the mode through which the information
is conveyed. The only control the participant has is by pausing, going
forward, or going backwards in the video at a given moment.

7.1. Participants

A total of 98 students from a European university participated in a
lab study (mean age = 24.68, sd = 3.09, 78 males, 20 females).
Participants individually watched two digital drawing board (Khan-
academy style) videos on “resting membrane potential” (see Fig. 6), a
topic on which they had little to no prior knowledge. The combined
length of the videos was 17 minutes and 5 seconds. While watching the
videos, the participants had full control over the video player. The vi-
deos were downloaded and were shown to the students using a video
player on a local machine to remove the attention deficit caused by
viewing the videos on YouTube. The participants had no time constraint
as to the completion time of watching the videos.

7.2. Procedure

Upon arrival at the laboratory, participants signed an informed
consent form. After this, and prior to the video watching task, each
participant had to pass an automatic eye-tracking calibration routine to
accommodate the eye tracker’s parameters for each participant’s eyes to
ensure accuracy in tracking the gaze. Participants’ gaze during the
debugging task was recorded using an SMI RED 250 eye-tracker at
250Hz. Next, participants were asked to answer a pre-test, which re-
quired answering 10 questions about the video content. After this task,
participants were given up to 30 minutes to watch the video with full
control over the video-playback. The participants spent an average of
20 minutes and 35 seconds (sd = 4 min. 3 sec.) with the videos. Once
the participants finished watching the videos, they answered a post-test
questionnaire containing 10 questions. For their participation in the
experiment, participants were rewarded with an equivalent of USD 30.

Fig. 5. Typical examples for user attention change calculation. In this example
the screen contains the example code and the rectangular grid is overlaid on the
screen. The circles are the fixations, the arrows are the saccades and the di-
rection of the arrows shows the direction of the gaze movement. The top and
bottom panels show gaze patterns of two learners in two consecutive time
windows. We can observe that the intersection of the items looked at in two
time windows is higher in the bottom panel than in the top panel. This shows
that the user attention has higher change in the top panels than in the bottom
panels.

Fig. 6. Screenshot of the video presented to the users in the first study based on
the video based learning paradigm.
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7.3. Learning outcome – learning gain

Students answered a pre-test before watching the video content and
they answered a post-test after watching the video content. The
learning gain was calculated simply as the difference between the in-
dividual pre-test and post-test scores. The minimum and maximum for
each test were 0 and 10, respectively. There was a floor effect for the
pretest (mean = 0.87, median = 0, SD = 1.1). This is why we chose to
use the simple difference between the posttest score and the pretest
score as the learning gain. The mean for the learning gain was 3.35 (SD
= 1.87). A bi-modality test (dip-test6) revealed that the learning gain
distribution was bi-modal (D = 0.10, p = 0.0001). Therefore, once we
obtained the score for the learning gain, we used a median split
(median = 3) to distinguish between ‘high’ and ‘low’ levels of learning
gains.

7.4. Analysis

To answer RQ1 in the context of video based learning, we conduct
the Granger causality analysis as presented in the Sections 4.2 and 5. To
answer RQ2 in the context of video based learning, we compare the
students with high and low learning outcomes (learning gains in this
case) using the Wilcoxon test because the effect sizes are not normally
distributed. Table 2 shows the pairwise correlation among the mea-
surements and Fig. 7 visualizes the measurement pairs.

7.5. Results

We investigated whether the information flow is controlled by the
user focus size or the other way round. For this, we analysed the rela-
tion based on Granger causality between information flow and the user
focus size in Study 1. The results are shown in the middle panels of
Fig. 8 (left panel). From the left panel of Fig. 8 we can see the mean of
the effect size, i.e., the difference between the two causal models: 1)
information flow Granger-causes the user focus size, 2) User focus size
Granger-causes the information flow. This mean is -0.24 (SD = 0.13),
which indicates that there is a stronger support for the hypothesis that
the information flow Granger-causes the user focus size (Accepting
H1a) than the support for hypothesis that the user focus size Granger-
causes the information flow (Rejecting H1b). Therefore, in the context
of video-based learning we reject the hypothesis H1b and accept the
hypothesis H1a. Meaning that in video-based learning context
(common way of learning in MOOCs and other e-learning settings) the
way information is presented to the learner (i.e., information flow)
drives learners ”reading” of the materials provided (i.e., user focus
size).

