
Discrete-Time Modeling of NFV Accelerators that Exploit
Batched Processing

STEFAN GEISSLER, University of Wuerzburg
STANISLAV LANGE, Norwegian University of Science and Technology
LEONARDO LINGUAGLOSSA, Telecom ParisTech
DARIO ROSSI, Telecom ParisTech
THOMAS ZINNER, Norwegian University of Science and Technology
TOBIAS HOSSFELD, University of Wuerzburg

Network Functions Virtualization (NFV) is among the latest network revolutions, promising increased flexibility
and avoiding network ossification. At the same time, all-software NFV implementations on commodity
hardware raise performance issues when comparing to ASIC solutions. To address these issues, numerous
software acceleration frameworks for packet processing have been proposed in the last few years. One central
mechanism of many of these frameworks is the use of batching techniques, where packets are processed
in groups as opposed to individually. This is required to provide high-speed capabilities by minimizing
framework overhead, reducing interrupt pressure, and leveraging instruction-level cache hits. Several such
system implementations have been proposed and experimentally benchmarked in the past. However, the
scientific community has so far only to a limited extent attempted to model the system dynamics of modern
NFV routers exploiting batching acceleration. In this paper, we propose a simple, generic model for this
type of batching-based systems that can be applied to predict all relevant key performance indicators. In
particular, we extend our previous work and formulate the calculation of the queue size as well as waiting
time distributions in addition to the batch size distribution and the packet loss probability. Furthermore, we
introduce the waiting time distribution as a relevant QoS parameter and perform an in-depth parameter
study, widening the set of investigated variables as well as the range of values. Finally, we contrast the model
prediction with experimental results gathered in a high-speed testbed including an NFV router, showing that
the model not only correctly captures system performance under simple conditions, but also in more realistic
scenarios in which traffic is processed by a mixture of functions.
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1 INTRODUCTION
All-software processing of network traffic has unleashed the possibility to rapidly deploy and update
new protocols and features in both the control and the data plane. Particularly, ASICs still dominate
the network core, where the network fabric performs simple processing like IP forwarding or MPLS
switching at several terabits per second. In contrast, all-software stacks are gaining popularity at
the network edge, where software can deliver feature-rich packet processing for a large variety of
protocols at tens to hundreds of gigabits per second. Software routers have been introduced nearly
two decades ago [31] but their adoption has been slow due to severe performance bottlenecks, which
made the idea appealing but limited to research prototypes. Yet, the situation changed drastically
in the last decade, with the introduction of the so-called “kernel-bypass” network stacks [26, 49]
that started offering efficient low-level building blocks for multi-threaded user-space processing of
network traffic at line-rate. As a result, full-blown software stacks, enabling more complex use cases
in the Software Defined Networks (SDN) and Network Functions Virtualization (NFV) areas started
rising in the software ecosystem. Open Virtual Switch (OVS) [42] and Vector Packet Processor
(VPP) [18] are two examples.

To achieve high-speed processing, these software frameworks share commonalities [7, 34] such
as the use of lock-free multi-threading as well as the use of poll-mode batched processing. While
the use of multi-threading allows horizontal scaling and makes each thread independent from the
others, the use of batching is a distinctive characteristic of modern high-speed packet processing
frameworks. Particularly, batching is used for both fetching packets from the Network Interface
Card (NIC) by low-level drivers to reduce interrupt pressure [26, 49], as well as for processing
batches of packets in higher-level applications to amortize framework overhead [7, 18, 28, 29].

However, while a large number of system implementations exist, and while some work recently
started undertaking an experimental comparison of these implementations [7, 20, 44], to the best
of our knowledge our initial model is the first system model that can explain and accurately predict
the measurable system performance of such batch-based packet processors. Although a model
for VNF processing times is proposed in [22], its applicability is restricted to systems that process
each packet individually. However, batching departs radically from such classic models where
packets arrive independently and are independently buffered and treated. Indeed, batching not
only correlates arrival and departure, but can also influence the average per-packet processing time.
While queueing models that feature batched arrivals at the processing unit are not entirely new
and have been used to better capture phenomena such as bursty TCP behavior [1, 30, 38, 39], both
the use case and the particular processing schemes differ significantly. Finally, modern systems for
high-speed packet processing adopt several low-level techniques to speed-up the processing time.
The efficiency of such techniques is severely affected by the experienced batch sizes. This in turn
introduces a dependency between the processing efficiency, and hence the service time, and the
batch size.

This paper extends our previous model of high-speed software routers using batching accelera-
tion [32]. To keep this work self-contained, we present the general model that is able to accurately
characterize the most distinctive parameters of next-generation software routers, including the
packet loss probability, batch size distribution and queue size distribution. Furthermore, we extend
the model to predict further KPIs, such as a more detailed queue size distribution as well as waiting
time and per-packet processing time distributions. Finally, we perform a detailed parameter study,
investigating both the performance impact of various parameters as well as validate the fit of the
model when compared to measurement results in a dedicated testbed.
In the remainder of this paper, we first introduce the architecture of a modern NFV software

router in Sec. 2. We develop a discrete-time queuing model in Sec. 3, after which we describe the
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Fig. 1. Synopsis of the device under test (DUT) with receive side scaling (RSS) queues.

experimental setup used for the model validation in Sec. 4. Results of the validation as well as the
performed parameter study are presented in Sec. 5. Finally, we put this work in the context of
related efforts in Sec. 6 and summarize our findings in Sec. 7.

2 BATCHED PACKET PROCESSING
We start by presenting background information about the latest generation of high-speed software
packet processors that is represented at a high level in Fig. 1. We refer to the same figure later
to detail our experimental testbed in Sec. 4. The Device Under Test (DUT) consists of a Common
Off-The-Shelf (COTS) server equipped with one or more Network Interface Cards (NICs). The DUT
runs an instance of a software router that implements a set of Virtual Network Functions (VNFs).
Examples of such functions include Ethernet switching, IPv4/IPv6 forwarding, Access Control Lists,
load balancing, proxying, etc. Irrespectively of the specific functions, the system has a number of
low-level architectural characteristics that we introduce here, and abstract in the next section, to
provide a tractable yet accurate analytical model.

2.1 Packet Ring and RSS
When packets are received at the NIC, they are written to a buffer, called packet ring, that is also
accessed by the software to retrieve the incoming packets. Writing happens without involving the
CPU, using Direct Memory Access (DMA), and does not involve costly memory copy operations.
This memory area acts as a circular queue: when the input rate is higher than the processing rate,
the oldest packets might be overwritten by new arrivals. Hence, unlike in classic FIFO queues, older
packets are dropped when the buffer is full.

Modern NICs expose multiple RX/TX hardware queues for the same link. Software frameworks
can leverage Receive Side Scaling (RSS) [25] to bind different CPU cores to different of these RSS
hardware queues. Thereby, incoming traffic is balanced across different RSS queues based on a
hashing function, which allows parallelizing packet processing with the number of available CPU
cores. Therefore, each CPU is assigned to a separate instance of the software router, managing its
own specific RSS queue with its own packet ring. Since RSS makes each thread independent, it is
sufficient to analyze the performance of a single RSS queue as handled by a single core. Indeed,
due to the lack of synchronization and locking issues, the aggregated system performance scales
linearly with the number of cores [6]. Hence, for modeling purposes, it is sufficient to focus on a
single RSS queue.

2.2 Polling and I/O Batching
Traditionally, the networking stack generates an interrupt every time a new packet is received
by the NIC, signaling the CPU that all processing should stop in order to deal with packet I/O.
Under heavy load, this mechanism is known to be very inefficient, leading to a livelock on the
CPU [37]. To alleviate this issue different interrupt mitigation mechanisms have been introduced.
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One such mechanism is polling [48]: at very high traffic rates, the CPU continuously checks for
packets stored in the packet ring without raising any interrupt.

