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Abstract

The increased use of consumer electronics like computers, mobile phones,
smart watches, external hard drives, etc. has made digital forensics more
important for law enforcement. Consumer products now contain more in-
formation about a person’s life than ever before, useful in any criminal
investigation. Gaining access to forensically valuable data is often crucial
for a successful law enforcement investigation. At the same time, the man-
datory security and complexity of these devices have increased, making
successful acquisition of forensically valuable data more difficult.

Successful acquisition now requires law enforcement to understand the
underlying technology and possibly bypass security schemes protecting the
user data. This thesis contributes with knowledge in this setting, by look-
ing at different security challenges law enforcement meet when trying to
acquire data from digital devices, and especially mobile phones. This thesis
aims at increasing the knowledge on how law enforcement can use secur-
ity vulnerabilities in digital forensic acquisition of modern mobile phones,
improve the effectiveness of such use and gain knowledge on new attack
surfaces.
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Chapter 1

Introduction

This chapter will give a generic introduction to the challenge this thesis is
addressing and how this relates to digital forensics. The motivation, prob-
lem formulation and research questions are then introduced. The last sec-
tion contains the thesis scope and layout.

1.1 Background and Motivation

The increasing use of embedded devices, like smart phones, with the in-
creasing amount of private data contained within, is becoming more and
more valuable in criminal investigations. Their increasing complexity and
mandatory security is challenging for Law Enforcement (LE), and gaining
access to this valuable data is getting increasingly harder for law enforce-
ment. Denied access to this data might be crucial to investigations, ulti-
mately resulting in serious crime becoming unsolved and criminals walk-
ing free from prosecution. However, this increasing complexity can also
be an advantage for LE, raising the bar for securing such systems. There
is an inherent risk of introducing exploitable vulnerabilities as a result of
factors such as increased code size, more complex security designs and
shorter time to market.

The challenge with increasingly secure devices andmore resource de-
manding digital forensic can be seen in a well known terrorist case in the
US [7]. This resulted in a demand from the FBI to Apple to create an official

(cryptographically signed) and vulnerable version of the suspect’s iPhone
operating system, and then update the device with this vulnerable version
to weaken the security so FBI could successfully use this introduced secur-
ity vulnerability [8] to bypass the unknown user credentials and acquire
data from the iPhone. This is in effect introducing what one in computer se-
curity would call a backdoor [9, 10]: a deliberate feature to bypass a given
security feature. This FBI request raised a great deal of discussion [11],
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whether Apple should comply and create a vulnerable and “backdoored”
version of their own product which, if leaked outside Apple/FBI, could
enable other attackers to break the security of other iPhone devices. This
would be a disaster for the security of the iPhone as well for the security
reputation of Apple products. Apple refused to comply, even when the US
court supported the FBI’s view [12]. After some dispute, the result was that
the FBI looked elsewhere for a solution to acquire data from the suspect’s
iPhone. The FBI dropped the request to Apple, as the FBI got hold of the
user credentials (passcode) protecting the iPhone by other means. Though
the FBI has not officially stated how they got hold of the user credentials
of the deceased suspect, rumours and speculations suspect the use of a se-
curity vulnerability found in the device to recover the user credentials [13,
14].

So it’s challenging for LE to gain access to user data on commercial
end products used by normal users, because of mandatory security. Com-
mercial and publicly available tools and methods exist, but are challenged
by modern mobile phones security measures, like encryption [15–18]. A
similar challenge is known from the “cryptowar” history [19] and policy
options for decryption by government agencies, getting hold of encryption
keys ex ante (backdoors) or ex post (like decryption orders). Both are con-
troversial. A third option is ex nunc, accessing encryption keys in real time,
through “legal hacking” and “government hacking powers” [19]. This ex

nunc might be an option for digital forensics as well.
This FBI case is thus an good illustrative example of these current

challenges LE faces in digital forensics, both technically and policy wise.
The owner in this specific case was a suspected terrorist, but the phone used
was a stock commercial product, with no extra security features added bey-
ond the mandatory security enforced by Apple on their iPhone products.
The stance made by Apple sets an important stage for digital forensics in
years to come. This discourages LE to request vendors to implement back-
doors to bypass security. At the same time, this encourages LE to look for
ways to bypass security mechanismswithout help from vendors, evenwhen
the vendor is within the same jurisdiction. Exploiting security vulnerabilit-
ies is one way to bypass security mechanisms, turning LE into an attacker
of the same system. The increasing complexity with added features might
increase the rate of implementation errors [20], where security vulnerabil-
ities is a subgroup of such errors, potentially exploitable to bypass security
measures. Such security vulnerabilities are referred to as 0-day vulnerab-
ilities when unknown to the vendor, where no patch exists [21]. The cor-
responding n-day vulnerabilities are when vulnerabilities are known to the
vendors and patches for affected systems are available, but not necessarily
installed. LE can utilise both 0-day and n-day vulnerabilities, with 0-day
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being more useful due to both current and future seized devices being vul-
nerable. But an n-day can also be equally useful for unpatched devices,
but the frequency of such affected devices might be lower. As LE can seize
devices, and take them offline, n-day vulnerabilities can be exploited by
waiting for patches to be available, rediscover potentially fixed security
vulnerabilities, and develop exploits for the unpatched seized devices. This
“patch preventing” capability of LE can potentially become important.

The challenge in this FBI case, mandatory security of the Apple iPho-
ne, shows that even the expertise of the FBI might not be able to technically
bypass such security measures, even in a terrorist case where one would
expect every available resource to be available in the FBI. Officially ad-
mitting this and asking for vendor assistance emphasises this challenge. A
vendor backdoor would technically solve the case, but the vendor refused,
leaving the FBI to turn elsewhere for a solution, like security vulnerabil-
ities, to solve the case [22]. As the current lack of official support from
vendors to implement LE access through e.g. backdoors or other forms of
vendor modifications, new forensic methods for securing data might need
a push towards the use of more offensive techniques. Using offensive tech-
niques and exploitation of security vulnerabilities, in order to gain access
to valuable information, as seen from a digital forensics perspective, raises
both technical and ethical questions as described in the following.

1.1.1 The “equity issue” of security vulnerabilities

Turning back to the FBI case, we can already see some potential ethical
challenges that follow in the wake of discovering security vulnerabilities.
The FBI could discover an exploitable security vulnerability by their own
research into either 0-day or n-day vulnerabilities, or they could pay for
such research to be done. Either way, if the vulnerability is unknown to the
vendor, a 0-day vulnerability, this knowledge also raises important dilem-
mas.

Discovering 0-day vulnerabilities to bypass security mechanisms com-
es with a great responsibility. A security vulnerability represents know-
ledge of a weakness other attackers, such as foreign state actors, also can
discover and abuse. This raises the question if such discovered security
vulnerabilities should be used defensively, being reported to the affected
vendors, so they could mitigate the risk. Keeping a security vulnerability
from disclosure might result in numerous future successful, offensive, use
in digital forensics, at the expense of a much bigger set of unknown, unin-
formed and vulnerable users. These conflicting interests between offensive
and defensive use of security vulnerabilities are not new [23–25]. In the
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US, this challenge is publicly discussed [26] and addressed by the United
States Government [27]. Whether to restrict discovered security vulner-
abilities for offensive use or disclose for defensive use, is decided case
by case, evaluating new security vulnerabilities in a Vulnerability Equities
Process (VEP). Representatives from United States Government agencies
gather regularly to evaluate and decide the fate of newly discovered secur-
ity vulnerabilities discovered by government agencies [27]. This policy is
not without debate [28, 29] and only represents one of potentially many
conflicting national policies. This “equity issue” is thus a political issue,
where states and jurisdictions develop their own standards and policies
on how to handle discovered security vulnerabilities. As in the US, sev-
eral government agencies are stakeholders of such security vulnerabilities,
with potentially conflicting interests. Knowledge of security vulnerabilities
is sensitive, as such government agencies often represent intelligence in-
terests, further restricting the use of such vulnerabilities. Every exploitation
of a security vulnerability, either by intelligence agencies or by LE in digital
forensics, is running a risk of exposing the vulnerability, rendering it less
useful if a patch is created, turning it into an n-day vulnerability. So policies
need to account for a plethora of conflicting and challenging needs from
the stakeholders. If the FBI used a discovered 0-day security vulnerability
on the suspect’s iPhone in the above mentioned case, this was probably
regulated by such a policy. To further complicate the situation, such a 0-

day security vulnerability might be independently discovered by multiple
states and jurisdictions, with bilateral and multilateral cooperation, but
conflicting policies.

In Europe, a recent EU draft raised a similar concern on the LE chal-
lenges with mandatory security and encryption of consumer devices, but
does not currently provide a solution. There is only a suggestion that co-
operation is needed to create a balance between consumer privacy and
LE needs: “Since there is no single way of achieving the set goals, gov-
ernments, industry, research and academia need to work together to stra-
tegically create this balance” [30, p. 4]. The EU draft does not consider any
technical alternatives for LE, like backdoors or the use of security vulner-
abilities.

1.1.2 The end user perspective

The increase in mandatory security of mobile phones has a huge benefit
for the data and communication security of end users. The argument from
LE is that criminals use this technology to prevent prosecution and thus
this has a negative impact on society. However, users in countries where
citizens, journalists, dissidents, etc. might be victims of surveillance and
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risk of false prosecution, this has a huge positive impact on their security.
Mandatory security and encryption thus protects the democratic values of
privacy and freedom [31].

User data is also worth much for other organisations than LE. The
need to protect the population against other threats, like personal data
being used without consent by companies like Facebook and Google, has
resulted in laws and regulations. The General Data Protection Regulation
(GDPR) is an attempt from the European Union to regulate organisation’s
use of end user data without consent [32].

So the benefits of mandatory device security for individual citizens
must be weighted against the potential negative effect of the potential ob-
struction of justice. An open question might thus be if laws and regulations
should regulate the use of security vulnerabilities in digital forensics, in an
attempt to prevent abuse [33, 34]. In Norway such regulations are in place
for the use of ”data reading” technology, where modifications, software or
hardware, are installed on devices to extract data, including sound, video
streams, keyboard logs, and so on from devices in use by suspects [35].

Ethical and other non-technical challenges surrounding research that
might be used for both good and bad are very interesting and important
and are discussed further in Chapter 3, but we will now shift the focus back
to the main focus of this thesis: Technical challenges with the discovery and
use of security vulnerabilities in digital forensics.

1.2 The Existence of Useful Security Vulnerabilities

To develop new digital forensic methods based on security vulnerabilities,
one is of course in need of exploitable security vulnerabilities. In addition,
these security vulnerabilities need to be exploitable in a digital forensics
context. The most prevalent threat of any interconnected device is over the
internet as a carrier, often referred to as “cyber security” [36]. However, as
LE lawfully can seize devices, the physical or “near device” attack surfaces
are equally valuable. The security of mobile devices regarding both these
attack surfaces has been evaluated and extensively researched [37–42].

Mazuera-Rozo et al. [43] studied the existence of security vulnerab-
ilities in the Android Operating System (OS) and the number of days they
existed before getting patched. They studied 1,489 security vulnerabilit-
ies that have been reported in the years 2015-2017. According to [43] the
trend is an increase in security vulnerabilities in mobile phones, in parallel
to the increase in mandatory security. Three important results are presen-
ted in [43].
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The first is that the existence of security vulnerabilities in the Android
OS is not decreasing, but increasing. The increased complexity might intro-
duce more security vulnerabilities. This can of course have other explana-
tions, like improved methods to discover security vulnerabilities, according
to [43]. Either way, this is good news if we want to use such security vul-
nerabilities in digital forensics.

A second result is the duration security vulnerabilities exist in the
Android OS. Their results estimated an average of 770 days from when a
security vulnerability is introduced in the source code, until it is patched.
This is not the time from the discovery of a security vulnerability until a
patch is available. They in effect measured how long a security vulnerabil-
ity is a 0-day vulnerability. This is a great motivation to look for unknown
vulnerabilities, as a digital forensic acquisition method based on a 0-day

security vulnerability has a potential to be used for a long time, solving
many cases.

A third result is where the Android OS security vulnerabilities exist.
Mazuera-Rozo et al. showed that 82.46% of their analysed vulnerabilities
were in the Android kernel drivers and native libraries. This is in the very
heart of the Android OS, and hopefully such security vulnerabilities can
have an impact when used in digital forensic acquisition as core security
features are expected to be enforced by the kernel and native libraries.

1.3 The Nature of a Security Vulnerability

To get into a better position to discuss the potential use of security vulner-
abilities in digital forensics, we need to start with the basic nature for any
exploitation of security vulnerabilities. How such security schemes can be
manipulated and bypassed, and move backwards towards an understand-
ing of what is actually needed from a security vulnerability and where to
locate them.

In general terms, one can say that anything that can be manipulated
as part of a security scheme is susceptible to a security vulnerability. The
most simple example is normal user input; anything the user can type and
the security scheme has to evaluate, like username or password, is a po-
tential security vulnerability. Improper validation of user input can lead to
security vulnerabilities like buffer overflows [44, 45]. We can broaden this
by saying that input from e.g. a fingerprint sensor should also be considered
user input to the security scheme [46]. Although a normal user cannot ma-
nipulate this communication channel, a resourceful attacker with physical
or local access to the security scheme might.

In the rising complexity of embedded devices, the number of security
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schemes with potential user input open for manipulation are expanding.
As an example, one can unlock a Samsung Galaxy Android phone today
by a vast number of ways; the normal user screen lock (pin, password
or pattern), fingerprint, trusted voice, trusted location, trusted device and
even remotely through “find my phone” services. These ever-expanding
ways to authenticate and unlock a device increase the attack surface and
possibilities to access user data [47]. However, many of these additional
authentication methods are only available after the user unlocks the device
with the most trusted method, the user screen lock authentication.

In addition to the numerous direct input of user credentials, the se-
curity scheme has to consider the trust in its own running environment;
if an attacker can modify the execution of code in the security scheme,
breaking the integrity of the code, the security scheme might fail [48, 49].

A different example is logical implementation errors in security sche-
mes. One descriptive example being Hardware (HW) encryption on em-
bedded devices, enrolling mandatory encryption and authentication. Our
earlier research discovered security vulnerabilities in both the encryption
scheme, using weak cryptographic keys, and in the authentication scheme
of an external hard drive series featuring HW AES encryption [50]. This re-
search and the security vulnerabilities found, has resulted in new methods
to do digital acquisition of such devices based on security vulnerabilities
that do depend on manipulation of user input.

A security schememight also have implicit trust on non-internal parts
of a security scheme. For example it might trust the storage (like flash or
hard drive), the baseband processor, RAM, a.o. [51].

So a security vulnerability can take the form of a.o. an erroneous
implementation bug, a code integrity flaw, a design flaw and even improper
trust relations between parts of a security scheme.

1.4 Approaching the Challenge

Researching and locating security vulnerabilities to develop new methods
for digital forensic acquisition might not be a straightforward task. Even
if the goal of locating security vulnerabilities is clear, there is not a well
defined way to reach that goal, simply because one cannot know which
security vulnerabilities are required to bypass a particular security scheme,
nor where to locate them. This is the very nature of security vulnerabilities:
they are not supposed to be present and it’s hard to predict their location.

The general approach in this thesis is therefore to attempt to start by
identifying security schemes that prevent successful acquisition and then
identify potential attack surfaces therein. Further we attempt to identify
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examples of potential security vulnerabilities and try to exploit such vul-
nerabilities to develop new digital forensic acquisition methods. Backtrack-
ing from challenging security measures to solutions can be referred to as
a bottom-up approach.

Thus our approach is simple: identify and isolate security schemes
that are challenging for digital forensic acquisition of modernmobile phon-
es, identify potential attack surfaces for these security schemes, attempt to
discover security vulnerabilities that can be exploited to bypass the security
scheme, reaching the end goal of acquiring data for digital forensics.

A top-down approach would start with evaluating the design and doc-
umentation of a security scheme and correlate this against common cri-
teria [52] and best practises [53]. This requires access to documentation
and possibly source code of the security scheme. The situation for most
security researchers is however quite the opposite, being forced to utilise
the bottom-up approach. Very often one has to start with the actual imple-
mentation, the end product, and gain most of the information to form the
vulnerability research from this. The process of gaining knowledge from
such closed source products is often referred to as reverse engineering [54].
The big benefit from this approach is that one evaluates the actual imple-
mentation of a security scheme and not the intended design and imple-
mentation. Very often security vulnerabilities are introduced between the
design process and the actual end product [43].

Going from an evaluation phase to the discovery of a, potentially new,
attack surface, continuing to the discovery of potentially several unknown
(0-day) and known (n-day) security vulnerabilities, and further to success-
fully exploit such vulnerabilities, might be a tremendous task. Even having
a successful exploitation of a specific security scheme isn’t enough, as mul-
tiple security schemes might be bypassed to fully develop a new digital
forensic acquisition method.

Thus, going from an unknown device with mandatory security, to a
fully developed digital forensic acquisition method based on the use of
exploitation of security vulnerabilities might not be straightforward and
given. How can such new digital forensic acquisition methods be research-
ed and developed in this increasingly complex and secure device design?
Is it a feasible task and do powerful actors like LE have advantages that
can be beneficial when exploiting security vulnerabilities? Can LE, being
able to seize devices, control and deny installation of any released security
updates released for the device? This could open for new digital forensic
acquisitionmethods based on published, n-day, security vulnerabilities. Can
such patch preventing advantages be utilised?



Introduction 11

1.5 Research Questions

In what way can security vulnerability discovery and exploitation contribute

to the improvement of digital forensic acquisition?

RQ1: How can modern security measures be bypassed by exploiting se-
curity vulnerabilities?

RQ1.1: How can mandatory encryption of user data be bypassed
by exploiting security vulnerabilities, without knowledge of the
user credentials?

RQ1.2: What security schemes other than encryption must be by-
passed to access encrypted user data?

RQ2: Can we identify potential future attack surfaces useful for digital
forensic acquisition?

RQ2.1: How can USB Power Delivery be an attack surface for DFA?

RQ2.2: Can attacks on USB Power Delivery be generalised to other
architectures?

RQ3: How can digital forensic acquisition draw benefit from published
security vulnerabilities?

RQ3.1: How can a methodical approach help LE discover and exploit
security vulnerabilities?

1.6 Thesis Layout

The rest of this thesis is organised as follows: Chapter 2 presents necessary
background to understand some of the technical challenges addressed in
the contributions of this thesis. Chapter 3 is our contribution to the discus-
sion on the ethical dilemma of LE discovering 0-day security vulnerabilities.
Chapter 4 presents a short summary of the relationship between published
papers and the research questions. Chapter 5 gives a summary of the con-
tributions in this thesis. Part II contains all published papers that contribute
to this thesis.





Chapter 2

Background

In this chapter related background is presented to set the contribution of
this thesis in context. The focus will be on embedded devices, typically
mobile phones, and limiting the scope mainly to Android, as this is the
dominant operating system on mobile devices [55, 56]. First we’ll present
a general introduction to the Digital Forensics (DF) process and the rela-
tion to the Digital Forensic Acquisition (DFA) process. Further we’ll give
an overall view of data sources of interest, with the state of DFA research.
Further, we will introduce technical details on current security schemes
preventing DFA on modern Android mobile phones. We will follow the out-
line from the previous chapter, looking first at where digital forensics look
for valuable data on mobile phones, to challenges with security schemes
preventing acquisition of this data, and from there dive into concrete and
specific technical security schemes that need bypassing for successful Di-
gital Forensic Acquisition (DFA). This background will set the stage for our
research into using security vulnerabilities to aid in this bypass of security.

The first sections will discuss current state-of-the-art and challenges
of DFA with respect to the increased mandatory security of embedded
devices. The following section will discuss the most prevalent security fea-
tures current DFA is facing, to get an overview of where focus and DFA
research should be targeted. The last section will summarise with an ex-
ample Android DFA attack path.

2.1 Digital Forensics and Digital Forensic Acquisition

Criminal investigations require LE to gather forensically valuable data from
many different sources. As more and more of a person’s life is digitised, di-
gital sources have become more and more important. Embedded devices,
like mobile phones, have become a portable personal computer, contain-
ing our most sensitive personal data. This makes mobile phones a primary
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source in almost any criminal investigation.
Digital Forensics (DF) is the process of seizing devices, acquiring data,

analysing data and reporting [57]. See Figure 2.1 for a simplified view of
this process. The first phase focuses on the seizure of devices, including
locating and selecting devices to prioritise from a crime scene. The second
phase, acquiring data to be analysed, typically involves the mirroring of
device data from storage, like hard drives and flash storage. The third phase
analyses the data acquired, and can be a challenging task, given the in-
creasing amount and complexity of data stored. The analysis phase should
produce relevant data for the specific investigation and thus must adapt
to both the amount and context of data. The last phase presents results
and findings from the analysis phase in a format useful for investigators to
collect and compare with data from other forensic sources.

Much focus has been on the analysis phase of DF, as increasing
amounts of data are being acquired and processed by LE [58–62]. Sim-
son L. Garfinkel [63] evaluated the challenges ten years ahead for DF,
published in 2010. The paper feared that DF tools and methods would
fall behind. The major challenges the author points out are the increasing
amounts of data acquired, difficulty of access to low level imaging of stor-
age (like embedded flash storage), increasing number of data formats to
analyse (like file formats), increasing number of devices in cases, cloud
storage (which includes legal challenges when seizing data across bor-
ders), access to volatile storage (RAM) and lastly encryption of data. The
challenge with encryption of data means that even a full image of any
device storage is forensically worthless without the means to decrypt the
data, challenging the acquisition phase of DF [64–67].

The process of acquiring digital data and information from seized
devices falls under Digital Forensic Acquisition (DFA). DFA gains access to
the plaintext data, enabling analysis.

No data from DFA, no analysis.

The DFA phase is thus a crucial part, a bottleneck, of DF and this
phase is increasingly being challenged by increasing, mandatory, device
security and complexity [33]. If this challenge is not solved, LE might lose
an important source of data.

2.2 Data Sources

Digital forensics often seeks data sources that contain user generated data.
On embedded devices like mobile phones this is typically personal data,
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Figure 2.1: A simplified Digital Forensics process

such as messages, pictures, GPS locations, call logs, etc. Data is valuable
in most criminal investigations and any source containing such data is im-
portant.

Generally speaking, there are two main data sources for such per-
sonal data on most digital devices, for example computers and mobile
phones: volatile memory (RAM) and long-term storage, like flash and tra-
ditional hard drives. These two sources differ in many ways, both the data
stored and the way data is to be acquired in DFA. Long-term storage con-
sists mainly of well structured data, for instance a file system, meant to
store data for later reuse. File systems and file formats tend to use well doc-
umented and static storage formats which can be parsed and interpreted
as part of the analysis phase of DF. Long-term storage contains most of a
device’s code and data and is thus the main target for DFA. RAM consists
mainly of volatile and short-lived data, not meant to be stored across a
power cycle, and is thus repopulated on every restart. The data is mostly
unstructured and dynamic, important for the execution of code running on
the device as well as data processed at a given time. These structures are
often undocumented and the dynamic nature and use of RAM, e.g. by the
Operating System (OS), will result in completely different sequence of data
from acquisitions. Parsing and interpreting RAM is therefore a completely
different challenge of the analysis phase of DF.

Gaining access to and acquiring plaintext data from any of these two

data sources is the main goal of DFA.
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The challenge for both these data sources is two-fold. One challenge
is to access and read the stored data and provide a copy that can be ana-
lysed further. An additional second challenge is any decoding of the data
into a meaningful plaintext state, including any decryption.

So simply reading data from flash storage or RAM on modern mo-
bile devices is not enough, as major parts of data might be encrypted by
mandatory security policies, resulting in the challenging task of decrypting
data, where access to encryption key material might be required [68]. The
goal of DFA is therefore to acquire plaintext data. This might include by-
passing any confidentiality technology, like encryption, so the data is ready
to be parsed and examined in the analysis phase. Parsing and analysing
data content, however, is part of the following analysis phase of digital
forensics.

2.2.1 Current State of DFA on Android

Acquiring access to plaintext data sources has different approaches, de-
pending on the type of device control, physical or logical, and the state of
the device, powered off or on. The RAM and long-term storage sources are
common for most mobile phone manufacturers, but due to technical and
implementation differences, acquisition access methods will be different
from devices with e.g. Apple iOS and Google Android operating systems.
Trying to limit the scope of our research we focused on devices with the
most common mobile operating system, Android. Though most research
mentioned in this section is focused on Android devices, the general chal-
lenge should be transferable to other vendors and mobile operating sys-
tems.

In a review of Android mobile device forensics, Tayeb et al. [15] dis-
cusses the most influential papers in the field. They summarise and discuss
selected papers on Android forensics, including the crucial DFA phase, cov-
ering both sources of RAM and long-term storage. A common denominator
of most of the DFA methods discussed is that they apply to older, out-of-
date, Android versions and devices.

There are a vast amount of different options for reading data from
long-term storage. Nathan Scrivens et al. [69] gives many examples of such
access on Android devices. The main options are chip-off/de-soldering
storage chips for off-device reading, JTAG (Joint Test Action Group) in-
terface for in-circuit reading of storage, rooting and exploitation solutions,
debug interfaces (Android Debug Bridge (ADB)) and backup solutions, to
name a few. These methods vary in requirements, like physical access for
chip-off and JTAG and logical access for ADB and backup. Chip-off requires
access to safely remove the chip from the device’s Printed Circuit Board
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(PCB) and JTAG requires access to test pads, often undocumented and hard
to find. JTAG test pads are also normally disabled on consumer released
devices, as they are mostly used during testing and in production. ADB is
a powerful Android debug interface, but normally requires physical access
and is normally disabled if the user has not explicitly enabled it. Backup of
data can also be hard to come by and is purely up to the user to utilise.

One drawback of most of the above methods is the lack of encryption
bypass, giving only access to potentially encrypted data. They represent
the traditional reading of data and any added encryption transformation
on data before storage will result in the acquisition of encrypted data, not
useful for digital forensics.

A different data access example is demonstrated by Seung Jei Yang
et al. [70]. They access data through the misuse of device firmware up-
date protocols. This will gain access to read long-term storage. Again, this
will not be a successful DFA if the data is encrypted, which we will see is
mandatory on most modern mobile phones (Section 2.3.1).

Seung Jei Yang et al. [71] also demonstrated a different misuse of
the firmware update protocols, to dump RAM. This could give access to
encryption keys stored in RAM. Thus combined with other read access to
long-term storage, this is in general a powerful approach. Additional ad-
vantages of acquiring RAM is the ability to analyse in-RAM user data, e.g.
from active applications, with active data in RAM, at the time of acquisi-
tion. However, access to valuable RAM data, like encryption keys, requires
the devices to be seized in a powered-on state, with the encryption keys
unlocked in RAM, which is often not the case until the user authenticates
for the first time after power on. Section 2.3.1 discusses the encryption
challenge in more detail.

Ali-Gombe et al. [72] presented DroidScraper, a tool to interpret RAM
acquisition of Android devices, focusing on the analysis of Android Runtime
(ART) processes. A very efficient and powerful analysis, given a device
RAM acquisition. However, the authors express the challenge of acquiring
RAM on modern devices and utilise different methods to acquire RAM [71,
73, 74], not readily available on consumer devices seized by law enforce-
ment. There is no generic method to access RAM on modern devices [75].
RAM acquisition is part of a DFA and to be of practical use in DF the
RAM acquisition method should be available on seized devices and not
constrained to artificial test scenarios.

So we can observe that the current state of DFA is challenged by en-
cryption and that much of the previous research is invalidated when en-
cryption becomes mandatory on modern mobile devices.
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2.2.2 Current DFA Challenges and Security Vulnerabilities

Many of the challenges solved by current DFA research (Section 2.2.1)
are often out of date and not relevant for the current state of embedded
device security. This emphasises that keeping up to speed with technology
evolvement is crucial if DFA is to keep up and be relevant. The future of
DFA relies on quick adaptation to new technology trends.

The evolution of mandatory security requires DFA researchers to act,
sharing challenges with security vulnerability research: to bypass a secur-
ity scheme, possibly using security vulnerabilities in the process. Security
vulnerabilities can potentially be used to both read and decrypt data.

A security vulnerability is, according to the Common Vulnerabilities
and Exposures (CVE) system, “A flaw in a software, firmware, hardware,
or service component resulting from a weakness that can be exploited,
causing a negative impact to the confidentiality, integrity, or availability of
an impacted component or components.” [8].

In this paper we often use the two terms 0-day and n-day when re-
ferring to security vulnerabilities. Our use of the terms in this research is:
0-day: A potentially exploitable security vulnerability, unpublished and un-
known to the vendor of the affected product.
n-day: A potentially exploitable security vulnerability, published or other-
wise known to the vendor and where a patch is readily available for the
affected product.

Looking at security vulnerability research in general, there is a dif-
ference in interest between traditional security research, trying to discover
security vulnerabilities for patching and increasing the security of the pro-
duct, and DFA, trying to discover security vulnerabilities to bypass security
to access user data. This might lead to a development where law enforce-
ment and vendors of forensic tools develop methods to acquire data that
uses both known n-day, and unknown and undisclosed 0-day security vul-
nerabilities. Ideally, all tools and techniques used in digital forensics used
by law enforcement to acquire evidence should be open source and widely
accessible [76].

Raghavan et al. [77] suggested that current research challenges for
digital forensics were divided into five major challenges: complexity prob-
lem, diversity problem, consistency and correlation, quantity or volume
problem and unified time-lining problem [77]. However, none of these
challenges address the increasing challenge of digital acquisition itself and
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increasing mandatory security. The main focus is on what happens with
digital data after acquisition, the analysis phase. More recent research by
Montasari et al. [78] points to encryption as one of the most difficult chal-
lenges in DF, preventing successful DFA. They point to the paramount im-
portance that researchers are able to design workarounds and exploits to
bypass encryption.

This shift in focus from LE on the increasing challenge with man-
datory security and encryption is starting to happen in European coun-
tries, with increasing focus on the DFA phase of embedded devices. The
FORMOBILE [79] project is an EU funded project to develop a complete
forensic investigation chain, targeted at mobile devices. EXFILES [80] is
another new EU funded project, with a more narrow scope of solving chal-
lenges with encrypted mobile phones. Both of these projects try to address
similar goals as this thesis: to improve the success of DFA of embedded
devices.

2.3 Mobile Security preventing DFA

The steep increase in the adaptation of mobile phones, with increasing
amounts of sensitive user data, has escalated the need for security. The
increased demand for new features and wider applicable areas of use has
increased both the amount of sensitive data to protect and the complexity
of such products. Smartphones today are far more advanced than just a
decade ago. This increase in both complexity and sensitivity of data has
upped the security game. But as security concepts and protection mechan-
isms quickly become too complex for the average user to understand and
manage, consumer product vendors have made many security mechanisms
mandatory and transparent to the user. The result is that Commercial off-
the-shelf (COTS) products today are far more advanced regarding security
mechanisms, even without the user being aware. Many security features of
modern mobile phones today are turned on by default and simply cannot
be disabled by the user. One example is mandatory user data encryption
on all Android phones from version 10 and higher [68]. Thus modern mo-
bile phones have more mandatory security features enabled to protect the
increasingly sensitive consumer data.

The steep increase in complexity, both hardware and software wise,
has also greatly increased the probability of security vulnerabilities. The
increase in complexity and Lines of code (LOC) needed to implement fea-
tures raises the probability for introduced faults, with security vulnerab-
ilities as a sub category. The ratio of security vulnerabilities per LOC is
challenging to estimate. Hatton [81] estimates a defect (bug) density of
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< 10 per thousand lines of code (KLOC). Research in OpenBSD suggests a
vulnerability rate of much less, with densities three orders of magnitude
less [20]. All bugs are not security vulnerabilities, and to transfer these res-
ults from OpenBSD to e.g. Android, with all sub-components, might not be
fruitful. However, we can say that this is an indication that an increased
number of lines of code increases the probability of security vulnerabilit-
ies. Thus modern mobile phones have an increased attack surface, with a
potentially higher probability of security vulnerabilities, as the complexity
and the number of features continue to grow.

This complexity challenge has already been identified in other com-
puter security domains, like the Trusted computing base (TCB) [82] and
trusted computing. Trusted computing is the concept where a system is
expected to behave as intended, withstanding outside influence, and en-
forced by stand-alone hardware and software.

Variants of this were needed for embedded devices, and the idea of
isolation of sensitive data and computations gave birth to the Trusted Exe-
cution Environment (TEE) [83]. There are many different adaptations and
implementations of the TEE concept, like the TCB [82], Intel SGX [84]
and ARM TrustZone (TZ) [85]. Another concept introduced to embedded
devices is the fully separated Secure Element IC [86]. The SIM card is a
well-known external and removable secure element, but in recent years
embedded versions of this concept have been incorporated in e.g. Android
devices, Embedded Secure Element (eSE).