Second, we investigated whether the information content of the
stimulus (i.e., information flow) is controlled by the users’ cognitive
load or the other way round. For this, we examined the Granger-caus-
ality relation between information flow and cognitive load Study 1. The
results are shown in the middle panel of Fig. 8. The solid line in the
middle panel of the Fig. 8 shows the mean of the effect size i.e., the
difference between the two Granger causality models: 1) information
flow Grange-causes cognitive load, 2) cognitive load Granger-causes
information flow. This mean is 0.25 (SD = 0.12), which shows a
stronger support for the Hypothesis H2b (information flow drives the
cognitive load) than the Hypothesis H2a (cognitive load drives the in-
formation flow). Therefore, in the context of video-based learning
we reject the hypothesis H2a and accept the hypothesis H2b.
Meaning that video-based learning settings the load imposed by a
given task (i.e., user’s cognitive load) drives the way information
is presented to the learning (i.e., information flow) Examples of
such a drive can be the learner pausing or stopping a video when they

are cognitively overloaded or putting it on fast-forward when they are
cognitively under-loaded.

Finally, we investigated whether information flow is controlled by
the stability of the users’ exploration (attention change) or the other
way round. For this, we investigated the Granger-causality between
information flow and the users’ attention change in the first studies. The
result is shown in the right panel of Fig. 8. The right panel of Fig. 8
displays a considerable number of violations (there are more invalid
points than the valid points). This indicates that for most of the parti-
cipants correlation is stronger than causation, that is, the participants
for which the stimulus entropy and the gaze stability are not causally
related. Therefore we cannot have proper evidence to investigate
whether information flow is controlled by attention change or the other
way round. In the case of video-based learning, we cannot accept or
reject either of H3a or H3b.

Next we examine the nature of the above mentioned Granger-
causalities (i.e., between information flow and user focus size, between
information flow and cognitive load, and between information flow and
user attention change) for the two levels of learning gains (i.e., high and
low) for the video-based learning study (Study 1).

First, we observe that the causal relations are significantly different
across the two levels of learning gains (W = 468, p < 0.0001). In both
groups (i.e., high and low learning gain) the information flow
causes the user focus size. However, the Granger-causation is
stronger for the students with low learning gain (mean = -0.29, sd
= 0.03) than the causation for the students high learning gains
(mean = -0.18, sd = 0.17). Therefore, we can support that the
information presented to the learners drives the reading of low
performers more compared to high performers.

Second, we observe that the causal relationship between the in-
formation flow and the cognitive load are significantly different across
the two levels of learning gains (W = 244, p < 0.0001). For both high
and low learning gain groups, the cognitive load causes the in-
formation flow. However the causation is stronger for the students
with low learning gain (mean = 0.32, sd = 0.04) than the cau-
sation for the students high learning gains (mean = 0.15, sd =
0.12). Therefore, we can support that tasks load drives the in-
formation presented of low performers more compared to high
performers.

Finally, considering the nature of the causal relation between the
information flow and user attention change, we observe (right panel of
the Fig. 8) that there are many violations of causation (i.e, the corre-
lation is stronger than either direction of Granger-causality). Therefore,
we cannot conclude any causal relationship between information flow
and user attention change for any level (high or low) of learning gains.

8. Study 2

The focus of the second study is contextualized through a problem-
solving assignment (e.g., debugging code). In particular, writing code
or debugging code is considered to be an active task, because the par-
ticipant has the freedom to transform, integrate, and manipulate the

Table 2
Pairwise correlation for the different measurements for the video-based-
learning study.

Study 1

Variable 1 Variable 2 Corr p

Information Flow User focus Size 0.96 0.0001
Information Flow Cognitive Load 0.85 0.0001
Information Flow User Attention Change -0.22 0.02
User Focus Size Cognitive Load 0.84 0.0001
User Focus Size User Attention Change -0.22 0.02
Cognitive Load User Attention Change -0.21 0.02

6 the dip test has the null-hypothesis that the given distribution is unimodal.
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content. However, the information presentation in this active task with
respect to time is static.

The participants can exercise more control over the information
content compared to the participants in the video watching task, and
decide on their own which information they want to attend and process
first.

8.1. Participants

The second study was performed at a contrived computer lab setting
at a European University with 40 computer science majors (12 females
and 28 males) in their third semester. The mean age of the participants
was 19.5 years (sd = 1.65 years). In the previous semester, all of the
participants had taken a Java course, for which they were pre-
dominantly using Eclipse as their integrated development environment
(IDE). Moreover, they were also familiar with the built-in debugging

Fig. 7. Pairwise correlation plots for the different measurements for the video-based-learning study.