Polling mechanisms are typically coupled with batching. Meaning when the CPU polls a device,
it gathers a group of contiguous packets in the ring and the whole batch is passed to the processing
application. A similar procedure is executed during packet transmission, when packets scheduled to
be transmitted are forwarded in batches. Batching is a powerful mechanism that speeds up overall
processing, as it amortizes the fixed costs of the I/O over multiple packets [24, 29] and is as such
supported by all modern networking stacks [26, 49].

A maximum batch size β is usually defined to specify an upper limit on the number of packets to
be taken by an atomic poll operation, so that the size of the polled batch can take any value in [0, β].
This is done to parametrize the trade-off between the processing efficiency of larger batches and the
reduced jitter of smaller batches [35]. The impact of this value on the overall system performance
under different circumstances is evaluated later in this work in Section 5.

2.3 Compute Batching
More recently, the use of batching has been extended beyond packet I/O and has been applied to
the processing of packets as well. Indeed, network function computation can similarly benefit from
grouped processing, which is known as compute batching.
Shortly, when a VNF is executed on a batch, this allows sharing the overhead of the packet

processing frameworks between multiple packets, e.g., all processing instructions are initialized
once per batch rather than once every packet. Additionally, it increases the efficiency of the
underlying CPU pipelines since the VNF code raises a single miss for the first packet in the batch,
but is then subsequently cached in the L1 instruction cache for the remainder of the batch.

Whereas the actual implementation of compute batching differs among frameworks (e.g. the com-
pute batching implementations of G-opt [28], DoubleClick [29], FastClick [7] and VPP [18]), com-
pute batching is another popular technique in modern high-speed packet processing frameworks.
Hence, defining a general model that can be applied to different frameworks with heterogeneous
implementations of compute batching techniques is a relevant goal.

2.4 Workflow and System Parameters
In a typical scenario, a software router binds one (or more) CPU(s) to one (or more) RSS queue(s).
The CPU then enters a main loop in which the NIC is polled at every iteration. Consequently, the
application collects a batch of packets and starts performing the packet processing. During this
time new packets might have arrived at the NIC and are stored in the packet ring(s) until next
iteration. We now describe the most important metrics and parameters regarding the tuning and
evaluation of our model and briefly highlight their respective interaction effects.

2.4.1 Batch size. The first parameter is the batch size of the system, describing the number of
packets that are processed in a single polling, processing and transmitting cycle. There is an intuitive
correlation between the size of the batches and the input rate observed at the system. In the extreme
case of input rate zero, the CPU keeps polling the NIC, but at every iteration it will find no packets,
thus the average batch size is zero as well. The opposite extreme is when the input rate is higher
than the processing rate. In such case, packets are written to the packet rings and the CPU cannot
cope with the incoming rate. Hence, packets are overwritten and losses occur. Since the CPU will
always find a full ring, it will intuitively pick up as many packets as possible, which is limited by
the internal maximum batch size. Subsequently, the measured average batch size will converge to
the maximum batch size. The most interesting scenario happens in between the two extreme cases,
where the input rate is between zero and the maximum sustainable rate of the software router. In
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this case, at every iteration, the CPU will poll the device and find some amount of packets that will
be processed. The number of packets observed at every polling event depends on the processing
time of the batch collected in the previous cycle as well as the incoming packet rate and interarrival
time distribution. In practice, this relation between the number of arrivals during a processing
cycle in combination with the fact that the system becomes more efficient for larger batches, leads
to an automatic feedback loop that helps maintaining a stable equilibrium regarding the batch size.
As already mentioned, smaller batches are processed less efficiently due to caching effects and the
distribution of framework overhead in batch processing scenarios. Hence, small batches lead to an
increase in batch size for the next cycle. At some point, the system reaches a state at which the
processing efficiency has increased until the mean number of arrivals during a processing cycle
equals the number of arrivals during the previous cycle. From that point, fluctuations in the batch
size are mainly attributed to fluctuations in the arrival process. The impact of the maximum batch
size is evaluated during the parameter study by investigating the impact of different values under
varying circumstances in Section 5.

2.4.2 Processing time. Next, we describe the processing time of batches. When an increase in the
arrival rate occurs or the system has not yet reached equilibrium, the next batch will be larger but
the processing efficiency will be higher due to amortizing the fixed costs over a greater number of
elements. Therefore, when a batch is larger, the per-packet processing time is smaller, impacting the
size of the batch collected in the following polling cycle. Further, the processing time of batches is
also affected by the network function that has to be applied to each packet. Some simple functions
such as Ethernet switching intuitively require less processing than more complex functions such as
IPSec or DPI. Finally, it needs to be taken into account that packets within a single batch could
potentially require differentiated processing and will hence exhibit varying processing times. In
these scenarios, the processing of the batch is considered complete once the last packet of the batch
has been processed. The processing time of different batch sizes is one of the input parameters of
the proposed model. Section 5.1 provides insights into the tuning of the model based on observed
values.

2.4.3 Packet loss. Moving on, packet loss is one of the most crucial metrics when it comes to
software routers as it relates directly to how well a VNF performs its job. Typical software routers
are able to sustain a rate of 12 to 14 millions packets per second (Mpps) [7, 49]. When sending
10Gbps traffic of minimum-sized packets on a wire, this translates into a rate of 14.881 Mpps. As
mentioned before, losses occur if the packet arrival rate is higher than the packet processing rate
as this leads to packets being overwritten in the receive side (RX) rings. However, losses may occur
even at lower rates, because of the aforementioned dependencies between packet processing time,
batch size and efficiency of the framework or in edge cases with arrival processes exhibiting large
bursts. The packet loss probability is one of the output metrics generated by the proposed model
and is evaluated for different scenarios during the parameter study.

2.4.4 Queue Size and Waiting Time. Finally, directly related to the packet loss probability as well
as the sojourn time of the system is the queue size, meaning the number of available slots in the
RX ring able to hold arriving packets. As mentioned before, loss occurs, whenever a new packet
arrives while all slots are currently occupied. In addition, the queue size impacts the waiting time
experienced by arriving packets that are not collected in the next polling cycle. Instead, these
packets have to wait for one or more full processing times before they start processing. In this
context, the queue size dictates the trade-off between potentially long waiting times and resilience
against bursts of packets. The queue size distribution is one of the output parameters predicted by
1The minimum-size of a packet is 64 byte, to which we should add the Ethernet header and trailers for an additional 20 bytes
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the proposed model. Similarly, the model is able to predict packet waiting times. However, due to
technical limitations, we are not able to monitor waiting times in the technical system. Instead, we
compare sojourn time distributions composed of the waiting time plus the processing time. Since
the processing time is part of the model input, the only unknown remains the waiting time and the
comparison is hence valid to establish the quality of our waiting time prediction.
Finally, it is important to note that, in the model, we represent the RX ring as a simple FIFO

queue, meaning that, in lossy scenarios, the predicted waiting time will likely deviate form the
measurement values. In a ring, old packets get overwritten and hence lost, while new arrivals are
discarded instead of enqueued when it comes to the FIFO queue. The error is observed and detailed
in Section 5. However, in lossy scenarios, the quantification of the waiting time distribution is only
of limited value, since packet loss probability becomes the more meaningful parameter in that case.

3 SYSTEMMODEL
In this section, we describe the queueing model that is used to evaluate the performance of batching-
based packet processors. Fig. 2 illustrates its main components, namely an arrival process with
arbitrarily distributed packet interarrival times, a limited-capacity FIFO queue as well as a processing
unit that regularly polls the queue, picks up limited-sized batches, and processes them with service
times that depend on the batch size. We deliberately abstract the circular packet ring with a FIFO
queue for the sake of tractability. Intuitively, this does not alter the system performance w.r.t. the
amount of lost packets, only which packets are lost changes. Furthermore, experiments show that
the model achieves a high level of accuracy even despite this simplification (Sec. 5). In this section,
after a brief overview of the system states that are captured by the model, we outline how to extract
the key performance indicators from the system steady state.