The idea for the different trusted computing designs is isolation, sim-
plicity and limitation of code base size (LOC) of critical security compon-
ents. The assumption is that a smaller and isolated code base, paired with
a much higher focus on secure coding standards, should make the security
vulnerability rate smaller. The concept is not widely accepted as secure and
has caused discussion of its benefits, and risks [87, 88].

These risks and challenges of trusted computing are something that
can be used as an advantage by an attacker. The increasing complexity
of the individual security features, like trusted computing, together with
the increasing total complexity of devices, like mobile phones, also in-
creases the complexity of getting the security right. Many features, many
developers, many technology groups, many companies and vendors need
to work individually, and in cooperation. Keeping the overall system se-
curity intact across all these boundaries might be challenging, providing
the potential for introduced security vulnerabilities that can be exploited
to create new Digital Forensic Acquisition (DFA) methods.

DFA need not break all security schemes implemented on a modern
embedded device, only the ones preventing access to valuable user data.
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The biggest challenge preventing successful DFA is currently encryption.

2.3.1 Encryption

On a modern mobile phone, the user data contained might provide valu-
able input to any investigation. Thus accessing this data might be a crucial
step. The mandatory encryption of user data is the basis for the confidenti-
ality in modern secure systems and bypassing this encryption is therefore a
necessary step. Without access to the user’s screen lock credentials, access-
ing encrypted data could be achieved by accessing the underlying encryp-
tion keys, attacking the encryption algorithms or attempting to regenerate
the correct user screen lock credentials using brute force. To be able to
evaluate ways to bypass encryption, we first need to introduce the differ-
ent concepts. As most of the contributions in this thesis are on bypassing
security on Android devices, we will introduce the currently preferred en-
cryption scheme on Android 10 and above, File-Based Encryption (FBE).

Android File Based Encryption (FBE)

Android’s File-Based Encryption (FBE) [68] consists of two basic encryp-
ted storage available to applications storing user data: device encrypted
and credential encrypted storage. The Device Encrypted (DE) storage is
available after device boot, but before the user unlocks the device, Before-
First-Unlock (BFU). DE storage contains files needed to start the device,
like the Android OS. The Credential Encrypted (CE) storage is only avail-
able after the first user unlock after boot, After-First-Unlock (AFU). Most of
the user sensitive data, emails, photos, videos, SMS, application data, etc.
are stored in the CE storage and thus contains much potentially valuable
data for use in digital forensics. Figure 2.2 shows the relationship between
the availability of the FBE CE and DE storage in different user unlock states.

result.gkResponse = weaverVerify(weaverSlot, passwordTokenToWeaverKey(
�→ pwdToken));

if (result.gkResponse.getResponseCode() != VerifyCredentialResponse.
�→ RESPONSE_OK) {
return result;

}
...
applicationId = transformUnderWeaverSecret(pwdToken, result.gkResponse.

�→ getPayload());

Code listing 2.1: unwrapPasswordBasedSyntheticPassword(), using
weaver

Android’s FBE currently supports the use of two different trusted
computing concepts for protecting the CE storage encryption key mater-
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Figure 2.2: Availability of FBE storage for different user unlock states.

ial: TEE, like the ARM TZ, and eSE. These are referred to as gatekeeper

and weaver in the Android source code [89, 90]. Android implements the
code interfacing with the Android OS, but vendors, like Samsung, are free
to implement the underlying support for gatekeeper and weaver features
independently, based on chosen HW and the different mobile model’s spe-
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Figure 2.3: Simplified unwrapPasswordBasedSyntheticPassword(), Credential
Encrypted (CE) storage unlock utilising eSE HW [6]

cifications.
A code fragment of the user screen lock verification and the FBE CE

key generation [89] can be seen in Listing 2.1 and Figure 2.3 [6], using
Android’s weaver (eSE) feature. A user enters the screen lock credentials,
like a pin, pattern or password, through the screen or a connected Hu-
man Interface Device (HID). This user screen lock credentials, together
with a salt stored in the DE storage, is input to a Key Derivation Function
(KDF). The output of the KDF is transformed using a function, password-



24 Background

TokenToWeaverKey(), and its output is sent to the weaver, the eSE HW, for
validation. This output, the CHALLENGE, is validated by the eSE HW. If the
CHALLENGE is verified, the corresponding secret data, SECRET, is returned
from the eSE. This SECRET and the KDF output are input to the function
transformUnderWeaverSecret(). After this step no more unknown data is
needed and the CE storage can be unlocked, taking the device to the AFU
state.

Similarly, the screen lock verification and the FBE CE key generati-
on [89, 90] can be seen in Listing 2.2, using the gatekeeper (TEE) feature.
They are similar, except for the exclusion of a salt.

An important component of both trusted computing concepts used is
their built-in brute force protection. Thus it’s the responsibility of both the
gatekeeper and weaver to keep a count of wrong authentication attempts
and enforce time-outs to prevent brute force attempts of user screen lock
credentials. This is crucial for the trusted computing design, to protect the
encryption key material against even a fully compromised system.

So to access and decrypt Android’s FBE CE storage, one way might
be to recover the user screen lock credentials.

byte[] gkPwdToken = passwordTokenToGkInput(pwdToken);
GateKeeperResponse response;
try {

response = gatekeeper.verifyChallenge(fakeUid(userId), 0L,
pwd.passwordHandle, gkPwdToken);

} catch (RemoteException e) {
...

}
int responseCode = response.getResponseCode();
if (responseCode == GateKeeperResponse.RESPONSE_OK) {

result.gkResponse = VerifyCredentialResponse.OK;
...

} else if (responseCode == GateKeeperResponse.RESPONSE_RETRY) {
result.gkResponse = new VerifyCredentialResponse(response.

�→ getTimeout());
return result;

} else {
result.gkResponse = VerifyCredentialResponse.ERROR;
return result;

}
sid = sidFromPasswordHandle(pwd.passwordHandle);
applicationId = transformUnderSecdiscardable(pwdToken,

loadSecdiscardable(handle, userId));

Code listing 2.2: unwrapPasswordBasedSyntheticPassword(), using
gatekeeper
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2.3.2 DFA Layered Attack Approach

The description of user data encryption from Section 2.3.1 opens for sev-
eral attack paths to bypass the encryption of user data: recover the user
screen lock or recover encryption key material from devices in the AFU
state. Bypassing encryption by identifying a flaw in the encryption algo-
rithm itself is an additional, and very powerful, attack, as it can be applied
to all use this algorithm across different devices. However it would require
identifying a vulnerability yet to be discovered by the cryptanalysis com-
munity [91]. Breaking the encryption algorithm itself is the focus of a large
scientific community, with its own arms race. This option is not the focus
of this thesis.

Recovering the user screen lock requires that the device either stores
the user credentials somewhere it can be recovered, or that there is a way
to recover the screen lock by abusing some oracle vulnerable to brute force.
The rest of the system might be designed to prevent such attacks and this
introduces new challenges and security mechanisms to bypass. Accessing
such stored credentials or oracles might also require system level access to
the device, like a “root” adb shell [92], connected to test devices either with
a cable or over a network connection. Gaining such privileged/elevated
execution is not trivial and preventing such privileges is part of the security
design of the device. This is then a new layer of security to bypass for
DFA. Yet another obstacle to obtaining privileged execution might be to
gain initial access to execute any attacker code on the device, requiring
another security vulnerability. Thus various Android securitymeasures, like
secure/verified boot [48, 93–95] might need to be bypassed, designed to
thwart attacks on (privileged) code execution.

So trying to solve the encryption challenge by recovering the screen
lock on Android might need up to three different security vulnerabilities:
initial access to execute attacker code, gaining privilege execution (com-
monly known as Local Privilege Escalation (LPE)) and finally an encryption
bypass vulnerability to recover the user screen lock or encryption key ma-
terial.

Recovering the encryption key material from volatile memory would
require access to read RAM as an unauthenticated user. This would again
be considered a new security vulnerability and an additional security meas-
ure to bypass for DFA. And if an attacker can retrieve the encryption key
material for encryption, one still needs access to read encrypted flash stor-
age, e.g. from a chip-off or through logical channels like initial access and
LPE as above.

There have been some fragmented attempts to address parts of these
challenges in earlier work (Section 2.2.1) and the ever increasing security,
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diversity and complexity of mobile devices from a vast number of different
vendors should expect this challenge to grow.

DFA bypassing encryption is thus a more complex and layered chal-
lenge, with more than one security mechanism in need of bypass. This
might include the use of more than one security vulnerability on more
than one attack surface.

2.4 Android DFA Attack Path

To summarise where DFA might attack modern mobile security, we’ll use
the Android FBE encryption (Section 2.3.1) challenge as a concrete ex-
ample. Bypassing the main challenge, accessing CE storage containing user
data, might not be as simple as gaining hold of the encryption material.
Other security features might need to be bypassed as well. We need to keep
this whole picture in mind when researching ways to bypass the encryption
challenge.

Powered off and BFU States

A phone in powered off or BFU state has no CE storage encryption key ma-
terial unlocked (Figure 2.2). So even unprivileged RAM access on a target
device will not result in the recovery of CE storage encryption key mater-
ial. This state instead requires an attack to either recover the user screen
lock, or an attack on the security mechanism protecting the CE storage
encryption key material, like the eSE (Figure 2.3). Attacking the eSE is a
stand-alone challenge and can be approached by both logical attacks, us-
ing the intended communication channel, or by other attacks, like HW and
Side-channel Attack (SCA) [96–98]. The goal is to either use the eSE as an
oracle for performing brute force attacks on the user screen lock, or to ex-
tract needed sensitive data used to regenerate the CE storage encryption
key material. Logical attacks, using the intended communication channel,
might need additional attacks to be able to execute privileged code on
the device to perform the communication. The eSE logical communication
channel is available in the “normal” Android world, often referred to as
the Rich Execution Environment (REE) [99], through the Android OS. Fig-
ure 2.4 shows a simplified view of the REE, with the unprivileged execution
of apps and privileged execution of a.o. the Android OS, and the trusted
execution modules, like the eSE and the TEE. Privileged execution in the
REE can be achieved through attack surfaces like the secure boot, attacks
on physical channels (USB, WiFi, NFC, etc.) or logical channels (network
access, SMS, etc.) [100–102].
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Figure 2.4: Simplified Android execution domains.

So an example attack path for devices in these states can be to locate
vulnerabilities to gain privileged execution in the REE, and use this access
to attack the separate eSE. Such an example attack on the REE and eSE
could potentially open up for a brute force attack on the CE storage unlock
scheme from Figure 2.3.

AFU State

The AFU state is the only state where the CE storage encryption key mater-
ial is already unlocked. Thus the goal can be any attack that gives privileged
execution, or execution in the same user context as the CE credentials. The
attack requires the device to stay in the AFU state, so an attack that requires
a restart of the device would be unsuccessful. Similar attacks on physical
and logical interfaces from Section 2.4 could give such access. This access
could then be used to access CE storage directly and acquire file contents. A
different approach could be to acquire RAM from the device, potentially re-
vealing the CE and DE storage key material. However, this approach would
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require some off-device, or on-device, method to utilise this key material.
An off-device approach could be to do chip-off of flash storage and attempt
to decrypt the FBE storage directly, without involving the rest of the device.

So seizing devices in an AFU state is a viable option, but most vendors
have implemented a time-out of user screen lock credentials entered, re-
quiring a re-authentication with the user screen lock credentials within a
given time, like 48 hours, effectively removing in-memory encryption key
material and unencrypted data, putting the device in a BFU state. This
time-out also invalidates most of the additional authentication methods,
like fingerprint and face recognition (Section 1.3).

2.5 Security Vulnerability Identification and Exploitation

The attack paths described in the previous sections require the identifica-
tion of exploitable security vulnerabilities. As the nature of a security vul-
nerability is that it should not exist, a generic process of discovering them
can be challenging to define. However, some basic steps we tried to fol-
low throughout this research are listed below. These basic steps were later
used as inspiration for developing a methodical approach to identify and
use security vulnerabilities in DF (Paper IV).

• Reconnaissance and information gathering:Any source that can be
used to gather information on targeted technology and to identify po-
tential attack surfaces. Like documentation, literature, source code,
executable binaries, etc.
• Study attack surfaces: Before attempting to locate security vulner-
abilities, an attempt to isolate and study potential attack surfaces.
• Vulnerability research: This task is challenging, with a high presence
of creativity, experimenting and experience.
• Exploitation development: The creation of a working method and
tool to exploit a security vulnerability. Many bugs and security vul-
nerabilities might be hard to exploit, but this step might include re-
peatable tasks and techniques.



Chapter 3

Ethical Considerations of 0-day
discovery in Digital Forensics

The discovery and usage of security vulnerabilities “for good” by law en-
forcement might be a debated and controversial subject. We will supple-
ment with our attitude towards the ethical discussion this raises1. This will
be a subjective argumentation, trying to set the topic in an ethical context.

3.1 Introduction

In Chapter 1 we described a case where the FBI asked Apple to deliberately
introduce a security vulnerability in a specific iPhone, seized by the FBI. As
Apple refused to comply, the FBI is believed to have acquired data from the
device through the use of a security vulnerability already present on the
device. This is very interesting from an ethical point of view; did the FBI
acquire knowledge of a security vulnerability in iPhone devices, unknown
to Apple? If so, are they obliged to tell Apple, so this vulnerability can be
fixed, and thereby protect all of Apple’s iPhone users? Doing so would pre-
vent the FBI from using this vulnerability to acquire data from a different
device, in a future criminal investigation.

Generalising this. Such security vulnerabilities [8], suspected to be
used by the FBI, have existed since the very beginning of software devel-
opment and will probably exist in the future. The question is if such vulner-
abilities can be used for the good of mankind, and if so, how law enforce-
ment should handle knowledge of such security vulnerabilities. We claim
that using such vulnerabilities by law enforcement is acceptable, and we
also claim that such vulnerabilities, discovered by law enforcement, should
be kept from disclosure to e.g. vendors, to prevent the vulnerabilities from

1This chapter is based on an essay written by the thesis author as part of the PhD course
“MNSES9100 – Science, Ethics and Society” at the University of Oslo.
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being fixed (patched in computer security terminology). We will also ar-
gue for the sharing of such knowledge with a sub-group of comparable
law enforcement agencies in other countries in bilateral and multilateral

relationships.

3.2 Good vs. Evil

Any intended (backdoor) or unintended bug/security vulnerability in any
security feature can potentially be used by attackers to gain unauthorised
access to user data. This abuse of security vulnerabilities, often referred
to as “hacking” or “exploiting” [103] in media and literature, is often con-
sidered bad and unethical, and is often referred to in negative terms, like
cyber attacks, ransom-ware attacks and cyber warfare. But if the “attacker”
is law enforcement, does that change this perception of using security vul-
nerabilities, now for “good”? Can there be acceptable situations for using
security vulnerabilities to bypass security as means to reach justice? A se-
curity vulnerability unknown to the public and/or the vendor is known as
a 0-day and a published vulnerability is known as an n-day, referring to
the number of days since publicly known [21].

We shall try to evaluate some ethical questions surrounding these
dilemmas.

3.3 EQ1

Can security vulnerabilities be used “for good” in digital forensics? If so,
should law enforcement engage in the research and discovery of such pub-
licly unknown vulnerabilities (0-days) or should law enforcement only use
published vulnerabilities (n-days) in digital forensics?

3.4 EQ2

If we accept there are such situations, where law enforcement can use
security vulnerabilities to bypass security schemes to enable successful ac-
quisition of user data, does this come with more ethical challenges? If the
successful acquisition of a suspect’s phone in a criminal investigation uses
a 0-day vulnerability, unknown to the vendor, are law enforcement ob-
liged to inform the vendor of this security vulnerability, so it can be fixed,
thereby protecting all users of the same phone model, but consequently
denying law enforcement to reuse the security vulnerability in later crim-
inal investigations? If this is indeed required of law enforcement, should
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they report the security vulnerability before using it in any criminal case?

3.5 EQ3

Should law enforcement in one country, which are against e.g. death sen-
tence, share methods with law enforcement in countries that have death
sentences? Should law enforcement in one country, like Norway, discov-
ering and developing digital forensic methods based on security vulner-
abilities, share these with countries that are less democratic or where law
enforcement can be suspected to be e.g. corrupt?

3.6 Fighting Evil with Evil

As stated in the introduction, we will argue for the claim that law enforce-
ment should be able to use security vulnerabilities, both 0-days and n-days,
in digital forensics. We will also argue that law enforcement, engaging in
the discovery of such vulnerabilities, should keep them from disclosure to
vendors for patching.

Whether law enforcement should be able to use security vulnerabil-
ities in digital forensics (Section 3.3) is fundamentally a question of ethics.
Are security vulnerabilities “bad” in nature? Are they morally wrong to use,
as the intention of a security vulnerability is not to enable security bypass?
But can we discuss an intention of a security vulnerability at all, when it’s
not made on purpose, but simply is a result of an action intended for some-
thing else? We can argue that most security vulnerabilities are a result of
something going wrong with an action with good intentions. The developer
intended to improve the quality of some feature in some vendor’s code and
probably had no intention of creating a way to bypass a security feature.
So any use of code that exposes a security vulnerability will be abuse of the
intended code.

To help us evaluate the ethics, we’ll turn to two different normative
ethics2; deontology [104] and consequentialism [105]. Deontology is based
on rules regarding an action. An action can be seen as good or bad, based
on e.g. universal, religious, cultural or personal rules. Any action can then
be classified free from context and the situation it can be performed in. An
extreme example can be that taking someone’s life is always considered
bad, even if this could save others (like killing a terrorist to prevent a ter-
rorist attack). In contrast, consequentialism evaluates an action on the con-
sequences and outcome. So taking someone’s life can be accepted in certain

2Normative ethics is the study of a ethical action; how one ought to act.
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cases, as the consequence might be that other lives can be spared. Although
this is a very simplified description of these two normative ethics, it should
be sufficient to illustrate our ethical dilemmas.

Based on a deontology view of the world, we could then argue that
it’s always ethically wrong to use security vulnerabilities, no matter what
the intended outcome is. It’s simply wrong to abuse someone else’s wrong-
doing for a “destructive” goal of bypassing a security feature. In contrast,
from a consequentialist point of view, the outcome or consequence of us-
ing security vulnerabilities in digital forensics is the important aspect. The
goal is to acquire data for analysis in a criminal investigation, helping to
serve justice, so using security vulnerabilities should then be considered
ethically right. As law enforcement must do all in its power to enlighten
any criminal investigation, should it ignore a possible data source that can
help with this, simply because one needs to (ab)use a security vulnerability
in the process? The intention of helping in the serving of justice is clearly
a “good” intention, so this is ethically right, according to consequentialism.
One important aspect of using security vulnerabilities in digital forensic, is
that law enforcement does not introduce these in the vendor’s code. Any
given security vulnerabilities are present regardless of if someone finds it
or not. So law enforcement is not changing anything in the target device
before using a security vulnerability in digital forensics.

Since law enforcement is only using already present security vulner-
abilities in digital forensics, one can compare it with a key under a doormat.
Acquiring knowledge of the security vulnerability of keeping your key un-
der the doormat, law enforcement should be able to use this key to get ac-
cess through the locked door. What if a given victim or suspect had written
down their user credentials on a post-it note? The security vulnerability of
having a “backup” of your user credentials this way, clearly doesn’t prevent
law enforcement from using this to unlock any security mechanism with
these user credentials. Even more closer to our situation; what if there’s
something wrong in the design of the security mechanism, the “door lock”,
that enables anyone with “lock picking” expertise to open the lock without
the key? Should this prevent law enforcement from using this as a way
to open the door? We argue that using security vulnerabilities in digital
forensics is nothing more than using digital “lock picking” skills to bypass
a security feature.

Continuing with the door lock analogy (Section 3.4). If law enforce-
ment gains knowledge of a way to lockpick a secure door lock, is law en-
forcement required to tell the vendor of the lock vulnerability? The fate of
any discovered (security) vulnerability would always be in the hands of the
discoverer, leaving the vendors and their users with no influence. Accord-
ing to deontology, we must then tell the vendor, as it would be wrong to not
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tell the vendor of the negative effect this has on the security of their lock,
leaving all customers vulnerable to theft, as well as a potential harm to the
vendor’s reputation. The negative effect that law enforcement potentially
loses a method to be used in criminal investigations is not of any concern.
We could further argue that the knowledge of such vulnerabilities belong
to the vendor, as it’s their erroneous product. We could even argue that in
a situation of law enforcement having knowledge of a security vulnerabil-
ity unknown to the vendor, law enforcement knows of potential harm that
can be done to both the vendor, and its customers, and by not informing
the vendor could be seen as a passive acceptance of harm to be done to
the vendor and its customers. Is law enforcement, or any other party that
gains knowledge of a security vulnerability, in their right to evaluate such
risk of harm, and take a decision based on a biased and subjective evalu-
ation? It would be hard, if not impossible, for law enforcement to perform
a sufficient risk analysis of the potential harm that a discovered security
vulnerability could do to a vendor and its customers. And even if such risk
analysis could be performed, is it up to the discoverer of a security vulner-
ability to decide the best outcome of informing the vendor or not?

Turning to a consequentialism view, we can include the positive sides
of not informing a vendor of a security vulnerability. While the deontology

view focuses on the act itself, consequentialism focuses on the effect of the
act. Looking beyond the negative effects already discussed, the positive ef-
fects are also strong. Having the knowledge of a security vulnerability can
be of great importance in criminal investigations, with the effect that justice
might be served. One security vulnerability could potentially be used in nu-
merous criminal investigations, with a potential to not only solve criminal
cases post-mortem, but even prevent crime, e.g. terrorist attacks, from hap-
pening, and thereby saving lives. Of course the potential to save lives is a
strong positive argument for not informing vendors of security vulnerabil-
ities, but does it outweigh the negative risk of potential harm happening to
the vendor and users? I would argue in favour, as justice and a sense of se-
curity is the very foundation of human civilisation. Without this, vendors
and their users would probably have greater challenges than the poten-
tial harm from unknown security vulnerabilities. Keeping knowledge of
security vulnerabilities from disclosure also implicates keeping them from
disclosure to the legal court. If the court can decide if the used method is
acceptable (forensically sound [106]) and the acquired data is exact and
without doubt authentic, the court should not need to know the details of
the digital forensic method used.

Having argued for the use and secrecy of security vulnerabilities by
law enforcement, we can turn to the complicated question of the sharing
policy of such knowledge (Section 3.5). In a world where law enforcement
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in different countries share methods and intelligence in an effort to fight
global crime and terrorism, should methods based on security vulnerabil-
ities be shared as well? Norway as a democratic country, with its laws and
culture, might have a policy for using such methods that differ significantly
with other countries. According to Norwegian policy for case handling in
extradition cases [107], Norway are not extraditing prisoners to a country
where a death penalty might get enforced. What is the Norwegian policy
of sharing digital forensic methods, based on security vulnerabilities, with
such countries? Should e.g. Norway share methods, or help in an investig-
ation, with law enforcement in a country where possible suspect might be
sentenced to the death penalty? Can, and should, such methods undergo
the same strict regime? If so, how can this be enforced if such methods are
kept from the public and non law enforcement disclosure? This dilemma is
not as simple as taking a standing for or against death penalty. There’s not
a clear view if sharing such methods is inherently good or bad, according
to deontology. Sharing information with the goal of justice and prevention
of terrorism is clearly good, but if it leads to the death penalty for indi-
viduals, it’s clearly not in accordance with the Norwegian policy. Turning
to consequentialism doesn’t help much either, as the consequences of shar-
ing are unknown. Sharing a method with country A for solving one specific
case might be unproblematic, but the sharing can not be withdrawn, leav-
ing the next case in country A possibly problematic. Country A might even
share the method with country B, as country A might not have the same
strict sharing policy as Norway. Such sharing of both methods and intelli-
gence information is of course relevant to many other areas besides law en-
forcement, and often demands strict diplomatic bilateral and multilateral
relations. The sharing and use of offensive techniques, like using security
vulnerabilities, might even be considered as digital weapons and should
then be treated according to export control of military equipment [108].
This leaves us with a answer of contextual application; we should share
methods based on security vulnerabilities with countries with similar laws
and culture, and not with countries with e.g. the death penalty. However,
the practical challenges and implications of trying to achieve this is beyond
this essay.

3.7 Summary and Future Work

The increased complexity, security and ever expanding implications of con-
sumer technology will have a significant effect on how digital forensic, as
a tool used by e.g. law enforcement, will evolve in the next few years. Can
law enforcement ever conclude they have acquired sufficient amounts of
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digital data to enlighten a criminal investigation? What are great sources
of digital intelligence and evidence, and how can law enforcement get ac-
cess to all these sources? Mandatory security and encryption of consumer
products is quickly becoming a big obstacle for law enforcement, leaving
numerous cases with insufficient data for legal court, leaving the criminal
investigation without a clear conclusion from law enforcement. Can justice
be served without the court having access to vital data regarding an incid-
ent or a suspect? Will this increase in inaccessible data sources end up in
more cases being dismissed, and in the end hurting our justice system?

We have argued that law enforcementmust do everything in its power
to gain access to all possibly important data sources in a criminal invest-
igation, even if this includes (ab)using security vulnerabilities. We have
also argued that law enforcement should keep such security vulnerabil-
ities from disclosure to the public, legal courts and the vendors. Further
we have seen that the development of methods based on security vulner-
abilities can be considered weaponising the security vulnerabilities. In the
wrong hands such digital weapons can do potential harm to vendors and
their customers, so great effort should be made to keep them under a strict
government policy. This implies that any sharing with law enforcement in
other countries should be through controlled diplomatic bilateral and mul-
tilateral channels. This is to ensure that the policy of sharing, and using,
such methods are controlled and decided by the government.

We firmly believe that law enforcement should be able to use di-
gital forensics methods based on security vulnerabilities, to bypass security
mechanisms and acquire secured data.

This challenge is complex and our discussion is only brief, thus this
is important future work, to further discuss practical solutions that can be
accepted from ethical, legal and technology stand points.





Chapter 4

Summary of Work

This chapter summarises the published papers included in this thesis and
how these relate to the research questions from Section 1.5. A summary of
the relationship between contributions and research questions can be seen
in Figure 4.1.

Figure 4.1: The relationship between research questions (RQ) and papers.
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The contributions to answer the research questions are:

Paper I G. Alendal, G. O. Dyrkolbotn and S. Axelsson, ‘Forensics
acquisition - Analysis and circumvention of samsung secure
boot enforced common criteria mode,’ Digital Investigation,
2018 [1].

See appended paper in Part II, Paper I.

Paper II G. Alendal, S. Axelsson and G. O. Dyrkolbotn, ‘Exploiting
Vendor-Defined Messages in the USB Power Delivery Pro-
tocol,’ in Advances in Digital Forensics XV, 2019 [2].

See appended paper in Part II, Paper II.

Paper III G. Alendal, S. Axelsson and G. O. Dyrkolbotn, ‘Leveraging
the USB Power Delivery Implementations for Digital Foren-
sic Acquisition,’ in Advances in Digital Forensics XVII, 2021
[3].

See appended paper in Part II, Paper III.

Paper IV G. Alendal, G. O. Dyrkolbotn and S. Axelsson, ‘Digital For-
ensic Acquisition Kill Chain - Analysis and Demonstration,’
in Advances in Digital Forensics XVII, 2021 [4].

See appended paper in Part II, Paper IV.

Paper V G. Alendal, S. Axelsson and G. O. Dyrkolbotn, ‘Chip chop -
smashing the mobile phone secure chip for fun and digital
forensics,’ Forensic Science International: Digital Investiga-

tion, 2021 [5].
See appended paper in Part II, Paper V.

Paper VI G. Alendal, ‘Breaking Android Security by Abusing Implicit
HW Trust,’ In submission. [6].

See appended paper in Part II, Paper VI.

4.1 Main Research Question

In what way can security vulnerability discovery and exploitation

contribute to the improvement of digital forensic acquisition?

As the main goal for Digital Forensic Acquisition (DFA) is to acquire
data from any digital source, often with no knowledge of user credentials,
any obstacle preventing this needs to be tackled. This involves interact-
ing with the parts of a device that contains valuable data. This interaction
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can be over physical connections to the device, like an USB interface or an
Inter-Integrated Circuit (I2C) interface on a chip after chip-off, or a wireless
interface, like WiFi or Bluetooth. Often some form of logical communica-
tion protocol is used on top of such interfaces, like USB Power Delivery
protocol over USB, or TCP/IP over WiFi. Our research focused on the con-
crete challenges with security schemes preventing DFA, potentially solvable
using exploitation of security vulnerabilities.

The papers in this thesis address different aspects of the main chal-
lenges of accessing user data on mobile phones and contribute to answer-
ing the research questions in Section 1.5. We will discuss how our papers
contribute to each research question in turn.

4.2 RQ1: How can modern security measures be
bypassed by exploiting security vulnerabilities?

The main security mechanism protecting user data on modern mobile pho-
nes is encryption (Section 2.3.1). Thus bypassing encryption of user data
is mandatory for successful DFA. Bypassing encryption often implies by-
passing additional security measures, and RQ1.1 and RQ1.2 are tightly
connected, as our results below show.

Generally speaking, there are two different scenarios where encryp-
tion can be bypassed: Before-First-Unlock (BFU) and After-First-Unlock
(AFU) (Section 2.4). A DFA method for the BFU state is generally con-
sidered more valuable, as there’s no requirement of the target device to be
seized in a powered-on state, with at least one user unlock since the last
device boot (Section 2.4).

Most contributions in this thesis are therefore focused on devices in
the BFU state, including the powered off state. Our research contributes
with several in-depth studies on some potential ways to achieve DFA on
selected devices. This shows the complexity and experience needed for DFA
to use security vulnerabilities, but that it’s practically achievable, even with
limited resources.

Breaking encryption in the BFU state can be done by gaining access
to the Credential Encrypted (CE) encryption keys on the targeted devices
or by recovering the user screen lock credentials. These encryption keys
are the most valuable asset on the device and are often protected by many
security features, often tied to the specific Hardware (HW), making chip-
off useless.

There are numerous attack paths that could potentially lead to such
a compromise of encrypted user data (Section 2.4) and to limit the scope
of our research, we focused on logical security attack paths, like SW (in-
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cluding FW) security vulnerabilities (Section 1.2). We focused on such SW
security vulnerabilities, excluding HW based attacks and Side-channel At-
tack (SCA). SW attacks have the benefit of being easier to exploit when
used in a DFA method, requiring less potentially damaging HW modifica-
tions. However, they might require more than one security vulnerability to
be efficient.

This challenge often requires the execution of arbitrary code on the
device, breaking the integrity of the device. Attacking the secure boot fea-
ture of modern mobile phones is one potential path to execute privileged
/ elevated attacker-provided code on the device, and we first researched
this challenge on the most widespread mobile Operating System (OS), An-
droid, on one of the most popular vendors, Samsung [55, 56]. In Paper I
we discussed such protections that are present in the secure boot of An-
droid devices, strengthening the device security. Secure boot makes sure
the code integrity of the device is maintained throughout the boot cycle of
a device and breaking this secure boot to introduce new code is a potential
way to access user data. We demonstrated that we could fairly easy identify
a security vulnerability, a design flaw, leading to the bypass of a security
feature of this secure boot feature.

As the introduction of unauthorised code on a device in BFU state
is not enough (Section 2.4), we studied how to bypass the security of the
user screen lock, needed to unlock the CE storage. In Paper V and Paper VI
we studied Embedded Secure Element (eSE) chips. These dedicated HW
solutions are responsible for the protection of this crucial encryption key
material, needed to decrypt user data. These stand-alone system-within-

the-system chips are designed to withstand a fully compromised system and
breaking the eSE security is needed to perform DFA without knowledge of
user credentials. Paper V demonstrated how we could identify a new and
previously unknown 0-day, fully compromising the secure eSE chip pro-
tecting the crucial encryption keys. This attack demonstrated that a single
researcher, with limited resources, could identify such a crucial security
vulnerability and exploit it for successful DFA. The researched eSE was CC
EAL 5+ certified, and our research shows a potential mismatch between
intended and achieved security, encouraging security vulnerability research
to develop new DFA methods. Our discovered 0-day was reported to the
vendor, Samsung, as part of the preparation for the publication of Paper V.
Samsung acknowledged this serious issue and a corresponding security
update, referenced as SVE-2020-18632/CVE-2020-28341, was released to
remediate the flaw [109, 110].

Paper VI improved our attack from Paper V and demonstrated how
a vulnerable security design, with implicit trust in eSE HW, opens up for
a HW attack variant that removes the unauthorised and privileged code
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execution assumption required in the attack in Paper V.
Our contribution in Paper I, Paper V and Paper VI demonstrates that

a single researcher, with limited resources, can locate and exploit security
vulnerabilities to develop new DFA methods on modern mobile phones.