Fig. 8. Results from analyzing the relation between Information flow and the user behaviour (user focus size, Cognitive Load, Attention Change) from the video based
learning study (Study 1). We can observe that in study 1, the information flow Granger causes the user focus size, the cognitive load Granger causes the information
flow, while we do not observe any causal relation between information flow and user attention change.

Fig. 9. Screenshot from a debugging session for the Study 2 based on the code
debugging task.
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tool provided by Eclipse. The focus of this study is to examine how user-
generated gaze data can be used to reinforce student reflective prac-
tices. Moreover, the study also considered whether students can prac-
tice problem-solving strategies rather than using trial and error.

8.2. Procedure

Upon arrival at the laboratory, participants signed an informed
consent form. After this, and prior to the debugging task, each parti-
cipant had to pass an automatic eye-tracking calibration routine to
accommodate the eye tracker’s parameters for each participant’s eyes to
ensure accuracy in tracking their gaze. Participant gaze during the
debugging task was recorded using an SMI RED 250 eye-tracker at
250Hz. Next, participants were asked to perform a pre-task, which re-
quired removing 90 errors from a skeleton code within 10 minutes.
After this task, participants were given 40 minutes to solve five de-
bugging tasks presented as part of the main method of the main class of
100 lines of Java code. The code for the main debugging task contained
no syntactic errors, and the participants were notified about this fact.
For their participation in the experiment, participants were rewarded
with the equivalent of USD 30.

8.3. Learning outcome – debugging performance

For the debugging task, there were 10 unit tests prepared by the
instructor (see subsection Procedure). To limit the debugging to one of
the panels of the Eclipse IDE (see Fig. 9), the researchers introduced a
few bugs in otherwise complete code that would make the code fail all
10 unit tests. In order to pass all of the unit tests, the students were
required to solve the debugging exercises in a particular order. Parti-
cipants were given 40 minutes to complete the task. At the end of the 40
minutes, they were told to stop, and the number of unit tests passed at
that point of time was taken to be the measure of ‘debugging success’
(i.e., performance). The mean for the debugging performance was 4.42
(SD = 3.13). A bi-modality test for the debugging performance dis-
tribution showed that the distribution is bi-modal (D = 0.08, p =
0.01). Therefore, once we calculate the debugging performance score,
we used a median split (median = 4) to determine ‘high’ and ‘low’
levels of debugging success.

8.4. Analysis

To answer RQ1 in the context of code debugging, we conduct the
Granger causality analysis as presented in the Sections 4.2 and 5. To
answer RQ2 in the context of code debugging, we compare the students
with high and low learning outcome (i.e., debugging performance)
using the Wilcoxon test because the effect sizes are not normally dis-
tributed.

Table 3 shows the pairwise correlation among the measurements
and Fig. 10 visualizes the measurement pairs.

8.5. Results

We investigated whether the information content of the stimulus
(i.e., information flow) is controlled by the information looked at by the
user (i.e., user focus size) or the other way round. For this, we examined
the causal relation between information flow and user focus size in
Study 2. The results are shown in the left panel of Fig. 11. The solid
vertical line shows the mean of the effect size, i.e., the difference in the
two opposing Granger-causality models (first, information flow
Granger-causes user focus size and second, user focus size Granger-
causes the information flow). This mean is -0.05 (SD = 0.05). This
indicates that there is a little support for the hypothesis H1a (in-
formation flow drives the user focus size) but there is no support
for hypothesis H1b (the user focus size drives the information
flow). Therefore, in the context of debugging we reject the hy-
pothesis H1b and accept the hypothesis H1a. Meaning that in the
context of debugging (common way of learning in problem-solving
and other algorithmic thinking settings) the way information is
presented to the learner (i.e., information flow) drives learners
”reading” of the materials provided (i.e.,user focus size).

Next, We investigated whether the information flow is controlled by
the cognitive load of the user or the other way round. For this, we
investigated the Granger-causality between information flow and the
cognitive load of the user in the debugging study. The results are shown
in the middle panel of Fig. 11. The mean for the effect size is 0.02 (SD
= 0.03). This is the mean of the difference in the two Granger-causality
models: 1) information flow Granger-causes the cognitive load (Hy-
pothesis H2a), 2) Cognitive load Granger-causes information flow
(Hypothesis H2b). From the middle panel of the Fig. 11, we find little
support for H2b (accepted) and no support for H2a (rejected). There-
fore, in the context of debugging we reject the hypothesis H2a and
accept the hypothesis H2b. Meaning that in the context of de-
bugging the load imposed by a given task (i.e., information flow)
drives the way information is presented.