3.1 Discrete-Time Model
Before diving into the details we introduce definitions and notations as well as provide an outline
of the model. As is required for the discrete-time approach, we need to discretize time into fixed
intervals ∆t . For the remainder of this work, we use ∆t = 10 ns, as it represents the most suitable
resolution to describe our obtained measurement data. Note that the model resolution could be
increased further by selecting a smaller ∆t , at the expense of additional computational complexity.
For the sake of readability, we provide an overview of the notation used in this manuscript

in Tab. 1. The top half contains constants and random variables that constitute the model input,
whereas outputs are listed in the bottom half. To disambiguate between random variables (RVs),
distributions, and distribution functions, we use the following convention: uppercase letters such
as A denote RVs, their distribution is represented by

a(k) =def P(A = k), k ∈ [0,∞) ,

and the corresponding distribution function is defined as

A(k) =def P(A ≤ k) =
k∑

i=−∞

a(i), k ∈ [0,∞) .

In the proposed model, the system state at a given time is represented by the corresponding
queue size Qn at the time the n-th batch is polled from the NIC. As highlighted in Fig. 3, all system
events, such as packet arrivals as well as polling and batch processing, have a direct impact on the
queue size. While each packet arrival leads to an increment of the queue size by one, polling by the
processing unit decrements it by the number of packets that are picked up. The latter is limited
by the maximum batch size which is denoted as β and the number of packets that reside in the
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queue at the time of the polling event. Finally, if an arriving packet finds the queue at its maximum
capacity L, the packet is dropped. Hence, the queue size distribution at the times of embedding during
steady state q(k) can be used to derive relevant performance indicators of the modeled system
such as the batch size distribution and the packet loss probability. Additionally, it is possible to
derive the queue size at arrival times QA, which is required for computing the waiting and overall
processing time distributions. To obtain event-independent system information, we also present a
way of calculating the queue size at random times Q̄ .

In order to derive the distribution of the queue size, we consider an embedded Markov chain
whose embedding times are defined to be immediately before the busy polling events of the
processing unit. Based on the queue size distribution qn(k) at these embedding times, we can derive
the state probability distribution at consecutive embedding times by taking into account the current
batch size and the number of arrival events during the corresponding service time. Finally, we use
a fixed-point iteration in order to determine the queue size distribution at steady state q(k). To this
end, we leverage the recursive relationship in (1) to compute the queue size distribution immediately
before the (n + 1)-st batch is picked up, based on the queue size distribution immediately before
the n-th batch is picked up.

qn+1(k) =



L∑
i=0

qn(i)xbmin(i,β ),a(k − (i − min(i, β))) for 0 ≤ k < L,

L∑
i=0

qn(i)
∞∑
j=0

xbmin(i,β ),a(L + j − (i − min(i, β))) for k = L,

0 otherwise.

(1)

The first case covers the probability to reach a state with a queue size that is below its capacity
L. In order to calculate this probability, every possible previous value for the queue size i at
the previous time of embedding is considered. Given i , the size of the batch that is processed
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Table 1. Notation.

Variable Description

L Queue capacity, equals 4096 if not stated otherwise.
β Maximum batch size, equals 256 if not stated otherwise.

A, a(k) Packet interarrival time.
Bi , bi (k) Service time of size i batches.

Xτ ,a , xτ ,a(k) Number of arrivals whose interarrival time is distributed according to a during
an interval whose length is distributed according to τ [21]. If τ is a constant,
we implicitly apply the deterministic distribution with probability mass 1 at τ .

Qn , qn(k) Queue size immediately before the n-th batch pick up.
Q , q(k) Queue size at embedding times during steady state, before batch pick up.

QA,qA(k) Queue size at arrival times.
Q̄, q̄(k) Queue size at random times.
Vn , vn(k) Batch size immediately before the n-th batch pick up.
V , v(k) Batch size at embedding times.
S , s(k) Batch service time at random times / among all batches.
ploss Packet loss probability.

W ,w(k) Waiting time.
D, d(k) Processing time.

between embeddings equals min(i, β) since the processing unit can pick up at most β packets. From
this, we can derive the number of arrivals during the corresponding service time by means of
Xbmin(i,β ),a , which describes the number of arrivals with interarrival time a in an interval of length
bmin(i,β ) [21]. Since embeddings are placed immediately before polling events, a queue size of k is
reached when the number of arrivals during the service time is equal to the difference between k
and i − min(i, β), the size of the queue immediately after the batch is picked up.
The special case of k = L is calculated in an analogous fashion but it is necessary to take into

account packet loss, i.e., the arrival of packets beyond the queue capacity which also results in a
queue size of L. Each number of lost packets is represented by the summation index j.
Under stationary conditions, the indexes n and (n + 1) in (1) can be suppressed, i.e.,

q(k) = lim
n→∞

qn(k).

Finally, we note a limitation of the outlined model, namely that the variability of the arrival
process has to be reasonably smaller than batch service times. Otherwise, the number of arrivals is
overestimated resulting in inaccuracies w.r.t. the KPIs. This is, however, a reasonable assumption
taking into account the utilized traffic patterns.

3.2 Key Performance Indicators
Given the queue size distribution, the batch size distribution and packet loss probability can be
derived according to (2) and (3), respectively. While the former is representative of the system’s
efficiency, i.e., larger batches correspond to lower per-packet processing times, a non-zero value of
the latter is indicative of an under-dimensioned system. Furthermore, the queue size distribution at
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embedding times also allows calculating queue size distributions both at arrival as well as at random
times. These statistics are representative of the system state encountered by arriving packets and a
random observer, respectively. In particular, the former serves as the foundation for determining
waiting and processing time distributions.

3.2.1 Batch Size Distribution. If the queue size is lower than the maximum batch size β , the two
are identical, i.e., the entire queue is emptied upon batch pickup, which is covered in the first case
of (2). Queue sizes larger than β result in batch sizes of exactly β and are instead covered by the
second case.

v(k) =


q(k) 0 ≤ k < β ,
∞∑
i=β

q(i) k = β,

0 otherwise.

(2)

3.2.2 Packet Loss Probability. As noted in the description of (1), packet loss occurs when the
number of arrivals during a service interval would lead to a queue size that exceeds the capacity L.
Hence, we can describe the packet loss probability as the ratio of the expected number of arrivals
beyond this threshold NLost and the expected total number of arrivals NArrivals:

ploss =
E [NLost]

E [NArrivals]
=

∑L
i=0 q(i)

∑∞
j=0(j · xbmin(i,β ),a(L +min(i, β) − i + j))∑L
i=0 q(i)

∑∞
j=0(j · xbmin(i,β ),a(j))

(3)

Similarly to (1), we consider all possible queue sizes i and use the corresponding probability q(i)
as a weighting factor. For each number of lost packets, represented by the summation index j in
(3), we calculate the probability for the arrival of (L +min(i, β) − i + j) packets that are required
for filling and exceeding the queue. For the expected total number of arrivals, we proceed in an
analogous fashion but do not have to shift the distribution of the number of arrivals.

3.2.3 Queue Size Distribution at Arrival Times. While the queue size distribution at the times of
embedding allows us to compute the batch sizes that are picked up during busy polling events,
we need a shift of perspective in order to determine the waiting time distribution of packets. In
particular, the waiting time of a packet starts as soon as it arrives in the system and the time it
spends in the system depends on its position in the queue.
Equation 4 shows how the queue size distribution as seen by arrivals, qA(k), can be computed.

Based on the queue size at embedding times, it is possible to determine the resulting batch size
as well as the distribution of the number of arrival events during the corresponding batch service
interval. The probability of an arrival finding a certain queue size can then be computed via the
ratio of the number of arrivals that find the queue at that specific level and the total number of
arrivals.

qA(k) =

∑L
i=0 q(i)

∑∞
j=0 xbmin(i,β ),a(j)

∑i−min(i,β )+j−1
m=i−min(i,β ) 1{min(m,L)=k }∑L

i=0 q(i)
∑∞

j=0 xbmin(i,β ),a(j) · j
(4)

3.2.4 Waiting and Processing Time Distributions. Given the queue size distribution at arrival times,
we can derive the distribution of the waiting time by decomposing it into the following two parts.
First, the time between a packet’s arrival and the next batch pick-up event. Second, zero or more
service times of size-β batches, depending on the packet’s position in the queue.
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We obtain the first component by considering the recurrence time of the overall batch service
time RS i.e., the time a random observer has to wait to encounter a batch pick-up event. To this
end, we derive the distribution of observed batch service times s(k) by weighting the batch size-
dependent service times with the occurrence probabilities of the corresponding batch sizes as
follows:

s(k) =

β∑
i=0

v(i) · bi (k).