4.3 RQ2: Can we identify potential future attack surfaces
useful for digital forensic acquisition?

Discovery of future attack surfaces, especially in areas potentially not wide-
ly researched in the open security research community, can be very useful
for DFA method development. A powerful actor, like LE, has access to re-
sources and can perform physical attacks on devices, opening up attack
surfaces not commonly available to attackers. Investing in resource de-
manding attacks and attacks requiring physical access can potentially be
fruitful. The increasing complexity of device features, as well as the in-
troduction of new features, all contribute to potential new attack surfaces
being introduced. To illustrate this, we looked into potential attack sur-
faces with little or no public research available, like the USB Power Deliv-
ery (USB PD). We wanted to see if the lack of published security research
on this subject was the result of this being a secure feature or simply an
improbable attack surface.

Both Paper II and Paper III address RQ2.1 and RQ2.2, and demon-
strated the USB PD as a potential attack surface, with different target
architectures and with different security vulnerabilities. In Paper II we
demonstrated access to debug features on selected Android devices that
can be used to facilitate DFA. In Paper III we further researched this new
attack surface on a different platform, iPhone devices by Apple. This paper
demonstrated how a new attack surface could potentially be used to gain a
foothold within the system, through Firmware (FW) and HW security vul-
nerabilities, with the potential to access and exploit the System-on-Chip
(SoC), which again can give access to encryption keys. This shows the po-
tential of seeking new paths to bypass the crucial encryption security fea-
ture, in this case the SoC. This paper demonstrates how a FW vulnerability
could potentially give an attacker a foothold within the system, with the
potential leverage of privileges by attacking the system from within. We
believe we are the first to publish concrete research of security challenges
with USB PD implementations.

Our contribution in Paper II and Paper III demonstrates that new at-
tack surfaces can be discovered, useful for the development of new DFA
methods on modern mobile phones.
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4.4 RQ3: How can digital forensic acquisition benefit
from published security vulnerabilities?

Muchwork has been published on preventing attacks on computer systems,
as well as published security vulnerabilities, often with a published patch
available for affected products. This raises the question if such defensive

research and publicly available information could be used for offensive use
in DFA, and if we could systematically use such information. Both 0-day

and such published n-day security vulnerabilities can be valuable sources
for the development of new DFA methods, much because of the ability LE
has to seize devices, preventing patches for future n-day security vulner-
abilities to be applied to devices. These n-day security vulnerabilities can
be equally efficient in specific cases, saving resources and time compared
to the discovery of new 0-day security vulnerabilities. We believe this is
important to take advantage of.

To answer RQ3.1, Paper IV introduced a new methodology, Digital
Forensic Acquisition Kill Chain (DFAKC), in an attempt to be more efficient
in developing new digital forensic acquisition methods based on all secur-
ity vulnerabilities, including published, n-day, vulnerabilities. One of the
goals was to benefit from the continuous device updates and patching that
takes place, potentially for challenges that are relevant for digital forensic
acquisition. As a powerful user of digital forensic acquisition, like LE, has
the ability to prevent a seized device from installing a published patch, the
same patch can be reverse engineered to rediscover security vulnerabil-
ities. These rediscovered security vulnerabilities can be used to develop a
new digital forensic acquisition method for use on already seized, and thus
vulnerable, devices. Paper IV also demonstrated how, using our proposed
DFAKC, we could identify both the attack surface and an n-day security
vulnerability by studying patches released for a particular router FW.

Our contribution in Paper IV takes advantage of combining the track-
ing of published n-day vulnerabilities and researching 0-day vulnerabilities,
balancing the use of limited LE resources.

4.5 Additional Work

4.5.1 Additional Research Presentations and Awards

Our research in Paper V was also accepted and presented at the Black
Hat Briefings security conference [111]. This is a major security industry
conference aimed at a general security professional audience and demon-
strates the interest in our research from a community beyond digital foren-
sics.
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Our research in Paper V was in addition awarded “Best Client-Side
Bug” at the Pwnie Awards [112]. The award acknowledges the importance
and impact of our research results from a general security perspective.

4.5.2 Unpublished Work

During research lab work, new and unpublished 0-day vulnerabilities were
discovered. These were developed into new and unique DFA tools for LE.
These vulnerabilities and tools are not made public and details are there-
fore redacted from this thesis. However, their success confirms the applic-
ability for use by LE in the development of new DFA methods and thus to
the answer of research questions in Section 1.5.

4.5.3 Preliminary Work

Leading up to and motivating the start of this thesis work, was earlier re-
search we have done on self-encrypting hard drives [113]. This work was
also presented at the Hardwear.io conference [114]. This research demon-
strated many security vulnerabilities in the implementations of Western
Digital HW encrypted drives, bypassing the encryption layer to secure user
data without knowing the user credentials. The research discovered weak
AES key generations, weak implementation of authentication schemes and
even discovered backdoors to completely bypass authentication.

This work was a great motivation to kick off this thesis research as it
demonstrates the often huge difference between intended/claimed security
and actual security. HW encryption could simply be broken using secur-
ity vulnerabilities and reverse engineering. This work also attracted some
media attention [115–118] and was a good experience in how vendors, in
this case Western Digital, handled such critical security vulnerabilities and
“responsible disclosure” [119, 120].





Chapter 5

Discussion and Conclusion

This thesis contributes towards a more realistic view of the challenges Di-
gital Forensic Acquisition (DFA) are facing with the increased mandatory
security of embedded devices.

The contributions in this thesis can be identified in the following
areas:

DFA Challenges: Study of concrete security measurements preventing
successful DFA on modern embedded devices: confidentiality and
code integrity. Contributing to a better understanding of concrete
challenges with mobile device encryption on a.o. Android devices.

Vulnerability Discovery and Exploitation in DFA: Demonstrated that it
is feasible for LE to discover new 0-day security vulnerabilities and
develop new DFA techniques based on the exploitation of these. Our
results show that even with limited resources, within a PhD research
scope, one can achieve such results, motivating further research into
this area.

New Attack Surfaces for DFA: Contribution towards increasing the
attack surface for DFA. Demonstrating that new functionality is likely
to be a new opportunity for DFA.

Improving DFA Development and Success Rate: A new methodology,
DFAKC, for LE to prioritise and systematise continuous development
of DFA methods, utilising both 0-day and n-day security vulnerabilit-
ies.

Ethical Discussions: Contribute to the discussion on the ethical dilemma
with security vulnerabilities discovered by LE.

45
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5.1 DFA Challenges

Following the bottom-up approach from Section 1.4 and Section 2.4, we
conducted research into identifying actual security schemes that prevent
successful DFA. With experimental cases and case study of actual imple-
mentations in Papers I, V and VI, we demonstrated and confirmed con-
crete examples where confidentiality and the encryption of user data is a
big challenge for DFA. Other challenges, like code integrity and signed FW
updates, add to this as secondary challenges when trying to bypass confid-
entiality of user data, further raising the bar. DFA can bypass encryption by
securing unencrypted data from a device in an After-First-Unlock (AFU)
state or by recovery of the user screen lock or encryption key material
from a device in a Before-First-Unlock (BFU) state. Our results indicate
that DFA methods targeted against devices in the BFU state are achievable
and preferable, as they do not require the device to be seized in a powered
on state, with at least one user unlock since last boot (AFU).

5.2 Vulnerability Discovery and Exploitation in DFA

Our contributions demonstrate how to discover and exploit both 0-day and
n-day security vulnerabilities to aid in DFA and show that exploitation of
security vulnerabilities is feasible, even with the limited resources of this
research project. We showed how to discover new 0-days in both the integ-
rity (secure boot) of the device and the confidentiality, breaking the Embed-
ded Secure Element (eSE) HW. As this was possible in our research with
limited resources, we firmly believe that this is possible by dedicated au-
thorities with far more resources available, like LE. We also developed the
0-days vulnerabilities into fully working exploits, ready to be used in DFA
methods, again with the limited resources our research operates within.

To be able to locate security vulnerabilities and attack devices in BFU
state, our research (Paper V) shows that bypassing encryption often in-
volves bypassing integrity as well, as one requirement for our attack was
to bypass the integrity of the device, to be able to run an attacking process
in the REE, to communicate with and attack the eSE chip. Paper I exem-
plified this by attacking features that protect the integrity of the device.
However, we believe such attacks on integrity might be removed as a re-
quirement for DFA in some cases. In Paper VI we introduced a variant of
our original attack on the eSE, that abuses the implicit trust relationship
between the overall system and the trusted eSE HW. This removes the need
for an additional attack on the integrity of the general device and demon-
strates that we only need to locate one security vulnerability in the eSE to
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fully bypass the encryption challenge on affected devices.

5.3 New Attack Surfaces for DFA

Our research into USB Power Delivery (USB PD) demonstrates how a re-
sourceful attacker, with physical access to devices, can expand the attack
surface by looking at additional ways to influence devices to attack the
integrity and confidentiality. New attack surfaces might be introduced by
new features and technology, like the USB PD. Much of the open security
research community focuses on attack vectors with high spreading effect.
A vulnerability in a device’s way to handle e.g. an SMS or an email, dis-
tributed to the device remotely by any user/attacker, is far more serious,
seen from a security perspective, than a local vulnerability in the USB bus,
where the attacker needs physical access to the device. As LE has the abil-
ity to seize devices, all remote and local attack vectors are equally valuable
and there might be more uncovered attack surfaces in the less researched
physical attack surfaces. Paper II demonstrates one such new attack surface
by locating hidden debug interfaces on selected Android devices, very use-
ful for DFA, by manipulating the Vendor Defined Message (VDM) feature
in the USB Power Delivery protocol. This protocol has not gained much at-
tention in the security community and our research was, as far as we know,
the first to do so. Paper III demonstrates the USB Power Delivery protocol
on a different target, the Apple iPhone. In this paper we demonstrate how
this attack vector represents a path to a possible exploitation of the SoC of
the device, by locating security vulnerabilities in the FW and update mech-
anism. This enabled us to overtake the USB PD HW, with the possibility to
abuse the implicit trust this chip has in the iPhone system or any interfaces,
with potential data parsing security vulnerabilities, with other parts of the
system.

We have demonstrated that new attack surfaces, like the USB Power
Delivery, could reveal new attacks for use in DFA and should be researched
further.

5.4 Improving DFA Method Development

The need for a methodical approach for efficient use of both 0-day and n-

day security vulnerabilities in the development of new DFA methods was
emphasised when performing our research, as n-day security vulnerabilit-
ies can be very effective in combination with LE’s ability to prevent patch-
ing of seized devices.

In addition, to be efficient in solving challenges with specific devices
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in case-to-case work as well asmore long term and case-independent trends
in consumer adaptations of new technology, there is a need to use available
resources in an efficient way. The amount of seized devices will probably
increase and so will their security and complexity. Acquiring data from
devices and services is simply getting more challenging and requires more
(human) resources. In Paper IV we proposed a methodology, DFAKC, in an
attempt to identify these challenges and to improve the use of resources
to increase the success of developing new DFA methods based on security
vulnerabilities. This challenge is not easily solved, as conflicting interests
pull on the same resources. There is always an expectation that LE will use
“every resource available” to solve any serious criminal case, and at the
same time solve more long term challenges for future cases, like the en-
cryption challenge of modern mobile phones. DFAKC tries to improve the
prioritisation between such conflicting interests. Our method also suggests
ways to improve the efficiency in discovering n-day security vulnerabilit-
ies, as these are often far less resource demanding to (re)discover than
to discover new 0-days. Thus going for the “low hanging” n-day security
vulnerability discovery is more fruitful because of the “patch preventing”
capability of LE. We expect DFAKC to mature over time as more experience
is gained through its use, but hope this is a positive beginning for improved
use of security vulnerabilities in DFA method development.

5.5 Ethical Discussions

The “equity issue” and ethical dilemma of discovering 0-day security vul-
nerabilities, as introduced in Chapter 1 and discussed in Chapter 3, is chal-
lenging for any government organisation, especially for LE. It is expected
by the community that law enforcement protects its citizens from threats,
also threats in the digital sphere. How LE handles the discovery of 0-day

security vulnerabilities is of course important for the technical challenge it
helps to solve, such as bypassing a security scheme to acquire data from a
suspect’s phone. LE also has to handle the public opinion on their policy.
If such 0-days are kept from disclosure to vendors for patching and this is
publicly known at a later stage, the public might disagree with the policy.
This calls for an open discussion on such matters, as this is an important
political question in addition to the technical one.

5.6 Conclusions and Future Work

Our research has contributed to a better understanding of the growing
challenges mandatory security of consumer devices has for the future of
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DFA. Motivated by the increasing complexity of features and devices, as
well as the seemingly growing number of discovered security vulnerabilit-
ies, we have demonstrated that the use of security vulnerabilities in DFA is
a fruitful path forward.

As our research project only studied isolated challenges, with limited
resources available, but still was able to locate and exploit 0-day security
vulnerabilities, should motivate further research. Our research discovered
new vulnerabilities, developed working exploits as well as demonstrated
how to use exploit results in an off-device brute force attack. We believe
that further research could be performed in each of these different phases,
from the discovery to the effective exploitation and use of security vulner-
abilities.

More targeted research into existing attack surfaces, in addition to
the discovery of new attack surfaces, is also needed. Expanding the attacks
to include attacks based on HW and/or SCA should also increase the pos-
sibilities for new DFA methods. The challenge with implicit HW trust also
seems like an area where security vulnerabilities can be discovered. Isol-
ating all trust in a single eSE chip did not work out as intended for the
devices in our research, but the amount of work and resources needed to
uncover such vulnerable HW trust relations could be much higher for other
devices. Our research into this problematic HW trust was also limited by
the lack of HW resources to demonstrate the full attack. Thus more re-
search might need to be done in unifying the SW, FW and HW expertise.
Combining forces to develop new DFAmethods based on attack chains util-
ising resources, experience and security vulnerabilities in all these attack
domains, from logical design and implementation bugs in an application,
down to physical gates in an Integrated circuit (IC).
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Abstract

The acquisition of data from mobile phones have been a mainstay of crim-
inal digital forensics for a number of years now. However, this forensic
acquisition is getting more and more difficult with the increasing security
level and complexity of mobile phones (and other embedded devices). In
addition, it is often difficult or impossible to get access to design specific-
ations, documentation and source code. As a result, the forensic acquisi-
tion methods are also increasing in complexity, requiring an ever deeper
understanding of the underlying technology and its security mechanisms.
Forensic acquisition techniques are turning to more offensive solutions to
bypass security mechanisms, through security vulnerabilities.

Common Criteria mode is a security feature that increases the se-
curity level of Samsung devices, and thus make forensic acquisition more
difficult for law enforcement.

With no access to design documents or source code, we have reverse
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engineered how the Common Criteria mode is actually implemented and
protected by Samsung’s secure bootloader. We present how this security
mode is enforced, security vulnerabilities therein, and how the discovered
security vulnerabilities can be used to circumvent Common Criteria mode
for further forensic acquisition.

I.1 Introduction

Digital forensics is the recovery and investigation of data found in di-
gital devices [2]. Garfinkel [3] discusses the difficulties that awaits digital
forensics, what challenges exist in today’s tools, research and knowledge
and how digital forensic research should move forward to keep digital
forensics a valid method for the years to come. The prediction is that both
the recovery, forensic acquisition, and investigation will become increas-
ingly harder as complexity and security mechanisms, like encryption, grow
in use. Faced with this ever increasing security of Commercial of-the-shelf
(COTS) products, law enforcement faces an increasing challenge when it
comes to the ability to do forensic acquisition. Where before law enforce-
ment could bypass security mechanisms by e.g. accessing data at a lower
level, like forensic de-soldering (chip-off), to read content off data stor-
age directly, today’s, often mandatory, encryption of user data on mobile
devices invalidates such methods. The ability to read stored data on the
device’s storage is simply not enough. Reading encrypted data has little
value without the corresponding encryption key(s). The addition of secur-
ity features like device-tied encryption keys, supported by hardware and
a TrustZone, gaining access to such encryption keys is made even harder.
This might then require law enforcement to power on the device, in or-
der to try to extract keys or decrypted data through interaction with the
security mechanisms protecting the user data. This type of interaction of-
ten means installing or modifying code on the device. Even though law
enforcement have legitimate cause for their “hacking”, this is activity that
in other contexts would be regarded malicious and illegal, also known as
an attack. Therefore, to protect against such attacks, most mobile device
vendors protect code running on the devices, from the first code executed
at power on and all the way through to a full operating system, like An-
droid, is up and running. This is often referred to as a Secure Boot, and
refers to the trust in code executed on the device. This code should only
be certified and official code, made by the vendor, and properly signed to
prove authenticity.

Law enforcement always strives to acquire as much data as possible
to support any ongoing investigation. So bypassing such complex security
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schemes, if possible, forces law enforcement to invest in deeper knowledge
and costly equipment to perform advanced forensic acquisition, utilising
such attacks1. Law enforcement is then investing in the discovery and use
of security vulnerabilities, to bypass security mechanisms to acquire digital
evidence.

On the other hand, seen from a user and enterprise perspective, with
the growing use of these devices, both end users and enterprises are de-
manding more secure devices to help protect sensitive data. The need to
secure mobile devices, especially in an enterprise context is important, as
devices moving in and out of the enterprises network, unchallenged, intro-
duces attractive attack vectors for cyber criminals and cyber espionage.

Mobile Device Management (MDM) solutions can enable the central-
ised control of devices that are used in the enterprise. Enterprises can then
monitor, control and administrate devices in a systematic manner, across
device vendors and service providers. Samsung supports such solutions by
offering a.o. a feature they refer to as Common Criteria mode or simply CC

mode [4]. CC mode is a security feature designed to increase the device’s
protection against unauthorised access and can therefore pose an addi-
tional challenge to law enforcement trying to acquire data from devices
with CC mode enabled. A major challenge is that CC mode denies access
to the device firmware update mechanism, a common method used by law
enforcement to gain access to data.

This paper presents the reverse engineering results of CC mode and
how discovered security vulnerabilities can be used to circumvent CCmode
for further forensic acquisition.

The rest of the paper is organised as follows: Section ‘Related
Work and Contributions’ discusses related work and how our contribution
relates. Section ‘Samsung Secure Boot Model’ introduces the Samsung se-
cure boot model. Section ‘Samsung CC mode and SBOOT’ describes the CC
mode related parts of the Samsung secure boot and how this relates to the
secure execution environment, TrustZone. Section ‘Unauthorised disabling
of CC mode’ discusses attacks on the CC mode. In section ‘Conclusion’ we
discuss the implications of our findings and offer our conclusions.

I.2 Related Work and Contributions

Recovering data frommobile devices can be achieved by reading data from
storage or from volatile memory (RAM). The two sources of data differs in
both how data is stored and how data can be retrieved. Data in long term

1With the word “attacks”, in the context of this article, we mean: exploiting vulnerabilities for
forensic data acquisition purposes by law enforcement agencies.



68 Paper I

storage is often stored well structured in file systems, as it has to be able
to be read by different operating systems, and other tools. Data structures
in RAM are often less well documented, and the formats more volatile, as
it needs only survive to the next restart of the device. RAM is repopulated
each time the device is restarted.

Nathan Scrivens et al. [5] summarised many of the current options
for forensic acquisition of storage on Android mobile devices. According
to Scrivens et al., the main options are chip-off, de-soldering storage for
off-device reading, JTAG (Joint Test Action Group) interface for in-circuit
reading of storage, rooting and exploitation solutions for recovering data
by breaking the security of the device, Android Debug Bridge (ADB) by util-
ising device debug capabilities for forensic acquisition, and finally backup
solutions retrieving data through normal or rooted user access. These dif-
ferent methods have different requirements and weaknesses. Chip-off re-
quires physical access to underlying storage media, and can not deal with
the increasing use of encryption on storage devices. JTAG is a interface
often used during development and testing of a device, and can be used
to communicate directly with the underlying storage media. However, the
JTAG test pins can be hard to find and access on different devices, and
can also be secured against unauthorised access, and also disabled by the
vendor before shipping. ADB is a powerful debug interface supported by
Android, but it is not enabled by default on most Android devices, nor
does it give root access. Finally, backup applications are rarely accessible
to unauthenticated users and are often of limited use for forensics.

Seung Jei Yang et al. [6] demonstrated a different approach: doing
forensic acquisition of storage media through the misuse of the device firm-
ware update protocols. This will give access to the underlying storage and
the ability to dump its content. Unfortunately this method will also be in-
sufficient if the data stored is encrypted.

Seung Jei Yang et al. [7] recently demonstrated a different use for the
device firmware update protocols. Instead of acquiring storage they have
demonstrated how to acquire RAM through this update protocol. This can
again be used to acquire encryption keys used to encrypt storage, in addi-
tion to save user data that resides in RAM at the time of RAM acquisition.

M. Guido et al. [8] demonstrated hawkeye, an agent to do rapid ac-
quisition of Android devices. Although their goal is to reduce the amount
of data needed to be transferred during the acquisition process, this is an
example of a forensic agent that needs to be injected into the device to
function as expected. This is done by installing a custom boot image on
the device to facilitate hawkeye injection. Installing this custom image is
done through the device firmware update protocol and access to firmware
update mechanism is a requirement.
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As we can see, access to a device’s firmware update protocol can be
vital for successful forensic acquisition. Any functionality denying this ac-
cess is therefore limiting the possibilities for law enforcement to acquire
data from a given device. CC mode is preventing law enforcement access
to the firmware update mode on Samsung devices. Our contribution is to
analyse and circumvent CC mode to gain access to the firmware update
mode. For completeness, we have also included the discussion of a MDM
setting, also affecting access to the firmware update mode.

Our reverse engineering of CCmode reveals security vulnerabilities in
the design and implementation of these security mechanisms, and demon-
strates how such security vulnerabilities can be discovered and used in
digital forensic acquisitions.

Our contribution shows that law enforcement trying to acquire data
from a device can disable CC mode and get access to firmware update
mode, thus removing the extra layer of security enforced by CC mode.
Disabling CC mode can then enable existing methods but also increases
the attack surface in general, increasing the possibility to discover new
vulnerabilities and methods.

I.3 CC Mode and Methodology

CC mode is built on top of the phone’s Android security model and hard-
ware, to increase enterprise security. Samsung has made available several
guidance documents for Common Criteria evaluation for many of their dif-
ferent phone models [9].

Samsung provides a wide range of management APIs to control a
Samsung device [10]. These APIs can be used in 3rd party MDM solutions.
To further promote the use of CC mode in MDM solutions, Samsung has
made available a Common Criteria mode APK [4]. This Android applica-
tion package (APK) is installed on the evaluated device and sets a number
of default policies and security settings. This APK is intended for evaluat-
ors and IT admins, to test the features of Samsung’s CC mode. Samsung
provides a long list of compatible phones, e.g. the Samsung Galaxy S6, with
model name SM-G920F and the Samsung Galaxy S7 Edge, with model name
SM-G935F. It is unknown to the authors what requirements are needed for
a particular model to be compatible, but for blocking the access to the firm-
ware update mode, the bootloader of compatible models must have code
to handle this blocking. It is the bootloader that implements the firmware
update mode.

The policy and settings set by the CC mode APK is the basis for the
testing done in this paper. When we refer to CC mode, we refer to settings
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set by the CC mode APK. Our main test device was a Samsung Galaxy S7
Edge (SM-G935F) running firmware version G935FXXS1DQGA_G935FNEE1
DQF3_NEE2.

One crucial feature of CC mode is the ability to only allow Firmware
Over the Air (FOTA) firmware updates. This is to protect against an attacker
with physical access to the device, trying to install unauthorised firmware
on the device. Updating firmware in this way on Samsung devices is done
through what is called ODIN mode. CC mode will both block ODIN mode
and any attempt to boot an unofficial boot image already stored on the
device.

Other features of Samsung CC mode and Common Criteria in gen-
eral will not be discussed further as these features does not influence the
blocking of ODIN mode.

Samsung devices come in different hardware configurations, where
system-on-a-chip (SoC) implementations from Qualcomm (e.g.
Snapdragon) and Samsung (Exynos) are the most common. Although the
phone models share the same name, like Samsung Galaxy S7, they are very
different in e.g. hardware components and bootloader code. In this pa-
per we only focus on Samsung devices based on the Exynos SoC variants.
Examples of devices with Exynos SoCs are Samsung Galaxy S6 (models
SM-G920F / SM-G925F) and Samsung Galaxy S7 (models SM-G930F / SM-
G935F).

Access to ODIN mode is enforced by the Samsung bootloader. The
bootloader is part of the secure start-up of the device and is native code
responsible for starting the device. On the studied models with the Ex-
ynos SoC, the bootloader responsible for ODIN mode is often referred to
as SBOOT. SBOOT is built from Samsung proprietary code, and document-
ation and source code are not publicly available. We have analysed how the
secure bootloader knows that CC mode is enabled and how this is used to
limit access to certain features. We have also analysed the security of the
storage of this CC mode configuration, as well as how SBOOT can change
the configuration or simply disable CC mode. This leaves SBOOT not only
responsible for enforcing the configuration, but also changing the setting.

Both design and implementation details of many security features are
generally not available, and hence many such features may be left unex-
plored by the research community. To be able to analyse the enforcement of
CC mode and how ODIN mode is blocked, we reverse engineered SBOOT
with both static and dynamic analysis techniques. With access to the firm-
ware for our test device, we reverse engineered the binary SBOOT code.
Most of the static reverse engineering effort was done using the tool IDA

2G935FXXS1DQGA_G935FNEE1DQF3_NEE.zip
SHA-1:67CA63BCAF53C9D48A5D5DF43A8F5E56544081AC
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Pro from Hex-Rays [11]. We also developed our own exploit based on the
SBOOT vulnerability disclosed in a security blog by Nitay Artenstein [12].
We used this exploit as a tool to perform more dynamic analysis of how CC
mode is enforced and used to protect against unauthorised firmware up-
dates. Our exploit is fully developed using the Python scripting language,
with the aid of the Keystone assembler framework [13] for creating binary
ARM code to be executed as part of the exploitation. Our goal was to be
able to evade or disable CC mode, to get access to ODIN mode.

I.4 Samsung Secure Boot Model

The code that is implementing ODIN mode, and thereby flashing firmware
on Samsung devices, is located in the bootloader of Samsung devices.
Therefore the bootloader must be able to turn off access to ODIN mode
when CC mode is enabled on the device, in order for CC mode to disable
firmware updates, e.g. designed to sidestep centralised control. To better
understand how this mechanism works, some background on the Samsung
secure boot model, applicable for devices using the Exynos SoC, follows.

To maintain security and trust in code running on devices, Samsung
utilises a secure boot model [14], where all code running from power on
until a complete Android system is running, is signed. This includes the
integrity of the TrustZone and the baseband processor, that handles most
of the radio functions. The security of bootloaders is therefore crucial for
the integrity of the device. Nilo Redini et al. [15] explored vulnerabilities in
both design and implementation of bootloaders for a range of devices, and
emphasised on the importance of a secure boot by demonstrating several
attacks. A simplified boot model used by Samsung Exynos devices is show
in Figure I.1. This shows how execution is started at the BootROM and
carries on through the boot process through to the Android kernel.

Samsung provides a generic description of their platform security
[14]. This describes that the signature chain is rooted in the Samsung

Secure Boot Key, SSBK, used to sign Samsung approved executable boot
components. The public part of this key is stored in the phone’s hard-
ware at manufacture and will not change during the device lifetime. This
is used by the BootROM when the device powers on. As seen in Figure
I.1, the BootROM makes sure all executable code fetched from storage
during boot is signed by Samsung. Booting a device with this model starts
with the primary bootloader, loaded from Read-Only Memory (ROM). This
primary bootloader loads the next bootloaders, Boot loader 1 (BL1) and
Boot Loader 2 (BL2) from storage, e.g. flash, to RAM, checks the signature
and advances execution to BL1. BL1 will carry out its tasks, often related



72 Paper I

Figure I.1: Overview of the Samsung Secure Boot model from BootROM to an
Android kernel.

to hardware initialisation, and advance execution to BL2. BL2 is a more
complex bootloader, with larger code base, which in turn loads and checks
the signature of the Android kernel before advancing execution to it. As a
final stage, the Android kernel boots and loads the full operating system
which enables all the device’s features.

If all these bootloader stages maintain the signed integrity from the
SSBK key, Samsung refers to this as secure boot. Note that Samsung dis-
tinguishes this from trusted boot, which also includes Rollback Protection

(RP), preventing the “downgrading” of any executable code to official, but
vulnerable, older versions of the bootloaders or Android OS.

Note that Samsung does not forbid installing unofficial Android
kernels, not signed by Samsung. This is however considered tampering

with the device, and consequently a one-time programmable tamper fuse
(eFuse) will be set. This fuse cannot be unset and the device is from here
on marked as “Warranty void”. This fuse is often referred to as the KNOX

Warranty Bit [16] and is a Samsung proprietary way of marking the device
as having been tampered with. Samsung can prevent the installation of
such unofficial Android kernels if Factory Reset Protection (FRP) is set on
the device. FRP is a setting that is enabled e.g. if the user adds a Google ac-
count to the system. FRP will prevent the installation of unofficial firmware
updates, but will not deny access to ODIN mode.

In this paper we will refer to BL1 and BL2 as SBOOT. SBOOT is the
first code loaded from writable storage and can therefore be upgraded as
part of what is often referred to as firmware upgrades. Firmware upgrades
for Samsung devices are often big archives that can upgrade different parts
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of the Samsung code environment, like the Android OS, the baseband pro-
cessor or the SBOOT bootloaders. Any upgrade to the SBOOT will be in-
cluded in a file called sboot.bin, so in order to analyse executable code
belonging to SBOOT, we need to analyse the sboot.bin file. As seen from
Figure I.1, SBOOT is a crucial part of the Samsung Secure Boot model.

Kanonov et al. [16] have analysed and foundweaknesses in the secur-
ity of the Samsung KNOX secure containers, and also described the Secure
Boot process, related to the security of KNOX containers. They also discuss
other important security features, like runtime protections, named TIMA,
and e.g. it’s use in attestation of a device. Device attestation is to test the
authenticity and integrity of the security measures and policies.

SBOOT is responsible for a range of tasks before it loads and executes
the Android kernel. These tasks are part of the Secure/Trusted boot and
includes loading
TrustZone dedicated applications, also known as trustlets. A trustlet is a
small and dedicated application created to solve a specific, often sensitive
task, like digital rights management (DRM). Trustlets run in the TrustZone.

The TrustZone is a separate execution environment, supported by the
hardware, that divides each processor core into two separate “worlds”. Of-
ten we refer to these different execution environments as the normal world
and the secure world; the TrustZone. SBOOT is not part of the TrustZone
and is running in normal world. When SBOOT is done executing its needed
boot routines, it will load and execute the Android kernel. The Android ker-
nel also runs in the same normal world. The TrustZone does not influence
the enforcing of CC mode during boot and are therefore left out of further
discussions in this paper.

Looking into the different steps performed by SBOOT, we can analyse
the interaction with the CC mode configuration and how this is enforced.
This will be explained in the next section.

I.5 Samsung CC mode and SBOOT

The Samsung Common Criteria Administrator Guidance, section 4.3.2.2
[17], states that to place the device in the evaluated configuration, CC

mode must be enabled on the phone. This mode will, once enabled, enforce
FIPS-validated crypto, disable USB connectivity in recovery mode and only
allow Firmware Over the Air (FOTA) updates to the system. The Samsung
Common Criteria mode APK [4] will enable CC mode on any supported
model, for testing purposes. We will only focus on the parts of CC mode
that affects SBOOT. The CC mode setting that affects SBOOT is either on

or off.
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After installing the APK and enabling CC mode, we can start to in-
vestigate how this affects SBOOT and how SBOOT enforces the blocking
of ODIN mode. There are two ways of updating the firmware on our test
devices; over-the-air through FOTA or with physical access through ODIN.
Blocking ODIN mode is a crucial part of CC mode, since we’ll see later
that if we are given access to ODIN mode we can simply disable CC mode
altogether. It is expected to be more difficult for an attacker to install unau-
thorised firmware updates through FOTA, as this is an online feature with
secure communication to Samsung firmware servers.

With a combination of static reverse engineering of SBOOT and dy-
namic reverse engineering using an SBOOT exploit, we have analysed how
SBOOT is affected by enabling CC mode, how this setting is stored, and
how to attack it to disable CC mode. Our analysis shows that the CC mode
setting is stored in flash, on a data partition called PARAM.

I.5.1 The PARAM Partition

An Android device’s storage is divided into several logical partitions, where
system and userdata are the most important ones. The first contains the An-
droid operating system files (OS) and the latter contains most of the user
data. Another partition, the PARAM partition, is a rather small logical par-
tition that contains a few JPG pictures used by SBOOT, e.g. the Samsung
Galaxy boot logo displayed when the device is powered on. In addition,
there is a file, adv-env.img (See Table I.1), that a.o. contains parameters
submitted to the Android kernel when SBOOT passes the execution to the
Android kernel after SBOOT has loaded and checked the signature of the
Android kernel. The PARAM partition is upgraded through firmware up-
dates, with updates in the file param.bin, which is part of the firmware
archives.