Finally, we investigated whether information flow is controlled by
how stable is the users’ exploration (attention change) or the other way
round. For this, we investigated the causal relation between informa-
tion flow and the users’ attention change in study 2. The results are
shown in the right panel of Fig. 11, which contains a considerable
number of violations, that is, the participants for which the stimulus
entropy and the gaze stability are not causally related. This is because
of the fact that the correlation is stronger than the causation for most of
the participants (therefore more invalid points).

Next, we consider the nature of the three causal relations for the
different levels of debugging success (i.e., successful and unsuccessful).

First, We observe that the Granger-causal relationship between in-
formation flow and user focus size are significantly different across the
two levels of debugging success (W = 315, p < 0.0001). In both cases
information flow causes user focus size. The Granger-causation is
again stronger for the unsuccessful students (mean = -0.11, sd =
0.05) than the causation for the successful students, which is al-
most non-existent (mean = -0.02, sd = 0.02).

Second, we observe that the Granger-causal relationship between
information flow and user cognitive load are significantly different
across the two levels of debugging success (W = 75, p < 0.001). In
both cases the cognitive load causes the information flow. The
Granger-causation is stronger for unsuccessful students (mean =
0.04, sd = 0.03) than the causation for the successful students,
which indicates almost no causal relation (mean = 0.003, sd =
0.01).

Finally, we consider the Granger-causality between the information
flow and user attention change, for the two levels of debugging success.
Since there are many successful students for whom the correlational
model is better than the causal model (violations), therefore, it is dif-
ficult to conclude any concrete causal relation between information
flow and user attention change for successful students in the case of

Table 3
Pairwise correlation for the different measurements for the debugging study.

Study 2

Variable 1 Variable 2 Corr P

Information Flow User Focus Size 0.23 0.0001
Information Flow Cognitive Load 0.17 0.005
Information Flow User Attention Change -0.02 0.73
User Focus Size Cognitive Load 0.04 0.54
User Focus Size User Attention Change -0.02 0.71
Cognitive Load User Attention Change 0.03 0.61
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debugging.

9. Comparing the causal relation across the two studies

In this section, we will compare the overall results from the two
studies to address the Research Question 3. To do so, we compare the
causal relations from the two studies, i.e., video-based learning and
debugging using the Wilcoxon test because the effect sizes are not
normally distributed. Table 4 shows the lack of normality and homo-
scedasticity in the effect sizes of the causal models, which is the reason
for using a non-parametric test here. The results suggest (Table 5) that
user focus size is driven by the information flow (H1a Accepted). The effect
is stronger for the video watching activity (mean = -0.24, sd = 0.13)
than for the debugging activity (mean = -0.05, sd = 0.05) (H1c

Accepted). A Wilcoxon test shows this difference to be statistically
significant (W = 3038, p < 0.0001).

Furthermore, the results suggest that the information flow is driven by

Fig. 10. Pairwise correlation plots for the different measurements for the debugging study.

Fig. 11. Results from analyzing the relation between Information flow and user behaviour (user focus size, Cognitive Load, Attention Change) from the debugging
study (study 2). We can observe that in study 2, the information flow Granger causes the user focus size, the cognitive load Granger causes the information flow,
while we do not observe any causal relation between information flow and user attention change.

Table 4
Results from the Shapiro-Wilk’s normality test for the effect sizes of the causal
relations. The last two columns show the variances from the two studies.

Shapiro-Wilk Variance

Causality relation W p-value Study1 Study2

Information flow and user focus size 0.96 0.002 0.003 0.018
Information flow and Cognitive load 0.95 0.0001 0.0009 0.015
Information flow and User attention change 0.79 0.0001 0.001 0.006
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the cognitive load of the user (H2b Accepted). Again, the effect is stronger
for the video watching activity (mean = 0.25, sd = 0.12) than the
debugging activity (mean = 0.02, sd = 0.03) (H2c Accepted). A
Wilcoxon test shows this difference to be statistically significant (W =
175, p < 0.0001).

Finally, the results do not confirm any causal relation between user
attention change and the amount of information flow. This is similar for
both the video watching activity (mean = -0.01, sd = 0.07 and the
debugging activity (mean = -0.01, sd = 0.03) (H3c not sufficient
evidence).