For the second component, we leverage the fact that each possible queue size QA that can be
encountered by an arriving packet can be mapped to a specific number of full batches that are
serviced before it.

Subsequently, the distribution of the corresponding duration for servicing the respective number
of batches can be obtained by convolving bβ with itself. In terms of random variables, the waiting
time can therefore be expressed as

W = RS +

⌊
QA
β

⌋∑
i=1

Bβ , (5)

where RS denotes the recurrence time of s(k).
Finally, the total time a packet spends in the system can be calculated as the sum of the waiting

timeW and the service time S :

D =W + S . (6)

3.2.5 Queue Size Distribution at Random Times. While the perspective of individual packets that
arrive at the system can be useful when calculating performance indicators such as the waiting
time, the queue size distribution at random times provides generic steady-state system information
that is independent of specific events.

In order to determine the queue size distribution at random times, we reason about the possible
development of the queue between two times of embedding. We illustrate the development between
the n-th and (n + 1)-st embedding times in Fig. 4. Let the queue size equalQinit immediately before
a batch of packets is picked up for processing. Depending onQinit , the resulting batch sizeV of the
observed batch at the time of the n-th embedding is between 0 and β . During the corresponding
batch service time BV , a number of XbV ,a arrival events take place and sequentially increase the
queue size. The relative time the queue spends on each level is proportional to the interarrival time
A for most packets. Exceptions include the first and last level since they are interrupted by the
current and subsequent batch pick-up events, respectively. Hence, their duration is proportional to
the recurrence time of the interarrival time, RA. Other exceptions include the case of no arrivals
and arrivals that find the queue fully occupied. In those cases, the queue spends the entire time
on the same level or a prolonged time on the maximum level, respectively. The recurrence time
RA [52] of a RV A can be computed as

rA(t) =
1

E[A]
· (1 −A(t)). (7)

We use Equation 8 to calculate q̄(k), i.e., the probability of observing a queue size of 0 ≤ k < L, as
follows. 1{condit ion } thereby represents the indicator function, assuming 1 if the condition is true,
0 otherwise. The first term considers reaching queue size k immediately after the batch pick-up. In
this case, the queue size either remains equal to k the entire time if no additional arrivals take place
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Fig. 4. We use the queue size development between two embedding times to derive q̄(k).

during the batch service time, or it stays at size k for a time proportional to the recurrence time if
there are additional arrivals. The second term deals with cases in which the queue size is reduced
to a value lower than k when a batch is picked up, and a queue size of k is reached either as an
intermediate state or as the final state prior to the next pick-up event. Depending on this, the time
spent at a queue size of k is proportional to either the interarrival time A or its recurrence time RA.

q̄(k) =
L∑
i=0

q(i) · 1{i−min(i,β )=k } ·

∞∑
j=0

bmin(i,β )(j) ·

(
x j,a(0) +

∞∑
l=1

x j,a(l) ·
E [RA]

(l − 1)E [A] + 2 E [RA]

)
+

L∑
i=0

q(i) · 1{i−min(i,β )<k } ·

∞∑
j=0

bmin(i,β )(j) ·

(
∞∑

l=k−i+1
x j,a(l) ·

E [A]

(l − 1)E [A] + 2 E [Ra]
+

x j,a(k − i) ·
E [RA]

(l − 1)E [A] + 2 E [RA]

)
for 0 ≤ k < L.

(8)
For the special case of k = L, we need to account for the fact that the proportion of time the

queue spends at its maximum occupancy may be larger due to the occurrence of packet loss. We
derive the corresponding term in Equation 9:

q̄(L) =
L∑
i=0

q(i) ·
∞∑
j=0

bmin(i,β )(j)
∞∑

l=L−i+min(i,β )
x j,a(l) ·

E [RA] + (L − l − 1)E [A]

(l − 1)E [A] + 2 E [RA]
. (9)

4 EXPERIMENTAL SETUP
To validate our model, we instrument a testbed operating a real NFV software router following
the IETF benchmarking guidelines [8]. This section describes our hardware and software setups
as well as the scenarios we use to assess the accuracy of our model. We point out that, to assist
reproducibility of our work, all the experimental data we collect is available at [33].

4.1 Hardware Setup
We reproduce the experimental setup that has been illustrated earlier in Fig. 1. Our hardware
consists of two COTS Desktop PCs, equipped with two Intel 82599ES dual port NICs operating at
10Gbps. Each node has an i7-2600 processor, running at 3.40GHz. Each processor has 3 levels of
cache hierarchy, ranging from 32KB for the L1 to 8MB for the L3. Both machines are equipped
with 16GB of memory.
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Table 2. Experimental configuration parameters.

Parameter Value

H
W

NIC Intel 82599ES dual-port 10Gbps
CPU i7-2600@3.4GHz
Caches L1/L2/L3 32 KB/256 KB/8MB

D
U
T

Software router VPP 19.04
Number of CPU cores 1
Number of RSS queues 1
Memory allocated 4GB
Size of input queue (pkts) L = {1024, 2048, 4096}
Max DPDK batch size (pkts) 32
Max VPP batch size (pkts) β = {64, 256, 512, 1024}

TX
/R
X

Traffic Generator MoonGen
Rate span [min:inc:max] [0.5 : 0.5 : 10]Gbps
Hi/Lo rates 10Gbps / 2.5 Gbps
Packet sizes {64, 128, 256, 512, 1024} B
Arrival rate process Constant bit-rate (CBR)
Data points per configuration (pkts) 138k
Functions { XC, Eth, IPv4, IPv6 }
Scenarios Homogeneous vs Heterogeneous

We use one node as our Device Under Test (DUT) and the other for traffic generation (TX) and
reception (RX). The DUT receives traffic from one input line-card, performs the packet processing,
and then proceeds with the forwarding to the designated output port.We conduct our measurements
at the TX and RX side in order to assess the packet ingress and egress rate as well as packet loss.
Additionally, we measure directly within the DUT in order to obtain batch sizes and per-batch
processing time.
In order to ensure reproducibility and eliminate operating system scheduling, we run the DUT

on a single CPU core attached to a single RSS queue, as is typically done in stress-test conditions.

4.2 Software Setup
4.2.1 DUT. To validate the model, we select a state-of-the-art NFV software stack that employs
batched processing. In particular, we conduct experiments with the Vector Packet Processor
(VPP) [18]. VPP implements VNFs as software components (nodes) that can be linked together in a
specific configuration (forwarding graph). A specific input node (dpdk-input) polls the line-card
for new packets, grabbing a batch (vector) from the ring for processing. Notice from Tab. 2 that
VPP compute-batches may aggregate several DPDK I/O-batches, as the maximum VPP batch size is
larger than DPDK’s. VPP then processes all packets in the vector node-by-node instead of traversing
the graph packet-by-packet. Hence, in addition to sharing the framework overhead over the batch,
only the first packet triggers fetching of processing code in the L1-instruction cache of the CPU,
whereas processing of subsequent packets benefits from L1-instruction cache hits [5, 35].
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Also notice that this process naturally introduces branches, as packets may trigger different
functions implemented in different nodes of the forwarding graph. This requires splitting the
original heterogeneous batch into smaller homogeneous batches for the subsequent nodes. This is
expected to change the operational point of the NFV router, as not only the splitting process incurs
an additional overhead, but also since the framework overhead is now shared over a smaller batch,
and the code heterogeneity increases the L1-instruction cachemiss rate. It is thus important to assess
experimental performance under realistic scenarios involving multiple functions. Furthermore,
we investigate the impact of varying maximum batch sizes as well as the size of the RX ring for
different load levels.