PARAM is however also storage for some other important settings.
Our analysis show that in the last few 512-byte blocks of the PARAM parti-
tion, Samsung stores important settings like CC mode, MDM settings, the
current system status (“Samsung Official” or “Custom”) and flags named
AFW and UCS. The way SBOOT address these settings, is to count back-
wards in number of 512-blocks from the end of the PARAM partition. See
Figure I.2.

To access the CC mode setting on our primary test device, SBOOT
references the block
PARTITIONSIZEinBLOCKs(PARAM)-4 in the PARAM partition. This is a
static offset in the SBOOT code, but can change with different versions of
the SBOOT binary. The CC mode configuration is 64 bytes of encrypted
data stored at the start of the referenced block. These 64 bytes are read
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Figure I.2: PARAM Partition

and decrypted with a function we call
S_CC_decrypt3. As the function S_CC_decrypt only takes two argu-
ments; the input buffer with the 64 encrypted CC mode bytes, and a zero-
initialised output buffer to receive the decrypted content, we assume the
key material needed for the decryption is contained in, or retrieved by, the
function itself. Looking closer at the S_CC_decrypt, we can see it uses a
whitebox AES Cipher, where the AES key is not exposed during encryp-
tion or decryption [18]. This means that the function S_CC_decrypt can
decrypt the CC mode data without exposing the key in static code or dy-
namic runtime analysis. The function is a decryption oracle. SBOOT also
contains the corresponding S_CC_encrypt, though our analysis does not
find this function to be called by the SBOOT binary. As it turns out, a native
Android library, /system/lib64/libSecurityManagerNative.so matches
the two WAES encrypt/decrypt oracles, discovered also by André Moulu
[19]. Since SBOOT does not seem to call S_CC_encrypt, this leads us to
think that the CC mode configuration is only written by the Android en-
vironment and not by the SBOOT bootloader. SBOOT simply queries the
configuration. Given these WAES oracles, we can freely read and write the
CC config from both the SBOOT and the Android environment, if we con-
trol execution. This will also be the case if we have other means of write
access to the PARAM partition.

The decrypted CC mode data contains the magic characters timg in
bytes 0-3 and the characters NOCC (CCON read little-endian) or FFOC (COFF
read little-endian) in bytes 4-7, signalling CC mode on or off respectively.

3All functions named by the authors are prefixed with S_. Function names comes from educated
guesses made from error message strings referenced inside functions.
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The CC mode setting is read early in SBOOT’s execution and a global
flag variable is set to signal the CC mode configuration. This flag can be
queried through a function we call S_CC_MODE_isSet, which returns true

if CC mode is enabled.
Another setting assumed to be important for MDMmanaged devices,

is the MDM setting. This setting is not set by the Samsung CC mode APK.
However, we assume that MDM solutions use this setting actively, and we
therefore include this setting and its effect on CC mode in our analysis. The
MDM setting is stored in block
PARTITIONSIZEinBLOCKs(PARAM)-3 in the PARAM partition. It is an un-
encrypted setting in the first 32 bytes in the corresponding block. These
bytes are read in during boot, as with CC mode, and sets a global variable
corresponding to the MDM setting in PARAM. The MDM global variable
can have three different values, where 1 and 2 seems to mean that MDM
is in use.

The following pseudo code describes the different byte values in the
MDM block and the corresponding MDM setting:

The MDM setting is set to 1 if
block[30] == 2 && block[31] == 6 &&
block[3] == 8 && block[7] == 8.

The MDM setting is set to 2 if
block[30] == 2 && block[31] == 6 &&
block[3] != 8 && block[7] == 8.

The MDM setting is set to 3 if
block[30] == 2 && block[31] == 6 &&
block[3] == 8 && block[7] != 8.

So if the global MDM variable in SBOOT is set to 1 or 2, MDM mode is
considered enabled and this will also affect how SBOOT permits access to
ODIN mode.

I.5.2 SBOOT enforcing CC mode

S_CC_MODE_isSet is called at three different locations in SBOOT; when the
phone is trying to enter ODIN mode, when the phone tries to boot a kernel
with no or invalid signature, and when the SBOOT sends status variables to
the TrustZone. It’s the first of these three that is crucial for denying access
to ODIN mode.

The decision of when during the boot process to check for CC mode
is crucial for the success of denying access to ODIN mode. As the boot-
loader is responsible for initialising the device as well as firmware up-
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dates to the system, it must also check for potential errors. These checks
for errors are intermingled with security related checks, such as check-
ing for CC mode. This intermingling makes the security checks vulner-
able to changes in the execution path caused by errors, as specific errors
can make the execution path change, such that certain security checks
never takes place. Our analysis shows that this situation can arise for
CC mode. Figure I.3 shows the pseudo code for the function responsible
for enabling ODIN mode, S_boot_enter_download_mode. The function
S_boot_enter_download_mode is called from various locations in the
SBOOT boot process. It will check if it should go to ODIN mode. If so,
it will call a function, S_USB_mode_enter, which will apply the configur-
ation to the device and switch to ODIN mode. S_USB_mode_enter can be
called with one parameter, where 0 means ODIN/download mode.

S_boot_enter_download_mode itself receives one parameter, reason

(Fig. I.3, line 1), which indicates the reason for entering ODIN mode. The
function acts accordingly based on the value of this parameter. The pseudo
code shows that S_USB_mode_enter is called from two different locations.
The call in line 31 is only reached if the call to the function S_CC_MODE_i
sSet in line 25 returns false. If S_CC_MODE_isSet returns true, SBOOT
will print “DOWNLOAD IS BLOCKED BY CC MODE” to the device screen
and eventually power off the device. The other call to S_USB_mode_enter is
found at line 14, and this call is not preceded by a call to S_CC_MODE_isSet,
meaning this call seems to ignore if any CC mode is set. So if S_boot_ent
er_download_mode is called with parameter 6, the device will enter ODIN
mode, even if CC mode is set. Backtracking callers to S_boot_enter_dow
nload_mode identifies the situation in where this happens.

SBOOT has a table of environment variables, stored in the adv-

env.img file of the PARAM partition. These values are listed in Table I.1.
These values are ways of influencing the execution of SBOOT and since
they are stored in PARAM, they survive a device reboot. As already men-
tioned, some of these are also passed on as parameters to the Android
kernel, but the discussion of these are outside the scope of this article.

One example is the REBOOT_MODE, signalling SBOOTwhich boot mode
to use, where normal boot (0), ODIN/download mode (1), upload mode (2)
and recovery mode (4) are example settings. See Table I.2 for a full listing
of values for REBOOT_MODE.

Many of these environment variables are checked during boot, and
one of them is interesting with respect to CC mode; DN_ERROR. During
normal boot, SBOOT calls a rather complex function, we call S_boot_s
et_boot_mode, that decides which boot mode to choose for the device.
This is based on numerous checks on hardware, battery state, environment
variables and so on. During these tests there’s a call to a function, S_s5p
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Table I.1: SBOOT environment variables, stored in adv-env.img

Index Name Example setting

0 REBOOT_MODE 0
1 SWITCH_SEL 3
2 DEBUG_LEVEL 18505
3 SUD_MODE 0
4 DN_ERROR 0
5 CHECKSUM 3
6 ODIN_DOWNLOAD 1
7 SALES_CODE 0
8 SECURITY_MODE 1526595585
9 NORMAL_BOOT 0
10 CP_DEBUG_LEVEL 22015
11 USERBOOT_MODE 0
12 DIAG_MODE 0
13 CHARGING_MODE 48
14 INT_RSVD14 0
15 LCD_RES 1
16 CMDLINE console=ram

loglevel=4

17 BARCODE_INFO (null)
18 KEEP_LOG (null)
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1 S_boot_enter_download_mode ( in t reason ){
2 i f ( reason == 1) {
3 S_draw_image ( " warning_L . jpg " ) ;
4 i f ( S_user_cance l ( ) ) {
5 S_reboot_device ( ) ;
6 }
7 else {
8 S_draw_image ( " download_L . jpg " ) ;
9 }

10 }
11 else {
12 i f ( reason == 6) {
13 S_draw_image ( " download_error_L . jpg " ) ;
14 S_USB_mode_enter (0 ) ;
15 }
16 S_draw_image ( " download_L . jpg " ) ;
17 i f ( reason == 3) {
18 // SUD mode . .
19 }
20 i f ( reason != 4) {
21 goto e r ro r ( ) ;
22 }
23 }
24 // . . .
25 i f (S_CC_MODE_isSet ( ) ) {
26 S_sc reen_pr in t (
27 "DOWNLOAD IS BLOCKED BY CC MODE" ) ;
28 S_s leep (1000);
29 S_power_off_device ( ) ;
30 }
31 S_USB_mode_enter (0 ) ;
32 }

Figure I.3: Simplified pseudo code of S_boot_enter_download_mode

_check_download, which will return a value different from 0 if it should
go to ODIN/download mode and returns 0 if it should not go to download
mode. Taking the path in which S_boot_set_boot_mode returns 0, no

ODIN/download mode, takes us to a call to a function we call S_env_get,
called with the integer value of DN_ERROR from Table I.1. This call returns
the integer value of the environment variable DN_ERROR. If this is set, there
is a call to the already discussed function S_boot_enter_download_mode,
with the parameter value of 6. As we have already analysed
S_boot_enter_download_mode and located a bypass of the CC mode check
if the input parameter is equal to 6, we now have a way to bypass the
CC mode check. We can simply set the environment value DN_ERROR to a
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non-zero value and reboot the device. The device will enter ODIN mode,
even if CCmode is enabled. This seems to us like an emergency ODINmode,
where the bootloader is requiring a firmware update as the result of a failed
firmware update. Figure I.4 shows the screen shown on a Galaxy S7 Edge
(SM-G935F) when in this mode.

Figure I.4: emergency ODIN/download mode

Table I.2: REBOOT_MODE variable values

Name value

REBOOT_MODE_NONE 0
REBOOT_MODE_DOWNLOAD 1
REBOOT_MODE_UPLOAD 2
REBOOT_MODE_CHARGING 3
REBOOT_MODE_RECOVERY 4
REBOOT_MODE_FOTA 5
REBOOT_MODE_FOTA_BL 6
REBOOT_MODE_SECURE 7
REBOOT_MODE_FWUP 9
REBOOT_MODE_EM_FUSE 10

I.5.3 MDM mode

We include a discussion on the MDM mode for completeness as this set-
ting is expected to be used by some MDM solutions that supports Sam-
sung Exynos devices. MDM mode also affects how SBOOT prevents ac-
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cess to ODIN mode. SBOOT access this setting through a function we call
S_MDM_MODE_isSet. This function will return true (1) if the global MDM
variable is either 1 or 2. It does not seem to make a distinction between
the two. SBOOT calls this function from three different functions; when
in ODIN mode, when booting, and for providing the MDM setting to the
TrustZone. In ODIN mode SBOOT is checking for MDM mode and will
prevent firmware upgrade to any partition other than the SBOOT (“BOOT-
LOADER”) itself, if MDM mode is set. So we can see that while CC mode
prevents access to ODIN mode itself, MDM mode will be checked in ODIN
mode as well.

SBOOT also checks for MDM mode during boot. These checks are
done before the CC mode check done in S_boot_enter_download_mode,
already discussed in Section ‘Samsung CC mode and SBOOT’. Checks are
done inside the function called s5p_check_download, where the SBOOT
decides if it should call
S_boot_enter_download_mode. Note that the call to s5p_check_downl
oad is done before the check for the environment variable DN_ERROR is
done, which is only checked if s5p_check_download returns a non-zero
value, meaning no ODIN mode. We have already seen in Section ‘Samsung
CC mode and SBOOT’ that setting the environment variable DN_ERROR to
a non-zero value will put the device in an emergency ODIN mode. This
will then be the same situation even if MDM mode is set. One important
difference is that ODINmode with MDMmode set will only allow firmware
updates of the SBOOT partition.

As MDM mode is an unencrypted setting stored in the PARAM par-
tition, any erasing or overwriting of the MDM setting block will reset and
disable the MDM setting on the device, and therefore not prevent access
to ODIN mode anymore.

I.6 Unauthorised disabling of CC mode

Based on our analysis of SBOOT, and the way the bootloader enforces CC
mode to prevent ODIN/download mode, we have found three different at-
tacks to disable CCmode4. All attacks have been verified through successful
tests on our test device. We will also discuss the effect of an optional MDM
setting, although this was not enabled by the Samsung CC mode APK.

4We have not considered if or how any commercial forensic tools support bypassing CC mode.
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I.6.1 Modifying the PARAM partition

As discussed in section ‘The PARAM Partition’, we can modify the CC mode
setting if we have write access to the PARAM partition. This can be either by
physical access to the underlying flash storage, or throughODIN/download
mode. Given PARAM write access, we can simply change the CC mode
setting and encrypt the setting with the WAES encryption oracles from
either SBOOT, or /system/lib64/libSecurityManagerNative.so. We
can also simply overwrite the CC mode data bytes with zero bytes, with
the same effect. So simply flashing a stock param.bin from a corresponding
firmware upgrade archive will disable CC mode.

If MDM mode is also present, flashing a stock PARAM through ODIN
mode is denied. This is not the case with physical access to the underly-
ing flash storage, as overwriting the MDM setting block will disable MDM
mode.

I.6.2 SBOOT exploitation

Since the bootloader is responsible for reading and enforcing the CC
mode setting in the PARAM partition, any attack on the execution flow
of SBOOT will have the potential to bypass CC mode and enable ODIN/-
download mode. Based on a vulnerability discovered by Nitay Artenstein
[12], we have developed a fully functional exploit to make SBOOT ignore
the CC mode settings. One way of doing this is to patch the code flow of
SBOOT to call S_boot_enter_download_mode with the parameter 6 and
then overwrite the PARAM partition in the same way as detailed in sec-
tion ‘Modifying the PARAM partition’. Another way could be to patch the
S_CC_MODE_isSet function to always return false by either patching the re-
turn code to 0 or by changing the global variable it references to 0. This way
we can bypass the blocking of booting unofficial and unsigned kernels, and
the CC mode enabled setting is not reported to TrustZone before booting
the kernel, in effect disabling CC mode on the booted Android system.

If MDM mode is also activated, this can also be bypassed simply by
setting the global SBOOTMDMmode setting to 0, resulting in the function
S_MDM_MODE_isSet always returning false. This is expected, as any arbit-
rary changes to the SBOOT code and execution flow will leave all security
checks done by SBOOT ineffective.

I.6.3 Setting DN_ERROR

We have seen the effect of setting the DN_ERROR environment variable to
a non-zero value in section ‘SBOOT enforcing CC mode’. This has been
tested through a console interface provided by SBOOT. This console can
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be reached with the aid of a custom USB connector and a simple RS232-
to-USB serial converter [12]. After entering the SBOOT console, one can
simply type setenv DN_ERROR 2 followed by a saveenv and reset. This
will try to reboot the device with a normal boot, but the non-zero DN_ERROR
environment variable will force the device into an emergency ODIN/down-
load mode. From here we can modify the PARAM partition like in section
‘Modifying the PARAM partition’.

If MDM mode is also active, the device will still enter ODIN mode.
However, since the MDM mode is also checked by ODIN mode when flash-
ing firmware, only
changes to the bootloader, SBOOT, are allowed. This will prevent this at-
tack.

I.7 Conclusion

In this paper we have successfully demonstrated how to disable Common
Criteria (CC) mode on selected Samsung devices. The effect of disabling
the CC mode increases the device’s attack surface and can further be used
in forensic acquisition. This will open up the device for misuse of the firm-
ware update protocol for direct storage or RAM acquisition, in addition
to both signed and unsigned firmware updates through ODIN/download
mode, depending on the Factory Reset Protection and Rollback Protection

settings on the device. If one uses the SBOOT exploit attack from section
‘SBOOT exploitation’ we can easily avoid both of these defences as well.
This is because these security settings are also enforced by the SBOOT
bootloader and can therefore easily be changed/disabled.

We have found and tested the effect of several weaknesses in the
enforcing of CC mode on our tested device. Using exploits to attack SBOOT
will break the chain-of-trust anchored in the boot process. This will break
the trust in all code running in the same normal world on the application
processor on this device. With such a powerful attack we can replace or
adapt to most of the security features of SBOOT. This is not unexpected,
but emphasises the need for a secure bootloader and chain-of-trust.

As future work we suggest testing these attacks on actual MDM solu-
tions utilising the Samsung CC mode feature and/or the MDM setting. The
effect on a MDM solution after disabling CC mode by changing or eras-
ing the CC mode setting and/or the MDM setting in the PARAM partition
has not been tested and could lead to other attack scenarios of forensic
interest.
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Abstract

The USB Power Delivery protocol enables USB-connected devices to nego-
tiate power delivery and exchange data over a single connection such as
a USB Type-C cable. The protocol incorporates standard commands; how-
ever, it also enables vendors to add non-standard commands called vendor-
defined messages. These messages are similar to the vendor-specific com-
mands in the SCSI protocol, which enable vendors to specify undocu-
mented commands to implement functionality that meets their needs. Such
commands can be employed to enable firmware updates, memory dumps
and even backdoors.

This chapter analyzes vendor-defined message support in devices
that employ the USB Power Delivery protocol, the ultimate goal being to
identify messages that could be leveraged in digital forensic investigations
to acquire data stored in the devices.

87
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II.1 Introduction

An important goal of mobile device forensics is to acquire data. Mobile
phones typically have two key data sources: (i) volatile memory (RAM);
and (ii) long-term storage (typically, flash memory). These two sources
differ in content and acquisition methods. RAM is often proprietary, short-
term storage that is not intended for interpretation by applications other
than the one that stored the data. In contrast, long-term storage such as
flash memory contains well-structured data, usually in a filesystem, that
is meant to be re-read, often by the operating system. Nevertheless, both
types of storage maintain data that is important in digital forensic invest-
igations.

Security mechanisms in commercial products are hindering the
forensic acquisition of data. Data encryption in flash memory has inval-
idated methods such as desoldering (i.e., chip-off) that enable data to be
read directly from a chip. Encryption prevents the extracted data from be-
ing interpreted without the decryption keys. The keys are often protected
by additional encryption keys that tie the data to the specific device that
encrypted the data in long-term storage. Therefore, transplanting a flash
memory chip to a different, but identical, device would not decrypt the
stored data. Device-tied encryption keys are also protected by security fea-
tures such as TrustZone that rely on tamper-proof hardware. Therefore, in
order to access data from a secured device, it is necessary to exploit secur-
ity vulnerabilities in the device itself, or leverage undocumented features
such as backdoors or indirectly increase the attack surface of the device.

The general approach is that any data extraction technique should
be researched extensively, including any and all means it uses to commu-
nicate with other devices. The USB Power Delivery protocol is a commu-
nications mode that has the potential to increase the device attack surface.
The idea is that, if undocumented means exist to communicate with the
device, then hidden features and security vulnerabilities could be identi-
fied and exploited to facilitate data acquisition.

The USB Power Delivery protocol provides a uniform means for
vendors to implement power negotiation between power sources and
devices such as mobile phones and personal computers in order to max-
imize the charging current. The power source can support different power
configurations, one power profile for a mobile phone and a different pro-
file for a personal computer, to enable the devices to obtain the appro-
priate currents and voltages. Devices can also use the protocol to request
higher currents and voltages from power sources. In the case of two non-
power-source devices (e.g., two mobile phones), the devices can negotiate
a power delivery profile so that one device can charge the other. Another
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example is a monitor connected to a personal computer where the protocol
enables the monitor to draw power from the personal computer if it is not
connected to an external power source. If the monitor is connected to an
external power source, then it could provide power to the personal com-
puter. All these negotiations occur over the same USB cable unbeknownst
to the user.

The USB Power Delivery protocol is of interest from a digital forensics
perspective because it supports inter-device communications. These com-
munications could be exploited to expand the attack surface of one or both
devices, enabling the acquisition of data that is otherwise inaccessible. The
focus is on vendor-defined messages in the USB Power Delivery protocol.
Undocumented messages discovered in other protocols have been demon-
strated to enable firmware updates, memory dumps and even backdoors.
This chapter presents a black-box testing approach for revealing propriet-
ary messages supported by the USB Power Delivery protocol that could be
leveraged in digital forensic investigations to acquire data stored in devices
that support the protocol.

II.2 Related Work

Allowing vendors to incorporate proprietary vendor-defined messages or
commands in protocols to provide custom functionality has led to the re-
lease of numerous consumer devices that potentially respond to undocu-
mented commands with unknown behavior. This can have devastating se-
curity implications. As demonstrated by Alendal et al. [2], vendor-specified
SCSI commands can be used to bypass authentication on self-encrypting
hard drives. Whether this research represents the best-case scenario for law
enforcement or the worst-case scenario for the vendor, one cannot ignore
the fact that the existence of hidden commands must be tested carefully.
Indeed, as devices and firmware change over time, such testing should be
performed regularly by law enforcement and security researchers.

Testing the USB Power Delivery protocol for hidden commands re-
quires a means for emulating the protocol. Reydarns et al. [3] have demon-
strated the use of USB Power Delivery protocol emulation in testing dif-
ferent power configurations for a power source. However, there is little,
if any, research on the security of the USB Power Delivery protocol and
nothing related to digital forensics. This research is important because it
comprehensively analyzes the USB Power Delivery protocol and attempts
to discover how vendor-defined protocol messages could be leveraged to
assist digital forensic examinations of devices that support the protocol.
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II.3 USB Power Delivery Protocol

Revision 1.0 (version 1.0) of the USB Power Delivery protocol specification
was released in 2012; several revisions have been released since, the most
recent being Revision 2.0 (version 1.3) and Revision 3.0 (version 1.2) [4].
The protocol provides a uniformmeans for devices to negotiate power sup-
ply configurations across vendors. It is typically supported by devices with
a USB Type-C port/connector with dedicated CC1 and CC2 links (Figure
II.1). The USB Type-C connection is reversible, enabling devices to com-
municate on either CC line.

Figure II.1: USB Type-C pinout [5].

The message-based USB Power Delivery protocol has three types of
messages: (i) control messages; (ii) data messages; and (iii) extended
messages. Control messages are short messages that typically require no
data exchange. Data messages contain data objects that are transmitted
between devices. Extended messages are essentially data messages with
larger data payloads. The USB Power Delivery protocol leverages the three
message types to define a wide range of standard messages, which enable
devices to communicate and negotiate power source configurations.

Figure II.2: Data message packet.

Figure II.2 shows a data message packet comprising a preamble for
synchronization, start of packet (SOP), message header, up to eight data
objects of 32-bits each, CRC and end of packet (EOP). The preamble, SOP,
CRC and EOP are part of the physical transport layer; they are common
to all three types of messages. The message header and the optional data
objects are only found in data messages.

Table II.1 lists example control and data messages in the USB Power
Delivery protocol.

The USB Power Delivery protocol supports different standard mes-
sage sets as indicated by the protocol specification revisions, currently Re-
vision 2.0 and Revision 3.0. Interested readers are referred to the protocol
specifications [4] for information pertaining to the differences between the
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message sets. Revision 3.0 is functionally the same as Revision 2.0, except
for new features such as USB authentication.

The USB Power Delivery protocol also enables cables to take part in
communications; a device can communicate with a cable directly using the
start of packet. Such electronically-marked cables (EMCA) enable devices
to ensure that the cable supports high voltage/current power source con-
figurations. According to the protocol specification, devices can negotiate
direct current levels up to 5 A, corresponding to a maximum of 100 W at
20 V between devices connected via an EMCA cable. Passive (non-EMCA)
cables are rated for a maximum direct current of 3 A, which corresponds
to 15 W at 5 V, 36 W at 12 V or 60 W at 20 V.

Figure II.3 shows a typical protocol negotiation – referred to as an
explicit contract between two devices or port pairs. According to the stand-
ard, all port pairs are required to make an explicit contract. In a contract,
the device (port) that consumes power is called the sink and the device
(port) that provides power is called the source.

Vendors may implement novel functionality using proprietary
vendor-defined messages, a subgroup of data messages in the USB Power
Delivery protocol. Similar features are found in other protocols, such as
vendor-specific commands in the SCSI protocol [6]. These commands are
implemented and used only by vendors for internal purposes such as de-
bugging, factory setup and proprietary communications with vendor soft-
ware; the commands are not used in normal device operations. Vendor
commands are rarely documented because they are reserved for internal
use.

Figure II.4 shows a vendor-definedmessage (VDM) packet in the USB
Power Delivery protocol. Vendor-defined messages are of two types: (i)
structured; and (ii) unstructured. Structured vendor-definedmessage com-
mands are defined in the USB Power Delivery protocol standard whereas
unstructured vendor-defined message commands are implemented by
vendors on an ad hoc basis. Note that a “command” is a subgroup of
“message,” which is either a structured vendor-defined message or an un-
structured vendor-definedmessage. Thus, while structured vendor-defined
messages have predefined command sets in the protocol specification, un-
structured vendor-defined messages can correspond to commands defined
by vendors.

Because vendor-defined messages are a type of data message, there
is a size limitation on the amount of data a message can contain – this
corresponds to the size of six vendor data objects (VDOs) plus the 32-
bit vendor-defined message header. A vendor data object contains a 32-
bit value (data). To prevent vendors from implementing conflicting mes-
sages, the protocol requires either the standard vendor ID (SVID) defined
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Table II.1: Control and data messages in Revision 3.0 (Version 1.2).

Control Messages Data Messages

GoodCRC Source_Capabilities
GotoMin Request
Accept BIST
Reject Sink_Capabilities
Ping Battery_Status
PS_RDY Alert
Get_Source_Cap Get_Country_Info
Get_Sink_Cap Vendor_Defined
DR_Swap
PR_Swap
VCONN_Swap
Wait
Soft_Reset
Not_Supported
Get_Source_Cap_Extended
Get_Status
FR_Swap
Get_PPS_Status
Get_Country_Codes

Figure II.3: Simplified explicit contract negotiation.
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Figure II.4: Vendor-defined message packet.

in the protocol specification or a vendor ID (VID) to be part of the vendor-
defined message header. This means that a vendor must use one of its
16-bit USB Implementers Forum (USB-IF) assigned vendor IDs [7] in any
vendor-defined message it implements.

Example vendor IDs are 0x05ac (Apple) and 0x04e8 (Samsung). As
shown in Figures II.5 and II.6, the structured vendor ID and vendor ID are
required to be part of the corresponding vendor-defined message headers.
Thus, a vendor with a valid USB-IF-assigned vendor ID can implement any
command that contains up to six additional vendor data objects in one
vendor-defined message. The command is the second part of the vendor-
defined message header that can be any 15-bit value in the case of an
unstructured vendor-definedmessage. Table II.2 shows example structured
vendor-defined message commands.

Figure II.5: Unstructured vendor-defined message header.

Reserved Reserved

Figure II.6: Structured vendor-defined message header.

II.4 Methodology

Devices come in different architectures from numerous vendors and
without source code or firmware that implement the USB Power Delivery
protocol. Therefore, a black-box method was attempted to test the exist-
ence of vendor-defined messages in the protocol. One approach is to ana-
lyze protocol communications between devices from the same vendor and
determine if vendor-defined messages are employed. This assumes that, if
such messages exist, the connected devices initiate their use by default.

Instead, a more active approach that directly communicates with a
test device was employed. Since no solution was available to communicate
with devices via the USB Power Delivery protocol, a home-grown approach
was employed. A detailed description of this approach is beyond the scope
of this chapter. However, the concept is simple – set up a device to act
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Table II.2: Structured commands in Revision 3.0 (version 1.2).

Structured Vendor-Defined Message Commands

Discover Identity
Discover SVIDs
Discover Modes
Enter Mode
Exit Mode
Attention
SVID Specific Commands (defined by the SVID)

as the source, establish a connection with the test device and check for
vendor-defined messages.

Testing for vendor-defined messages sounds simple, but the reality is
quite different. Because the protocol specification states that any vendor-
defined message must include a vendor ID, it is necessary to know or guess
the expected vendor ID of the device of interest. This is important be-
cause a device would not respond to a vendor-defined message containing
a correctly-guessed command but an incorrect vendor ID in the header.

Figure II.7: Discover Identity reply packet.

Fortunately, it is possible to leverage the Discover Identity command
in the structured vendor-defined message command set shown in Table
II.2. This command is required by the USB Power Delivery protocol, so
all devices should support this command. The command, which enables
devices and cables to identify other end points, has a predefined reply
packet format with a fixed number of vendor data objects and their content
(Figure II.7). The ID header of the 32-bit vendor data object has bits 0–15
reserved for the device USB-IF vendor ID. A connected device reveals its
vendor ID upon receiving a Discover Identity command.

The protocol specification also states that structured vendor-defined
messages shall only be used when an explicit contract is in place (except
for a small number of cables that are not relevant in this context). The
same holds true for unstructured vendor-defined messages. Thus, a device
will not reply to a vendor-defined message until an explicit contract is in
place (i.e., a power source configuration has been negotiated). Therefore,
it is required to simulate a complete explicit contract negotiation with a
test device before a vendor-defined message can be received.

This makes it necessary to simulate many messages (Figure II.3) with
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corresponding time-outs such as CRCReceiveTimer (maximum 1.1 ms),
SenderResponseTimer (maximum 30 ms) and PSTransitionTimer (maxi-
umum 550 ms). Since the protocol defines the time-out values, the reply
to a packet must be provided in time or the device will time out. Many of
these requirements are strict, so the simulator must have a quick response,
which, in turn, may render a pure software solution infeasible.

By negotiating an explicit contract with a device, it is possible to ex-
plore the existence of unstructured vendor-defined commands. Using the
vendor ID captured from the response of a device to a Discover Identity
command, different unstructured vendor-defined commands could be sent
to the device and the responses, if any, could be examined. This can be
done by brute forcing the lower 15 vendor use bits of the unstructured
vendor-defined message header (Figure II.5) with a fixed vendor ID for
each device.

Two approaches are possible. The first is to attempt to measure the
skews in the timing of device responses. The second is to test for device
responses other than the expected GoodCRC message. Testing for timing
skews could indicate that the device spent additional time to process a
correctly-guessed unstructured vendor-defined command. However, this
approach requires high resolution timers. Unfortunately, the experimental
setup could only measure the time elapsed from when a packet was sent to
when the response was received, which was much too inaccurate. There-
fore, the second approach involving device responses other than the ex-
pected GoodCRC message was employed in the experiments.

II.5 Experimental Results

Not every device with a USB Type-C connector is enabled for the USB Power
Delivery protocol. If a test device with a USB Type-C connector does not re-
spond with a GoodCRC message to the Source_Capabilities message in an
explicit contract negotiation (Figure II.3), then the device can be assumed
to be non-protocol-enabled.

According to Section 6.2.1.1.5 of USB Power Delivery Protocol Spe-
cification Revision 3.0 (v.1.2) [4], the source shall set its highest supported
specification revision in the specification revision field of the
Source_Capabilities message and the sink shall reply with its highest sup-
ported specification revision in the specification revision field of the Re-
quest message (Figure II.3). Because the specification states that the spe-
cification revision field value should be backwards compatible, this means
the highest version can always be simulated in the first Source_Capabilities
message acting as the source and the Request response from the device can
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Table II.3: Test devices with USB Type-C connectors and protocol support.

Device/ Model Firmware version Spec.
Rev.

Exposed VID

HTC 10/ 2PS6200 1.90.401.5 2.0 0x0bb4 (HTC)
HTC U11/ 2PZC100 1.13.401.1 3.0 0x05c4 (Qualcomm)
Huawei Mate 10 Pro/
BLA-L29

8.0.0.137(C432) 2.0 0x12d1 (Huawei)

LG G5/ LG-H850 V10i-EUR-XX
MMB29M

2.0 0x0000 (Unknown)

Nokia 8 Sirocco/ TA-
1005

00WW_3_10F 2.0 0x05c6 (Qualcomm)

Samsung Galaxy S9/
G960F

G960FXXU2BRH7 3.0 0x04e8 (Samsung)

then be checked.
After negotiating a complete explicit contract (Figure II.3) with a test

device, a Discover Identity message was sent to the device to obtain the
USB-IF vendor ID from the device. Table II.3 shows the test devices with
USB Type-C connectors that were determined via this technique to support
the USB Power Delivery protocol.

With an explicit contract in place with a test device with protocol
support and its USB-IF vendor ID known, the next step was to send arbit-
rary protocol messages to the device and test the responses. Specifically,
unstructured vendor-defined messages were sent with the vendor ID set
to the appropriate value, type set to 0 (i.e., unstructured) and vendor use
set to different values corresponding to commands (Figure II.5). The re-
sponses were analyzed and any response other than the expected GoodCRC
was assumed to be an attempt by the test device to reply to the random
“command” it received.