10. Discussion

In this paper, we explore the causal relations between information
flow (as measured via screen recording) and learners’ cognitive load
(and consequently learners’ behaviour, that is focus and attention
change). The cognitive load and behaviour were measured using eye-
tracking technology. Our results reveal two causal relations: first, be-
tween information flow and user focus size; and second, between in-
formation flow and user cognitive load (i.e., RQ1). Moreover, these
relations have different strengths for different learning outcomes (i.e.,
RQ2) and the different instruction types; such as, active debugging
versus passive video watching (i.e., RQ3). In this section, we provide
the interpretation of the results, implications and limitations of this
contribution.

10.1. Interpretation of the results

In the first causal relationship, the information flow drives user’s
focus (i.e., RQ1). In terms of information processing, we can say that
the amount of information present on the screen drives the amount of
information received by the user. This causality is more evident in the
video watching task than in the debugging task. One possible ex-
planation for this distinction could be the fact that in the video
watching activity, the user is passively receiving the information pro-
vided by the teacher (i.e., transmitter of the information). Whereas in
the debugging task there is no explicit transmitter of information. It is
worth mentioning that looking at certain sections of the screen does not
necessarily indicate that the user is paying attention, even though the
eye-mind hypothesis (Just and Carpenter, 1980) states that ‘what we
see is what we process’. In other words, user focus size does not ne-
cessarily equal user attention. However, in behavioural terms, there is a
possibility that user focus size and attention are correlated.

The second causal relationship states that user’s cognitive load
drives the information flow (i.e., RQ1). At first glance, this might ap-
pear contradictory, because most of the multimodal learning
literature (Brunken et al., 2003; Mayer and Moreno, 2003) views “the
control of information flow” as a way to manage the cognitive load, due
to the user’s active role in information processing. However, our causal
finding suggests otherwise. One possible explanation might root from
the user’s interaction patterns (e.g., video navigation, code editing). In

both studies the user had complete control over the screen (i.e., full
video playback control, editable program). In order to verify this
complementary hypothesis we quantified video navigation and code
editing patterns. In the video watching task, we calculated the pro-
portion of users who paused and/or went backwards in the video at a
given time. As shown in the previous work these actions are correlated
to the perceived difficulties (Li et al., 2015) and
misunderstandings (Giannakos et al., 2015) during video-based
learning. In the debugging task, we calculated the proportion of users
who edited the code at a given time.

For both tasks, our analysis included a Granger causality check
between interaction patterns and the average cognitive load of users.
On the one hand, the results showed that cognitive load drives the
navigation patterns in the video watching task (pause: F[92,-5] = 4.02,
p = 0.002; backward: F[92,-5] = 2.59, p = 0.03)7. On the other hand,
for the debugging task, we observed that the average cognitive load of
users drives the proportion of users editing the code (F[252,-3] = 3.71,
p = 0.01). This shows that when users are experiencing a high cogni-
tive load, they choose to reduce the information flow by pausing (not
letting the information flow to increase) or going backwards in the
video (actually decreasing the density of the content and thus, reducing
the information flow). In the debugging task, learners were isolating a
particular piece of code from the rest of the code by adding blank lines
before and after that code-snippet whenever they were experiencing
high cognitive load (when they could not find the solution easily or
when they were not able to understand the code). Thus, reducing the
computed information flow of the screen. Since cognitive load has been
related to the working memory and short term memory of the
users (Paas and Van Merriënboer, 1994; Sweller, 2011), this might
dictate the amount of information users want on the screen; given that
in both studies the users had complete control over the screen.

Considering the level of learning gain and the nature of the causal
relationships between cognitive load, information flow, and user focus
size (RQ2 – study 1), we observed that both relationships (i.e., in-
formation flow and cognitive load, and information flow and user focus
size) are stronger for the group of students with low learning gains.
Similarly, in study 2, the level of debugging success (i.e., learning task
performance) and the nature of the causal relationships between cog-
nitive load, information flow, and user focus size (RQ2 – study 2), we
observed that the both relationships are stronger for the low performing
students. Moreover, the direction of causality between information flow
and the user’s focus change, changes for the two performance groups.
We observe that information flow causes the user focus size change for
the low performing students and the user focus size change causes in-
formation flow for the high performing students.

An understanding of these relationships across different learning
gains/performance levels could be used as the basis of providing help to

Table 5
Summary of overall results from Study 1 and Study 2.

