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Abstract
The ongoing transition to a more sustainable power system introduces
challenges, but also opportunities. From the perspective of owners of
hydropower assets, the rapidly transforming power sector gives rise to
complex large-scale stochastic optimization problems that need to be
formalized and solved. The aim of this thesis is to develop optimization
models and methods for sustainable investment and operations in
hydropower plants.

Investment and operational planning in hydropower plants is affected
by several uncertain factors and numerous physical constraints. Various
aspects are considered in the papers of this thesis, and each paper
contributes with novel insights. In Paper I, we study maintenance and
renewal of hydropower facilities under price uncertainty. In Paper II,
we study operational planning under a joint model for the evolution
of local inflow, availability of resources, i.e. system reservoir levels,
and market prices. Paper III investigates the impact of short-term
operational flexibility on long-term upgrade decisions. Finally, Paper
IV addresses long-term risks associated with renewal and upgrading of
existing hydropower facilities under limited long-term market information.

To represent, solve, and analyse the different aspects considered in
the papers, we apply well-known tools from operations research and
finance. In particular, we develop stochastic models for the evolution
of exogenous factors which governs decision making. Moreover, we
formulate the planning problems as Markov decision processes (MDPs),
which is a framework for sequential decision making under uncertainty.
Finally, based on structural properties of the MDPs, we employ real
options analysis to obtain closed-form solutions, or approximate dynamic
programming (ADP) for solving the MDPs near-optimally. To assess the
quality of ADP solutions, we compute bounds for the optimal MDP value
using established theory. Overall, the papers in this thesis contribute
to the areas of finance and operations research by developing models,
algorithms, and theory for solving large-scale optimization problems, with
a specific focus on hydropower applications.
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Chapter 1

Introduction
In this chapter, we discuss business challenges and provide motivation
for the research. Section 1.1 briefly explains the role of hydropower
in electricity markets and introduces the business challenges. Section
1.2 presents the aims and objectives of the thesis. Section 1.3 provides
additional information about the PhD.

1.1 Motivation and business challenges

Hydropower plants have generated clean and affordable electricity for
many decades and are essential to a carbon-free and reliable electricity
system. As the European Union and countries around the globe commit to
net zero carbon emissions by 2050 (REN21, 2021), intermittent renewable
energy sources, such as wind and solar, are expected to take an increasing
part of power supply systems. Hydropower plants provide flexibility and
storage to support the integration of a higher share of non-dispatchable
renewable energy sources needed to meet climate goals. However, many
hydropower plants rely on old technology from the large-scale hydropower
projects in the mid-20th century (IRENA, 2015; EIA, 2017), as seen in
Figure 1.1. The figure shows the distribution of hydropower capacity in
Norway and the United States by the initial operating year. In addition
to an aging hydropower fleet, most of the economically viable hydropower
potential in developed regions, such as Europe, Canada, and the United
States, is already exploited. Upgrading existing hydropower plants may
therefore be more profitable than building new ones. Thus, the need for
modernization of hydropower plants is growing.

Investment in renewal and upgrading projects of hydropower facilities
is costly. To support these decisions, accurate and reliable mathematical
models and methods for the calculation of the operational revenue
associated with investment opportunities are crucial. Moreover, economic
losses associated with unplanned maintenance can be substantial. To
avoid the consequences of unplanned maintenance, owners of hydropower
facilities often have several performance-enhancing activities under
consideration. This may include tasks for improving existing assets
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Figure 1.1: Hydropower capacity by initial operation year in United
States and Norway. Data is provided by the U.S. Energy Information
Administration (EIA, 2021) and the Norwegian Water Resources and
Energy Directorate (NVE, 2021).

to extend the useful economic life, e.g. through surface treatment and
hard coating of existing turbines, or renewal and upgrades where old
components get replaced with new ones, possibly having higher efficiency
or capacity (Goldberg and Lier, 2011).

In general, investment projects and plant operations interact and
should therefore be coordinated. E.g. if renewal entails increased
production capacity, a higher cash flow may be attainable by changing
the operational pattern. Similarly, if production assets are partially
damaged, the producer can deviate from the prevailing operating pattern
to mitigate the damaging effects. From a quantitative business analysis
point of view, in a competitive market-based setting, owners of hydropower
assets typically aim at finding a coordinated schedule that maximizes
the market value of existing and potentially new assets (Wallace and
Fleten, 2003). This includes the estimation of the inherent flexibility
to dynamically take profit-maximizing decisions in response to arriving
exogenous information. Such information may be market-related, i.e.
electricity prices, or firm-specific, e.g. inflows to reservoirs and signals
about the technical state of plant components. Moreover, there are
economic risks associated with undertaking large investment projects
in hydropower, which are difficult to quantify. This is partly because

2



Aims and objectives

the projects are irreversible and typically expected to last far beyond
the horizon for which there exist electricity derivatives for controlling
undesired risks.

1.2 Aims and objectives

This thesis aims at imparting knowledge about sustainable investment and
operational planning in hydropower. Questions that we address include:

• How to coordinate the planning of a portfolio of possible
performance-enhancing activities for deteriorating production assets
under price uncertainty?

• Can the seasonal production schedule of a hydropower producer be
improved by explicitly taking into account the co-dynamics between
the level of available resources and prices in electricity markets
dominated by hydropower?

• What is the value of short-term hydropower flexibility and how does
it affect long-term capacity installments?

• How to make decisions regarding plant renewal and capacity
investment under limited long-term information about market
prices?

The thesis consists of four papers. The papers consider different aspects
and aim at providing insights to the questions above. Paper I considers
an hydropower operator of machinery with deteriorating performance,
having the choice between performance-enhancing activities of different
scales under price uncertainty. Paper II examines whether the production
schedule of a local producer can be improved by taking into account
that system prices are negatively correlated with the level of available
resources in the system as a whole, which again is partly determined by
the local producer’s resources. Paper III studies capacity investment in
hydropower and investigates how long-term investment decisions depend
on medium-term capacity allocation and short-term capacity bids that
respond to short-term price fluctuations. Paper IV proposes a framework
for decision making for hydropower operators under limited long-term
market information.