A commercial USB Power Delivery protocol recorder was used to cap-
ture communications with the test devices. Table II.4 shows an example
capture of messages to and from the Huawei test device that was con-
figured as the sink. The message capture shows the entire explicit con-
tract negotiation (message IDs 286–309) and the USB-IF vendor ID dis-
covery (message IDs 312–327), which are followed by two unstructured
vendordefined message brute force attempts (message IDs 330–334 and
message IDs 337–341). Note that the Huawei device did not respond to
the two unstructured vendor-defined message tests with anything other
than the expected GoodCRC message.

Very few test devices responded to the brute force test. In fact, only
the Samsung device replied with anything other than a GoodCRCmessage,
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Table II.4: Huawei Mate 10 Pro (BLA-L29) message capture.

Index m:s.ms.us Role Message Data
284 0:41.044.922 Hard Reset
286 0:43.577.218 Source:DFP [0]Source_Cap A1 11 F0 90 01 08 FE CA B7 52
290 0:43.577.879 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8
293 0:43.580.754 Sink:UFP [0]Request 42 10 C8 20 03 13 52 0F 95 B7
297 0:43.581.374 Source:DFP [0]GoodCRC A1 01 C1 AF C2 81
300 0:43.582.060 Source:DFP [1]Accept 63 03 21 7B 00 96
303 0:43.582.586 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46
306 0:43.583.283 Source:DFP [2]PS_RDY A6 05 1F FD EE C9
309 0:43.583.915 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF
312 0:43.737.641 Source:DFP [0]VDM:DiscIdentity 6F 11 01 80 00 FF 76 31 6B 61
316 0:43.738.185 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8

319 0:43.744.295 Sink:UFP [1]VDM:DiscIdentity
4F 52 41 80 00 FF D1 12 00 EC 00 00 00
00 00 00 7E 10 01 00 00 11 80 C1 C7 56

327 0:43.745.502 Source:DFP [1]GoodCRC 61 03 A3 19 36 A4
330 0:44.918.448 Source:DFP [1]VDM:Unstructured 6F 13 01 00 D1 12 0D 13 06 BC
334 0:44.919.214 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46
337 0:46.507.375 Source:DFP [2]VDM:Unstructured 6F 15 02 00 D1 12 43 49 F3 21
341 0:46.507.960 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

and only for some messages.
Table II.5 shows an example capture of messages to and from the

Samsung Galaxy S9 test device that was configured as the sink. Once again,
the message capture shows the entire explicit contract negotiation (mes-
sage IDs 5442–5465) and the USB-IF vendor VID discovery (message IDs
5468–5482). These are followed by the first unstructured vendor-defined
message test (message ID 5485). The sent message has an unstructured
vendor-defined message header of 0x04e80001, which is decoded accord-
ing to Figure 5 as vendor ID: 0x04e8, type: 0 and vendor use: 0x0001 (15-bit
value).

Note that this unstructured vendor-defined message received a re-
sponse other that the GoodCRC (message ID 5492). The response has an
unstructured vendor-defined message header of 0x04e80041, which is de-
coded according to Figure II.5 as vendor ID: 0x04e8, type: 0 and vendor
use: 0x0041. This message appears to be a reply with no additional data
(i.e., vendor data objects).

A similar situation is seen for message 5499 with vendor use: 0x0002,
whose response (message ID 5506) has vendor use: 0x0042 and four ad-
ditional vendor data objects: 0x00000000 0x00000000 0x00000000 and
0x00000000.

The two vendor use command/reply pairs of 0x0001/0x0041 and
0x0002/0x0042 imply that bit 6 (0x0040) may be an ACK bit. If the unstruc-
tured headers are interpreted as structured headers (Figure II.6), then bits
6–7 correspond to type where 0x1 (bit 6 set) corresponds to an ACK. Of
course, the real situation is not clear, but it does appear that the vendor
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Table II.5: Samsung Galaxy S9 (G960F) message capture.

Index m:s.ms.us Role Message Data

5440 14:36.248.230 Hard Reset
5442 14:39.309.886 Source:DFP [0]Source_Cap A1 11 F0 90 01 08 FE CA B7 52
5446 14:39.310.395 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8
5449 14:39.311.982 Sink:UFP [0]Request 82 10 F0 C0 03 13 08 11 00 3A
5453 14:39.312.708 Source:DFP [0]GoodCRC A1 01 C1 AF C2 81
5456 14:39.313.284 Source:DFP [1]Accept 63 03 21 7B 00 96
5459 14:39.313.979 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46
5462 14:39.314.462 Source:DFP [2]PS_RDY A6 05 1F FD EE C9
5465 14:39.315.049 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF
5468 14:39.471.248 Source:DFP [0]VDM:DiscIdentity 6F 11 01 80 00 FF 76 31 6B 61
5472 14:39.471.866 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8

5475 14:39.476.288 Sink:UFP [1]VDM:DiscIdentity
8F 42 41 80 00 FF E8 04 00 D1 00 00 00
00 00 00 60 68 C2 B2 A2 9E

5482 14:39.477.131 Source:DFP [1]GoodCRC 61 03 A3 19 36 A4
5485 14:40.650.372 Source:DFP [1]VDM:Unstructured 6F 13 01 00 E8 04 E6 2B 56 46
5489 14:40.651.199 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46
5492 14:40.654.796 Sink:UFP [2]VDM:Unstructured 4F 14 41 00 E8 04 FD AA CE 68
5496 14:40.655.473 Source:DFP [2]GoodCRC 61 05 96 BC 55 4D
5499 14:41.828.228 Source:DFP [2]VDM:Unstructured 6F 15 02 00 E8 04 A8 71 A3 DB
5503 14:41.829.056 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

5506 14:41.833.325 Sink:UFP [3]VDM:Unstructured
4F 56 42 00 E8 04 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 34 A1 0A 25

5514 14:41.834.581 Source:DFP [3]GoodCRC 61 07 BA DD 5B A3
5517 14:43.008.455 Source:DFP [3]VDM:Unstructured 6F 17 02 00 E8 04 C8 22 63 A1
5521 14:43.009.071 Sink:UFP [3]GoodCRC 41 06 8E C9 D8 41

5524 14:43.013.435 Sink:UFP [4]VDM:Unstructured
4F 58 42 00 E8 04 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 84 AD C5 F6

5532 14:43.014.693 Source:DFP [4]GoodCRC 61 09 BD F0 E3 44
5535 14:44.180.619 Source:DFP [4]VDM:Unstructured 6F 19 03 00 E8 04 CC FB EF A6
5539 14:44.181.134 Sink:UFP [4]GoodCRC 41 08 89 E4 60 A6
5542 14:45.761.683 Source:DFP [5]VDM:Unstructured 6F 1B 02 00 E8 04 C9 CF 93 64
5546 14:45.762.289 Sink:UFP [5]GoodCRC 41 0A A5 85 6E 48

5549 14:45.766.649 Sink:UFP [5]VDM:Unstructured
4F 5A 42 00 E8 04 0D DA 95 63 4A 97 17
B5 F5 34 11 47 53 7E C9 E9 8C 35 3F 0E

5557 14:45.767.917 Source:DFP [5]GoodCRC 61 0B 91 91 ED AA
5560 14:46.933.424 Source:DFP [6]VDM:Unstructured 6F 1D 01 00 E8 04 87 95 66 F9
5564 14:46.934.042 Sink:UFP [6]GoodCRC 41 0C 90 20 0D A1
5567 14:46.937.851 Sink:UFP [6]VDM:Unstructured 4F 1C 41 00 E8 04 3C E1 BE 58
5571 14:46.938.566 Source:DFP [6]GoodCRC 61 0D A4 34 8E 43
5574 14:48.114.825 Source:DFP [7]VDM:Unstructured 6F 1F 02 00 E8 04 09 69 13 91
5578 14:48.115.442 Sink:UFP [7]GoodCRC 41 0E BC 41 03 4F

5581 14:48.119.820 Sink:UFP [7]VDM:Unstructured
4F 5E 42 00 E8 04 0D DA 95 63 4A 97 17
B5 F5 34 11 47 53 7E C9 E9 37 31 C6 1C

5589 14:48.121.075 Source:DFP [7]GoodCRC 61 0F 88 55 80 AD
5592 14:49.303.445 Source:DFP [0]VDM:Unstructured 6F 11 03 00 E8 04 0D B0 9F 96
5596 14:49.304.274 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8
5599 14:50.881.168 Source:DFP [1]VDM:Unstructured 6F 13 02 00 E8 04 08 84 E3 54
5603 14:50.881.789 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46

5606 14:50.886.156 Sink:UFP [0]VDM:Unstructured
4F 50 42 00 E8 04 60 B3 A9 5A 65 3F 48
3C 3A D6 13 DC 2D 32 8D 16 F6 75 A3 FE

5614 14:50.887.366 Source:DFP [0]GoodCRC 61 01 8F 78 38 4A
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may have mixed the two types of vendor-defined message headers.
Investigating further, the response (message ID 5506) with vendor

use set to 0x0042 also has four additional four vendor data objects:
texttt0x00000000 0x00000000 0x00000000 and 0x00000000. This ap-
pears to be data sent back to the source side from the sink. All the vendor
data objects contain zeroes in the replies to two consecutive messages with
vendor use set to 0x0002 (message IDs 5499 and 5517).

However, when a different message (message ID 5535) is sent to the
device with vendor use set to 0x0003, then a completely different reply is
received with vendor use set to 0x0002 (message ID 5542) and four vendor
data objects: 0x6395da0d 0xb517974a 0x471134f5 and 0xe9c97e53 (mes-
sage ID 5549). Sending message 5535 again (message ID 5574) yields the
same four vendor data objects (message ID 5581). However, another mes-
sage with vendor use set to 0x0003 (message ID 5592) once again changes
the vendor data objects for vendor use set to 0x0002. Specifically, the four
vendor data objects are: 0x5aa9b360 0x3c483f65 0xdc13d63a and
0x168d322d (message ID 5606).

It appears that data in the form of vendor data objects is received from
the device and different data is received when sending a specific message
with vendor use set to 0x0003. The four vendor data objects appear to
change in pseudorandom order. Another observation is that, when a mes-
sage is sent with vendor use set to 0x0002 along with four random vendor
data objects (0xabb3471c, 0xae7bf32e, 0x827909f9, 0xbbc63b02),
a reply is received with the same vendor data objects (Table II.6). This
implies that a message with vendor use set to 0x0002 corresponds to an
initialization command. Repeating the messages with vendor use set to
0x0003 and 0x0002 gives different vendor data objects, which may corres-
pond to some form of encryption or obfuscation.

Table II.6: Samsung Galaxy S9 (G960F) message capture.

Index m:s.ms.us Role Message Data
162 0:06.589.154 Source:DFP [1]VDM:Unstructured 6F 13 01 00 E8 04 E6 2B 56 46
166 0:06.589.982 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46
169 0:06.594.059 Sink:UFP [1]VDM:Unstructured 4F 12 41 00 E8 04 5D 5F 8E E7
173 0:06.594.675 Source:DFP [1]GoodCRC 61 03 A3 19 36 A4

176 0:06.629.222 Source:DFP [2]VDM:Unstructured
6F 55 02 00 E8 04 1C 47 B3 AB 2E F3 7B AE
F9 09 79 82 02 3B C6 BB 1A D4 E8 41

184 0:06.630.376 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

187 0:06.635.264 Sink:UFP [2]VDM:Unstructured
4F 54 42 00 E8 04 1C 47 B3 AB 2E F3 7B AE
F9 09 79 82 02 3B C6 BB 51 65 55 63

195 0:06.636.524 Source:DFP [2]GoodCRC 61 05 96 BC 55 4D

Sending two identical runs of the messages in Table II.5 gives the
same results and any randomization of the four vendor data objects sent
with vendor use set to 0x0002 yields seemingly random reply vendor data
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objects when intermingled with messages with vendor use set to 0x0003.
This strengthens the belief that encryption is in place and that the message
with vendor use set to 0x0002 is either transmitting a key or an initializa-
tion vector for a symmetric cipher.

Because the results indicate that Samsung devices respond to vendor-
defined messages in the USB Power Delivery protocol, additional experi-
ments were conducted to confirm the results. The experiments employed a
special factory test device called the Samsung Anyway S103 (Figure II.8).
This device enables a console interface provided by the device bootloader,
which is useful for debug logging and other activities. The same console
can be reached via a custom USB connector and a simple RS232-to-USB
serial converter on older devices with micro-USB connectors [8]. Alendal
et al. [9] employed this type of connection to demonstrate an exploit tar-
geting Samsung devices with a certain security vulnerability. The exploit
assisted in bypassing a certain security feature in the devices. This demon-
strates the importance of expanding the attack surface of a device by en-
abling the factory test feature.

Figure II.8: Samsung Anyway S103.

The special factory device was hard to obtain as it is usually provided
to Samsung device repair shops and similar outlets. However, a factory
device was procured to communicate with the Samsung test device us-
ing the USB Power Delivery protocol. Table II.7 shows a message capture
with the Samsung Anyway S103 and Samsung Galaxy S9 configured as
the source and sink, respectively (the vendor data objects are partially re-
dacted). Note that the communications in the message capture did not
involve an explicit contract negotiation as required in the protocol specific-
ation. Instead, immediate vendor-defined message communications were
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conducted using the discovered vendor-definedmessages. The capture cor-
responds to a vendor-defined message with vendor use set to 0x0001, fol-
lowed by a vendor-defined message with vendor use set to 0x0002 that
provides four pseudorandom vendor data objects. These are followed by
several vendor-defined messages with vendor use set to 0x0003, each con-
taining four vendor data objects with seemingly pseudorandom data.

Table II.7: Samsung Anyway S103 and Samsung Galaxy S9 message capture.

Index Time Role Message Data
1 0:03.900.730 Source:DFP [0]VDM:DiscIdentity 6F 11 01 80 00 FF 76 31 6B 61
5 0:03.901.546 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8

8 0:03.905.272 Sink:UFP [0]VDM:DiscIdentity
8F 40 41 80 00 FF E8 04 00 D1 00 00 00 00
00 00 60 68 05 22 9E 4A

15 0:03.906.336 Source:DFP [0]GoodCRC 61 01 8F 78 38 4A
18 0:03.906.881 Source:DFP [1]VDM:Unstructured 6F 13 01 00 E8 04 E6 2B 56 46
22 0:03.907.590 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46
25 0:03.912.440 Sink:UFP [1]VDM:Unstructured 4F 12 41 00 E8 04 5D 5F 8E E7
29 0:03.913.109 Source:DFP [1]GoodCRC 61 03 A3 19 36 A4
32 0:03.913.649 Source:DFP [2]VDM:Unstructured 6F 55 02 00 E8 04 0C DD BB FF <REDACTED>
40 0:03.914.888 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF
43 0:03.919.998 Sink:UFP [2]VDM:Unstructured 4F 54 42 00 E8 04 0C DD BB FF <REDACTED>
51 0:03.921.093 Source:DFP [2]GoodCRC 61 05 96 BC 55 4D

54 0:03.922.149 Source:DFP [3]VDM:Unstructured
6F 57 03 00 E8 04 E6 A9 7F 72 94 CE B1
B6 54 BA B7 75 6A F1 89 B8 01 65 20 E8

62 0:03.923.388 Sink:UFP [3]GoodCRC 41 06 8E C9 D8 41

65 0:03.931.556 Sink:UFP [3]VDM:Unstructured
4F 56 43 00 E8 04 9F B2 F5 F9 F1 68 E2
AF E5 AA 22 73 D0 77 6A 2E B6 3A A9 FB

73 0:03.932.759 Source:DFP [3]GoodCRC 61 07 BA DD 5B A3

76 0:03.934.596 Source:DFP [4]VDM:Unstructured
6F 59 03 00 E8 04 F7 96 A6 2A 08 BB A9
6E 38 40 E4 AF 33 43 7A 23 E6 D7 A8 E9

84 0:03.935.837 Sink:UFP [4]GoodCRC 41 08 89 E4 60 A6

87 0:03.942.701 Sink:UFP [4]VDM:Unstructured
4F 58 43 00 E8 04 9A 01 DB AE 9A 39 26
77 B0 A8 2D 11 A2 C1 76 80 1E 08 1E C2

95 0:03.943.902 Source:DFP [4]GoodCRC 61 09 BD F0 E3 44

Next, the Samsung Anyway S103 factory device was removed as the
source and a blind replay from the source side of the communications was
attempted. The idea was that, if the source messages from the Samsung
Anyway S103 device were replayed and the same sink messages were re-
ceived from the test device, then the Samsung Anyway S103 device was
essentially being emulated. This test was an immediate success. The key
result is that the same console reached on micro-USB Samsung devices
was enabled without the assistance of the Samsung Anyway S103 factory
device.

The successful message replay strengthens the belief that encryption
is involved and that the first four vendor data objects in the vendor-defined
message with vendor use set to 0x0002 are crucial to initialization. These
vendor data objects could correspond to an initialization vector or perhaps
even the key to a symmetric cipher. However, experiments with several
symmetric ciphers using the four vendor data objects as the key to decrypt
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vendor data objects in messages with the vendor use set to 0x0003 did not
yield positive results.

II.6 Conclusions

The principal contribution of this research is a black-box testing method-
ology and implementation for revealing and analyzing proprietary USB
Power Delivery protocol messages. The experimental results demonstrate
that at least one commonmobile device, a Samsung Galaxy S9, is amenable
to the testing methodology. In particular, the device responds to certain
vendor-defined messages and the responses indicate the use of encryption,
which raises the possibility of capturing initialization vectors and keys for
symmetric ciphers. Another important result is the ability to enable factory
device features in a test device in order to obtain valuable log data from
the device and to widen its attack surface.

Future research will continue the investigation of vendor-defined
messages in the USB Power Delivery protocol. Since vendors may also im-
plement hidden features in other parts of the protocol, a promising ap-
proach is to investigate the role of the sink device that consumes power.
Connecting two devices that typically serve as sinks – like two mobile
phones – causes one device to assume the source role and provide power
to the other device. This source-sink relationship could potentially be ex-
ploited to expand the attack surface or even to directly acquire data.

Future research will also investigate potential security vulnerabilit-
ies. This is challenging because it is not known how to instrument a USB
Power Delivery chip for feedback (e.g., if it crashes or demonstrates an-
omalous behavior). An alternative approach is to conduct a source code
review or extract the chip firmware and apply reverse engineering tech-
niques. Another approach is to analyze device-side communications with
the USB Power Delivery chip, which could reveal interesting features or
vulnerabilities in the chip logic as well in the operating system.

The popularity of USB Type-C connectors is increasing and large num-
bers of consumer devices will support the USB Power Delivery protocol. It
is hoped that this work will stimulate research on the protocol and its im-
plementations to advance device security and forensics.
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Abstract

Modern consumer devices present major challenges in digital forensic in-
vestigations due to security mechanisms that protect user data. The entire
physical attack surface of a seized device such as a mobile phone must be
considered in an effort to acquire data of forensic value.

Several USB protocols have been introduced in recent years, includ-
ing Power Delivery, which enables negotiations of power delivery to or
from attached devices. A key feature is that the protocol is handled by
dedicated hardware that is beyond control of the device operating systems.
This self-contained design is a security liability with its own attack surface
and undocumented trust relationships with other peripherals and the main
system-on-chips.

This chapter presents a methodology for vulnerability discovery in
a black box USB Power Delivery implementation for Apple devices. The
protocol and Apple-specific communications are reverse engineered, along
with the firmware of the dedicated USB Power Delivery hardware. The
investigation of the attack surface and potential security vulnerabilities can
facilitate data acquisition in digital forensic investigations.
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III.1 Introduction

Law enforcement has special opportunities to leverage security vulnerab-
ilities in digital forensic acquisition. Since law enforcement can physically
seize devices, any exposed physical interface on the devices is a potential
attack vector for data acquisition.

Exposed interfaces on mobile devices that can be leveraged without
physically opening the devices include SIM card slots, SD card slots, audio
jacks and USB connectors. Interfaces that are exposed by physically open-
ing devices are UART, JTAG and essentially any on-board peripherals that
can be manipulated or replaced. The internal interfaces are often less ac-
cessible because opening a device like a mobile phone can be cumbersome
and risky. A mobile phone is often glued shut and attempting to open it
could disrupt normal operations, especially if the device must be powered
on to exploit a specific vulnerability. This situation can occur if a phone is
seized after the user has unlocked the device at least once since the device
was powered on (i.e., after-first-unlock state), where user keys tied to user
credentials are unlocked and more user data is potentially available. Thus,
security vulnerabilities exposed via externally-accessible interfaces are pre-
ferred over internal interfaces.

The USB connector is one of the most common external interfaces in
modern personal computers and embedded devices. As a result, the secur-
ity of USB protocols is important from a digital forensic perspective. Wang
et al. [2] have discussed USB attack strategies on the functional and phys-
ical layers, and several vulnerable scenarios for USB connected devices.
However, they did not explore the security of the USB Power Delivery pro-
tocol.

Tian et al. [3] have investigated USB security. They have examined
the security features provided by the USB Type-C connector, specifically, au-
thentication that is included in recent USB Power Delivery revisions. They
formally verified the authentication and identified USB attack vectors, but
do not discuss implementation details. Examining actual implementations
for verification of USB Power Delivery as an attack vector is, therefore,
interesting and timely.

USB Power Delivery is a feature in newer devices that is available ex-
ternally over standard USB physical interfaces such as a USB Type-C con-
nector [4]. It is available on many modern personal computers and mobile
phones in the after-first-unlock (AFU) and before-first-unlock (BFU) states.
USB Power Delivery enables connected devices to negotiate the optimal
power delivery (voltage and current), where one device acts as the source
and the other as the consumer (sink).

Because devices can choose to swap the source and sink roles, the
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USB Power Delivery protocol supports the negotiation of the direction of
power flow. Additionally, the protocol supports the negotiations of multiple
devices connected to a single power source as well as re-negotiations at any
time if more power is required. The protocol specification allows direct
current levels up to 5 A, corresponding to a maximum of 100 W at 20 V.
Thus, even the cables need to communicate using the USB Power Delivery
protocol to ensure that they support higher current levels. These cables are
named “electronically marked cables” (EMCA) [5].

USB Power Delivery employs messages for communications [5]. Re-
vision 2.0 of the protocol has control and data messages. Revision 3.0 spe-
cifies additional extended messages that support features such as firmware
updates, battery information, manufacturer information and security mes-
sages. USB Power Delivery also supports a side-band channel for standard
and non-standard vendor-specific communications.

Thus, the source, sink and cable can transmit and receive control,
data and extended messages, as well as additional vendor-specific mes-
sages. The original and additional features of the protocol raise the ques-
tion whether the protocol can be considered to be secure from a vulner-
ability perspective. The code implementing such a feature-rich protocol is
large and complex, increasing the likelihood of faults, which include secur-
ity vulnerabilities. Estimating the ratio of security vulnerabilities per line
of code is difficult and cumbersome. Hatton [6] suggests a defect (bug)
density of less than ten per thousand lines of code. Ozment and Schechter
[7], who evaluated OpenBSD, suggest a vulnerability density three orders
of magnitude less. Although the figures are not directly comparable, they
indicate that more code increases the likelihood of security vulnerabilities.

The complexity of the USB Power Delivery protocol and its code base
increase the likelihood that software security vulnerabilities could have
been introduced during design and implementation. The protocol is also
implemented in dedicated hardware, which raises questions about the state
and integrity of the chip as well as the trust relationships with the rest of
the system and the system-on-chip (SoC). This could expose the imple-
mentation to “evil maid” attacks [8] that replace the firmware in a USB
Power Delivery chip or simply replace the entire chip.

The basis for any vulnerability research is the design and implement-
ation details. Before applying any vulnerability discovery techniques [9,
10], access to code in any form and testing tools are extremely benefi-
cial. Static vulnerability analysis benefits greatly from access to design and
code details whereas fuzzing [11] requires simulation testing methods and
tools.

Since most USB Power Delivery implementations are proprietary, the
availability of source code is limited. Therefore, evaluating and estimat-
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ing the likelihood of faults and security vulnerabilities based on lines of
code is difficult. Additionally, since the protocol is implemented in dedic-
ated hardware with undocumented interfaces, the ability to analyze and
evaluate security via testing is limited. Few tools are available to perform
black box testing or fuzzing of the protocol [12]. Extracting firmware from
a USB Power Delivery chip and analyzing the firmware are also difficult
tasks. But they are important because such proprietary, non-scrutinized
code may have many unknown security vulnerabilities.

It appears that USB Power Delivery has potential vulnerabilities in
the protocol [13, 14] and its implementations [9]. Other vulnerabilities
may arise from hidden features [15], implicit trust relationships[16] and
hardware exposures such as evil maid [8]. Clearly, the exploitation of USB
Power Delivery should be investigated as a means to enable the forensic
acquisition of data from devices that incorporate the hardware and imple-
ment the protocol.

This chapter presents a new methodology for evaluating the poten-
tial of USB Power Delivery as an attack vector. The focus on USB Power
Delivery implementations can provide insights into vulnerabilities. Binary
diffing [17] of firmware versions can reveal security patches that can be
exploited. Indeed, this research is important to understanding and lever-
aging USB Power Delivery as an entirely new attack surface for forensic
data acquisition.

III.2 USB Power Delivery Protocol

The USB Power Delivery protocol specifications were released in 2012 as
Revision 1.0 (version 1.0). The most recent specifications are provided in
Revision 2.0 (version 1.3) and Revision 3.0 (version 2.0) [5]. USB Power
Delivery offers a uniform method for devices to negotiate power sup-
ply configurations across vendors. The protocol is often used by devices
with USB Type-C connectors. A USB Type-C connector has dedicated lines,
CC1 and CC2, that enable USB Power Delivery communications between
devices. However, a USB Type-C connector is not required to support USB
Power Delivery; for example, Apple’s proprietary Lightning Connector [18]
supports USB Power Delivery. In fact, a cable with Apple Lightning and
USB Type-C connectors could be used between an Apple device and any
other USB Power Delivery enabled device to facilitate communications.
The Apple Lightning and USB Type-C connectors are reversible, so the ori-
entations of the connectors are not important.

The message-based USB Power Delivery protocol employs three types
of messages: control, data and extended messages. Control messages are
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Figure III.1: USB Power Delivery data message packet.

short messages that typically require no data exchange. Datamessages con-
tain data objects that are exchanged between devices. Extended messages,
introduced in Revision 3.0, are data messages with larger payloads.

Figure III.1 shows the format of a USB Power Delivery data message
packet. The packet has a transport portion comprising the preamble, start
of packet (SOP), cyclic redundancy check (CRC) and end of packet (EOP)
fields, which encapsulates the message header and optional (up to seven)
data objects. A data object has a fixed size of 32 bits, allowing for a max-
imum of 7×32 bits of data per message.

USB Power Delivery supports a wide range of standard messages
to facilitate negotiations of power source configurations between devices.
Table III.1 lists the messages supported by Revision 2.0 (Version 1.3) an-
d/or Revision 3.0 (Version 2.0). The backward compatibility means that
protocol complexity increases in new revisions as new messages are added
but existing messages are not eliminated.

Some of the standard messages in Table III.1 have sub-types. For ex-
ample, a Vendor_Defined message (VDM) can be structured or unstruc-
tured. Structured VDMs have commands defined in the standard (Table
III.2). Unstructured VDM commands are defined by vendors and are un-
documented. Vendors are free to implement proprietary communications
using unstructured VDMs as demonstrated in [12]. Enabling vendors to
add messages over and above the standard messages results in increased
complexity and firmware code size.

To avoid conflicts when implementing proprietary vendor messages,
VDMs require a standard vendor ID (SVID) defined in the specification or a
vendor ID (VID) to be part of the VDMheader. A VID is a unique 16-bit iden-
tifier assigned by the USB Implementers Forum [19]. A vendor with a valid
VID is free to implement any VDMs needed to operate its USB Power De-
livery enabled devices. Apple devices commonly use the VID 0x05ac [20].

Connected devices negotiate power delivery via an explicit contract.
Typically, this is initiated by the source device that sends a Source - Cap-
abilities data message to which the sink replies with a GoodCRC message
followed by a Request message (Figure III.2). These responses inform the
source that the sink is USB Power Delivery enabled and the highest pro-
tocol revision it supports. Specification revision information is included in
the message header of the Request message. The highest specification revi-
sion supported by the sink corresponds to the highest specification revision
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Table III.1: Power Delivery protocol messages.

Control Messages Data Messages Extended Messages

Revision 2.0 and 3.0 Revision 2.0 and 3.0 Revision 3.0 only

GoodCRC Source_Capabilities Source_Capabilities_Extended
GotoMin Request Status
Accept BIST Get_Battery_Cap
Reject Sink_Capabilities Get_Battery_Status
Ping Vendor_Defined Battery_Capabilities
PS_RDY Get_Manufacturer_Info
Get_Source_Cap Revision 3.0 only Manufacturer_Info
Get_Sink_Cap Enter_USB Security_Request
DR_Swap Battery_Status Security_Response
PR_Swap Alert Firmware_Update_Request
VCONN_Swap Get_Country_Info Firmware_Update_Response
Wait PPS_Status
Soft_Reset Country_Info

Sink_Capabilities_Extended
Revision 3.0 only Country_Codes
Data_Reset_Complete
Not_Supported
Get_Source_Cap_Extended
Get_Status
FR_Swap
Get_PPS_Status
Get_Country_Codes
Get_Sink_Cap_Extended
Data_Reset

supported by the source, which is indicated in the Source_Capabilities mes-
sage. Thus, the connected devices know the revision and the message sets
that are mutually supported.

III.3 Research Methodology

The methodology for researching USB Power Delivery firmware involves
information gathering, monitoring black box testing and simulation, and
reverse engineering actual implementations (using binary code, document-
ation, source code, etc.). The individual methods often aid and overlap
each other. For example, static reverse engineering of a binary is often
assisted by monitoring and simulation. Even more powerful methods are
instrumentation and debugging, which advance reverse engineering and
vulnerability discovery.



Paper III 111

Table III.2: Structured Vendor_Defined message commands.

Structured VDM Commands

Discover Identity
Discover SVIDs
Discover Modes
Enter Mode
Exit Mode
Attention
SVID Specific Commands

Figure III.2: Generic, source-initiated explicit contract negotiation.
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Access to the source code of USB Power Delivery implementations
(firmware) is difficult. This is because the source code is developed by the
chip vendor and/or device vendor and are considered to be proprietary,
business-confidential information. The documentation is also considered
confidential and is kept in-house. As a result, the only option for research-
ers intending to study USB Power Delivery implementations is to extract
and reverse engineer firmware.

Reverse engineering firmware involves the extraction of machine
code (binary) for a specific chip and applying static and dynamic meth-
ods to produce human-readable assembly code [21, 22], following which
decompilation is performed to obtain pseudo high-level source code [23].

Static reverse engineering analyzes machine code without executing
or interacting with the code [22]. Dynamic reverse engineering analyzes
machine code by interacting with and debugging executing code (e.g., us-
ing black box testing) [22].

Static and dynamic methods and tools are available for analyzing
wellknown machine code structures such as PE [24] and ELF [25] binar-
ies, but they are difficult to come by for hardware-specific and specialized
firmware used by USB Power Delivery chips. Obtaining USB Power Deliv-
ery chip firmware is challenging. Vendors may include firmware in regular
device updates as in the case of Apple iOS updates. However, USB Power
Delivery chips may not receive any updates from vendors, requiring re-
searchers to extract the firmware directly from the chips soldered on the
targeted devices.

USB Power Delivery firmware can be retrieved from general iOS up-
dates for Apple devices. In fact, the firmware for several USB Power Deliv-
ery chips can be obtained by unpacking and investigating the iOS updates
that are often distributed in .ipsw archives.

Analyzing the firmware of USB Power Delivery chips is complex be-
cause the code is often based on specific, often unknown, hardware. In
particular, little to nothing may be known about the architecture, memory
layout and interfaces. Since the firmware does not directly interact with
users, helpful, human-readable, informational/error messages are rarely
embedded in the code. This renders static reverse engineering very diffi-
cult, making dynamic reverse engineering the only feasible option.

Dynamic reverse engineering involves the execution and observation
of the behavior of firmware. A simulation tool can be used to evaluate
code execution by communicating with the USB Power Delivery interface
and, consequently, the firmware code. This can be accomplished using a
proprietary USB Power Delivery simulation device as in [12]. USB Power
Delivery messages are sent to the device to assist with static reverse en-
gineering. Specifically, responses to the messages are matched in a trial
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Figure III.3: Experimental setup.

and error manner to identity the corresponding firmware code. However,
reversing the firmware and resulting assembly code are still very tedious.
Also, the reverse engineering results may not fully match the full feature
set of the original source code. Nevertheless, the results would help un-
derstand unknown parts of the protocol such as VDMs. The (re)produced
pseudo code from the (re)produced assembly code could be used to estim-
ate of the lines of code in the original source code and, thus, the complexity
of the implementation.