Variable1 drives Variable2 Video Lecture Debugging

Variable1 Variable2 mean (SD) mean (SD)

Information Flow user focus size 0.69 (0.07) 0.92 (0.07)
user focus size Information Flow 0.93 (0.10) 0.98 (0.02)
Outcome: Information Flow drives user focus size (H1a Accepted, H1b Rejected) -0.24 (0.13) -0.05 (0.05)
Information Flow Cognitive Load 0.79 (0.08) 0.98 (0.03)
Cognitive Load Information Flow 0.54 (0.12) 0.95 (0.04)
Outcome: Cognitive Load drives Information Flow (H2b Accepted, H2a Rejected) 0.25 (0.12) 0.02 (0.03)
Information Flow Attention Change 0.96 (0.07) 0.96 (0.03)
Attention Change Information Flow 0.97 (0.03) 0.97 (0.03)
Outcome: non conclusive (H3a H3b not sufficient evidence) -0.01 (0.07) -0.01 (0.03)

7 The negative second degree of freedom in the F-test represents the optimal
lag value used in the Granger test (see Section “Analysis’).
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students while they are interacting with the learning technology. In
future research, learners” states, such as the level of expertise in the
interaction, could be added for more proactive and actionable feedback
strategies. This feedback could be both personalised and adaptive, as
well as cognitive. For example, an opportunity for the personalized and
adaptive feedback arises from the different causal relations based on the
learning performance/gains of the learners. For example, the informa-
tion flow for learners with low learning gain/performance is “Granger
causing” the user focus size in a stronger manner than it does for
learners with high learning gain/performance. For such learners (low
learning gains/performance), one can start manipulating the informa-
tion provided to the learner in a given time interval (e.g., slow down the
video playback or point at a smaller part of the program) so that a
manageable level of user focus size (for the particular learner) could be
maintained throughout the learning process.

Another opportunity for cognitive feedback (such as seen
in (Zeichner, 2018)), roots from the fact that the cognitive load of the
students with low learning gains/performance “Grange causes” the in-
formation flow more strongly than it does for the students with the high
learning gains/performance. For such learners (low learning gains/
performance), additional cognitive scaffolding is required during the
learning process. Such scaffolding is usually created by providing more
content-oriented helps, such as reflection of a result or explaining a
concept (Chen et al., 2018; Sedrakyan and Snoeck, 2016; Wu et al.,
2012). Such feedback suggestions might help learners’ understanding of
the concepts and reduce their cognitive load, allowing them to attain a
high level of learning gains/performance (Van Merriënboer and
Kirschner, 2017).

A benefit of using Granger causality to analyse the relation between
two variables is that this type of causality is purely based on the pre-
dictive power of the hypothesized ‘cause’. Once we have established the
“Granger Causality” between two variables (e.g., information flow
Granger causes user focus size), we can simply use the temporal mod-
elling methods to “forecast” the information flow and predict the user
focus size without the requirement of using eye-tracking to measure it.
This also allows us to prepare the learning systems, even where eye-
tracking is not available, to identify the moments where the afore-
mentioned feedback is required.

Both studies show similar causal orientations (overall and the high/
low learning performance/gain), although they reveal different effect
sizes (Figs. 11 and 8). The causal relation between information flow and
user’s gaze (i.e., focus and cognitive load) is stronger (i.e., high effect
size) for the video watching task as compared to for the debugging task
(i.e., RQ3). This could be due the differences in the stimulus and task
types as explained in the beginning of the discussion section. Thus, the
effect sizes are significantly larger in the video watching task as com-
pared to the coding task. We hypothesize that this is a result of the fact
that information can be more easily controlled in the video than in a
code editor. Furthermore, the information content of the program is
more consistent with respect to time; which could explain the lower
effect size for the causal relationship between the information flow and
the gaze behaviour (i.e., focus and cognitive load).

As previously indicated, the visual tasks used in the two studies
differ in the information presentation (i.e., static versus dynamic).
Fig. 12 shows the information flow of the two stimuli with respect to
time. The information flow of the video is dynamic, while the in-
formation flow of the program is almost static. Because of the nature of
information presentation, the information flow in the video is gradually
increasing (as the video starts with an empty display and gets con-
stantly filled up with textual and schematic content), whereas in the
debugging task the information flow immediately displays already
written code, in which only a few changes are required to accomplish
the participant’s goal.

The change in information flow of the video is based on the tea-
cher’s presentation flow. In this case the information flow is gradually
increasing as the video starts with an empty display and gets filled up

with the textual and schematic content of the topic. Conversely, the
program is textual and displays already written code, due to the nature
of the task in which only few changes need to be done by the user to
accomplish the goal.