3



1. Introduction

1.3 Project context

This PhD is a part of the research center HydroCen funded by
the Research Council of Norway. The main objective of HydroCen
is to enable the Norwegian hydropower sector to meet challenges
and discover opportunities in the constantly evolving energy system.
HydroCen consists of four work packages and the research areas include
hydropower structures, turbine and generators, market and services, and
environmental design. Within the HydroCen context, the main objective
of the PhD is to develop models and methods for the calculation of future
revenues for hydropower to support decisions for optimal investment in
upgrading and expansion projects.

The remainder of this thesis is organized as follows: Chapter 2 provides
the necessary background material. We provide a reference formulation
that includes important aspects of the business problem and a description
of the methods applied in the papers. Chapter 3 summarizes the papers
and outlines their contributions. Chapter 4 contains concluding remarks.
The four papers that constitute the thesis, Papers I-IV, then follows.

4



Chapter 2

Background
This chapter presents relevant academic literature and discusses modeling
considerations and methodologies. We first present an overview over
important features that affect hydropower planning and how these
features can be modeled and calibrated. We then present a mathematical
representation of the decision problem of coordinating investment and
operations. This representation is meant to serve as a reference that
accommodates all elements from the papers in this thesis. Finally, we
present and discuss possible solution approaches.

2.1 Modeling uncertainty

There are several uncertain factors that affect hydropower planning. Table
2.1 gives an overview of important uncertain factors categorized into
marked-related factors and firm-specific factors. Moreover, the sources
of uncertainty are classified into short-term and long-term uncertainty.
What separates long-term and short-term uncertainty is not well defined.
However, changes in long-term factors are typically changes that are
expected to last, e.g. market expectations of technology development,
consumption growth, climate, etc. Conversely, changes in short-term
factors are typically temporary, e.g. this year’s total inflow does not tell
much about the next year’s inflow. The uncertain factors need to be
represented appropriately to be applicable for sequential decision making.
Typically, this involves the specification of a stochastic process and the
estimation of its parameters from an empirical sample.

In the long run, there is uncertainty about the market structure,
fuel prices of alternative power generation sources, consumption growth,
technology innovation for power production assets in general, climate
change, and political and regulatory effects, among other things.
Expectations of these aspects can be represented by a geometric Brownian
motion (GBM) with drift, which is a common model for the evolution of
long-run energy prices (Pindyck, 1999). Price deviations from the long-
run price expectation typically stem from short-term changes in demand
which may be caused by intermittent supply disruptions and variations in
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2. Background

Table 2.1: Uncertain factors that affect hydropower planning.

Market-related Firm-specific

Short-term
Short-term changes in demand
Intermittent supply disruptions

Weather variations

Inflow to reservoirs
Unplanned maintenance

Long-term

Market structure
Fuel prices

Consumption growth
Interest rates

Political and regulatory effects
Climate change

Technology developments

Investment costs
Climate change

Technology improvements
Efficiency

weather. These effects can be alleviated by market participants reacting
to changing conditions by modifying their inventory or reservoir levels.
Therefore, such price deviations are expected to revert to the long-term
price expectation, which makes a geometric Ornstein-Uhlenbeck process
suitable for modeling short-term deviations (Schwartz and Smith, 2000).
More sophisticated models for energy prices that better comply with
empirical evidence exist, see e.g. Gambaro and Secomandi (2021).

In addition to market-related uncertainties, the hydropower producer
faces firm-specific uncertainties, such as the inflow at the producer’s
location. Inflows often possess strong seasonal variations, serial
correlations, and positive skewness (Prékopa and Szántai, 1978; Stedinger,
1980). However, inflow characteristics are also strongly dependent on the
location where the producer is located. Other important firm-specific
uncertain factors are the efficiency and risk of failure and unplanned
maintenance. Both these aspects are typically not directly observed,
but can be measured occasionally. Measurement data for the state of
production assets is often scarce, which makes the specification and
calibration of a model difficult. Nevertheless, some general characteristics
apply, such as deterioration with time if no performance-enhancing
activities occur. Moreover, the deterioration is often slow, but the impact
in the event of failure is substantial.

In the papers of this thesis, we specify the uncertain factors as follows:
All papers take a business perspective in restructured markets, assuming
that firms are price-takers, which means that the price is exogenously
given and that individual firms can not influence the market price by their
decisions. In Paper I we apply the GBM for long-term price dynamics.
In Papers III and IV we use the two-factor model by Schwartz and Smith
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Modeling uncertainty

(2000) for the evolution of prices. In III and IV we specify a Gaussian
process for inflow, similar to Gjelsvik et al. (2010), and also commonly
used by practitioners. The choice of model is based on assessment of
model fit to the local inflow data sets. The inflow model accounts for
serial correlation by specifying a first order autoregressive process (AR-1)
for normalized inflow. In Paper II we propose a modification of the
two-factor price model in Schwartz and Smith (2000) that allows for
additive price movements, and time-dependent cross-dependency with the
resource availability of market participants. Our proposed model consists
of a combination of linear time series models, including AR-1 processes,
linear regression with AR-1 error structure, and exponential smoothing.
We refer to Makridakis et al. (1998) for a survey on time series models.
Regarding efficiency deterioration, we specify a deterministic function of
time in Paper I.