4.2.2 TX/RX. For traffic generation and reception, we use MoonGen [15], a state-of-the-art pro-
grammable tool capable of sustaining 10Gbps line-rate. MoonGen also provides APIs to perform
basic measurements at the TX/RX side. For example, it is possible to access the NIC’s hardware
counters to precisely measure the number of packets transmitted and received, which allows to
derive the experimental forwarding and loss rates for comparison with the model.

Typically, a single DUT thread on a single RSS queue under commonly considered NFVworkloads
is able to sustain a rate of 12–14Mpps [7, 49]. As such, when sending 10Gbps worth of traffic
at minimum-sized 64 Bytes packets on a wire, corresponding to a rate of 14.88Mpps, we expect
the system to be in a lossy regime. As such, we assess the system performance for different rates,
ranging from 0.5 Gbps to 10Gbps with a step increment of 0.5 Gbps. For the sake of illustration, we
also consider two exemplary operational points, representing a high-rate (10 Gbps) and a low-rate
(2.5 Gbps) regime. Additionally, we assess the system performance for differently sized packets,
ranging from 64 Bytes to 1024 Bytes.

4.3 Scenarios
We consider two VNF cases, in which the router is stressed with either homogeneous traffic that
triggers the same function or heterogeneous traffic that activates a mixture of functions. We select
popular functions in the NFV ecosystem that allow us to focus on different components of the
framework. We use the simplest function to investigate I/O batching and introduce different types
of lookup and data structures to provide instances of compute-batching with different complexity.

4.3.1 Homogeneous Cross-Connect Function. In this scenario a single VNF, usually referred to as
cross-connection (XC), is applied to all packets, representing the baseline of homogeneous functions
in an NFV router. In this case, the VPP DUT is configured to take all the packets from one input
interface and immediately forward them to a fixed output interface. Notice that for the XC VNF,
no computation is needed on the headers of the transferred packets since the DUT simply moves
batches from the input to the output NIC. Therefore, this scenario helps assessing whether the
model faithfully reproduces the impact of I/O-batching.
We generate our workload using a MoonGen script that sends a stream of packets at a fixed

rate, namely copies of a templated UDP packet. Notice that for such a simple VNF, the type of
traffic does not affect the processing time. Since neither processing nor branching happens, XC
performance represents an upper bound for the performance of the NFV router.

4.3.2 Heterogeneous Eth/IPv4/IPv6 Functions. As pointed out in [44], as network traffic is heteroge-
neous, NFV routers need to handle a mixture of different functions. We therefore consider the case
of three different functions that operate on the same traffic batch. Specifically, we consider three
functions with different sizes of inputs (48, 32, and 128 bits), lookup types (exact vs longest-prefix
match), and data structures (hash tables vs tries). In particular, we consider traffic that triggers the
following operations, in increasing order of complexity: (i) a 48 bit exact-match Ethernet lookup, (ii)
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a 32 bit IPv4 longest-prefix match lookup using a trie structure, and (iii) a 128 bit IPv6 longest-prefix
match lookup that performs a lookup over multiple hash tables for different netmask lengths.

For the sake of simplicity, our experiments are performed with an even split of the functions, i.e.,
each of the above traffic types consume 1

3 of the bandwidth, so that each function activates with
probability 1

3 , resulting in different function breakdowns across batches. We point out that more
complex scenarios (e.g., featuring an uneven split, a larger set of functions, or longer chains) are
within the capability of the model, but are out of the scope of this paper.

5 MODELING VS EXPERIMENTAL RESULTS
Before we validate ourmodel via experimental results from the homogeneous and the heterogeneous
traffic scenarios, we discuss several options that are available for tuning the model inputs. These
options represent different trade-offs in terms of the resulting prediction accuracy, the model’s
general applicability, as well as the amount of measurements that are required prior to its application.
Using appropriate model settings, we then compare model-based performance predictions with our
measurements. In particular, we focus on the batch size and the waiting time.

5.1 Model Tuning Options
As detailed in Sec. 3, the model input consists of the queue capacity L, the maximum batch size
β , the distribution of packet interarrival times a(k), and the size-dependent distributions of batch
processing times bi (k). For the purpose of model tuning, we fix the values for L and β at 4096 and
256, respectively.
While the mean packet interarrival time E [A] can be determined from the applied rate, our

model provides a degree of freedom by allowing to set an arbitrary distribution to reflect aspects
like the traffic’s burstiness: to this end, we consider a total of four distributions that have varying
degrees of variation. In particular, these include (i) the Poisson distribution whose coefficient of
variation equals 1√

E[A]
, (ii) the geometric distribution with a coefficient of variation of 1√

q , and

(iii)-(iv) negative binomial distributions whose parameters are set to achieve coefficients of variation
equal to 0.5 and 2, respectively.

Furthermore, we use our measurements to obtain E [Bi ], the mean size-dependent batch service
times. Similarly to the packet interarrival time, we can use different distributions to model the
behavior of the processor. However, all conducted measurements yielded a very low degree of
variation when considering a particular combination of applied rate and the corresponding per-size
batch service time. Hence, we use Poisson distributions for the service time.
Additionally, the model might require service time distributions for batch sizes that did not

occur in the measurements. In order to provide these missing distributions, the mean service
times for the remaining values of the batch size are required. We obtain these by means of linear
fitting. In particular, we interpolate the missing mean service times based on the means of observed
values. The Poisson distributions for the service time are then generated with measurement-based
means where available and with fitted means otherwise. This fitting procedure can be done either
globally or on a per-rate basis. This choice represents a trade-off between the overhead for per-rate
measurements of the service time, risking overfitting the model to a particular scenario, and a
possible improvement w.r.t. the resulting accuracy.

5.1.1 Per-rate vs Global Fit. We illustrate the immediate effects of the chosen fitting strategy
in Fig. 5. While the x-axes denote the batch size, the y-axes represent the mean service time in
microseconds, and different colors represent different packet arrival rates. Each dot represents
a mean service time that is obtained from measurements and lines correspond to linear fits. In
particular, we observe that the slope of the linear fit can vary depending on the considered arrival

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.



Discrete-Time Modeling of NFV Accelerators that Exploit Batched Processing 0:15

Fig. 5. Size-dependent batch service times. Points indicate mean values from measurements, lines denote
linear fits. Cross-connect scenario with β = 256, L = 4096, and 64 B packets.
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Fig. 6. Mean batch sizes for different rates, arrival processes, and fitting strategies. Cross-connect scenario
with β = 256, L = 4096, and 64 B packets.

rate and therefore might lead to a larger error when the model has to take into account batch sizes
that did not appear in a measurement run. Furthermore, the range of observed batch sizes widens
when increasing the rate. This effect can be explained by shorter packet interarrival times for which
the same amount of service time fluctuation leads to a bigger variation in terms of the resulting
batch size. At 7.5 Gbps, we observe the widest range of batch sizes, whereas for 10Gbps the batch
size is consistently maximal and the system likely operates in a lossy regime. Note that due to this
behavior, only a single data point for 10 Gbps is available and as no linear fit is possible in that
case, the data point is not included in the per rate fitting, but has been taken into account during
global fitting.
In order to evaluate the impact of the fitting strategy as well as the distribution of the packet

interarrival time, we apply our model to the XC scenario and compare the resulting mean batch size
with our measurements. For different rates on the x-axes, the graphs in Fig. 6 display the mean batch
size on their y-axes. The four subplots correspond to evaluations that use Poisson, negative binomial,
geometric, and negative binomial distributions with corresponding coefficients of variation equal
to 1/

√
E [A], 0.5, 1, and 2, respectively. Bars of different colors represent the measurement data

(middle, blue) surrounded by results from the model with the two fitting strategies: the global fit
(red bars to the left of measurement data) vs per-rate fit (green bars to the right).