When it comes to information consumption, watching a video is
passive consumption while debugging is an active task. Thus, the con-
textual set up in the two studies implies that different cognitive stra-
tegies are involved in completing the task. The main challenge in
watching the passive video is to keep following the verbal reference of
the instructor; whereas the main challenge in the active debugging task
is to create a mental model of the code’s functionality and rectify the
mistakes. However, although debugging (active) is cognitively more
challenging than watching a video (passive), the information flow is
simpler (i.e., static) in the case of debugging as compared to watching a
video (i.e., dynamic).

10.2. Implications

The implications for multimodal learning and instruction are two-
fold. First, educators and designers should consider the limitations of
user’s working memory in terms of attending and processing stimuli,
and design to avoid bottlenecks and high cognitive load for processing
information. Failing to design activities which balance the focus on the
concepts/skills to be learned with moderate levels of visually appealing
and intuitive layout, might lead to less-than-optimal instruction that
hinder learning (Mayer, 2005). In fact, our results supports previous
research which describes that information flow drives user focus size,
and not the other way around (Sweller, 1994; 2011).

Second, utilizing empirically-driven insights into the design of
multimodal learning, such as the instruction type of the task (e.g., ac-
tive vs passive transmission of information) and the information pre-
sentation with respect to time (e.g., static vs dynamic), could support
educators to challenge their existing views of practice when designing
content (based on instruction type and presentation style) and feedback
(for example, the moments where the nature/strength of causal re-
lationships changes). For example, this study presents a rather inter-
esting finding that when users are experiencing high cognitive load,
they tend to pause or go backwards during video watching (i.e., passive
task) or they tend to alter the code and simplify the mental model of the
code’s functionality to correct the mistakes (i.e., active task). Moreover,
the differences in the stimuli (e.g., video watching or program editing)
and the instruction type of the task (i.e., active or passive) also show

Fig. 12. Evolution of information flow over time, for the two stimuli used in the
two experiments. The gray scale values show the 95% confidence interval for
the different participants. We can observe that the information flow is more
uniform in the program (Study 2) than that in the video (Study 1).
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differences in the effect size of the causality. In line with this, our study
shows that by conceptualizing the relationships between various ob-
servable variables in a learning system (e.g., information flow, user
focus size, attention change), one can improve the understanding of the
complexity in the interaction between humans and technology, and use
technology effectively and intelligently to support learning of concept
or skill.

This understanding will help various stakeholders in the TEL do-
main, such as, teachers and researchers Sharma et al. (2018c, 2020);
Sugihara et al. (2012). The teachers can create the content and the
videos’ timeline in a way that the student’s focus size could be con-
trolled. The teachers could also provide methods by which the students
can control the information consumed by them in a better way than the
current practices. Similarly, the TEL researchers could extend this work
by introducing the temporal direction of causal relationship. It is yet to
be investigate whether the causal relations stay the same for the whole
interaction (i.e., the learning session) or it changes directions. More-
over, if the causal directions change over time, it would also be inter-
esting for TEL researchers to investigate the salient features of the point
in time where the causal direction changes (Sharma et al., 2020). Fi-
nally, the knowledge of causality would provide the TEL researchers to
develop adaptive feedback tools that supports the students when the
expected causal relations are not visible from the measured
behaviour (Sharma et al., 2018c).

The strength and the nature of the causal relationship between the
information flow and the gaze behaviour of the students differ for the
two tasks presented in this paper. This indicates that the information
presentation type acts as a mediator for such relationships. These
findings can extend to other types of information presentation methods
as well such as, textual slides, active text based debugging, or static
content but varying difficulty of the problem. In the case of textual
slides, if there is an option for the students to control for the certain
aspects of the information flow, the causality directions should be
generalizable to the video-based learning setting presented in this paper
(Study 1). These controls include speed at which the information is
being presented (e.g., navigation controls for a video). On the other
hand further investigation would be required if the content is static
without any controls for the students.

Concerning active text based debugging or writing a program from
scratch, the results from the debugging study (study 2) should be
generalizable to these contexts as long as the students could isolate (i.e.,
zoom-into) a part of the program to reduce the cognitive load and/or
the focus size. Specially, for the active-script based debugging8 the
finding from the second study should extend to such scenarios. The
main reason for this remains associated to the ability of the “debugger
IDE” to be manipulated by the students/users, because such environ-
ments are useful in isolating the problem from the rest of the given
structure (Marceau et al., 2004).