2.1.1 Model calibration and risk-neutral valuation

After a stochastic process for the uncertain factors has been specified, its
parameters need to be estimated from real data. We calibrate the price
model to futures on electricity. By doing so, we can apply the risk neutral
valuation approach (RN). This approach is referred to as contingent
claims analysis in Dixit and Pindyck (1994). In a multistage setting,
assuming that the markets are complete and arbitrage free, assets can
be valued by replicating return and risk characteristics through dynamic
trading in the underlying risky asset and a risk-free asset (Duffie, 2010).
Considering financial derivatives, essentially this means that there exists a
unique arbitrage-free price of a derivative that is the expected discounted
payoff under the risk-neutral probability measure (Staum, 2007). This is
sometimes also referred to as the equivalent martingale measure. Under
this measure, the expected return on derivatives equal the risk-free interest
rate. For real options applications in energy, assets can be valued similarly,
where futures on the energy source are considered as the underlying. The
asset market value can then be estimated by taking the expected sum
(over the asset horizon) of a risky cash flow under a distribution where
futures price dynamics are martingales, discounted at the risk-free interest
rate (Nadarajah and Secomandi, 2021).

In reality, markets are incomplete, which means that some payoffs
cannot be replicated by dynamic trading. In particular, managing an
operational asset may depend on risk factors that are not traded, e.g. firm-
specific inflow and failure risk. Mathematically, if markets are incomplete,

7



2. Background

then there exists a set of equivalent martingale measures for a given
statistical measure of exogenous factors, as opposed to a unique risk-
neutral measure under market completeness. Practically, this means the
following: By using any of these measures in RN valuation of a real asset
that depends on nontraded risks, the resulting value of the real asset is
one that lies within the interval of values that do not create arbitrage
opportunities by trading the asset and underlying futures on the energy
source (Nadarajah and Secomandi, 2021). This implies that RN valuation
still is useful for valuing real assets.

An alternative to RN valuation is dynamic discounted cash flow
valuation (DDCF), which relies on the statistical measure, as opposed to
an equivalent martingale measure. This approach is referred to as dynamic
programming in Dixit and Pindyck (1994). DDCF valuation addresses
risk differently than the RN paradigm. As explained above, in the RN
paradigm, risk is accounted for by adjusting the probability distribution,
resulting in an equivalent martingale measure where risky cash flows can
be discounted at the risk-free rate. By contrast, The DDCF approach
incorporates the risk premiums required by shareholders by adjusting
the discount rate (Smith and McCardle, 1999). In theory, this makes
discounting difficult, since the discount rate depends on the time when
the cash flow occurs and the corresponding realization of uncertainties.
Still, in practice, the discount rate should reflect the weighted average
cost of capital (WACC).

For calibration of risk-neutral dynamics of prices, historical forward
curves are needed. For electricity contracts, whose payoff is based on
the average value over some period of time, smooth synthetic forward
curves must first be constructed based on historically traded contracts
(Fleten and Lemming, 2003; Benth et al., 2007). Using the synthetic
forward curves, the estimation of two-factor price models typically involves
Kalman filtering, to estimate latent long-term and short-term states, and
maximum likelihood estimation of predictive distributions for futures
prices seen from the day they are traded (Schwartz and Smith, 2000).
We refer to Welch et al. (1995) for an introduction to the Kalman filter.
Such forward-looking estimation is only possible when financially traded
contracts with delivery at a future point in time exist. For nontraded
risks, parameters of the stochastic process can be estimated based on the
history of observations, while individual risk preferences must be modeled,
see, e.g. Löhndorf and Wozabal (2021).

In Paper I, we estimate model parameters based on expert knowledge
and implied methods. Furthermore, we apply DDCF using WACC as the

8



Hydropower planning MDP

discount rate. In the other papers we use the RN paradigm and consider
planners that aim at maximizing the market value of their assets. In
Paper III and IV we estimate the parameters by maximum likelihood
and Kalman filtering using forward prices from synthetic forward curves
(Goodwin, 2020). In Paper II we develop a new model for incorporating
co-movements between firm-specific nontraded risks and forward prices.
We apply a hybrid estimation approach using both historical observations
and forward-looking data.

2.2 Hydropower planning MDP

Markov decision processes (MDPs) provides a framework for decision
making under uncertainty (Puterman, 1994). In this section, we present
a reference model which includes important features of the real-world
problem of operations and investments in hydropower plants, and combines
the aspects considered in the papers. Let T := {0, 1, ..., T − 1} denote the
set of time periods where T is the planning horizon. The MDP state at
stage t is partitioned into endogenous and exogenous components, denoted
st ∈ St and ωt ∈ Ωt, respectively. At stage t and state (st, ωt), the decision
maker chooses an action xt ∈ Xt(st, ωt) and receives reward rt(xt, st, ωt).
The endogenous state gets updated according to a specified transition
function f(xt, st, ωt), while the exogenous states gets updated according
to a stochastic process, independently of the stage t action xt. Stochastic
processes that govern the evolution of these factors were discussed in
Section 2.1. We denote by π ∈ Π a policy, which is a collection of stage
and state dependent decisions, which we denote by {Xπ

0 , Xπ
1 , ..., Xπ

T }. The
set Π is the set of feasible policies. Furthermore, we let sπ

t denote the
stage t endogenous state reached by following policy π. The decision
maker aims at maximizing the discounted accumulated expected reward
by acting according to π. The MDP can be formulated as

V (s0, ω0) = max
π∈Π

E
[ ∑

t∈T
γtrt(Xπ

t (sπ
t , ωt), ωt)

∣∣∣ω0

]
, (2.1)

where γ is the discount factor. The endogenous state consists of the
reservoir volume, capacity, and efficiency, st = (sres

t , scap
t , seff

t ). The
exogenous state is given by the price factors long-term equilibrium (LE)
and short-term deviation (SD), and inflow (I), ωt = (ωSD

t , ωLE
t , ωI

t). The
stage t decision vector contains generation, spill, capacity, maintenance
and renewal,

9



2. Background

xt = (xgen
t , xspill

t , xmain
t , xcap

t , xren
t ) ∈ Xt(st, ωt). The immediate reward

can be written as

rt(xt, st, ωt) =


C1 if xmain

t > 0
C2(xcap

t ) if xren
t > 0

g1(xgen
t , sres

t (xgen
t ); seff

t )g2(ωSD
t , ωLE

t ) otherwise
(2.2)

If neither maintenance nor renewal occurs, the immediate reward is
the product of generation quantity and price. The function g1(·, ·; seff

t )
describes the generation function. This function is typically concave in
reservoir volume, sres

t , and discharge, xgen
t , while seff

t determines the
optimum power output point of the turbine. This function will be
further described in the next section. The function g2(·, ·) describes
the transformation of the stochastic variables which determine the price.
These are often are modeled on log-scale, e.g. Schwartz and Smith (2000).
A cost is incurred when either maintenance or renewal is undertaken.
Typically, C2 is substantially higher than C1. If renewal occurs, the cost
also depends on the additional capacity installed.