As evidenced by the similar development of the mean batch size and the correct identification
of the saturation for rates greater than 7Gbps, all four considered model variants lead to a high
degree of agreement with the measurements. However, the models using the global fitting strategy
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consistently outperform those that rely on per-rate fitting of the service time. For instance, in the
case of the Poisson distribution, mean values differ by only up to 1 packet when using a global fit,
whereas differences of up to 8 packets are observed with a per-rate fit. This effect can be explained
by the fact that the per-rate fitting strategy can suffer from performance issues when the model
requires service time information for batches that have not been observed in the corresponding
measurements. Hence, there is a trade-off between the amount of measurements that are used for
fitting and the resulting accuracy. For the remainder of our evaluation, we show results that are
obtained with the global fitting strategy.

5.1.2 Arrival Process Distribution. In contrast to the fitting strategy, the chosen distribution of the
arrival process does not have a significant impact on the mean batch size returned by the model,
which we can capture with the relative error (RE) of the normalized difference of means and is
defined as

|E [P] − E [Q]|

E [P]
.

Therefore, we extend our evaluation and compare the batch size distributions that are returned
for different arrival processes. To this end, we compare the batch size distribution returned by
the model under different arrival processes to distributions observed in the testbed. Note that we
do not modify the arrival process in the measurement setup, but are interested in identifying an
appropriate interarrival time distribution for the model. We quantify the difference between the
distribution that is returned by the measurements and the model by means of the Jensen-Shannon
divergence (JSD) which is symmetric and bounded, allows to equally weight differences among
two distributions p(k) and q(k) over their full support, and is defined as

∞∑
k=0

(
1
2
p(k) ln

p(k)
1
2p(k) +

1
2q(k)

+
1
2
q(k) ln

q(k)
1
2q(k) +

1
2p(k)

)
.

For three exemplary rates that represent a low, a medium, and a high load as well as our four
arrival distributions in increasing order of coefficient of variation, Fig. 7 displays the batch size
distribution obtained by means of measurements and our model. Given the batch size on the x-axes,
the y-axes represent the corresponding probability while annotations provide the JSD and RE
values. Note that all rows show the same values in case of the measurement-based distributions,
since we only vary the interarrival time distribution used in the model.
When inspecting the distributions obtained by the measurements, we can observe that there

is usually one peak around which the main portion of the probability mass is centered. This can
be explained by the fact that there is an equilibrium between the per-packet service time that is
achieved in the context of a particular batch size and the mean packet interarrival time. Hence,
the number of arrivals during the service time of a batch is nearly constant. In the case of higher
rates, shorter interarrival times lead to larger mean batch sizes which, in turn, allow for larger
fluctuations in terms of the number of arrivals during the corresponding service time.
When comparing the subfigures column-wise, we observe that while these peaks are also

reconstructed by all model variants, their dispersion increases significantly with the coefficient of
variation of the chosen arrival distribution. Similarly to the previous argument, the higher variance
of packet interarrivals leads to a wider range in terms of the number of arrivals during a service
period. Finally, the best match regarding both the shape of the resulting distributions as well as
the achieved JSD measure is achieved when using arrivals that follow a Poisson distribution2. This
is also in line with the settings of the MoonGen traffic generator that is set to send packets at
a constant rate. Since it is a software-based generator, minor fluctuations of the corresponding
2Note that arrivals do not follow a Poisson process, but exhibit interarrival times according to a Poisson distribution.
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Fig. 7. Batch size distributions for different rates and arrival processes. Cross-connect scenario with β = 256,
L = 4096, and 64 B packets.

Table 3. Packet loss probability for different rates. Cross-connect scenario with β = 256, L = 4096, and 64 B
packets.

Rate [Mbps] 8000 8500 9000 9500 10000
Measurements 0.97% 6.69% 11.58% 16.44% 20.17%

Model 1.09% 6.78% 11.56% 16.30% 20.13%

sub-microsecond interarrival times are to be expected. Therefore, we use interarrival times that
follow a Poisson distribution for the remainder of this work.
As already noted, the mean batch size takes on a constant value of 256 for rates of 8Gbps and

above. In these high-load regimes, packet loss begins to occur since the number of arrivals during
the batch service time exceeds 256 and the queue fills up steadily. In Tab. 3, the actual packet loss
that is reported in the measurements is compared to the model’s predictions. Rates below 8Gbps
are omitted since they are equal to 0 in both cases. For the remaining rates, the model accurately
predicts the occurrence and quantity of packet loss which increases linearly with the applied load.
In summary, our model achieves a very high accuracy for both batch size and packet loss in the

cross-connect scenario, faithfully modeling I/O batching over a wide range of arrival rates, including
overload scenarios that result in packet loss.
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Fig. 8. Average batch size obtained via model and measurements given different packet (pk) and queue
sizes (qs). Maximum batch size β = 256 and mixed traffic.

5.2 Prediction of Key Performance Indicators
Having demonstrated the model accuracy in the context of the simple cross-connect scenario and
having identified appropriate model settings, we present the results of evaluations with the more
complex scenario featuring mixed traffic in this section. Additionally, we investigate the impact
of parameters such as the maximum batch size, the queue size, and the packet size on the system
behavior as well as the accuracy of the model.

5.2.1 Batch Size Distribution. Since the overhead for processing a batch of packets is shared
between packets within a batch, the batch size distribution constitutes an important measure of
the system efficiency. We present a comparison between the mean batch sizes reported in our
measurements and those predicted by ourmodel in Fig. 8. Each subplot corresponds to a combination
of queue and packet size, and displays the applied rate on the x-axis and the corresponding mean
batch size on the y-axis.

First, we can extract insights regarding the system behavior. We can observe that the maximum
batch size is attained earlier in the context of the more complex mixed traffic scenario than in the
simple cross-connect scenario. While the top right subplot of Fig. 8 shows that this already happens
at a rate of 5 Gbps with mixed traffic, a queue size of 4096, and 64 B packets, the maximum batch size
is reached starting at a rate of 8 Gbps when using the same parameters in the cross-connect case (cf.
Fig. 6. Furthermore, increasing the packet size leads to a decrease of batch sizes as evidenced by
the development of batch sizes along vertical sequences of subplots. This can be explained by the
fact that processing happens per header rather than per byte and therefore an increase in packet
size results in a decrease of the packet-rate at the same bitrate. From the vertical sequences of
subplots, we can derive that the queue size does not have a significant impact on the batch size.
To explain this, we can consider the two extreme operational regimes the system can be in. If it is
in the loss-free regime, the queue is emptied on each batch pickup event and never runs full. In
conditions with packet loss, the queue tends to fill up regardless of its size, leading to exclusively
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full batches. The behavior inbetween these two scenarios is, in general, depending on the arrival
process and, more specifically, its burstiness. Hence, while the maximum queue size does not have
an immediate impact on batch sizes, it should not be ignored since it does affect waiting times and
can allow the system to withstand packet bursts.
Finally, comparing measurement values with model-based estimates demonstrates that despite

the increased complexity of the scenario, the model is still capable of reliably predicting the mean
batch size. In 90% of scenarios, the difference w.r.t. mean batch size is 2 or less. Nevertheless, some
outliers with larger differences are present. These tend to occur on two occasions. First, during the
transition from the loss-free regime to the lossy regime. Second, when the applied rate equals the
maximum rate of the link. Both constellations represent conditions with an increased sensitivity
where deviations are amplified.