The production of pseudo code from firmware binaries from differ-
ent vendors is challenging and difficult to generalize. Therefore, this re-
search opted to pursue a full reverse engineering effort for targeted devices
such as Apple iPhones to help generalize the results to a wider selection of
devices in the future.

Figure III.3 shows the experimental setup. It incorporates an analysis
computer, target iPhone, USB Power Delivery monitor, USB Power Delivery
simulator and stock USB Power Delivery power sources.

The general workflow is to first conduct information gathering from
open sources. A generic USB PD passive monitoring tool (1 in Figure III.3)
is employed to observe device functionality (especially beyond the spe-
cified behavior) when the device is connected to other Apple devices and
devices from other vendors. This provides early indications of proprietary
vendor code and supports subsequent reverse engineering.

Passive monitoring of USB Power Delivery communications only cov-
ers the use of a subset of the protocol and optional vendor-specific mes-
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sages. Therefore, the USB Power Delivery chip firmware must be extracted
from the selected Apple device (2 in Figure III.3) and static reverse engin-
eering techniques employed to disassemble the firmware and reproduce
the pseudo code via decompilation.

Next, dynamic reverse engineering techniques and trial-and-error
probing of the running device with actual messages are performed (3 in
Figure III.3). These augment the static reverse engineering efforts to
provide a better understanding of the firmware. After important compon-
ents of the firmware, especially undocumented vendor-specific function-
ality, are understood, attempts are made to implement and simulate the
components to verify that the Apple device behaves and responds accord-
ing to the reverse engineering results. A jailbreaking solution, checkra1n
[26], is employed to facilitate on-device experiments. This provides root
access to the test devices. Communications are performed over the normal
USB interface (4 in Figure III.3). Dynamic reverse engineering efforts and
simulation of USB Power Delivery communications are also useful when
conducting injection tests to identify vulnerabilities.

III.4 Results

This section presents the results of applying the research methodology
discussed above to USB Power Delivery implementations in Apple iPhone
models.

III.4.1 Information Gathering

The USB Power Delivery hardware in iPhone X, iPhone 8 and iPhone 8 Plus
models appears to employ a Cypress CYPD2104 embedded microcontroller
[27]. General datasheets and hardware design guides are available at the
vendor site [28]. While the documentation provides useful insights, it was
not possible to obtain complete documentation for the hardware, which
would have provided useful information about the memory mapping of
peripherals.

A Cypress CYPD2104 embedded microcontroller has a 48 MHz ARM
Cortex-M0 CPU with 32 KB of flash storage for firmware, 4 KB SROM for
booting and configuration, and 4 KB of SRAM. The I/O subsystem includes
two serial communications blocks supporting I2C, SPI and UART, as well
as several GPIOs. The interfaces are used to communicate with other peri-
pherals such as the Apple system-on-chip. Another feature very relevant
to reverse engineering and vulnerability discovery is Serial Wire Debug
(SWD) access. The access could be over a JTAG interface that would en-
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able on-device debugging capabilities, very useful for reverse engineering
and vulnerability discovery. However, no attempts were made to access the
interface in this research.

III.4.2 Passive Monitoring

USB Power Delivery is not enabled on all Apple devices. Tests on Apple
iPhones suggest that it is supported by Apple iPhone 8 and later models.
Using a commercial USB Power Delivery analyzer [29] on a USB Power De-
livery enabled power supply connected to an iPhone reveals if the device
supports USB Power Delivery. A supported device also reveals its specific-
ation revision (and thus the supported messages). An attempt by a source
to negotiate an explicit contract with an unsupported device fails to elicit
a response.

Table III.3: Explicit Contract between source (non-Apple) power supply (Rev.
3.0) and sink iPhone X (iOS 13.2.2).

Spec Index Time Role Message Data

v3.0 115 0:35.294.997 Source:DFP [0]Source_Cap

A1 61 2C 91 01 0A 2C D1 02 00 F4 21 03 00
F4 C1 03 00 B1 B1 04 00 45 41 06 00 83 B5
F1 BC

124 0:35.296.426 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8
v2.0 127 0:35.297.707 Sink:UFP [0]Request 42 10 2C B1 04 13 3D 9D 18 5D

131 0:35.298.419 Source:DFP [0]GoodCRC 61 01 8F 78 38 4A
v2.0 134 0:35.301.522 Source:DFP [1]Accept 63 03 21 7B 00 96

137 0:35.302.329 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46
v2.0 140 0:35.412.687 Source:DFP [2]PS_RDY 66 05 51 2A 14 02

143 0:35.413.232 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

Table III.3 shows a summary of the messages exchanged during an
explicit contract between a source non-Apple power supply (Revision 3.0)
and sink iPhone 10,6 (iOS 13.2.2; iPhone10,3,iPhone10,6 13.2.2
17B102 Restore.ipsw with SHA1 9c50018b2ac7c2e3d667aa065aeda3a7-
ff80a4ef. Table III.4 shows a summary of the messages exchanged during
an explicit contract between a source Apple power supply (Revision 2.0)
and sink iPhone 10,6. Note that the GoodCRC messages are removed.

The non-Apple power supply supports Revision 3.0 (Index 115 in
Table III.3) and the test iPhone responds with Revision 2.0 (Index 127 in
Table III.3). This identifies the latest revision supported by the test device.

Connecting an Apple power supply reveals additional, vendor-
specific communications (Table III.4). Note that the communications are
summarized and the GoodCRC messages are removed. The undocumented
Apple device communications start with the first unstructured VDM with
Index 299. This is accordance with the USB Power Delivery specifica-
tions, which state that proprietary communications should use unstruc-
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Table III.4: Explicit contract between source Apple power supply (Rev. 2.0) and
sink iPhone 10,6 (iOS 13.2.2)

Spec Index Time Role Message Data

v2.0 182 0:21.801.787 Source:DFP [3]Source_Cap 61 17 F0 90 01 08 EA 21 1F CC
v2.0 189 0:21.803.817 Sink:UFP [0]Request 42 10 F0 C0 03 13 BC 0F E8 2B
v2.0 197 0:21.805.451 Source:DFP [4]Accept 63 09 3F 92 D5 76
v2.0 203 0:21.834.345 Source:DFP [5]PS_RDY 66 0B 56 07 AC E5
v2.0 238 0:24.825.555 Source:DFP [1]VDM:DiscIdentity 6F 13 01 80 00 FF 16 62 AB 1B

v2.0 245 0:24.827.511 Sink:UFP [2]VDM:DiscIdentity
4F 44 41 80 00 FF AC 05 00 54 00 00 00 00
00 21 7D 16 94 99 07 82

v2.0 255 0:24.831.372 Source:DFP [2]VDM:DiscSVID 6F 15 02 80 00 FF 58 38 5E 86
v2.0 262 0:24.833.320 Sink:UFP [3]VDM:DiscSVID 4F 26 42 80 00 FF 00 00 AC 05 F6 20 C2 26
v2.0 270 0:24.837.322 Source:DFP [3]VDM:DiscMode 6F 17 03 80 AC 05 BA E4 F8 1B
v2.0 277 0:24.839.154 Sink:UFP [4]VDM:DiscMode 4F 28 43 80 AC 05 02 00 00 00 72 AD 21 96
v2.0 285 0:24.844.365 Source:DFP [4]VDM:EnterMode 6F 19 04 81 AC 05 55 08 DD 38
v2.0 292 0:24.846.477 Sink:UFP [5]VDM:EnterMode 4F 1A 44 81 AC 05 8E 2F C5 E3
v2.0 299 0:24.850.260 Source:DFP [5]VDM:Unstructured 6F 1B 05 00 AC 05 E7 4D 56 1A
v2.0 307 0:24.851.919 Sink:UFP [6]VDM:Unstructured 4F 1C 15 00 AC 05 5E C3 C3 FF

v2.0 315 0:24.853.357 Sink:UFP [7]VDM:Attention
4F 3E 06 81 AC 05 02 01 AC 05 00 00 00 00
DC 69 C4 D9

v2.0 324 0:24.856.927 Source:DFP [6]VDM:Unstructured
6F 3D 02 01 AC 05 00 00 00 00 06 00 00 20
12 5E E4 81

v2.0 333 0:24.858.774 Sink:UFP [0]VDM:Unstructured 4F 10 12 00 AC 05 E6 16 E4 A7

v2.0 340 0:24.860.209 Sink:UFP [1]VDM:Attention
4F 32 06 81 AC 05 02 01 AC 05 04 00 00 00
70 47 1C CC

v2.0 349 0:24.863.748 Source:DFP [7]VDM:Unstructured
6F 3F 02 01 AC 05 04 00 00 00 00 02 08 00
D1 C4 AA B0

v2.0 358 0:24.865.628 Sink:UFP [2]VDM:Unstructured 4F 14 12 00 AC 05 26 B0 64 52

tured VDMs. The communications are initiated when the Apple power sup-
ply asks the iPhone for its device ID. The iPhone device responds with an
Apple VID 0x05ac, following which the Apple power source initializes and
starts the Apple-device-specific protocol. This protocol is dissected in Sec-
tion III.4.5.

III.4.3 Firmware Files

The USB Power Delivery firmware files were located in iOS updates [30].
These files are regularly released by Apple to update the iOS operating
system and support on-board peripherals. The firmware files reside in an
unpacked .ipsw file (directories: 048-90011-109/
YukonB17B102.arm64CustomerRamDisk/usr/standalone/firmware/ or
048-90336-109/YukonB17B102.arm64CustomerRamDisk/usr/standalone
/firmware/) and are named USB-C_HPM,x.bin, where x varies based on
the number of included firmware files.

The firmware files come in various versions for installation on device
hardware (Section III.4.1). Many of the files are equal in size and have
minor differences in their binaries. An important difference is that each has
a different product ID (PID) that is reported by the corresponding firmware
in response to a structured Discover Identity VDM (Table III.2).
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Table III.5: Firmware files with their PIDs and test iPhone models

Filename sha1sum PID iPhone model

USB-C_HPM,1.bin 83D9F3003DF9CC1915507BD090608AE0AA96CF5D 0x1654 –
USB-C_HPM,2.bin 87BF3EEDA8C98081657F13B5B547924893EF0ED3 0x165d –
USB-C_HPM,3.bin 0314144681992F7A4FE8B0F69A7AB42CA159E76D 0x166c iPhone 8
USB-C_HPM,4.bin 273A80375FE8FEC09D498221BE472958B818582F 0x167c iPhone 8 Plus
USB-C_HPM,5.bin ACC3DBE69E310E1FE3063725F5B436E807C83D94 0x167d iPhone X
USB-C_HPM,6.bin B7CE922CD8B3D0018E4861006A065C7C5FBD9D5B 0x1686 –
USB-C_HPM,7.bin 916D096C8939F4E108A269A854198B95BD5A7BEE 0x1687 –
USB-C_HPM,8.bin 4FC3EB5B1B0244C04F7D6BB6A917ACAAE9F7D56F 0x1688 –

Table III.5 lists the firmware files with their PIDs. The PID enables
any connected device to identify the iPhone model via the USB Power De-
livery protocol. An important observation is that the firmware files have
approximately identical code across all the PIDs (and thus iPhone models)
for a given iOS version. This means that any security issues discovered in
firmware for a specific iPhone model would likely be present in multiple
models, increasing the applicability of a forensic data acquisition method.
Reverse engineering results for one device model could be reused across
models, saving time and resources.

Research revealed that the different iOS 13.2.2 updates for iPhone 8,
iPhone 8 Plus and iPhone X models included identical USB-C_HPM,x.bin
files as shown in Table III.5.

The common firmware codebase also supports binary diffing. Secur-
ity patches discovered in two versions of a USB-C_HPM,x.bin file can be
assumed to be present in the firmware of different iPhone models. This
greatly reduces the resources needed to discover potential security patches
across device models.

For a given USB-C_HPM,x.bin file corresponding to an iPhone 8 Plus
model (USB-C_HPM,4.bin), different iOS updates can be downloaded and
analyzed to detect changes to the USB Power Delivery firmware. Compar-
ing the sha1sum values for differences is adequate to indicate a patch be-
cause there does not appear to be any iOS-specific rebuilding or versioning
changes embedded in the firmware, leaving it untouched between updates
unless the actual USB Power Delivery firmware is updated.

Table III.6 shows several iOS updates for the iPhone 8 Plus model
and the corresponding sha1sum(USB-C_HPM,4.bin) values. The trend is
that the USB Power Delivery firmware is updated rarely. In fact, one patch
was retained in iOS versions 13.3.1 to 13.4.



118 Paper III

Table III.6: USB-C_HPM,4.bin in various iOS versions

iOS Filename sha1sum(USB-C_HPM,4.bin)

13.4 iPhone_5.5_P3_13.4_17E255_Restore.ipsw 9767A86F62ABDC8C1046F4D807CC30DAB99A4693
13.3.1 iPhone_5.5_P3_13.3.1_17D50_Restore.ipsw 273A80375FE8FEC09D498221BE472958B818582F
13.3 iPhone_5.5_P3_13.3_17C54_Restore.ipsw 273A80375FE8FEC09D498221BE472958B818582F
13.2.3 iPhone_5.5_P3_13.2.3_17B111_Restore.ipsw 273A80375FE8FEC09D498221BE472958B818582F
13.2.2 iPhone_5.5_P3_13.2.2_17B102_Restore.ipsw 273A80375FE8FEC09D498221BE472958B818582F
13.1.3 iPhone_5.5_P3_13.1.3_17A878_Restore 273A80375FE8FEC09D498221BE472958B818582F
12.4.1 iPhone_5.5_P3_12.4.1_16G102_Restore 79CB8220D2C6F5917C1C11ED7B4BF733E3C9B1C8
12.3 iPhone_5.5_P3_12.3_16F156_Restore.ipsw 79CB8220D2C6F5917C1C11ED7B4BF733E3C9B1C8
12.2 iPhone_5.5_P3_12.2_16E227_Restore.ipsw 79CB8220D2C6F5917C1C11ED7B4BF733E3C9B1C8
12.0 iPhone_5.5_P3_12.0_16A366_Restore.ipsw B374072044A97669A688A49E1723C55E9973A851
11.4.1 iPhone_5.5_P3_11.0_11.4.1_15G77_Restore.ipsw 1E20D8B4D54D6C092DA9B668A53AAAE81ABFA3EE
11.0 iPhone10,5_11.0_15A372_Restore.ipsw 1E20D8B4D54D6C092DA9B668A53AAAE81ABFA3EE

Table III.7: USB-C_HPM,4.bin details for various iOS versions (see Table III.6)

iOS USB PD Rev. functions code bytes opcodes pseudo c code lines

13.4 2.0 248 18310 8419 6247
13.2.2 2.0 249 18598 8552 6206

III.4.4 Firmware Reverse Engineering

Since most of the firmware files corresponding to different PIDs have few
differences, reverse engineering can focus on just one of the
USB-C_HPM,x.bin files in Table III.5. The machine architecture is ARM
little endian and the code is in the ARM Thumb mode [31], which is a
subset of the ARM instruction set that uses variable-length instructions,
often for improved code density. The code is also what is often referred
to as “bare metal” code, meaning it can execute without any other ab-
straction layer (e.g., underlying operating system). The code directly in-
teracts with the Apple system-on-chip and other peripherals through an
I/O subsystem, mapped at specific memory addresses. Without document-
ation about the underlying USB Power Delivery hardware, the addresses
are hardware-specific and often unknown. Therefore, from a reverse en-
gineering perspective, it is necessary to make assumptions when code uses
such unknown, hard-coded (non-position independent) addresses.

Table III.7 shows the results of disassembling and decompiling the
most recent versions of the firmware file USB-C_HPM,4.bin listed in Table
III.6. The total numbers of lines of pseudo C code for the two files are
slightly more than 6,200. The USB Power Delivery Revision 2.0 was pre-
viously confirmed via passive monitoring. Therefore, the code supports all
the messages listed for Revision 2.0 (Table III.1). Code that implements ad-
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ditional unstructured VDMs is also included. It is expected that the number
of lines of code would grow significantly to support a later revision (e.g.,
Revision 3.0). This is because Revision 3.0 supports a large number of ad-
ditional messages (Table III.1).

As described in Section III.4.2, all the Apple-specific messages were
identified and reverse engineered. Therefore, all the unstructured VDMs
supported by the firmware could be identified in the disassembled code
and pseudo C code. In fact, all the Apple-specific unstructured VDMs are
handled by the same handler function. This function processes user input
and is, therefore, an attractive target for vulnerability analysis. Erroneous
handling of data in any USB Power Delivery message is a potential attack
vector that could lead to a compromise of the USB Power Delivery func-
tionality.

The number of lines of pseudo C code lines is relatively small com-
pared with larger source code trees [7]. Since the firmware is “bare metal”
code, the code is less generic and more difficult to compare with other
sources. Therefore, the likelihood of security vulnerabilities in the firm-
ware is difficult to compare with other estimates. Nevertheless, the code
is in a state that is amenable to the application of established security vul-
nerability discovery techniques [9–11].

III.4.5 Apple Vendor-Defined Protocol

The undocumented VDMs in Table III.4 indicate that a special protocol is
used by Apple devices to exchange device-specific information. Two con-
nected Apple devices engage in an explicit contract negotiation as seen
in the messages with Index 182 through 203 in Table III.4. After this, the
Apple-enabled power source requests the identity of the Apple iPhone X
sink via a Discover Identity VDM with Index 238. Since the sink responds
with a known Apple VID (0x05ac) and PID (0x167d), the two devices
can engage in additional communications using messages with Index 255
through 292. The next message (Index 299) from the source to the sink
is the first unstructured VDM and the first fully vendor-specific message.
Upon dissecting the raw data in this message, bytes [0:2]were determined
to correspond to the USB Power Delivery message header (Figure III.1),
bytes [2:6] to the VDM header and bytes [6:10] to the message CRC. Fur-
ther dissection of the VDM header bytes [6:10] (little endian) revealed a
VID of 0x05ac, VDM Type of 0 (unstructured message) and Vendor Use of
0x5 (Figure III.4). The unstructured VDM was determined to contain the
expected Apple VID of 0x05ac and an undocumented command 0x5. For
each undocumented command, a handler function can be identified in the
associated firmware file USB-C_HPM,4.bin and disassembled.
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Figure III.4: Unstructured VDM header.

Further dissection of the communications in Table III.4 focused on
the Attention VDM with Index 315 sent by the sink to the source (i.e.,
the iPhone asks the Apple power source for information). The response
from the source has Index 324. This is interesting, because the iPhone only
requests this type of information when it is connected to an Apple device.
In fact, it turns out that the iPhone requests a range of data from the Apple
power source (serial number, device name, manufacturer, etc.).

Root access to the iPhone was achieved using checkra1n [26]. This
enabled the recovery of the data exchanged using the Apple-specific pro-
tocol. Next, the command ioreg -f -i -l -w0 > /tmp/ioreg.txt was
used to obtain the content of the iPhone I/O Registry [32], which made it
possible to interpret the exchanged data.

Table III.8 shows example data exchanged between the Apple power
supply source and iPhone sink. Note that the communications are summar-
ized and the GoodCRC messages are removed. The ASCII data
C04650505D5GW85A8 at Index 401 was located in the Apple I/O Registry
[32] as the Apple power device serial number. The data can be located
using the command ioreg -f -i -l -w0 | grep C04650, which yields
"SerialNumber"="C04650505D5GW85A8" and
"SerialString"="C04650505D5GW85A8".

Table III.8: Data exchanged between source Apple power supply (Rev. 2.0) and
sink iPhone 10,6 (iOS 13.2.2).

Spec Index time Role Message Data Ascii

v2.0 392 0:24.874.135 Sink:UFP [5]VDM:Attention

4F 3A 06 81 AC 05 02 05
AC 05 30 00 00 00 F8 DF
19 1D

O:......
..0.......

v2.0 401 0:24.877.949 Source:DFP [1]VDM:Unstructured

6F 73 02 05 AC 05 30 00
00 00 43 30 34 36 35 30
35 30 35 44 35 47 57 38
35 41 38 00 00 00 55 8A
48 BE

os....0.
..C04650
505D5GW8
5A8...U.
H.

By leveraging the handler functions in the firmware, it is possible
to identify all the implemented vendor protocol messages and, thus, all
the supported unstructured VDMs and the messages required by the USB
Power Delivery protocol. Control over all the supported messages coupled
with the ability to communicate with the iPhone hardware facilitates the
discovery and exploitation of security vulnerabilities. These include dir-
ect code execution on the iPhone hardware and poor input validation



Paper III 121

by peripherals/system-on-chip/kernel using the USB Power Delivery data
(user input).

Table III.8 shows an example of an the Apple power supply sending
its serial number. Because all the messages supported by the firmware (in-
cluding undocumented VDMs) can be replicated, all the data exchanged
by the undocumented protocol can be modified at will.

III.4.6 Firmware Modification and Rollback

Analysis reveals that the USB-C_HPM,x.bin firmware files are unsigned and
are, therefore, neither verified at installation time nor at runtime. This is
verified by modifying the PID in a USB-C_HPM,5.bin file (see Table III.5)
and flashing it to the corresponding iPhone test device. With the aid of
the checkra1n [26] jailbreaking solution, the Apple USB Power Delivery
firmware flash executable usbcfwflasher included in the iOS firmware
update file could be used to flash the modified USB-C_HPM,5.bin file. This
can be performed on all checkra1n-supported Apple devices without re-
quiring any user credentials.

The firmware modification is verified by monitoring a normal expli-
cit contract with the additional Apple-specific VDM protocol between an
Apple power supply and iPhone with the modified firmware. A successful
firmware modification results in a different PID being returned from the
iPhone in response to a structured Discover Identity VDM from the power
supply.

Table III.9 shows that the returned PID in the message with Index
83 is 0x1337 instead of the expected PID 0x167d in the message with In-
dex 245 in Table III.4. Note that the communications are summarized and
the GoodCRC messages are removed. The PIDs are the 16-bit little endian
values at bytes [16:18] in both messages.

The result is that it is possible to fully modify the USB Power Delivery
firmware. This includes the ability to perform a firmware rollback and in-
stall an older, potentially-vulnerable, firmware version on a patched device.
Because this is a security vulnerability in itself, it is very useful for further
vulnerability discover because researchers can implement any test code
to expose, for example, further propagation in an iPhone or side-channel
attack scenarios.

Table III.9: Discover Identity VDMs between source Apple power supply (Rev.
2.0) and sink iPhone 10,6 (iOS 13.2.2).

Spec Index time Role Message Data
v2.0 76 0:44.204.575 Source:DFP [7]VDM:DiscIdentity 6F 1F 01 80 00 FF 17 8F 5B DE

v2.0 83 0:44.206.298 Sink:UFP [2]VDM:DiscIdentity
4F 44 41 80 00 FF AC 05 00 54 00 00 00 00
00 21 37 13 94 CA FB F8
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III.5 Conclusions

The methodology for analyzing USB Power Delivery implementations fa-
cilitates the discovery of security vulnerabilities for exploiting USB Power
Delivery hardware to acquire data in digital forensic investigations. The ul-
timate goal is to further leverage privileges within the system, potentially
through a new set of security vulnerabilities that are identified using the
hardware as a springboard. Examples of the new vulnerabilities include
implicit trust relationships, other components in the USB Power Delivery
hardware and system processes that parse data provided as inputs by Apple
VDM commands. The step-by-step methodology, which is demonstrated to
expose the implementation details of a USB Power Delivery device, is ap-
plicable to a wide range of USB Power Delivery implementations by diverse
vendors.

The results of using the methodology on Apple iPhones can be
summarized as follows. Gathering information about the underlying
USB Power Delivery hardware assists firmware reverse engineering, side-
channel analysis and attack development. The ability to monitor USB
Power Delivery messages facilitates the analysis of messages supported by
a given device and helps discern if a proprietary vendor protocol is em-
ployed. Sending and receiving arbitrary messages using a simulation tool
advances black box testing, reverse engineering and exploitation.

Additionally, the reverse engineering of firmware to yield
disassembled code and pseudo C code is very useful for manual and auto-
mated vulnerability analyses. Diffing tests can help reveal patches that can
be checked for potential security vulnerabilities. Rollbacks of vulnerable
firmware can be accomplished on jailbroken devices without requiring user
credentials because firmware signatures and rollback protection mechan-
isms are not implemented. The lack of signatures also facilitates arbitrary
modifications of firmware that expose USB Power Delivery to evil maid
attacks.

Future research will attempt to discover additional vulnerabilities.
It will also attempt to simulate and instrument/debug the extracted firm-
ware, with the goal of advancing fuzzing techniques for vulnerability dis-
covery. Other avenues of future research include debugging test devices
and chips via JTAG and conducting simulation via emulation and symbolic
execution [11, 33, 34].
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Abstract

The increasing complexity and security of consumer products pose ma-
jor challenges to digital forensics. Gaining access to encrypted user data
without user credentials is a very difficult task. Such a situation may re-
quire law enforcement to leverage offensive techniques – such as vulner-
ability exploitation – to bypass security measures in order to retrieve data
in digital forensic investigations.

This chapter proposes a digital forensic acquisition kill chain to as-
sist law enforcement in acquiring forensic data using offensive techniques.
The concept is discussed and examples are provided to illustrate the vari-
ous kill chain phases. The anticipated results of applying the kill chain in-
clude improvements in performance and success rates in short-term, case-
motivated, digital forensic acquisition scenarios as well as long-term, case-
independent planning and research efforts focused on identifying vulner-
abilities and leveraging them in digital forensic acquisition methods and
tools.
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IV.1 Introduction

Several digital forensic process models have been proposed in the literature
[2]. Regardless, a generic digital forensic process can be viewed as com-
prising four phases: seizure, acquisition, analysis and reporting. The digital
forensic acquisition phase covers the retrieval of digital forensic data from
seized devices and other data sources. Its main goal is to gain access to data
for forensic analysis. Clearly, digital forensic acquisition tasks are changing
as technology advances, but the overall goal is the same – accessing data
in a forensically-sound manner [3, 4].

Embedded devices and online services are important sources of di-
gital data in criminal cases, which makes digital forensic acquisition a pri-
ority for law enforcement. In recent years, smartphone vendors such as
Apple and Samsung have instituted mechanisms for securing user data.
Data in their devices is often encrypted and secured against a variety of
attacks, local as well as remote. Gaining access to encrypted user data
without user credentials is a very difficult task.

Garfinkel et al. [5]mention encryption as posing major challenges to
law enforcement as they conduct digital forensic investigations. Arshad et
al. [6] discuss the impacts of mandatory encryption and increased focus on
privacy on the effectiveness of digital forensics. Balogun et al. [7] estimate
that encryption alone prevents the recovery of digital forensic data in as
much as sixty percent of cases that involve full disk encryption. In the FBI-
Apple encryption dispute of 2015-16, Apple denied the FBI’s request to
create special firmware that would enable the recovery of user credentials
from an iPhone 5C seized in a terrorist investigation [6]. Apple considered
product security and user privacy to be more important than supporting
the terrorism investigation.

Since law enforcement cannot rely on assistance from vendors to by-
pass security mechanisms in their products, the best option is to leverage
offensive techniques to retrieve protected data in digital forensic invest-
igations. Specifically, it is necessary to apply sophisticated techniques to
discover published (n-day) and unpublished (0-day) vulnerabilities in the
targets, and exploit them to acquire forensic data.

The idea of law enforcement leveraging published vulnerabilities is a
concern because law enforcement assumes the role of an attacker in order
to pursue justice. However, discovering and holding on to undocumented
vulnerabilities in order to bypass security mechanisms are even more con-
cerning. New vulnerabilities should be promptly reported to the affected
vendors to enable them to mitigate risks, but this would prevent the contin-
ued use of the vulnerabilities. The conflicting interests between offensive
and defensive uses of security vulnerabilities are not new. Indeed, they
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have been discussed publicly [8] and addressed by the U.S. Government
[9]. Whether to restrict discovered vulnerabilities for offensive use or dis-
close them for defensive purposes is determined by a vulnerability equities
process, where U.S. agency representatives gather to evaluate and decide
the fate of new vulnerabilities discovered by government agencies [9]. This
policy is understandably controversial [10, 11].

This research does not take a stand on the vulnerability equities di-
lemma. Rather, it seeks to inform law enforcement about the possibility
of discovering vulnerabilities in electronic devices and leveraging them
to acquire forensically-sound data in criminal investigations. It focuses on
a methodical approach called the “digital forensic acquisition kill chain,”
which is based on the “intrusion kill chain” concept used in computer net-
work defense [12]. The intrusion kill chain is a systematic process for tar-
geting and engaging an adversary to achieve the desired security effects
[12]. The digital forensic acquisition kill chain turns this around – it is a
systematic process for law enforcement (acting as an adversary) to target
electronic devices using offensive techniques to facilitate digital forensic
acquisition.

Law enforcement has some advantages when developing and em-
ploying offensive techniques. These include access to resources as well as
police authority (ability to seize devices). Unlike attackers, law enforce-
ment may have the time to execute offensive actions and impose patch
prevention. A seized device may be fully patched with no known vulnerab-
ilities at the time of seizure. However, the same device becomes vulnerable
in the future as n-day vulnerabilities are published and 0-day vulnerabilit-
ies are discovered. Since law enforcement can prevent seized devices from
receiving updates, it can leverage both types of vulnerabilities in digital
forensic acquisition.

IV.2 Related Work

Several digital forensic process models that focus on practitioners and the
use of digital evidence in court have been proposed. The Advanced Data
Acquisition Model [13] addresses the needs of practitioners and the ex-
pectations of courts for formal descriptions of the processes undertaken
to acquire digital evidence. Montasari [14] has proposed a standardized
model that enables digital forensic practitioners to follow a generic ap-
proach that can be applied to incident response as well as criminal and
corporate investigations. In an attempt to further address the need for a
generic digital forensic investigation process for use in the three domains,
Montasari et al. [15] have proposed the Standardized Digital Forensic In-
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vestigation Process Model that draws on existing models and renders them
generic enough for wide applicability. However, although digital forensic
investigative processes are discussed, neither the scope nor the details of
key processes such as examination and analysis are provided.

The three models address the need for trustworthy and court-
accepted methods and processes. The focus is on ensuring the reliability of
digital evidence presented in court using formal, standardized processes.
In contrast, the digital forensic model presented in this chapter differs sub-
stantially from the three models in that it concentrates on using offensive
techniques for digital forensic acquisition. However, the proposed model
will have to be augmented in the future to guide the development of trust-
worthy, court-accepted methods.

IV.3 Digital Forensic Acquisition Kill Chain

The primary goal of the proposed digital forensic acquisition kill chain is to
articulate a structured process for developing new digital forensic acquisi-
tion methods based on offensive techniques. It is intended to improve per-
formance and success rates during the time-constrained, case-motivated
development of digital forensic acquisition methods as well as the long-
term case-independent development of digital forensic acquisition meth-
ods that take into account trends in consumer adoption of technology.

IV.3.1 Background

Hutchins et al. [12] have specified a kill chain model that describes the net-
work intrusion phases employed by advanced adversaries, often referred
to as advanced persistent threats. Engaging a model that describes ad-
versarial intrusion phases to inform defensive postures reduces the likeli-
hood of success on the part of the attackers. Specifically, detecting patterns
that are signs of a campaign supports proactive computer network defense.
This is referred to as intelligence-driven computer network defense, where
identifying intrusion patterns facilitates responses before compromise oc-
curs. The kill chain phases specify the goals and content as an adversary
goes from intelligence gathering on a potential target to achieving full com-
promise and the ultimate goal of penetrating the target (e.g., exfiltrating
sensitive data). Such a model is required because advanced adversaries
invest considerable intellectual and technical resources to penetrate high
value targets. The kill chain paradigm has proven to be very valuable, and
several new ideas and models have been proposed [16–20].

The intrusion kill chain of Hutchins et al. [12] is motivated by the U.S.
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military targeting doctrine that encompasses six phases: find, fix, track,
target, engage and assess. They adapted the targeting doctrine to com-
puter network intrusions by introducing new phases. The resulting kill
chain phases are: reconnaissance, weaponization, delivery, exploitation,
installation, command and control, and actions on objectives. This meth-
odical way of describing the expected adversarial phases views computer
network defense from the adversaries’ perspectives, facilitating detection
by predicting the subsequent phases and the ability to execute proactive
defensive operations. The research described in this chapter adapts the in-
trusion kill chain to facilitate offensive actions in digital forensic acquisition
scenarios.

IV.3.2 Kill Chain Overview

Figure IV.1: Generic digital forensic acquisition needs.