We describe the endogenous states by separate functions f1, f2, f3. In
addition to representing physical constraints, such as energy coupling in
time, these functions determine the future benefits of choosing actions
xmain

t and xren
t , which entail immediate costs. The endogenous state

updates can be written as

sres
t = f1(sres

t−1, xgen
t , xspill

t , ωI
t) (2.3)

seff
t = f2(seff

t−1, xren
t , xmain

t ) (2.4)
scap

t = f3(scap
t−1, xcap

t ) (2.5)

We do not write these functions explicitly, but instead explain how they
can be specified. Transition (2.3) ensures the energy balance. The
reservoir volume at time t must be equal to the reservoir at time t − 1
minus discharge xgen

t and potential spillage xspill
t plus incoming inflow

which is some function of ωI
t. Transition (2.4) describes the evolution of

efficiency. The efficiency at time t is some function of the efficiency at
time t−1 adjusted by deterioration, either deterministic or stochastic, and
possible improvements coming from maintenance or renewals, xmain

t and
xren

t , respectively. Transition (2.5) describes capacity upgrades, which
ensures that more can be produced in each stage after renewal. The
stage-t feasible action set is defined by

Xt(st, ωt) = {

10
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sres
t ≥ Rlow (2.6a)

sres
t ≤ Rhigh (2.6b)

xgen
t ≤ min{sres

t , scap} (2.6c)

xgen
t , xspill

t , xcap ≥ 0 (2.6d)
xmain

t , xren
t ∈ {0, 1} (2.6e)

}.

Constraints (2.6a)-(2.6b) are the minimum and maximum reservoir
content, Rlow and Rhigh, respectively. Spillage is defined in the transition
(2.3) and ensures that (2.6b) is satisfied. Constraint (2.6c) ensures that
generation in any stage must be less than both the generation capacity
and the reservoir volume. Constraints (2.6d)-(2.6e) provide additional
constraints on the decision variables.

The MDP is intractable because of a high-dimensional state space,
which makes it difficult to evaluate the conditional expectations. Possible
solution approaches involve reducing the problem complexity, which in
some cases allows for analytic valuation, or searching for near-optimal
policies using approximate dynamic programming algorithms. This will
be discussed in Section 2.3. We first discuss some simplifications in the
next section.

2.2.1 Energy equivalent reservoir

In practice, hydropower producers need to allocate water in multiple
interconnected reservoirs in a watercourse. A power station is associated
with each reservoir, and each station may consist of several generation
units. In the formulation in the previous subsection and in the papers of
the thesis, we aggregate the reservoirs and generating units and perform
computations on an energy equivalent reservoir and power station. The
aggregation is explained in the nominal work by Arvanitidits and Rosing
(1970). This aggregation scheme has been applied to the Brazilian system
(Maceiral et al., 2018), and by Norwegian hydropower producers (Flatabø
et al., 1998), although the state-of-the-art today is to consider the more
detailed interconnected system of reservoirs and corresponding power
stations for hydro scheduling (Pereira and Pinto, 1991; Gjelsvik et al.,
2010). The use of energy equivalents simplifies the modeling, while insights
from the research in this thesis still are applicable to an interconnected
system of reservoirs, either by heuristic disaggregation schemes or by

11



2. Background

detailed modeling of individual reservoirs and power stations in the
watercourse.

A property of the MDP that should be noted is that without
maintenance, renewal, and failure, the optimal MDP value is concave
in the endogenous states and the action set is convex under certain
assumptions regarding the generation function in (2.2). The proof of this
property is provided in Paper II. This allows for effective solving of the pure
operational MDP, which will be further explained in Section 2.3. Generally,
the relation between discharge and power output, g1(xgen

t , sres
t (xgen

t ); seff
t ),

is nonlinear. The function is defined by the water head, i.e. reservoir
volume sres

t , which again depends on the discharge volume xgen
t . The

function is often concave in discharge volume xgen
t and reservoir volume

sres
t . Furthermore, the power output depends directly on the discharge,

whose function is determined by the turbine efficiency curves. In our
formulation, we let seff

t denote the optimum power output point. In the
papers of this thesis, we assume a constant generation function, which
means that the stage-t revenue is simply the product of the spot price and
the generation volume. The dependency of output and discharge volume
can straightforwardly be integrated in the MDP by approximating the
concave discharge function by a piecewise linear function which can be
added as constraints in the stage-t action set, which preserves the convexity
of the pure operational MDP. The dependency between the generation
output and reservoir volume, i.e. head variations, is more complicated to
integrate, as it leads to a non-convex optimization problem. Methods and
heuristics for handling this exists, see, e.g. Gjelsvik et al. (2010); Cerisola
et al. (2012), and Hjelmeland et al. (2018).

2.3 Solution methods

We employ different solution approaches in each paper. The choice
of solution approach can be guided by the MDP structure. In some
cases, analytical valuation is possible (Dixit and Pindyck, 1994), and if
not, computational methods are needed to obtain near-optimal policies
(Bertsekas, 2007; Powell, 2011). This section introduces the methods that
are used in the papers of this thesis.