The transition between the loss-free and the lossy regime can be observed in Fig. 9, which shows
the difference between the experimentally measured batch sizes and the predictions of the model.
Considering the first row (obtained with mixed traffic of 64 B packets) we observe that at high-rate,
the difference is zero: the model correctly predicts the saturation of the system which will always
retrieve batches of the maximum size β . At low rate, the difference between the model and the
measurements is very low, and it increases as we approach the state change between a loss-less and
a lossy regime. When the system load reaches this state change (between 3.5 Gbps and 5.0 Gbps)
we observe that the model underestimates the actual size of the batches. This is due to non-linear
effects introduced by the implementation of the VNF router, as the program tries to privilege larger
batches in order to minimize the overhead of the framework, thus causing a discrepancy of up
to 30 packets for the batch size. Similarly, this also explains the behavior observed in the second
row of Fig. 9. Interestingly, we observe that when the packet size is 64 B (first row), the interval
of the state change is [3.5, 5.0] Gbps, which translates into an interval of [5.2, 7.4]Mpps (millions
of packets per second). When the packet size is 128 B, the state-change interval is [6.0, 8.5] Gbps,
which translates into an interval of [5.1, 7.2]Mpps. Therefore, although the second interval is larger
in bitrate, it is comparable in terms of processed packets per second. Finally, as the scenarios with
packet size greater than 256 B never show a change of regime, we do not observe a significant
difference between the measurements and the model.

While the mean batch size provides aggregated information on the system efficiency, our model
is also capable of returning the batch size distribution which allows an even more in-depth analysis.
We use the Jensen-Shannon divergence (JSD) to quantify the difference between the batch size
distribution that is obtained via the model with the measurement-based reference and present
the results in Fig. 10. Based on a total of 1200 parameter combinations of queue size, packet
size, maximum batch size, and applied rate for each of the two scenarios, empirical cumulative
distribution functions of attained JSD values are shown. We can identify a gap between the curves
representing the cross-connect (XC) and mixed traffic (MIX) scenarios, with lower JSD values
observed in the case of the former. This is in line with previous observations, i.e., the mixed traffic
scenario introduces additional complexity which increases the difficulty of the prediction task.

Since the JSD captures differences over the entire range of the distribution, even slight changes
in the mean value can have a large impact on the resulting JSD value despite similarities in terms of
the shape of distributions. Nonetheless, in over 15% of cases, a perfect match between distributions
is achieved. Furthermore, JSD values lower than 0.1 are observed in 67.4% and 63.2% of parameter
combinations of the XC and MIX scenarios, respectively. Higher JSD values stem from parameter
constellations that also caused the largest deviations regarding the mean batch size, i.e., those near
the transition towards the lossy regime and rates equal to the capacity of the physical link.

In summary, the model accurately captures the mean batch size as well as the batch size distribution,
even when the scenario complexity is increased by changing VNF behavior, traffic mix, and parameters
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Fig. 9. Difference in mean batch sizes obtained via model and measurements given different packet (pk) and
queue sizes (qs). Maximum batch size β = 256 and mixed traffic. Values greater than 0 correspond to the
mean batch size in the measurements being larger than the one returned by the model.
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Fig. 10. Distribution of the Jensen-Shannon divergence regarding the batch size distributions obtained
from measurements and via the model. All scenarios are included, i.e., queue size L ∈ {1024, 2048, 4096},
maximum batch size β ∈ {64, 256, 512, 1024}, packet size ∈ {64, 128, 256, 512, 1024} B, and applied rate
∈ {500, 1000, . . . , 10000}Mbps.

such as the packet size, queue size, and maximum batch size. The compatibility with these scenarios is
maintained without modifications to the model, highlighting its general applicability.

5.2.2 Waiting and Processing Time Distributions. While the batch size can serve as an efficiency
indicator, large batches can also adversely affect the waiting and processing time of packets. Hence,
these metrics should also be considered when evaluating the performance of VNFs. With our model,
we can derive the waiting time as well as the processing time distributions and we validate the
results in this section.
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Since performing per-packet delay measurements in the device under test would interfere with
VNF performance - especially at high packet rates - it is not a feasible strategy for obtaining the
ground-truth latency data. Instead, we measure the total per-packet latency between the egress and
ingress of our MoonGen traffic generator and compare it to the processing time that is determined
via our model. Due to this measurement setup, we expect two main sources of mismatch between
the experimental results and our model. Whereas the model targets internal DUT processing,
measurements are taken externally. Hence, the measurements include DUT processing as well as
additional delays induced by traffic generator processing and other overheads. Similarly, propagation
and transmission delay between the generator and the DUT are not explicitly accounted for in the
model.

As such, we expect the model to underestimate delay-related KPIs when compared to measure-
ment values. However, due to the nature of the aforementioned overhead, this difference should
result in a constant, scenario-specific fixed delay offset which can be addressed with appropriate
calibration. In our case, this fixed delay offset encompasses the MoonGen processing time for packet
handling, the round-trip propagation, and transmission delays on wire. We quantify this offset by
means of a simple cross-connect setup in which the DUT simply executes DPDK L2 forwarding to
minimize processing. In this scenario, we once again use MoonGen to generate a continuous stream
of packets, that get forwarded back to the source by the L2 forwarding VNF. In our specific testbed
configuration, this overhead amounts to roughly 5 microseconds and is later used in Figure 13 to
present adjusted model predictions.

For different rates on the x-axis, Fig. 11 shows a comparison of the mean latency in microseconds
as obtained from measurements and our model. Horizontally and vertically arranged subplots
illustrate the effects of changes to the queue size and packet size, respectively. We limit the y-axis to
a maximum of 10 µs in order to show details during the loss-free operational regime. As soon as the
load increases and the system transitions into the lossy regime, the latency increases significantly
due to congestion at the queue.
We make three main observations. First, for all shown scenarios, both the measurement- and

the model-based values follow the same trend, i.e., latency increases happen at the same locations
and with a similar slope. Furthermore, the offset between the two curves remains in a narrow
range around 5 µs . Second, there is a clear effect of the packet size on the waiting time. Following
subfigures along the vertical axis, we can observe that the latency starts increasing earlier in the
case of small packets. This is in line with previous observations about higher packet rates when
using smaller packets at the same bitrate. Third, almost no difference is observed regarding the
mean latency in scenarios that differ only in the queue size. This effect is caused by limiting the
y-axis and showing only the loss-free portion of the scenarios. In those, no congestion at the queues
takes place and the queue is emptied on each batch pick-up. Beyond these rates, the queue size does
play a role and limits the maximum waiting time, i.e., rather than having to wait longer, packets
are dropped in the case of a smaller queue size.

In order to quantify the difference between latency values obtained from the measurements and
the model as well as to investigate the behavior in high-load scenarios, Fig. 12 displays the cumula-
tive distribution function of the latency differences observed in all scenarios, i.e., all combinations
of queue and packet size, maximum batch size, and XC / MIX scenarios. The logarithmically scaled
x-axis shows the difference between measurement and model values, whereas the y-axis denotes
the percentage of experiments in which the difference was below of equal to the corresponding
value.

In the case of the XC scenario, the difference is in the range of 3-5.8 µs in 92% of experiments,
and in the range of 3-6.4 µs in 75% of MIX experiments. These correspond to the loss-free cases
shown in the previous figure. In cases of overload, both the absolute values of the latency and the
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Fig. 11. Mean latency measured in the technical system and reported by the model under different packet (pk)
and queue sizes (qs). Maximum batch size β = 256 and mixed traffic.
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latency difference increase significantly and are in the range of 400-900 µs . However, as evidenced
by the vertical sections in the ECDF curve, the difference remains stable within scenarios with
identical parameters and could be partially mitigated by calibration. Additionally, in the overload
case, congestion and packet drops at the queue play a role and our simplified modeling of ring
buffers as FIFO queues starts having an adverse effect on the accuracy of latency predictions.
However, when the system is in a lossy-regime, the waiting time is not the right KPI to consider, as
the system operator should be more concerned with the packet loss ratio, which the model can
correctly predict. The reason for the better overall performance in the XC experiments is caused
not only by the lower complexity of the system, but also by the fact that XC has a higher non-drop
rate and therefore a larger proportion of loss-free scenarios.
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(b) Mixed traffic, β = 256, 256 B
packets, L = 2048, 2000Mbps.
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Fig. 13. Latency distributions in different scenarios obtained via measurements and model. Dashed green
curves are obtained by shifting the original model curves by a constant offset that is obtained via calibration
measurements.