Figure IV.1 shows a simplified view of digital forensic acquisition
using offensive techniques. The proposed digital forensic acquisition kill
chain adapts the original kill chain to specify a methodology for using of-
fensive techniques in digital forensic acquisition, where law enforcement
assumes the role of the adversary and seized devices (evidence contain-
ers) are the targets. It brings an intelligence-driven perspective to applying
forensic data acquisition methods as well as researching and developing
new methods.

Figure IV.2 shows the nine phases of the proposed digital forensic
acquisition kill chain. The phases are: reconnaissance, identification, sur-
veillance and vulnerability research, weaponization, delivery, exploitation,
installation, command and control, and actions on objectives.
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Figure IV.2: Digital forensic acquisition kill chain phases.

The nine phases are grouped and generalized according to the digital
forensic acquisition needs in Figure IV.1. The initial reconnaissance phase
considers the target of digital forensic acquisition. The next two phases,
identification, and surveillance and vulnerability research, focus on the
discovery of possible digital forensic acquisition solutions (vulnerabilities).
The weaponization and delivery phases cover the development and realiz-
ation of the discovered vulnerabilities. The last four phases, exploitation,
installation, command and control, and actions on objectives, deal with
operational issues.

A digital forensic acquisition kill chain is spawned in two general
scenarios:

• Case-Motivated Scenario: This scenario is driven by a case-
motivated need for a digital forensic acquisition method targeting a
specific entity (e.g., device or service). Because digital forensic in-
vestigations are event-driven, law enforcement may not have applic-
able methods or be able to predict applicable methods for all possible
scenarios. The kill chain focuses on solving the concrete challenge of
acquiring forensically-sound data from the device or service, but it
may spawn new kill chains to solve the sub-challenges that materi-
alize. Several kill chains could be spawned in parallel and resources
moved back and forth between them as the case foci and priorities
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change. The overall goal of a case-motivated kill chain is to apply
digital forensic acquisition to a specific device or service.
• Case-Independent Scenario: This scenario is driven by a
case-independent, intelligence-driven need for a digital forensic ac-
quisition method that addresses a class of challenges. As the results
of several case-motivated kill chains are obtained, a trend in the chal-
lenges encountered, such as the encryption of user data, could spawn
its own kill chain. A challenge in another kill chain phase, say exploit-
ation, could spawn a separate kill chain that focuses entirely on the
challenges encountered during exploitation. A challenge related to a
class of devices (e.g., from a specific vendor) could spawn a vendor-
specific kill chain. The vendor could be Apple or Samsung, and the
targets could be smartphones, services or components such as pro-
cessors and flash memory chips that are common to vendor products
or services. The overall goal of a case-independent kill chain is to im-
prove the performance of subsequent case-motivated kill chains by
leveraging intelligence, knowledge, methods and tools.

Upon considering the general digital forensic acquisition needs in Fig-
ure IV.1, the completion of the reconnaissance, identification, surveillance
and vulnerability research, or delivery phases could result in the kill chain
being terminated. For example, as shown in Figure IV.2, a kill chain cov-
ering a trending device would terminate at the end of the delivery phase
because no operational needs exist. Of course, the completion of a phase
could initiate the next phase, or the phase could spawn a new kill chain.

The initial phases of reconnaissance and identification could be per-
formed at the start of an investigation to set the direction of the investiga-
tion and prioritize resources. An initial kill chain could spawn several new
(sub) kill chains that address specific devices and services. This would, of
course, depend on the amount of resources available. Prioritization and
resource management of the sub kill chains would be a continuous process
as the investigation proceeds.

Kill chains can also be applied to trending challenges that are de-
tached from concrete investigations. This is motivated by the fact that
many current digital forensic acquisition challenges are too complex to
be solved given the limited time and resources available in investigations.
The kill chains would focus on longer term challenges that need dedicated
resources and prioritization. The available resources would be put to best
use at all times, even in the case of parallel kill chains where resources
would be shifted between kill chains as priorities change and common-
alities are discovered. The expected results are increased knowledge of
trending challenges, increased security expertise and new digital forensic
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acquisition methods.

IV.3.3 Kill Chain Phases

This section discusses the nine phases of the digital forensic kill chain in
detail.

Reconnaissance

The reconnaissance phase focuses on the collection of information that
would support the selection and prioritization of devices and services. This
phase should be kept short if it is used as part of a specific case, where it
would concentrate on selection and prioritization, and the estimation of
the likelihood of success of a digital forensic acquisition method. In a case-
independent scenario, the reconnaissance phase is more openly defined
and may choose to focus on any target device or service of interest.

Multiple kill chains are expected to be initiated and terminated dur-
ing the reconnaissance phase. Also, a single kill chain may spawn several
kill chains for the identified devices and services. The basic idea is that the
reconnaissance phase is based on the available information and informa-
tion that is obtained easily.

Identification

The challenge to developing a new forensic acquisition method is approa-
ched in a bottom-up manner. The focus is on identifying forensic data of
value and the layers of security features that may prevent its access (e.g.,
encryption could be the first layer to bypass).

Volatility of forensic data is always an issue. Embedded devices often
keep log files and unencrypted app data in random access memory only.
Thus, the digital forensic acquisition method must take into account the
fact that a device cannot be power cycled. Addressing this challenge follows
a different path in the remaining phases and would require a separate kill
chain.

Note that two challenges – encryption and volatility – have been iden-
tified during this phase. Thus, two kill chains would be created and re-
source allocation decisions have to be made to best address the challenges.

Surveillance and Vulnerability Research

During the surveillance and vulnerability research phase, existing vulner-
abilities, techniques, tools and services are investigated. Also, resources



Paper IV 135

are allocated to discover new vulnerabilities. Conducting activities in par-
allel can be efficient with regard to time. However, in order to optimize
resources and not reinvent existing vulnerabilities and methods, the fol-
lowing two sub-phases are recommended:

• Sub-Phase 1: This short intelligence sub-phase focuses on gather-
ing information about the identified challenges from open and closed
sources. The goal is to discover published vulnerabilities that are po-
tential candidates for direct use or are avenues for new vulnerability
research. The sub-phase should not focus on the resource-intensive
task of rediscovering low-level details about potential vulnerabilities,
but only collect and prioritize potential vulnerabilities based on the
available information.
• Sub-Phase 2: This sub-phase focuses on the active search for tools,
services and vulnerabilities to address the identified challenges. It
would also include a separate vulnerability research effort to discover
new vulnerabilities.

The surveillance and vulnerability research phase is divided into two
sub-phases in order to have a lightweight first sub-phase with a short time
frame and low human resource needs. The results provide a basis for al-
locating resources to the much more intensive second sub-phase.

The second sub-phase has the most uncertainty with regard to re-
source needs and likelihood of attaining the end goal of a digital forensic
acquisition method. However, in the event of success, a method that lever-
ages a new vulnerability would have a longer life span than amethod based
on a published vulnerability. As multiple kill chains would be executed sim-
ultaneously during this sub-phase, efficient management of resources is
required.

An example of a new kill chain is the discovery of new vulnerabilities
and the acquisition of knowledge about existing vulnerabilities. Informa-
tion about fixed vulnerabilities may be found on vendor web sites, change
logs and published patches. Although the information about a patched vul-
nerability often lacks the detail needed to isolate and trigger the vulnerab-
ility, an experienced vulnerability researcher would be able to obtain the
information in a reasonable period of time. This could be hours, days or
months depending on the complexity of the technology and vulnerability.
Additionally, since a vulnerability may not always be convertible to a suc-
cessful exploit, it is necessary to research several vulnerabilities. Identify-
ing and studying vulnerabilities, and developing exploits are time consum-
ing; also, predicting the resource needs is difficult. Therefore, it is import-
ant to balance time, resources and success potential between discovering
new vulnerabilities and rediscovering known vulnerabilities by studying
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patches.

Weaponization

Weaponization involves the development of a working exploit from a new
or existing vulnerability, a task that can be complex and potentially unreal-
izable. The weaponization of a vulnerability is hard to generalize, but it can
be similar to the software development cycle. The steps proceed from de-
veloping a proof of concept to creating a production-quality exploit chain
with quality assurance that minimizes the chance of failure when applied
to digital forensic acquisition. A crucial step is to ensure that the method
is forensically sound and complies with the law and established digital
forensic standards [21].

Efforts in the weaponization phase also need to consider the users
of the digital forensic acquisition method, especially their levels of expert-
ise and access to specialized equipment and tools. Other considerations
include ease of use, access to updates and support. Additionally, it is im-
portant to be aware that the type and sensitivity of the vulnerability may
limit the number of users and cases where it can be applied.

Delivery

The delivery phase focuses on developing the channel or channels for ex-
ecuting the weaponized exploit. These could be physical interfaces such
as USB, SPI, JTAG, UART and I2C or wireless channels such as Wi-Fi,
Bluetooth and near-field communications (NFC). Even side channels that
can be used to inject inputs into key components are potential delivery
options.

Exploitation

During the exploitation phase, the focus is on applying the developed di-
gital forensic acquisition method in a criminal case. Actions performed in
this phase must adapt to the context of the device or service. Since the
phase is operational in nature, it should consider all aspects of using the
method, including device or service state, legality, special requirements,
assumptions that do not hold (e.g., user credentials might be known), op-
erational security and digital forensic principles. Special care should be
taken if the exploitation is destructive (e.g., chip-off data acquisition),
which would leave the device in a state where it cannot be returned to
its owner after the investigation.
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Installation

The installation phase is mostly concerned about the footprint required to
achieve the goal of forensic data acquisition. A RAM-only installation is a
good option when the goal is to acquire data from long-term storage and
conform to forensically-sound principles [15]. Since a component installed
on a device or service environment for forensic acquisition purposes may
become a part of the acquired evidence, isolating and documenting the
component and its behavior are vital in court proceedings. An alternative
to installing a component is to enable device features to accomplish the
same goal. For example, enabling adb and gaining root privileges on an
Android smartphone would provide the required access. When executing
custom code on a device, it is important that the footprint be as small
as possible to reduce negative forensic impacts on volatile RAM storage.
Alternatively, the available device debugging features could be leveraged.

Command and Control

In the command and control phase, control has already been gained over
the execution and/or data on the target device or service. This could in-
volve a generic interface such as a login shell with root access, arbitrary
code execution or security feature (e.g., screen lock) bypass. Ideally, this
phase should be detached from the earlier phases because it marks the start
of the actual acquisition of digital forensic data. Activities could involve the
use of special tools and commands that may not have been employed in
the earlier device or service-specific exploitation and installation phases.
The advantage of separating command and control from other phases is
the reuse of knowledge, code and tools. A login shell with root access may
apply the same tools to acquire data from diverse Android devices, but
activities in the exploitation and installation phases for Android devices
from different vendors could be totally different and leverage completely
different vulnerabilities to reach the command and control phase.

Actions on Objectives

The last phase in the kill chain is to simply execute the final goal of per-
forming the digital acquisition to obtain data of forensic value from the
device or service.
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IV.4 Case-Motivated Kill Chain Example

This section demonstrates the use of a digital forensic acquisition kill chain
in a case-motivated scenario where law enforcement is interested in ex-
tracting data of forensic value from a broadband router seized at a crime
scene. The data could constitute log files with network activity, including
Wi-Fi logs pertaining to connected devices during a specific time period.
The data could be used to gain information about the connected devices
that would be identified by their MAC addresses. The device is a Zyxel
router (model no. p8702n), which has a MIPS architecture and runs a
uClinux-based operating system [22].

Reconnaissance

Open-source intelligence and reconnaissance activities for the Zyxel
p8702n router focused on various discussion forums and on the availability
of its firmware, which was eventually downloaded from a server located
at stup.telenor.net/firmwares/cpe-zyxel-p8702n. Two firmware files,
100AAJX13D0.bin and 100AAJX14D0.bin, were obtained along with their
README files.

Because change logs often contain valuable information about secur-
ity patches, older files that were present on the server were also sought.
The older files were downloaded from web.archive.org.

Thus, the reconnaissance phase yielded useful information from pub-
lic forums along with publicly-available firmware files and their change
logs.

Identification

Forensic data with the most value was expected to reside in the flash mem-
ory of the Zyxel p8702n router. However, like many low-end embedded
devices, the Zyxel p8702n router stores much of its data, including logs,
in RAM only. This means that valuable forensic data could be lost if the
device were to be turned off. This discovery is important because it im-
pacts how the device should be seized; specifically, the device should not
be powered down before digital forensic acquisition. Addressing the RAM
memory acquisition challenge requires a separate kill chain.

Thus, two directions have to be pursued and a decision must be made
about where to focus the available resources. The RAM data was assumed
to be more valuable, so the corresponding kill chain was pursued – gain-
ing access to the Zyxel p8702n router RAM data without turning off or
restarting the device.
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Surveillance and Vulnerability Research

The shorter intelligence phase (sub-phase 1) sought to obtain information
about acquiring RAM data, possibly by exploiting a vulnerability. In the
case of the Zyxel p8702n router, a valuable source for vulnerability in-
formation was determined to be the vendor’s patch reports. Because older
firmware files and change logs were available, a reasonable approach was
to examine the change logs for hints of security issues.

The examination revealed that firmware version 100AAJX7D0 hadma-
jor security fixes. Therefore, the previous firmware version 100AAJX5D0was
inferred to have the security vulnerabilities.

The focus of the complex and resource-demanding sub-phase 2 was
to rediscover the vulnerabilities patched in firmware version 100AAJX7D0.
This required firmware versions 100AAJX5D0 and 100AAJX7D0 to be un-
packed and the differences between the two versions to be identified.

The analysis revealed a difference in the boot sequence, where a crit-
ical security vulnerability was exposed in the older version by a login shell
on a serial console. The problem was that the login process /bin/smd had
an SIGTSTP vulnerability – when Ctrl-Z was entered on the console, a
/bin/sh shell was provided with the same credentials as the /init pro-
cess. This enabled root access to the Zyxel p8702n router.

Thus, sub-phase 2 of the surveillance and vulnerability research
phase resulted in the rediscovery of a vulnerability. However, the vulner-
ability still had to be triggered.

Weaponization

During the weaponization phase, it was determined that the vulnerability
was not particularly difficult to exploit. The vulnerability was exploited
by accessing the Zyxel p8702n router console and sending the SIGTSTP
signal by entering Ctrl-Z. Thus, the goal of the weaponization phase was
to discover an access method to the serial console of the Zyxel p8702n
router; in this case, via the UART interface on the circuit board. The key
result is that this could be done without powering off the Zyxel p8702n
router.

Delivery

The delivery phase was also relatively simple. It involved sending Ctrl-Z
over the attached serial console to the Zyxel p8702n router. The deliv-
ery was performed via the UART protocol using a standard RS232-to-USB
serial converter and a putty terminal emulator.



140 Paper IV

Exploitation

Since the Zyxel p8702n router had to be powered on at all times, the di-
gital forensic acquisition had to be performed without power-cycling the
device. The considerations during the exploitation phase involved the ease
of physical access to the device, speed of the operation (especially if it had
to be covert), risk and likelihood of failure.

Important operational decisions had to made during the exploitation
phase to prevent ad hoc decision making during the subsequent phases.
Since the objective was to acquire data from RAM, any actions performed
on the device (even as root) would affect the RAM (e.g., potentially over-
writing valuable freed memory in RAM). Therefore, a bare minimum foot-
print had to be maintained.

Installation

The installation was restricted to digital forensic acquisition. Persistent ac-
cess did not have to be maintained after the serial interface was detached.
Therefore, no other tools were installed.

Command and Control

Root access to the Zyxel p8702n router rendered the digital forensic acquis-
ition goal within reach. The command and control phase determined that
only a few commands would be executed using on-device tools to preserve
RAM content.

Actions on Objectives

At this point, all the digital forensic acquisition challenges were isolated
and addressed. The final phase merely involved the final digital forensic
acquisition of RAM data in the Zyxel p8702n router.

Note that the primary goal was to focus on the raw RAM in order to
preserve freed memory data and structures. Since this goal was achieved, it
was not necessary to pursue the lower priority goal focusing on temporary
RAM-only filesystems that are common in many Linux distributions, or the
even lower goal focusing on flash memory.

IV.5 Conclusions

Criminal investigations are increasingly hindered by strong security mech-
anisms that prevent forensically-relevant data from being acquired from
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electronic devices and services. Absent technical assistance from vendors
and service providers, the only option for law enforcement is to leverage
offensive techniques such as vulnerability exploitation to bypass security
measures and acquire evidentiary data. The notion of law enforcement be-
coming an attacker in order to pursue justice is controversial, but police
authority and search and seizure laws and regulations may support such
actions.

The digital forensic acquisition kill chain described in this chapter
adapts the kill chain employed in computer network defense to articulate
a systematic methodology for using offensive techniques in digital forensic
acquisition, where law enforcement assumes the role of the adversary and
the seized devices and services of interest (evidence containers) are the
targets. Applying the digital forensic acquisition kill chain provides many
benefits – improvements in performance and success rates in short-term,
case-motivated, forensic data acquisition scenarios as well as in long-term
case-independent, intelligence-driven planning and research scenarios fo-
cused on identifying vulnerabilities and leveraging them in the develop-
ment of novel digital forensic acquisition methods and tools.

Future research will focus on validating the digital forensic acquisi-
tion kill chain. The case study described in this chapter focused on a single
device. Realistic field evaluations with diverse and more complicated chal-
lenges will provide valuable guidance on adjusting the kill chain phases. At
this time, a single kill chain model has been proposed for case-motivated
and case-independent scenarios. These scenarios appear to pull the kill
chain model in different directions. As a result, future research will focus
on creating separate digital forensic acquisition kill chain models for the
two types of scenarios.
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Abstract

Performing mobile phone acquisition today requires breaking—often hard-
ware assisted—security. In recent years, Embedded Secure Element (eSE)
hardware has been introduced in mobile phones, with a view towards in-
creasing the security of critical system features and encrypted user data.
The idea being that the eSE should remain secure even if the rest of the
system is compromised. The eSE is set to become crucial to modern mobile
phone security, challenging Digital Forensics. The eSE is designed to with-
stand both logical and physical attacks, including side channel attacks, and
to keep the attack surface towards the rest of the system/phone small, and
complexity low to minimise the risk of implementation errors.

In this paper we adapt current state-of-the-art attacks to the eSE plat-
form and present an attack on an eSE by Samsung, recently introduced in
their premium mobile phones. We show how, with limited resources, our
approach discovered a vulnerability that could be exploited, leading to a
complete compromise of all the eSE security goals and a full loss of future
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eSE trust, as mitigation of our attack in already fielded devices is challen-
ging. This eSE is Common Criteria EAL 5+ certified and our attack exposes
the gap between intended and achieved security, undermining the implied
trust in such certifications.

We explain the eSE security design, the details of our attack, and
discuss how a single vulnerability can have such devastating security res-
ults. The ultimate result of our research facilitates acquisition of affected
devices, demonstrating use of offensivemethods in advanced Digital Foren-
sic Acquisition.

V.1 Introduction

The increased mandatory security and encryption of mobile phones is chal-
lenging digital forensics. This hindrance is discussed in the general me-
dia [2, 3] as well as research circles [4]. Security and encryption seem to
be the major challenges in the years to come. Trusted computing (TC) in
form of a stand-alone eSE HW, in addition to the existing TrustZone [5], is
adding an extra layer of security that needs to be broken. All these secur-
ity features motivate digital forensic acquisition (DFA) to turn to offensive
techniques, like security vulnerability research and exploitation [6].

Trusted computing is the concept where a system is expected to be-
have as intended, withstanding outside influence, and enforced by trus-
ted, stand-alone hardware and software. The concept is not without con-
troversy and has caused discussion of its benefits, and risks [7, 8]. How-
ever, the idea is still implemented by many vendors, and to support trus-
ted computing, several hardware (HW) solutions exist today. Intel Soft-
ware Guard Extensions (SGX) [9], Trusted Platform Modules (TPM) [10],
Trusted Execution Environment (TEE) [11], Hardware Security Modules
(HSM) [12] and Secure Element (SE) [13] are all examples of techno-
logy providing physical /HW assisted separation inside a system to provide
trusted, tamper-proof and secure environments for system critical security
elements. One common design principle is the need for a separate root of
trust, to prevent security breaches even if the overall system is comprom-
ised [14]. This isolated system-within-the-system is to be made secure by
keeping complexity low, and implementation quality high. One advant-
age of lower complexity is that the probability of software bugs and side-
channel attacks is reduced as a consequence of the smaller code size [15,
16]. Increased quality can be achieved by improving development method-
ology, e.g. by working according to certain standards, such as those meet-
ing Common Criteria Evaluation Assurance Level (CC EAL) certification re-
quirements [17]. The intention being that a higher CC EAL level increases
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the reliability of the security features implemented.
In general terms, the eSE concept consists of specialised HW provid-

ing certain system critical security features to the host system without de-
pending on that host system for any execution of code nor storage of data.
This “black-box” principle means the eSE has full control of its own pro-
cessor, RAM and storage. This setup is meant to prevent a compromised
host system from reading the eSE embedded code and data, and to make
it more difficult to perform side-channel attacks, like observing or influen-
cing execution of eSE sensitive code.

An advantage of this physical separation is that development and
production of eSE HW can be outsourced to specialised vendors with a se-
cure production environment. The host system vendor need only to follow
the documented eSE interface to incorporate it in end products. However,
one major drawback is that this approach risks the introduction of a single
point of failure. A failure in the eSE can have devastating effects on the
operation of all systems using the eSE as a basis for their security. Another
drawback is that the host system vendor needs some form of trust in the
eSE HW, to certify that the eSE security features are securely implemented
and working as intended. This is one of the intentions of performing a CC
EAL certification.

A concept corresponding to eSE was presented in the Android Oper-
ating System (OS) version 9. Mayrhofer et al. [18] explain Google’s views
on the “The Android Platform Security Model”, discussing a.o. the different
threat model for mobile devices. They discuss the use of a strongbox that
“...implements the Android keystore in separate tamper resistant hardware
(TRH) for even better isolation. This mitigates [T1] and [T2] against strong
adversaries...” [18, p. 8]. Their definition of threats [T1] is “Powered-off
devices under complete physical control of an adversary (with potentially
high sophistication up to nation state level attackers), e.g. border control
or customs checks” and [T2] is “Screen locked devices under complete
physical control of an adversary, e.g. thieves trying to exfiltrate data for
additional identity theft.” [18, p. 3]. T1 and T2 clearly identifies the most
advanced and resourceful adversaries. We will use the term eSE in place
of Google’s term TRH for consistency throughout this paper.

In this paper we present a remote attack on a state-of-the-art eSE HW
utilised by the major Android mobile phone vendor Samsung. The attack is
remote as we attack the logical interface, as opposed to local attacks in need
of physical access. Our attack bypasses the security of the eSE, protecting
sensitive encryption keymaterial, and facilitates digital forensic acquisition
(DFA) of user data. This attack will work on powered off devices, known as
the before-first-unlock (BFU) state, with no knowledge of user credentials.
We show that although placing all trust in a single, well protected, entity



148 Paper V

may be tempting, it also means the introduction of a single point of failure,
and if done wrong the whole trusted computing design falls, leaving the
system totally exposed. This eSE is present in Samsung’s high-end mobile
phone models and represents the state of the art in modern Android secur-
ity. The eSE HW is CC EAL 5+ certified, and is thus expected to provide a
very high level of security. Samsung uses CC EAL certifications to promote
the security of their eSE [19] and also to justify the high security level of
the Samsung Galaxy S20 mobile, needed in mobile eID solutions for use in
Germany [20, 21]. CC EAL certifications have been proven problematic by
other authors as well [22, 23], and our attack shows that such certifications
are no guarantee the proper security level has been achieved. Our attack
demonstrates the failure of all CC EAL5+ goals for the eSE HW. Further,
our analysis shows that patching isolated eSE HW is challenging, making
it hard to regain the expected CC EAL 5+ security level in already shipped
mobiles.

Our contribution can be summarised as:

• The adaptation and improvement of state-of-the-art black-box attack
techniques applied to the eSE HW platform. The stand-alone eSE sig-
nificantly changes the attack path compared to conventional TEEs,
like ARM TrustZone implementations.
• The discovery of previously unknown, remotely exploitable, security
vulnerabilities that fully breaks the confidentiality and integrity of
the CC EAL 5+ certified eSE HW.
• A demonstration of the gap between the intended and achieved secur-
ity, and how certifications, like Common Criteria EAL, fails to deliver
the needed trust in implemented solutions.
• A presentation of the full attack development and exploitation of the
eSE, with example attacker use.
• Analysis of the effect of a vulnerability exploit in the eSE HW and the
lack of eSE countermeasures.
• A demonstration of digital forensic goals: off-device brute force of
user screen lock credential, necessary for digital forensic acquisition
of encrypted user data.

The rest of this paper is organised as follows. In Section ‘Background’
we introduce needed background and the targeted eSE. Related work is
discussed in Section ‘Related Work’ and Section ‘The Attack’ contains the
attack steps performed and the technical details on the vulnerability and its
exploitation. In Section ‘Attack Implications’ we present example implica-
tions of the attack. Finally we will present our discussion and conclusions
in Sections ‘Discussion’ and ‘Conclusions and Future Work’.



Paper V 149

V.2 Background

In this section we introduce some needed background material. First an
introduction to the specific eSE HW targeted by our attack and its CC EAL
5+ certification. The eSE threat model is then discussed to clarify our attack
approach, communicating with the logical interface using a protocol based
on the “Application Protocol Data Unit” (APDU). Refer to ‘APDU primer’ in
Appendix for a brief APDU introduction.

V.2.1 Embedded Secure Element

The eSE HW under investigation is the Samsung
S3K250AF embedded Secure Element [19]. This eSE was introduced in
February 2020 by Samsung, with the release of the Samsung Galaxy S20
product line. Our test devices were the Samsung Galaxy S20 Ultra 5G (SM-
G988B), the Samsung Galaxy S20 (SM-G980F) and the Samsung Galaxy
Note 20 Ultra 5G (SM-N986B). All these models use the Exynos SoC. The
upcoming Galaxy S21 models with the Exynos SoC are also believed to in-
clude the S3K250AF, but this has not been confirmed at the time of writing,
and was not part of our research.

We will mostly refer to the “S3K250AF eSE” simply as the “eSE”
throughout the rest of the paper.

The S3K250AF eSE is a single chip solution, soldered to the printed
circuit board (PCB) of the mobile. It has a small form factor, pictured in
the Samsung promotion material [19]. The eSE processor is an ARM Se-
curCore SC000 [24], according to the NIST Cryptographic Algorithm Val-
idation Program (CAVP) for the S3K250AF [25]. The architecture is ARM
BE8mode [26]. This architecture uses little-endian for code and big-endian
for data and pointers. The S3K250AF contains 252 kilobytes (kB) on-board
flash storage, according to the CC EAL documents [27]. Samsung promotes
an eSE standard development kit (SDK) [28], but we have not evaluated
this SDK as this entails us signing a non-disclosure agreement.

V.2.2 CC EAL

The S3K250A holds a CC EAL 5+ certification [29] from Agence Nationale
de la Sécurité des Systèmes d’Information (ANSSI) [30]. The certification
is accompanied by two documents. The security target (ST) document [27]
by Samsung describes the S3K250A and its security requirements, and the
second document [31] by third parties describes the intended protection
profile, which is generic and not specific to the S3K250A.

The main security goals for the eSE (SG1-SG3) ( [27, p. 46]) are to
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maintain integrity of user data (SG1), to maintain confidentiality of user
data (SG2), and to maintain correct operation of the services provided by
the eSE (SG3). So an attacker should not be able to change any stored eSE
data, read any stored eSE data (without authorisation), and not influence
the operation of any of the eSE features offered.

The CC EAL 5+ certification is an aid to achieving these goals, and it
states “Certification does not in itself constitute a recommendation of the
product by the National Information Systems Security Agency (ANSSI),
and does not guarantee that the certified product is completely free from
exploitable vulnerabilities.”1 [30, p. 2]. As such a guarantee is impossible
to give, some effort has been done to lower the probability of the exist-
ence of such vulnerabilities. One such effort is the Common Criteria Ad-

vanced methodical vulnerability analysis (AVA_VAN) [32]. This vulnerab-
ility assessment aims to determine potential vulnerabilities. AVA_VAN is
divided into levels ranging from 1 to 5 with “ increasing rigour of vulner-
ability analysis by the evaluator and increased levels of attack potential
required by an attacker to identify and exploit the potential vulnerabilit-
ies” [32, p. 184]. Level 5: “AVA_VAN.5 Advanced methodical vulnerability
analysis”, is the highest level. This level specifies that “A methodical vulner-
ability analysis is performed by the evaluator to ascertain the presence of
potential vulnerabilities.” [32, p. 188]. AVA_VAN.5 is part of the S3K250A
CC EAL 5+ certification [30, p. 3]. Thus AVA_VAN.5 is a best effort to
reveal any vulnerabilities of the S3K250A. It is unclear to us what exact
analysis steps were performed by the evaluator in this particular case, but
AVA_VAN.5 is referenced in the certification document [30], assuring that
sufficient analysis was performed to achieve a CC EAL 5+ certification with
AVA_VAN.5.

V.2.3 eSE Threat Model

Adapting the threat model of Mayrhofer et al. [18], we consider the eSE
against threats [T1] and [T2], as these are the threats this TRH / eSE is
designed to mitigate. These scenarios assume an attacker with physical
control of the eSE. Attacking an isolated HW component, like the eSE, two
main attack vectors present themselves: The logical interface between eSE
and the host system, known as the Rich Execution Environment (REE),
and (possibly HW assisted) side-channel attacks on the eSE. The logical
interface between the eSE and REE uses “Application Protocol Data Units”
(APDU), originally a communication protocol for smart-cards. APDU based
communication, accepting attacker commands and data, could be vulner-
able to design and implementation bugs. A simplified view of the logical

1Our translation from French.
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Figure V.1: eSE logical interface using APDU

interface between eSE and the REE is shown in Figure V.1.

V.3 Related Work

Attacks on black-box physical separation implementations are not new.
Anderson et al. [33, 34] discusses the security of tamper-resistant cryp-
tographic processors. They discuss their use and attacks with focus on two
different attack scenarios: attacks involving physical access and logical at-
tacks. Attacks involving physical access are referred to as local attacks and
most side-channel attacks fall into this category, needing some physical
interaction to mount an attack. Logical attacks are referred to as remote:
These are attacks on the logical interface and they do not require physical
access, and are thus independent of the distance between the attacker and
the attacked device. Anderson et al. refer to these attacks as API attacks,
using the provided Application Programming Interface (API). Exploitation
of design and code flaws fall into this category. Anderson et al. discuss sev-
eral attacks, including a cryptographic API attack on the IBM 4758 crypto-
processor. The attack demonstrated design flaws leading to information
leaking via the API, which could be used to mount a brute force attack
on embedded DES keys. The security of the IBM 4758 HW was rendered
moot because of flaws in the software running on the device. Anderson et
al. predict in their conclusions that logical attacks “..are likely to remain
the weak spot of most high-end systems”.

More advanced attacks via the logical interface, relevant to physical
separation implementations, can be found in more recent research. Bit-
tau et al. [35] demonstrate how to write a remote buffer overflow at-
tack without knowledge of the target binary. Where traditional attacks
use known gadgets within the target binary to craft ROP attacks, Bittau
et al. improve on this technique by using a so called blind ROP (BROP).
The BROP technique can be used to attack closed source and unknown
implementations using leaked information. Thus useful ROP gadgets can
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be found simply by trial and error, building a complete attack using only
simple information leak oracles, like a program crash. Lee et al. [36] use a
similar approach to attack Intel SGX Secure Enclaves. Their attack, named
Dark-ROP, uses information leak oracles from the Intel SGX to locate ROP
gadgets and from there to build a functional ROP attack against selec-
ted Secure Enclaves. Dark-ROP demonstrates that critical implementation
errors in secure enclave code can still be exploited by attackers, without
knowledge of the target code. Van Bulck et al. [37, 38] demonstrate an-
other powerful attack, Foreshadow, attacking the CPU cache to retrieve se-
cure enclave secrets. There are several published papers on the security of
Intel SGX [39–42].

Moghimi et al. [23] recently demonstrated an attack on TPMs, some
CC EAL 4+ certified. Their attack uses black-box timing analysis to re-
veal secret key information during signature generation based on elliptic
curves. Using this attack they demonstrate retrieval of 256-bit private keys.
A key element in their attack is the magnitude of increased operating fre-
quency of the main SoC compared to the TPM, facilitating high frequency
timing of the “slow” TPM execution.

Numerous attacks exist on TrustZone implementations [43–46], de-
monstrating that code vulnerabilities, like design and coding quality, are
crucial for security, often with devastating effect on security when such
vulnerabilities are found. Cerdeira et al. [47] have summarised current
security challenges of TrustZone-based TEE systems.