2.3.1 Real options analysis

Real options analysis is a framework for valuing irreversible investment
opportunities under uncertainty (Dixit and Pindyck, 1994). In this section,
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we illustrate real options analysis in its simplest form, namely, a one-time
investment opportunity in a project that generates instantaneous profits
ωtQ, i.e. price times quantity, over an infinite horizon upon capital outlay
I. Before investment, zero profit is generated. Thus, we bypass explicit
operations modeling as defined in the reference MDP and we are instead
given an estimate of the instantaneous profit flow. The price is uncertain
and evolves according to a GBM,

dωt = µωtdt + σωtdz,

where µ is the drift rate, σ is the volatility, and dz is normally distributed
with zero mean and unit variance. Using RN valuation and r as the risk
free interest rate, the value of the project if investing at time t can be
written as

V (ωt) = E
[∫ ∞

t
e−r(s−t)ωsQds

∣∣∣∣ωt

]
= ωtQ

r − µ
. (2.7)

Thus, V (ωt) follows the same dynamics as ωt. We want to maximize
the expected present value of the project, taking into account the timing
flexibility,

F (V ) = max
τ

E
[
e−rτ (V (ωτ ) − I)

]
, (2.8)

where τ is the unknown future time when the investment is undertaken.
It can now be shown that the solution of this problem can be expressed
in terms of a trigger V ∗ (Dixit and Pindyck, 1994). Above this trigger
it is optimal to invest immediately, and below it is optimal to wait. If it
is optimal to wait, the Bellman equation must hold (Bellman, 1957). In
continuous time, this can be written as

rFdt = E(dF ), (2.9)

which means that the total return of holding the investment opportunity
must equal its expected change in value. Expanding dF using Ito’s lemma,
we obtain the following second-order differential equation

1
2σ2V 2F ′′(V ) + µV F ′(V ) − rF = 0, (2.10)

with boundary conditions F (0) = 0, F (V ∗) = V ∗ − I, F ′(V ∗) = 1. The
boundary conditions state that the option value is zero if V = 0, that the
firm receives V ∗ − I when investing, and that F needs to be continuous
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and smooth at the trigger V ∗. Thus, the solution of the differential
equation takes the form

F (V ) = AV β, (2.11)

where β > 1 and dependent on µ, r and σ. By using the boundary
conditions, the critical value for investment can be derived,

V ∗ = β

β − 1I. (2.12)

The constant A can be found by inserting this expression into another
boundary condition. This expression shows the opportunity cost of
realizing the project. Since β > 1 entails V ∗ > I, whereas the traditional
NPV approach recommend undertaking a project if V > I. For further
details on real options analysis, we refer to Dixit and Pindyck (1994).

This example shows the basics of real options analysis. More
sophisticated analysis is possible, e.g. mutually exclusive options (Décamps
et al., 2006; Siddiqui and Fleten, 2010), timing and capacity optimization
(Dangl, 1999; Bøckman et al., 2008), possibly in a competitive environment
(Huisman and Kort, 2015). Still, the model governing uncertainty and
the MDP structure needs to be relatively simple in order for analytical
solutions to be attainable. E.g. problem-specific constraints, such as
reservoir limits, or multi-factor models for prices is difficult to incorporate.
In Paper I, we apply real options analysis to study mutually exclusive
performance-enhancing projects under price uncertainty. In Paper III we
apply real options analysis, together with a practice-based heuristic, to
obtain semi-analytic policies for capacity investments in hydropower plants.
In the next section, we present the general concept behind computational
methods for solving MDPs.

2.3.2 Stochastic dynamic programming

If closed-form solutions are not attainable, numerical solution approaches
must be applied. Similar to the real options approach, the Bellman’s
principle of optimality is important in the development of algorithms for
solving MDPs (Bellman, 1957). The principle allows the optimal objective
value to be expressed in terms of the current state st recursively. Thus,
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for each (t, st, ωt) ∈ T × St × Ωt, the MDP in (2.1) can be written as

Vt(st, ωt) = max
xt∈Xt(st,ωt)

{rt(st, ωt, xt) + γWt(st+1, ωt) :

st+1 = f(st, xt, ωt)}
Wt(st+1, ωt) = E

(
Vt+1(st+1, ωt+1)

∣∣ωt
)

,

(2.13)

with boundary condition VT (sT , ωT ) = 0 for each sT . The action
set Xt(st, ωt) is defined in (2.6), and the value in (2.1) is given by
V0(s0, ω0) above. The stochastic dynamic programming equations can be
solved by evaluation of the continuation function Wt(·, ·) for all possible
states st ∈ St and ωt ∈ Ωt, traversing stages backwards. Thus, the
endogenous and exogenous state space must be finite, or represented
by a discretized lattice. However, enumeration of all possible states is
computationally intractable in high dimensions. This is known as the
curse of dimensionality. Therefore, approximation methods are often
needed (Powell, 2011).

2.3.3 Stochastic dual dynamic programming

The stochastic dual dynamic programming algorithm (SDDP) was
developed by Pereira and Pinto (1991), and is particularly suited for
problems having high-dimensional endogenous state space. SDDP
overcomes the curse of dimensionality by approximating the expected
continuation function Wt(st+1, ωt) by a piecewise linear function. The
algorithm solves sub-problems iteratively until some convergence criteria
is met (Philpott and Guan, 2008). At iteration k, the approximated
version of model (2.13) is

V k
t (st, ωt) = max

xt∈Xt(st,ωt),θt

{rt(st, ωt, xt) + θt :

st+1 = f(st, xt, ωt), θt ≤ αk
t + βk

t st

}
.

(2.14)

Each iteration consists of two phases: First, in a forward pass, outcomes
of the stochastic variable ωt are realized in each stage. For each stage,
a solution of (2.14) is computed and used as parameters in the problem
being solved in the subsequent stage. Then, in a backward pass, new cuts
(αk

t , βk
t , t ∈ T \ {T}) are constructed, which is a linear approximation

of the continuation function at the values of the states st visited in the
forward pass.