Despite the offset regarding the mean latency, we investigate the latency distribution to check
whether the model can faithfully reproduce the general system behavior, e.g., regarding the shape
of the distribution. To this end, we present cumulative distribution functions for three different
parameter combinations in Fig. 13. Each subfigure corresponds to one parameter combination and
we vary the traffic conditions, queue size, packet size, and applied packet rate. The measurement
values are shown in red, whereas the green and blue lines indicate the model values with and
without calibration, respectively. In particular, the adjusted model curves are obtained by using the
mean offset from the calibration measurements to shift the original distributions that are returned
by the model.
In case of all three combinations, we can observe that the shape of the distribution is retained

and that in case of both the measurements and the model, the overall processing time roughly
follows a uniform distribution. This is consistent with the fact that packets experience different
waiting times depending on their time of arrival relative to the next batch pick-up event and arrive
at the system at a near-constant rate.
When comparing the first two subplots, we notice that the latency ranges differ despite the

respective scenarios having the same applied rate of 2000Mbps. This phenomenon is explained
by the different packet size which in turn affects the batch size and therefore batch service time,
leading to a lower total processing time in case of the scenario with larger packets in Fig. 13b.
Furthermore, the latency values shown in Fig. 13c are even lower and lie within a narrower range.
This stems from the simple cross-connect scenario in which a higher rate can be sustained due to
more heterogeneous packets and absence of table look-ups during packet handling.
Finally, when looking at the adjusted model values obtained by adding the constant offset

obtained during calibration measurements, the close fit of the model can be seen.
In summary, the results presented in this subsection highlight that the model is also capable of

accurately reproducing the behavior of VNFs in terms of the latency that is experienced by packets.
Furthermore, this capability persists throughout numerous parameters and therefore shows that the
model generalizes well.

6 RELATEDWORK
Related to our work is both modeling work [1, 17, 22, 27, 30, 36, 38, 39, 41, 51, 53] that either shares
a similar technique or NFV focus and experimental work [7, 18, 20, 26, 28, 29, 42, 44, 49] of NFV
systems. Our work is, to the best of our knowledge, the first attempt at bridging the gaps between
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these two worlds by proposing a strongly grounded theoretical model, that is directly compared to
experimental results of state of the art NFV software with batch processing.

6.1 Modeling Viewpoint
The theory of bulk queueing systems has long been studied [27]. For Markovian bulk input
M [X ]/M/1 and service M/M [X ]/1 systems, [51] provides closed form solutions under Poisson
arrivals and exponentially distributed service times. Particularly, bulk-input Batch Markovian
Arrival Processes (BMAP) have been well studied [38, 39, 50], and applied to study long lived
TCP connections [1, 41], model aggregated IP traffic [30] or describe parallel processing in cloud
environments [23]. Similarly, models featuring batch arrivals and general independent arrival
distributions have been proposed as well [12, 13].

Furthermore, several studies regarding bulk-service systems have been conducted in the past [2,
9, 11, 45]. Similarly, previous work that takes batch-size dependent service times into account does
exist as well [3, 14, 40]. However, the complexity of the relation between batch-size and service
time is limited in these studies. This relation between batch-size and service time can be arbitrarily
complex for the model proposed in this work. Finally, [4, 10] both investigateM/Gi(a,b)r /1 queues
and compute the queue size distribution at departure events. Note here that all of these studies
contain at least one Markov component or are limited to basic performance indicators, as opposed
to the Gi/Gi[X ]/1 − L study presented in this work.
Models of Network Functions Virtualization (NFV) have also recently appeared [17, 22, 36, 53].

In particular, queueing models are used in [17] and [36] to describe software-based networks.
Similarly, the authors of [43, 46, 47] investigate the impact of autoscaling on 5G networks with
both legacy equipment and VNFs as anM/M/n system with variable n. All of these models adopt a
global network view and strongly abstract the mechanisms of specific network elements by simply
assuming a certain service rate, as opposed to this work in which we provide a detailed model of a
single VNF component. Under this perspective, studies closer to ours are [22, 53], which both aim at
predicting virtual function performance on multi-core systems. Yet, [53] does not take into account
mechanisms like batch arrival or batch processing of packets, which both are crucial characteristics
of modern NFV routers. In contrast, the authors of [22] assume fixed processing times, which we
show not to hold true in practice, and omit a proper experimental validation.

In synthesis, while several models exist that take bulk arrival as well as batch service processes
into account, evaluations of real world systems are missing. In addition, most solutions are based
on the Markovian property of a system, which does not necessarily hold true in the real world.
In addition, related approaches in the area of NFV often exploit a high level of abstraction by
ignoring details of the software stack like batch processing, interrupt mitigation and busy polling
mechanisms. Finally, proper validation of the model outputs based on a comparison to experimental
results of a real NFV system is lacking so far.

6.2 Experimental Viewpoint
The ecosystem of high-speed all-software packet processing has flourished in the last decade with
both low-level building-blocks that use I/O batching (e.g., netmap [49] and DPDK [26]), as well
as high-level full-blown stacks that apply NFV functions with a compute batching paradigm [7,
18, 28, 29]. Whereas such frameworks offer a similar set of features, comparison is difficult so that
most related work relies on extensive evaluation campaigns of a single tool – as we do in this work
using VPP over DPDK.
Previous efforts aimed to evaluate a limited subset of the aforementioned tools [7, 20, 44]. For

example, [20] focuses on accelerated low-level frameworks, namely netmap, DPDK, and PF_RING.
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The authors perform an experimental campaign assessing not only throughput, measured in Mpps,
but also consider the impact of factors such as batch size or misses in CPU caches. Similarly,
FastClick performance is evaluated over both DPDK and netmap in [7]. Finally, [44] experimentally
compares NFV throughput with chains of heterogeneous functions using OVS-DPDK, SR-IOV, and
FD.io VPP. Given findings in [7, 20, 44], it is reasonable to assume that the model presented in
this paper should also be fit to express the performance of other frameworks – whose application
however requires involving experts in each of the above tools, since the engineering effort to
put in place measurement collection in a state of the art manner is delicate process requiring a
considerable effort.

A recent direction advocates for a more general approach at the evaluation of software routers,
and for the availability for open and honest quantification of novel tools’ performance. Authors in
[54] propose a methodology to fairly assess the performance of several state-of-the-art software
routers in different settings, while the online reports of [19] show the results of several through-
put/latency measurements for the latest versions of VPP. Finally, pointed out in [16], the topic of
fairly measure the performance of software routers is delicate and difficult, which further proves
the need for analytical approaches such as the one proposed in this manuscript, alongside the
classical experimental benchmarking. As such, to the best of our knowledge, our work is the first
to bridge the gap between experimental and analytical work of NFV by proposing a simple yet
accurate model, that we studied and benchmarked for a particular software tool, but that can be
easily fit to any other tool in the NFV family.

7 CONCLUSION
This paper presents the first discrete-time NFV model that takes into account the most recent and
relevant aspects of modern NFV routers. These include the use of batching for both low-level I/O
data transfer as well as for high-level data transformation and computation. We validate the model
with experimental results that are gathered in a testbed with state-of-the art NFV routers. The
experimental scenarios include a simple cross-connect case as well as a realistic setting in which
traffic triggers heterogeneous functions with different processing complexity.

While our proposed model is simple and general, as it only needs few aggregated measurements
from a real NFV router, it is very accurate in reporting detailed performance indicators even in
complex scenarios with multiple functions. The performance indicators include not only the packet
loss probability and mean batch size, but also the distribution of the batch size as well as the
processing time distribution. On the one hand, this allows to precisely characterize the router’s
performance, e.g., in terms of batching delay. On the other hand, it can be used as an operational
tool to dimension the router hardware, e.g., the number of CPU cores required to sustain mixed
traffic with a classic 5-nines reliability.

As part of a larger effort, we release our measurement at [33] in the hope that, at a community
level, we can build a large benchmark for NFV models including a larger set of NFV routers (such as
FastClick and G-opt) as well as more realistic traffic patterns (e.g., different traffic mixtures, chains
of functions of different lengths).
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