V.4 The Attack

The completely stand-alone eSE HW affects how an attack can be designed
and performed. Compared to attacks published on other secure execution
environments, discussed in the previous section, this requires a different
approach. The major difference is the changed attack surface, requiring a
different attack chain, with new attack oracles.

Our attack adapts elements from both BROP by Bittau et al. [35] and
Dark-ROP by Lee et al. [36] to the physical separated black-box eSE HW,
and we are, to the best of our knowledge, the first to do so. Although partly
available for this particular eSE, our attack does not require knowledge of
the binary (FW). We incorporate information leak oracles to aid in the
attack on the eSE HW.

The attack was developed following these generic steps:

• Information Gathering Gain knowledge of the target eSE and how
it is used.
• Identify Attack Vectors Gain knowledge of the eSE attack surface
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with potential attack vectors.
• 0-day Information Leakage Locate at least one information leakage
oracle to aid in 0-day vulnerability discovery.
• 0-day Vulnerability Discovery and Exploitation Locate at least one
new exploitable vulnerability and use the discovered vulnerability to
break confidentiality (secure data exposure) and/or break integrity
(writing to code or data memory).

The resulting attack on the Samsung S3K250AF eSE HW [19] will
follow, with the last section discussing the technical capabilities of our at-
tack.

V.4.1 Attack Assumptions

Our attack is based on the assumption that we have access to the logical
interface of the chip. This logical interface is exposed by the /dev/k250a
virtual device (see Figure V.1). Access to this device enables the attacker to
communicate, using APDUs, with all exposed functionality of the eSE HW.
Thus, in this case, we can operate as a privileged REE process similar to
the process depicted in Figure V.1. In a test environment this is achieved
simply by executing a binary we provide with system privileges. We im-
plemented all attack functionality to communicate with the eSE. We call
this tool chip_breaker. Our setup executed this tool through a “root” adb
shell [48], connected to test devices either with a cable or over a network
connection. In a more realistic attack scenario, depending on how the at-
tacker gains access, this can be achieved by infecting a process with system
privileges and then communicating with the eSE. The next section identi-
fies one such target process.

Our assumption seems realistic, as the design of the eSE is to with-
stand attacks against a fully compromised REE. Note that we do not require
physical access to the chip, which might be a prerequisite for many side-
channel attacks. Hence, our attack can even be performed remotely, over
the air, assuming we have gained privileges to communicate with the eSE
logical interface. So our attack can be performed using any remote, local
or physical attack that gains elevated execution, like “root”, on the device.
Elevated execution can be achieved without triggering user data wipe. One
path is to break the secure boot of the device to introduce attacker code [6,
49]. As history has shown that gaining such access is not necessarily dif-
ficult or uncommon [50], we do not address that problem further in this
paper. Even de-soldering the eSE chip and communicating directly on the
I2C lines is an option to perform our attack.
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V.4.2 Information gathering

Several important initial information sources were identified:

• CC EAL certification documents [27, 30, 31].
• An android service process, hermesd. This privileged process commu-
nicates with the eSE using the APDU-based logical interface and it is
the only REE process with this ability (Figure V.1). Processes commu-
nicating with the eSE were revealed by observing access to the eSE
virtual device, /dev/k250a.
• Vendor specific libraries supporting hermesd. The most important be-
ing libese-grdg.so. This library implements the low level commu-
nication with the eSE. This communication uses APDUs. APDUs are
communicated over the eSE logical device /dev/k250a.
• FW files found to be accessed by hermesd: /vendor/etc/secnvm/k25
0a_00000009.img and
/vendor/etc/secnvm/k250a_00000009_dev.img.
These files contain partly encrypted FW updates for the eSE. These
files were revealed by observing files accessed by hermesd.

Unencrypted parts of k250a_00000009.img and k250a_00000009_d
ev.img revealed code in ARM THUMB mode [51]. The file k250a_00000
009.img was assumed to be a “production” FW container. We refer to this
as FW_prod. Correspondingly the k250a_00000009_dev.img is assumed to
be a “development” FW container. We refer to this as FW_dev. Our research
only recovered one version each of both these files, on all tested models,
and analysed model FW (Appendix, Table V.1).

We inspected the partially unencrypted FW_prod and FW_dev. These
turned out to be container files for different “images” for the eSE. The
different image names are: BOOT, CRPT, CORA, CORB, SNVM, and IWEA. We
developed a simple script to parse and extract images from this propri-
etary container format (Appendix, Table V.1). This revealed that most of
the images are encrypted, while the images SNVM and IWEA are not. Images
SNVM and IWEA are also signed, thus an attack on these images using simple
FW modifications seems less probable. In later attack steps we recovered
the encryption key to the encrypted images, and the decrypted images all
included image signatures (Section ‘Attack Capabilities and AES Key Ex-
posure’).

The Logical eSE Interface Attack Vector

The logical eSE interface utilises APDUs for communication (Appendix,
‘APDU primer’). Thus all eSE APDU communication is considered a po-
tential attack vector and we need to expose as many eSE APDU handlers
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as possible. These APDU handlers are implemented by code running on
the eSE ARM processor. The handlers will potentially accept attacker con-
trolled input, which could lead to an input validation vulnerability. In addi-
tion to all APDU handlers, the APDU transport layer is an additional attack
vector. Both the APDU handlers and the APDU protocol handling are part
of the logical eSE interface.

All valid APDUCLA and INS values correspond to APDU handler func-
tions within the eSE code. Observing the hermesd process communicat-
ing with the eSE using APDU and reverse engineering the the REE library,
libese-grdg.so, enabled us to reveal the communication logic between
the REE (hermesd) and the eSE. The exposed eSE specific functions in
libese-grdg.so are listed in Table V.2 (Appendix) with their correspond-
ing grdg_* name. These functions revealed valid APDU CLA and INS val-
ues, each communicating with different APDU handlers inside the eSE. As
these functions only expose eSE features utilised by libese-grdg.so, addi-
tional eSE APDU handlers might exist. Some were indeed exposed by brute
force of the APDU logical interface. By design, all the different APDU CLA
and INS handlers inside the eSE are expected to return valid SW values,
indicating success or various error states. Gkaniatsou et al. [52] demon-
strated REPROVE, a system to aid in the reverse engineering of APDUs
used in smart-cards. Inspired by their work, we produced a simple brute
force process shown in Listing V.1, simply trying various combinations of
(CLA,INS) pairs and observing returned SWs. The unknown SW response
“unknown_command” classification is vendor implementation dependent
and might vary from vendor to vendor, and even from CLA to CLA. How-
ever, it should be easily spotted as being the most common SW reply from
a specific (valid) CLA and random (thus most probably not implemented)
INS.

for ( all possible CLA ) {
for ( all possible INS ) {
SW = APDU_communicate_with_eSE(CLA, INS)
if ( SW != unknown_command ) {
// potential valid (CLA,INS) found
// optional next step:
P1_P2_Lc_Data_Le_brute_force(CLA, INS)

}
}

}

Code listing V.1: Simple APDU brute force pseudo code

Be warned that brute forcing valid APDU handlers might trigger an
unwanted effect in the eSE if a valid (CLA,INS) pair is hit with valid P1,
P2, Lc and Le values. One example could be a “factory reset” APDU, not in
need of any valid P1, P2, Lc or Le values. Thus unknown (CLA,INS) pairs
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with SW values indicating success, 0x9000, should be treated with some
caution.

Table V.2 in the Appendix lists eSE APDU handlers discovered through
reverse engineering the libese-grdg.so library, APDU brute forcing, and
confirmed by reverse engineering of the dumped eSE flash recovered later
in the attack (Section ‘Arbitrary flash and RAM read’). Knowing the avail-
able APDU handlers for the eSE allowed us to establish communication
with eSE using its own protocol. All APDU handlers could potentially be
exploited to have eSE perform unintended actions and is the most import-
ant attack vector for this eSE.

V.4.3 0-day Information Leak Oracles

Attacking a black-box entity like this eSE requires “blind” attack tech-
niques, as introduced in Section ‘Related Work’. Such attacks depend on
information leaks from the device (oracles). That is, an attacker needs a
way to know if an attack vector behaved unexpectedly, such as a crash.
Any observable execution specific information from the eSE could poten-
tially be a useful oracle. Potential oracles are e.g crash dumps, exception
handling, page fault addresses, execution timing, etc. Such oracles could
leak valuable information in the trial-and-error progress of a “blind” at-
tack. For an eSE this could mean leaking information on code addresses,
stack addresses, code content, data content, etc.

The physical separation of eSE makes such observation of (erro-
neous) behaviour challenging, reducing the existence of oracles. With a
stand-alone eSE there is no returned crash response, no exception handler
observation, no observable page faults, etc. Timing attacks can also be diffi-
cult, measuring execution time from outside the eSE. In our case we looked
for logical information leak oracles, where information could be obtained
through observable (mis)behavior by the normal logical interface.

We identified two information leak oracles that both play an import-
ant role in the attack.

Oracle 1 The first oracle is a common observable behaviour in black-box
implementations: the lack of response. This is often the result of a crash.
This is also the case with this eSE, which is expected to always reply with
a status word (SW). Thus any crashing APDU handler will result in no SW
being returned (a timeout error).

Oracle 2 An attacker can also try to look for logical information leak or-
acles in the ADPU handlers. Candidate APDU handlers are especially those
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0000 53 65 63 72 65 74 00 00 00 00 00 00 00 00 00 00
0010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0020 00 00 00 01 00 00 00 D0 00 00 00 00 00 00 00 00
0030 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 05
0040 01 22 49 31 20 00 14 28 20 00 27 C0 00 00 00 00
0050 20 00 14 80 FF FF FF FF 00 02 85 F9 20 00 14 80
0060 20 00 27 C0 00 02 85 8B 00 00 00 00 20 00 0B 50
0070 00 00 00 00 FF FF FF FF 00 01 04 7F 00 00 00 00
...

Figure V.2: eSE stack leak using the APDU_writeWeaver / APDU_readWeaver oracle

that read and write data. If any of these functions can be manipulated to
return more data than expected, leaked information can be used to mount
a ROP attack.

Candidates are all get, put, read and write functions in Table V.2
(Appendix).

The eSE handlers corresponding to libese-grdg.so functions
grdg_readWeaver and grdg_writeWeaver were identified as an informa-
tion leak oracle, when combined. We could not use the libese-grdg.so
functions grdg_readWeaver and grdg_writeWeaver directly because of
checks performed by the library before submitting the APDU to the eSE, so
we re-implemented these REE functions. Our chip_breaker tool contains
new versions of grdg_write-/readWeaver named chip_breaker_write-
/readWeaver. We call the corresponding eSE APDU handlers APDU_write-
/readWeaver. One implementation of these two eSE ADPU handler func-
tions can be found in the IWEA image in FW_dev (Appendix, Table V.1).
These eSE handler functions could together become an oracle in the fol-
lowing way: The eSE APDU_writeWeaver receives two buffers of data from
chip_breaker_writeWeaver: CHALLENGE and SECRET.
APDU_readWeaver would send back a SECRET buffer from the eSE iff the
caller submitted a matching CHALLENGE, written to on-board storage with
APDU_writeWeaver. The oracle revealed itself by manipulating a SECRET
length of >32, as this seemed to be a fixed length used inside the eSE. The
SECRET size variable sent is only one byte, so SECRET length can be in the
interval >1 and <256. Thus APDU_readWeaverwould return a SECRET buffer
with up to 256 bytes of data. This leaked valuable stack data.

A stack leak from this oracle can be seen in Figure V.2.
Thus we had two information leak oracles: lack of APDU response if

the eSE crashes (Oracle 1) and a stack leak from
APDU_writeWeaver/APDU_readWeaver (Oracle 2).

The Oracle 2 stack leak in Figure V.2 gave us valuable information,
indicating memory pointers at offsets 0x44 (0x20001428),
0x48 (0x200027c0), 0x50 (0x20001480), 0x5c (0x20001480), and so on.
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Keeping in mind this is ARM BE8, memory pointers are 32 bit big-endian.
This makes these point to memory locations all in the 0x2000xxxx range.
Further, code pointers can be found at offsets 0x58 (0x000285f9), 0x64
(0x0002858b), 0x78 (0x00010423), and so on. The reason is that they can
all be interpreted as 32-bit ARM BE8 THUMB mode addresses, where the
least significant bit (LSB) is always 1 to indicate THUMB mode to the pro-
cessor. These code pointers are POP’ed from the stack during a typical ARM
THUMB function epilogue: POP {PC}.

The leaked addresses gave valuable information both for further re-
verse engineering efforts and for exploitation.

V.4.4 0-day Vulnerability Discovery and Exploitation

Oracle 2 is crucial for both vulnerability discovery and revealing inform-
ation to further understand the attack vectors, but more importantly to
reveal information needed for successful exploitation, revealing memory
addresses for use in for example a ROP attack.

Oracle 2 was further developed by submitting larger SECRET buffers
to APDU_writeWeaver, and not only to manipulate the returned size in
APDU_readWeaver. Submitting a SECRET buffer larger than 84 bytes led to
Oracle 1 activating with no reply from the eSE. This indicated a crash and
we assumed from the leaked stack contents in Figure V.2 that we were
overwriting important stack pointers. However, since Figure V.2 shows
the leaked stack from APDU_readWeaver, this did not necessarily match
the stack of APDU_writeWeaver. Without knowledge of APDU_writeWeaver
code, we could now implement a simple brute force attack for
secret[84:88] based on the assumption that this was a code pointer
and not a data pointer. If this was the case, there should be at least
one address that responds with a SW, indicating an attacker controlled
ROP. The leaked stack from Figure V.2 already gave valuable ranges for
brute forcing. Having access to the IWEA code image extracted from FW
_dev, this step can also be solved by reverse engineering the eSE APDU
handlers APDU_writeWeaver and APDU_readWeaver. We manually estim-
ated the stack use by both eSE handlers and adapted to any changes
between the two. This enabled us to correctly guess the stack layout of the
APDU_writeWeaver function based on observation of the APDU_readWeaver
stack leak.

Analysing the trigger of Oracle 1 showed that
APDU_writeWeaver suffered from a standard stack buffer overflow [53],
enabling a full overwrite of the IWEA slot storage (SECRET + FOOTER) and
then APDU_writeWeaver stack data. Figure V.3 shows a simplified view of
the effect of the buffer overflow: The first 32 bytes are written to the normal
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Figure V.3: Buffer overflow in eSE APDU_writeWeaver handler

SECRET buffer. The next 36 bytes overwrite the FOOTER and the next 16
bytes overwrite values of registers R4-R7 stored on the stack. Finally, the
next 4 bytes overwrite the stored LR register, which will get POP’ed into
PC when APDU_writeWeaver returns. This leads to the now well known
subversion of control flow and could be used for a ROP attack.

Arbitrary flash and RAM read

The APDU_writeWeaver buffer overflow can be used to read flash and RAM
memory by locating a special ROP gadget that takes an attacker controlled
address as input and will return 16 bytes. The ROP gadget in Listing V.2
can be set up by crafting the stack overflow with correct values of R4-R7
which are identical to those stored on the stack for APDU_readWeaver (Fig-
ure V.2). This is due to the semi-static nature of the eSE running with a
100% predictable execution and memory layout. So we control R4-R7 and
PC, which is set to the address of the ROP gadget.
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Figure V.4: Full eSE flash layout

MOVS R0, #0x10 ; size to read
STR R7, [R4] ; Store address
STR R0, [R4,#4] ; Store size
MOVS R0, #0x90 ; SW1
STRB R0, [R4,#8] ; Store SW1
MOV R0, R5 ; SW2
STRB R5, [R4,#9] ; Store SW2
POP {R1-R7,PC} ; pop and return

Code listing V.2: ROP gadget for arbitrary flash and RAM read

This simple ROP gadget can be used to read the full flash and RAM
of the eSE by setting the R7 to the address to read 16 bytes from, and
iterate. Indeed, we used this ROP gadget to read both the complete eSE
flash and RAM. The resulting layout of the dumped 252K eSE flash can
be seen in Figure V.4. The code image names, 0-8, are matched with the
corresponding image names from the FW file FW_dev. The names of the
secure storage data images, 9-12, are based on reverse engineering code
images and their use of various secure storage addresses.

Arbitrary code execution

The APDU_writeWeaver buffer overflow can even be used to execute at-
tacker provided code. As there is no NX or other “no execute” protection of
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the eSE stack memory, we can simply execute supplied shellcode. Embed-
ding ARM code in the SECRET buffer and setting the PC to this stack address
will execute arbitrary attacker controlled code in the eSE. The address of
this stack buffer was located by using the ROP gadget (Listing V.2) to dump
the stack memory, in the range 0x20000000 - 0x200002800.

This provided us with full read and write control of the eSE HW flash
and RAM. All code and secure storage from Figure V.4 could thus be read
and written to. The use of this exploit is demonstrated in Section ‘Attack
Capabilities and AES Key Exposure’ and Section ‘Attack Implications’.

Our developed chip_breaker tool fully implements the exploit of this
vulnerability, executing any provided shellcode on the eSE processor.

Persistence

The code images BOOT, CORA, CORB, CRPT, SNVM, and IWEA are all stored
unencrypted and unsigned on the eSE flash. The only integrity checks per-
formed on any image after flash write (as part of a FW update) are simple
CRC32 and SHA256 hash verifications. These hashes are also stored on
the eSE flash. This means that we can freely modify any code image on
the flash and simply update the corresponding integrity check hashes. This
means that the eSE has no root-of-trust and there is no secure boot present.
The consequence is that there is no way the eSE can verify any code stored
on the eSE flash during boot, where the eSE starts executing on-board
ROM before continuing execution of BOOT. This BOOT image is writable by
us, without any signature verification, and this completely breaks the code
trust of the eSE.We confirmed this by developing awriteflash shellcode that
was capable of modifying any code image. These changes were persistent
across reboot of the device and thus reboot of the eSE. This shellcode was
tested with our chip_breaker tool.

V.4.5 Attack Capabilities and AES Key Exposure

With the full dumping of eSE flash (Section ‘Arbitrary flash and RAM read’),
all eSE secure storage is now readable to us (data images 9-12 in Fig-
ure V.4). Also, full reverse engineering of the eSE images BOOT, CORA and
CORB is now possible. These images are not encrypted on the eSE flash,
which suggests that they are decrypted as part of the FW update process.
This turned out to be performed with an embedded eSE AES key and ini-
tialisation vector (IV) embedded in the dumped BOOT and CORA images.
As this key is now exposed by our attack, any attacker with knowledge of
this key can decrypt any previous, and future, FW updates for the eSE. We
verified this by decrypting the BOOT, CORA and CORB images in the FW_dev
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FW file (Appendix, Table V.1). Updating this pre-shared AES key and IV
can thus not be done by supplying a new eSE FW update file, as part of a
normal over-the-air (OTA) phone FW update, as this would leak the new
key to an attacker already aware of the present one. This update can only
be done by a secure update mechanism, such as physically attaching to the
eSE HW at a secure vendor site.

Although our attack has fully compromised the security of the
S3K250AF eSE HW, our research is by no means exhaustive. More eSE
FW security vulnerabilities might exist, including the previously encrypted
eSE images, now available for vulnerability research. Our research did not
evaluate any side-channel attacks and such vulnerabilities might also exist,
as our research identified non-constant time execution functions in the eSE
FW. One example is the data dependent execution of the internal memcmp()
functions, used for example in authentication functions (grdg_readWeaver
in Table V.2). As the S3K250AF, containing the exposed vulnerability, can
be flashed with arbitrary researcher provided code, it is an ideal research
platform for future research of the eSE HW and its resistance against side-
channel attacks.

V.5 Attack Implications

Our full compromise of the eSE has devastating effects on the system se-
curity of affected devices. All eSE security features are made moot by our
attack, as an attacker can read and write arbitrary flash and RAM, in ad-
dition to making persistent changes to any code and data stored in the
on-board flash. This is trivial due to the eSE lacking security features like
NX, ASLR, Stack canaries and secure boot. All code in the eSE is running in
a single thread of execution, with no privilege separation. This means that
a single compromise, like that demonstrated by our attack, gives access to
all code and data from both flash and RAM.

In this section we demonstrate a confirmed example of a security
feature that fails as a consequence of our attack. We note that Android
Keymaster and device attestation also seem to be affected by a vulnerable
eSE as both features seem to rely on eSE security features. However, we
have not confirmed this.

The following example has been implemented and verified as work-
ing.
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V.5.1 Android User Screen Lock Brute Force

This section demonstrates how to recover the user screen lock credential.
The user screen lock credential is used, together with the encryption key
material contained in the eSE secure storage, to reproduce the Credential
Encrypted (CE) storage encryption key needed for Android’s file-based en-
cryption (FBE) [54]. The CE storage contains most of the sensitive user
data on the device and thus the eSE is crucial in protecting the needed
key material. Recovering the screen lock credential is therefore mandatory
to facilitate digital forensic acquisition (DFA) of powered-off devices and
devices seized before the user has unlocked the device at least once since
power on, known as the before-first-unlock (BFU) state.

The Android user screen lock protection supports the use of a
“weaver” hardware abstraction layer (HAL). Google has documented this
HAL [55]. The documentation states that the weaver provides secure stor-
age for secret values and that these may only be read if a correspond-
ing key, or challenge, has been provided. The S3K250AF eSE provides the
weaver functionality in the IWEA image (Figure V.4), accessible through the
grdg_writeWeaver and grdg_readWeaver functions in
libese-grdg.so (Appendix, Table V.2). With our attack in Section ‘The At-
tack’ an attacker can read of all the eSE secure storage, including storage
belonging to IWEA (image 11 in Figure V.4). This means that sensitive IWEA
storage belonging to the Android user screen lock protection can be read
by an attacker without knowledge of the corresponding challenge. A frag-
ment of the Google screen lock verification code [56] running on affected
test devices can be seen in Listing V.3.

// Weaver based user password
...
result.gkResponse = weaverVerify(weaverSlot, passwordTokenToWeaverKey(

�→ pwdToken));
if (result.gkResponse.getResponseCode() != VerifyCredentialResponse.

�→ RESPONSE_OK) {
return result;

}
...
applicationId = transformUnderWeaverSecret(pwdToken,result.gkResponse.

�→ getPayload());

Code listing V.3: unwrapPasswordBasedSyntheticPassword() code

A user-entered credential, a pattern, pin or password, is trans-
formed by a key derivation function (KDF) into pwdToken, which
again is transformed into a CHALLENGE by passwordTokenToWeaverKey().
This CHALLENGE is verified by the eSE using grdg_readWeaver. If
the eSE successfully verifies the CHALLENGE, weaverVerify() will re-
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turn the corresponding eSE stored SECRET, accessible through the call
result.gkResponse.getPay-
load(). Both the pwdToken, derived from CHALLENGE, and SECRET are need-
ed in the screen lock verification. These are also used to unlock the en-
cryption keys used for the on-device file-based encryption (FBE) of user
data [54].

As we can bypass the weaverVerify verification step and instantly
retrieve the correct CHALLENGE and SECRET from the eSE, off-device brute
force of user credentials can be achieved by performing a brute force at-
tack outlined in Listing V.4. The passwordTokenToWeaverKey() simply pro-
duces a SHA512 hash and KDF() is currently scrypt(). The salt can be
retrieved from the on-device file /data/system_de/0/spblob/<id>.pwd,
available under the same attack assumptions as before (Section ‘Attack As-
sumptions’).

if (passwordTokenToWeaverKey(KDF(passcode_candidate, salt))[0:32] ==
�→ eSE_CHALLENGE ) {

// correct passcode found
}

Code listing V.4: Simplified screen lock brute force pseudo code

We successfully implemented a simple CPU based python version of
this off-device screen lock brute force attack, and the results showed that
an attacker could recover any four digit pin or 3x3 pattern in less than
1 h on a modest dual-core laptop. This attack could of course be highly
optimised on dedicated HW to drastically improve performance.

With the user screen lock credential recovered by this brute force
attack, we gain full access to the contents of the mobile device. The cre-
dential can be used to authenticate and retrieve FBE keys protecting user
data. This fully breaks the confidentiality of the device and the encrypted
user data.

V.6 Discussion

Our attack shows how recent (and not so recent) research in attack tech-
niques ([33, 35, 36]) can be adapted to new areas, in this case the eSE HW
platform. This improves the probability of success by minimising the ne-
cessary knowledge of the target eSE HW and FW. Though the information
gathering phase of our attack revealed some unencrypted FW code that
could be analysed for security vulnerabilities, this is not a mandatory step.
Thus our attack methodology, using information leak oracles from the eSE
logical interface, can be applied with no prior knowledge of FW contents.

Our attack demonstrates a complete compromise of the eSE integ-
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rity, confidentiality and availability, thus all the main security goals for the
eSE CC EAL (SG1-SG3) in Section ‘CC EAL’ are violated. A single software
security vulnerability is enough, and a single attacker can with limited
resources easily discover, and exploit, this vulnerability. Our research re-
quired nothing but access to commercially available (COTS) test devices
and publicly available information. Vulnerability discovery and exploit de-
velopment work were done by a single person in approximately one man-
month’s worth of time, with no special tools required. Our attack does
not require physical access to the eSE and can therefore be performed re-
motely, over-the-air, needing only a privilege escalation vulnerability to be
able to communicate via the logical interface of the eSE. This shows that
the threat model from Section ‘eSE Threat Model’ does not match this eSE,
as physical control is not required to perform our attack.

Restoring the eSE CC EAL (SG1-SG3) security goals (Section ‘CC
EAL’) and trust through an eSE FW update seems infeasible, due to the
lack of a root-of-trust and secure boot. The eSE can simply not validate
its own code as there does not seem to be any on-board cryptographic
integrity checks. The only integrity checks performed are simple CRC32
and SHA256 hash comparing. These hashes can be updated by an attacker
and thus have no effect on security. In addition, integrity verification of an
installed eSE FW cannot be performed by the host system (REE), as the
black-box design of the eSE leaves no way to perform external validation
of the installed eSE code. A stealthy backdoor implementation by an at-
tacker could be very hard to reveal, making it challenging to detect if the
eSE FW has been tampered with. Our discovered vulnerability thus com-
pletely breaks any forward trust in the eSE HW. Our results should make
users question the validity of this CC EAL 5+ certification.

Furthermore, the exposure of the AES key used for encrypted FW up-
dates of the eSE secure OS and boot images, makes updating this key us-
ing normal OTA FW updates difficult, if not impossible, as an attacker with
knowledge of this AES key can decrypt any attempt of additional secret
sharing with the eSE, such as replacement of the AES key. The effect is
that Samsung can no longer exchange confidential information with the
eSE HW through FW updates, exposing any encrypted parts of previous
and future FW updates (Section ‘Attack Capabilities and AES Key Expos-
ure’). Samsung is of course free to change the key on newly manufactured
devices, but this key cannot also be used in updated firmware for already
shipped devices, as that would leak it.

To be able to regain trust in the eSE HW on already shipped devices,
the authors believe the only secure option is a physical replacement of the
eSE HW which is probably unreasonable.
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V.7 Conclusions and Future Work

We have presented a remote attack on the S3K250AF eSE HW, using our
discovered 0-day security vulnerability, exploitable through the logical in-
terface. The attack contributes to the development of new DFA methods of
affected devices. The attack was done by building on attacks from other se-
curity research areas and applying this to the physically separate eSE HW
platform. The eSE HW is designed to withstand high level, and resourceful
attackers, relying on a small code base, mostly unavailable to attackers,
and resistance to side-channel attacks. Our vulnerability discovery and ex-
ploit development required no special tools or access, and the complete
attack was developed with very limited resources, far from “state actor”
capabilities. The attack enables an attacker to execute arbitrary shellcode
to facilitate both reading and writing of both code and data, in both flash
and RAM. This completely breaks all the eSE security goals stated in its CC
EAL certification, and also enables an attacker to install hard-to-discover,
persistent, backdoors and modifications to the eSE FW. Regaining trust in
this eSE HW seems challenging, with physical replacement being the only
realistically secure option. As this eSE HW is soldered to the PCB in the
mobile device, such replacement is not trivial.

We conclude that one simple exploitable buffer overflow vulnerability
enables full attacker takeover of the eSE HW, permanently.

Our attack facilitates digital forensic acquisition of devices in a before-

first-unlock (BFU) state, with no prior knowledge of user credentials. With
the aid of a more readily available privilege escalation vulnerability in An-
droid, this becomes a complete solution for digital forensic acquisition of
affected devices.

Our attack demonstrates the gap between the intended and achieved

security level of this state-of-the-art eSE HW utilised by a major Android
mobile phone vendor. The CC EAL 5+ certification gave no guarantee that
the eSE was free from exploitable security vulnerabilities, only that some
unidentified amount of effort had been made in an attempt to prevent
them. We argue that the trust in the value certifications such as CC EAL
provide, needs to be evaluated carefully on a case-by-case basis. Our attack
also shows that such certifications should not discourage research into new
DFA methods based on offensive techniques.

Our research is not exhaustive, and further attacks, including side-
channel attacks, are left for future work. Further research is needed to
reveal if other physical separation black-box solutions fall to similar attacks
as the ones demonstrated in this research. A new testing methodology for
logical interfaces of black-box HW can arise from our work, to potentially
improve the CC Advanced methodical vulnerability analysis (AVA_VAN).
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We believe our research further emphasises the challenges inherent
in trusted computing, and that it demonstrates how fragile the trust put in
such solutions is, whether this trust comes from certifications like CC EAL,
or not.
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Samsung is informed of the vulnerabilities discovered in this research and
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professional cooperation.
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V.9 Appendix

APDU primer

ISO/IEC 7816 is an international standard for smart-cards. This standard
is divided into 15 sub-parts specifying different aspects of smart-card char-
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acteristics. ISO 7816-4 [59] describes security aspects, and commands to
communicate with smart-cards. This includes a protocol specification, us-
ing what’s called an “Application Protocol Data Unit” (APDU). An APDU
defines the structure used to send/receive commands, and data. All com-
munication is of the request–reply form, and is always initiated by the host.
The smart-card never initiates communication. An APDU consists of a man-
datory 4 byte header with the elements: CLA, INS, P1 and P2, each one
byte long. The CLA is referred to as the “class”, often tied to the logical
handler of the INS: the “instruction” or simply command. Inter-industry
commands (INS) are defined in CLA 0. ISO 7816-4 [59] defines a whole
range of standard INS commands, all belonging to the CLA 0. Vendors are
free to implement vendor specific commands using for example CLA 0x80.
P1 and P2 are parameters for use in the specific (CLA,INS) pair and can
thus be viewed as normal function parameters to the (CLA,INS) handler
on the smart-card.

Additional APDU fields are optional, giving the possibility of append-
ing any necessary data required by the specific (CLA,INS) pair: Lc, DATA

and Le. Lc defines the size of appended DATA, and Le is the size of the
expected data returned from the smart-card.

The smart-card is expected to reply with a valid return value, SW

(Status Word). The SW is a 16-bit value consisting of bytes SW1 and SW2,
respectively. This reply is mandatory even if the requested (CLA,INS) pair
is not implemented by the smart-card. SW is used to give informative error
values back to the caller. Although the ISO 7816-4 defines some stand-
ardised error codes, these can be vendor defined for all proprietary CLA
values. If the (CLA,INS) successfully completes the request, it is expected
to return the SW value 0x9000 (SW1 = 0x90, SW2 = 0x0).
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Breaking Android Security by
Abusing Implicit HW Trust

G. Alendal, ‘Breaking Android Security by Abusing Implicit HW
Trust,’ In submission

Abstract

Hardware security modules (HSM), in the form of Embedded Secure Ele-
ment (eSE) HW, are becoming prevalent in modern mobile phones running
Android. This eSE is set to protect the most sensitive data, a.o. the Creden-
tial Encrypted (CE) storage encryption key material, used in File Based
Encryption (FBE). The CE storage contains most of the user data. In Di-
gital Forensics, this eSE is mandatory to attack to be able to access sensitive
user data, without the knowledge of the user screen lock pin/pattern/pass-
word. This stand-alone eSE is designed to withstand attacks from a fully
compromised system, as well as physical side-channel attacks.

An attack has been published on one such specific eSE HW, embedded
in premium Samsung mobile models. This attack on the eSE IC, named
S3K250AF, required the aid of a “rooted” device to be in position to exploit
the described eSE security vulnerability. Thus, the attack assumed access
to an additional security vulnerability to gain such elevated execution, to
be able to perform the eSE attack and a brute force attack on the unknown
user lock screen credentials.

In this paper we present an alternative attack, to remove this “root”
assumption, only needing one eSE security vulnerability to be able to per-
form a brute force attack. We achieve this by using the original eSE security
vulnerability exploitation in a different way, to remove the brute force pro-
tection mechanism built in the eSE, to be able to mount a brute force attack
on the user screen lock externally, without compromising any other part of

177

This paper under submission and is therefore not included.
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