Since the cuts approximate θt from above (in maximization problems),
any solution to problem (2.14) from the backward pass has a value that
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is an upper bound on the optimal value of the original problem (2.13).
A lower bound can be estimated by a sample average approximation
by simulating the policy after the convergence criteria is met. In order
for the SDDP algorithm to be applicable, a number of assumptions are
needed. First, the continuation function needs to be concave. Secondly,
uncertainty needs to be stage-wise independent in order for the scenario
tree not to grow exponentially fast. Still, time dependent randomness
can be incorporated either by Markov chain discretization (MC-SDDP)
or augmenting the state vector (TS-SDDP). The first approach allows for
a rich representation of the data, but statistical properties with respect
to the continuous state process is lost. The second approach limits
the stochastic processes for exogenous states to be linear to keep the
convexity requirement (Löhndorf and Shapiro, 2019). For further details
on assumptions, convergence, and statistical properties of the SDDP
algorithm, we refer to Philpott and Guan (2008) and Shapiro (2011).

SDDP is the state-of-the-art algorithm for managing hydropower
reservoirs. We apply this algorithm in Paper II where we consider an
MDP that complies with the SDDP requirements. Below, we describe
alternative approximate dynamic programming algorithms that can handle
non-convex action sets and more general stochastic processes for exogenous
factors.

2.3.4 Reoptimization heuristic

The reoptimization heuristic (RH) is based on repeatedly solving
deterministic optimization problems based on expectations of exogenous
variables. This heuristic has been widely used by practitioners in various
applications (Lai et al., 2010; Wu et al., 2012; Nadarajah and Secomandi,
2018). At stage t and state (st, ωt) ∈ St×Ωt, the heuristic uses the forecast
ω̂t,τ = E(ωτ |ωt) for τ > t and solves the following intrinsic programs (IP),

V IP
t (st, ωt) = max

xt∈X IP
t (st,ωt)

 ∑
τ∈Tt

γτ rτ (ω̂t,τ , sτ , xτ ) :

sτ+1 = f(sτ , xτ , ω̂t,τ ), τ ∈ Tt} ,

(2.15)

where Tt = {t, t + 1, , ..., T} is the set of periods from time t to the end of
horizon T , xt = (xτ , τ ∈ Tt), and X IP

t (st, ωt) defines the feasible action
set of the intrinsic problem solved at time t. After this problem has
been solved at stage t, the first-stage solution of the stage-t program is
implemented, the endogenous state gets updated before new information
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becomes available at stage t + 1. The conditional expectation is now
updated before a new intrinsic problem is solved. This procedure is
repeated until the end of the horizon. After generating K sample paths
and solving the intrinsic problems along each path, the value of the RH
policy can be obtained as the sample average of rewards from each path.
The RH policy is feasible and thus provides a lower bound on the optimal
value of problem (2.13). In contrast to SDDP, where the lower bound
converges in probability towards an upper bound, the performance of the
RH-policy is unclear. In the next section, we discuss how to assess the
performance.

2.3.5 Information relaxations in stochastic dynamic
programs

To assess the performance, an upper bound can be computed using
information relaxation (IR) and duality theory (Brown et al., 2010). The
approach is based on relaxing non-anticipativity constraints embedded in
(2.13) and penalizing knowledge of the future. Let ω̄k := {ω̄k

0 , ω̄k
1 , ..., ω̄k

T }
denote a vector of realized stochastic variables in each stage t ∈ T . Then
we can define the following deterministic dynamic problem:

U IR
t (st; ω̄k) = max

xt∈X (st;ω̄k
t )

{
rt(st, xt, ω̄k

t ) − qt(xt, ω̄k
t , ω̄k

t+1)+

γU IR
t+1(st+1; ω̄k

t+1) : st+1 = f(st, xt, ω̄k
t )

}
,

(2.16)
with U IR

T (st; ω̄k
0) = rt(sT , xT , ω̄k

T ), and where qt(xt, ω̄k
t , ω̄k

t+1) are dual
penalties that penalizes knowledge of the future. Feasible dual penalties
are those who do not penalize non-anticipative policies in expectation
(Brown and Smith, 2014). An upper bound can now be attained by solving
this problem for K Monte Carlo samples, and then take the sample average
of revenues obtained from all paths. The simplest case for obtaining an
upper bound is to set the dual penalty to zero, which leads to the perfect
information upper bound. This is, however, often a very loose bound.
Brown et al. (2010) show that when using an ideal dual penalty, the upper
bound equals the optimal value of (2.13). However, since this is difficult
to find, simpler penalties may be considered. Penalties that are linear in
the decision variables are particularly useful in convex stochastic dynamic
programs. Moreover, assuming stage-wise independent penalties simplifies
computations further, and may still provide strong upper bounds. We
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apply the reoptimization heuristic and information relaxations in Paper
III.

2.3.6 Information relaxation-based reoptimization heuristic

An information relaxation-based reoptimization heuristic (IRH) was
proposed by Trivella et al. (2018). The heuristic combines decision
making with the dual bound estimation process for obtaining a feasible
policy. The heuristic solves IR problems, defined in (2.16), from which a
distribution of first-stage decisions is obtained. By choosing a statistic of
this distribution, e.g. mean or median, the decision is non-anticipative
and feasible, and can thus be implemented in the first stage. In the next
stage, the procedure is repeated and continues until the end of the horizon.
The IRH-heuristic has shown promising performance compared to the
RH-policy (Trivella et al., 2018). We apply this heuristic in Paper IV.

2.3.7 Optimality gap and sources of variance

Obtaining MDP policies typically involves a two-step procedure. First, a
model for exogenous factors is specified and calibrated using data, then
decisions are optimized under this model. Often, the calibrated models
of data have continuous support. Some solution methods, such as SDP
based methods and MC-SDDP, require discretization of the exogenous
state space and estimation of transition probabilities. Approximating the
continuous-state process with a discrete scenario tree, or lattice in the
case of Markovian process, introduces a discretization error. Different
approaches for the construction of discrete approximations exist. Moment
matching aims at preserving the first four moments of multivariate
continuous distributions (Høyland et al., 2003). Distance-based methods
makes use of probability metrics and aims at minimizing some distance
function between the discrete approximation and continuous distribution
(Pflug, 2001; Heitsch et al., 2006). In path-based methods, clusters
and transition probabilities are estimated based on simulations from the
continuous state stochastic process (Heitsch et al., 2006). The relative
difference between the performance of the solution of the approximated
discretized version and the optimal continuous-state MDP value, is
sometimes referred to as optimality gap (Kaut and Wallace, 2007).