Finally, when it comes to static content with varying levels of dif-
ficulty, it requires further investigation because in such cases, the in-
trinsic cognitive load would change based on the individual problem.
This was not the case for the either of the studies. The video explained
one concept from the STEM fields (Study 1) and the unit tests were
incremental (one provided the basis for the next one, Study 2). Thus, in
both the studies the intrinsic cognitive load was controlled. Therefore,
in cases where the intrinsic cognitive load varies in the same learning
session, it would require further investigation.

10.3. Limitations

In both studies, participants were university students (both under-
graduate and graduate). For a majority of digital education users (e.g.,
university students) this might be representative. However, it does not

represent other user-groups (e.g., K-12 school students, professionals)
who are also end-users of learning technologies. Moreover, the two
studies were performed in highly controlled environments, producing
high-quality datasets but low ecology. Therefore, the generalizability of
our findings is somehow restricted by the selected tasks, because other
tasks (e.g., collaborative learning, inquiry-based learning), or different
representations of the same tasks (e.g., talking head in Massive open
online courses’ videos) might also affect the results. In particular, in our
approach we applied two different tasks (i.e., video-watching and de-
bugging) to portray an active and passive learning experience (i.e., the
dependent variables). These two tasks present a good contrast in terms
of the research questions asked, however, there are significant and yet
subtle differences in these two tasks that might have affected the out-
come (i.e., potential for confounding). Therefore, it is arguable that
different tasks could have been used to portray an active and passive
learning experience.

Consequently, this work considers the information flow of the sti-
mulus as a dichotomous variable (i.e., static or dynamic). Another
limitation comes from the analyses, where we solely consider eye-
tracking data, although other behavioural aspects could have been
computed. For example, exploring the semantics of user actions in the
task (which sections of the video did the users go back to or paused, or
extracting the semantics of the edited program). However, the results
from the current contribution open new ventures for further in-
vestigations. For example, moving towards a holistic understanding by
including other sensing modes such as, facial data, so that one can
triangulate the findings. Moreover, connecting these data driven find-
ings to theoretical bases of multimedia learning, for which more ex-
perimentation is needed.

Another limitation of this paper is that, with their primarily focus on
presentation of and navigation through content, our two studies follow
an objectivist view of learning. Objectivist view asserts that there is a
particular body of knowledge that needs to be transmitted to a learner,
and that learning is the acquisition and accumulation of a finite set of
skills and facts (Tam, 2000). In fact, most of the contemporary learning
systems follow a static and predefined representation of knowledge.
They view knowledge as a thing that can be codified, captured, and
passed along. Knowledge, however, is fluid and dynamic; and thus
cannot be reduced to a merely conditional selection and sequencing of
fixed and prepackaged content according to predefined rules and
properties.

Finally, another limitation roots from the fact that one of the
measurements, cognitive load, is derived from the pupillary response of
the participants. Although, there are pre-processing steps carried out to
remove the subjective and environmental bias, there might remain
other noise due to head movements. The participants were not given
the ophthalmological chin-rest. This might have resulted in a small
deviation that might not be controlled for.

11. Conclusion

This paper presents results form two eye-tracking studies exploring
the causal relationship between information flow and user behaviour.
The results indicate that information flow drives users’ focus, and that
users’ cognitive load drives information flow. The effect of the causal
relations is dependent on the nature of the instruction of the learning
material (i.e., active or passive). The causality is stronger for the passive
transmission of information as compared to the causality for the active
transmission of information. These results could inform design and
feedback guidelines to achieve effective and efficient learner-computer
interaction scenarios. Moreover, the results could also inform how to
avoid bottlenecks and high cognitive load when users are engaged in
information processing activities.

In future work, we aim to examine both theoretically and empiri-
cally how users’ focus (as measured by entropy) is related to users’
attention. Moreover, in the video watching task the same information is8 Example: active-script based debugging.
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also coded in the audio; thus a logical extension to this work would be
to include the entropy (information flow) of audio signals as to obtain
the overall entropy of the video. Another possible extension of this
work is to further the analyses to include levels of task-based perfor-
mance and expertise. Finally, to achieve a certain level of general-
izability of our results, we plan to collect data from other tasks (e.g.,
program comprehension, skill acquisition in games, creating knowledge
maps, visual problem solving), and compare the causal relations be-
tween different behavioural measurements across these tasks.
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