Instead of pre-specifying a discrete scenario tree or lattice, samples
from the stochastic process can be drawn while solving the MDP.
Algorithms that rely on Monte Carlo simulations, such as TS-SDDP, the
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RH heuristic, and the IRH heuristic, need sufficiently many samples to
give a reasonable estimate of a lower bound of maximization problems. In
TS-SDDP, the number of samples or iterations needed is determined based
on a convergence criterion. For heuristics without convergence guarantees,
the number of Monte Carlo simulations can be guided by the standard
error of the performance of the heuristic policy. When a satisfactory
low standard error is obtained, the estimated policy performance can be
evaluated against an upper bound, as described in Section 2.3.5 and in
Brown et al. (2010). Thus, an estimated optimality gap can be computed
as the relative difference between the upper and lower bound on the
optimal MDP value, see e.g. Lai et al. (2010).

We have now presented two error sources that stem from the
discretization of the stochastic process and Monte Carlo simulations,
respectively. Finally, we discuss different variance sources which stem from
the two-step procedure for obtaining MDP policies. One can distinguish
between two types of variance sources for MDPs, namely, internal variance
and parameter variance (Mannor et al., 2007). Internal variance is the
variance of the sample trajectory rewards, given a policy and with the
parameters of the stochastic model being estimated and kept fixed. The
parametric variance addresses that the stochastic model parameters are
estimated from an empirical sample and are therefore subject to variance.
Thus, parametric variance can be seen as the variance of the MDP
values under different parameter estimates, i.e. the average accumulated
discounted rewards by following a fixed policy subject to stochastic models
with different parameter estimates. The parametric variance becomes
increasingly important when data is scarce. A framework for decision
making under limited knowledge about the evolution of exogenous factors,
is robust optimization (see, e.g. Ben-Tal et al. (2009) or Bertsimas et al.
(2011)). As opposed to stochastic programming, robust optimization
requires only the support of data, instead of a distributional specification.
The goal is to find solutions that perform well on worst-case realizations
that belong to a predefined uncertainty set. However, a drawback with
this approach is that it often leads to very conservative solutions.

In the papers of this thesis, we address optimality gaps and variance
sources as follows: In Paper II we apply MC-SDDP and perform numerical
experiments using a discrete lattice that approximate the continuous-state
process. In Paper III and IV we apply the reoptimization heuristics and
consider the standard error of the lower bound when determining the
sample size needed to get a reasonable lower bound estimate. In Paper
IV we address the parametric variance and limited long-term information
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by considering uncertain MDPs (Xu and Mannor, 2009).

2.4 Overview of model features and solution
approaches

To summarize, Table 2.2 gives an overview of which features of the
reference model and which solution approach that we apply in the four
papers. The first two rows under exogenous states report whether cross-
dependency between market-related and firm-specific factors is included
or not, and if the parameters of the model are considered as known or
unknown. The last three rows report how many factors that make up the
dynamics of prices, inflows, and available resources in the system.

Table 2.2: Overview of solution approach and model features. Characters
indicate whether cross-dependency is included (yes/no), and whether the
parameters of the stochastic model are known or unknown for the decision
maker (known/unknown). Numbers indicate the number of factors (1 or
2).

Type Paper I Paper II Paper III Paper IV
Solution approach

Analytic ✓ ✓ ✓
SDDP ✓

RH ✓
IRH ✓

Actions
Generation Cont. ✓ ✓ ✓

Capacity increase Cont. ✓ ✓
Renewal Bin. ✓ ✓ ✓

Maintenance Bin. ✓
Endogenous states

Reservoir volume Cont. ✓ ✓ ✓
Max generation capacity Cont. ✓ ✓

Efficiency Cont. ✓
Exogenous states
Cross-dependency Y N N
Model parameters K K K U

Price Cont. 1 2 2 2
Local inflow Cont. 1 1 1

System hydrology Cont. 1
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Chapter 3

Contributions
This chapter presents the four papers. For each paper, we explain the
context, the approach we take, and we outline the contribution to the
academic literature and industry practitioners.

3.1 Papers

Paper I: A Real Options Analysis of Existing Green Energy
Facilities: Maintain or Replace?

Authors: Eirik Magnus Dønnestad, Stein-Erik Fleten, Andreas Kleiven,
Maria Lavrutich, Amalie Marie Teige
Submitted to an international peer-reviewed journal.

This paper studies an operator of machinery with deteriorating
efficiency. The operator considers performance-enhancing activities of
different scales with uncertain associated profits, which stems from the
price being uncertain. We analyse the setting of repowering of green
energy facilities and specifically illustrate the implications of our model on
a hydropower case study. The options available for the operator are i) a
replacement option, which involves large costs and new machinery having
better performance, and ii) a sequential compound option, which involves
undertaking a smaller project, which makes the efficiency deteriorate
more slowly, while still having the option to replace later. We apply real
options analysis to characterize the optimal policy.

The paper is an application and extension of the model in Décamps
et al. (2006) and contributes to the research on mutually exclusive options.
Our framework recognizes maintenance as a temporary alternative to
renewal, and we quantify the effect of having the replacement option
embedded in the maintenance option. For practitioners, our analysis
contributes with novel insights for operators of hydropower facilities. In
particular, we demonstrate that a real options perspective on maintenance
activities is valuable, and that long-term electricity price expectations can
be used as a basis for deciding when and which activity to choose. Overall,
our analysis highlights the importance of having several performance-
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enhancing activities under consideration when prices are uncertain, which
is a setting that owners of hydropower assets can relate to.

My contribution to this paper is to complement and extend the analysis
that was done in the Master’s thesis of the co-authors. This included
undertaking additional numerical experiments, extending the theory with
comparative statics, rewriting the original Master’s thesis into the original
draft, and working on subsequent reviews.

Paper II: Co-movements between forward prices and resource
availability in hydro-dominated electricity markets

Authors: Andreas Kleiven, Simon Risanger, Stein-Erik Fleten
Submitted to an international peer-reviewed journal.

This paper studies the dependency between system prices and resource
availability in hydrodominated electricity systems. Hydropower producers
are exposed to various risk factors. Market-related uncertainty, i.e. price
risk, can be hedged through derivatives, while firm-specific uncertainty,
i.e. volume risk, cannot be hedged. Still, a natural hedge exists, in the
sense that periods with low inflow correlate with high prices and vice
versa. Despite being aware of this relationship, common industry practice
is to neglect it when establishing the seasonal production policy. The aim
of this paper is to broaden the knowledge of the impact of neglecting this
relationship and to learn about the potential loss. To do so, we formulate
the production scheduling problem as an MDP and develop a novel price
model which incorporates the effect of the system hydrological state and
local inflow on prices. We then solve the MDP using SDDP, which is the
state-of-the-art algorithm for hydropower production planning.

The paper contributes to the academic literature on pricing models by
introducing a novel model with dependency between market-related and
firm-specific uncertainties. It also contributes to research on hydropower
reservoir management by analysing the effect of incorporating dependency
between resource availability and prices when establishing the operational
policy of a local producer. Furthermore, our analysis contributes with
useful insights for industry practitioners. Our results show that producers
underestimate their marginal water value if the negative relationship
between prices and resource availability is ignored, which means that
current water has a higher expected value in the future if co-movements
are properly accounted for. Nevertheless, our numerical case study
indicates that the potential expected gain is modest. Given these results
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and the complications that arise when incorporating this in commercial
software, we are hesitant in advising practitioners to explicitly model the
relationship between local inflow, system hydrology and prices.

My contribution to this paper is the conceptualization, model
formulations, the illustrative example, theory, data collection, and
calibration of the stochastic model. Co-author Simon Risanger was
responsible for discretization of the stochastic process and implementation
of the algorithm used to compute policies. Both prepared the original
draft, analyzed the results, and worked on revisions. This paper is also a
part of Simon Risanger’s PhD dissertation.

Paper III: Revisiting Hierarchical Planning for Hydropower
Plant Upgrades using Semi-analytical Policies and
Reinforcement Learning

Authors: Andreas Kleiven, Selvaprabu Nadarajah, Stein-Erik Fleten
Working paper.

This paper considers long-term capacity investment in hydropower.
Valuation of long-term investments typically relies on accurate mathemati-
cal models. Such models must incorporate various aspects, including long-
term market dynamics, medium-term resource allocation, and short-term
operational flexibility, which stems from the ability to quickly respond
to price fluctuations. Given the complexity of the problem, hierarchical
planning is commonly used, where short-term flexibility is simplified when
making tactical resource utilization decisions and investments simplify
the tactical aspect (Anthony, 1965). We formulate a novel investment
model that integrates these aspects. Using properties of the price model
combined with reinforcement learning, we obtain semi-analytical policies
that unveil practical insights.

The paper contributes to investment analysis research by applying
reinforcement learning and real options analysis to obtain semi-analytical
policies. We find that investment models embedded with reinforcement
learning that can estimate the value of tactical resource utilization and
operational flexibility, may promote additional capacity installments in
hydropower. Our framework also provides several insights for industry
practitioners. First, we assess the performance of operational policies
obtained from a heuristic that allows a straightforward integration of
seasonal planning and intraweek scheduling. Second, we show how short-
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term operational models can be combined with long-term market price
movements to evaluate investment alternatives.

My contribution to this work is conceptualization, model calibration,
theory, implementation of the algorithm, analysing the results, and
preparing the original draft for submission.

Paper IV: Robust Capacity Investment in Hydropower

Authors: Andreas Kleiven, Selvaprabu Nadarajah, Stein-Erik Fleten
Working paper.

This paper studies robust capacity investment in hydropower plants
and addresses long-term risks associated with limited long-term informa-
tion. We formulate a combined investment and operations problem as a
Markov Decision process (MDP), where the goal is to find a policy that
maximizes the market value of the asset. This requires calibration of a
price model using risk-adjusted prices, i.e. futures contracts on electricity.
However, since the expected lifetime of investment projects typically is
longer than the maturity of electricity futures contracts, it is unclear
how to estimate the model parameters for long maturities. Therefore,
committing to one parametric stochastic process when data availability
varies over time may lead to poor performance of the MDP-policy when
applied to real data. We provide an empirical study for identifying the
model parameters that have a major impact on long-run cashflows. Then,
we define different criteria for decision making under unknown model
parameters, including model-based, worst-case, and regret criteria.

The paper contributes to academic research on investment analysis
by addressing the lack of long-term futures contracts, which is the
empirical basis of the risk-neutral valuation framework. Moreover, we
contribute to research on decision making in an uncertain environment
by analysing decision criteria for making investments when a subset
of parameters of the stochastic model is considered as unknown. We
obtain near-optimal operational policies using an information relaxation-
based heuristic, and we demonstrate that our approach may reduce
the variability of cashflows associated with long-term investments. For
industry practitioners, we identify economic risks that cannot be fully
hedged and provide a modeling framework and solution approach to
support long-term investment decisions in hydropower plants.

My contribution to this work is to collect data, the calibration
of stochastic processes, empirical assessment, illustrative examples,
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theory, implementation of the algorithm, computational experiments,
and preparation of the original draft.

3.2 Additional contributions

During my PhD, I also have contributed to two other projects. The
research has been published in the following papers:

• Kleiven, A., I. Steinsland (2018). Inflow forecasting for hydropower
operations: Bayesian model averaging for postprocessing hydrologi-
cal ensembles. The International Workshop on Hydro Scheduling in
Competitive Markets. Springer, Cham.

• Bakker, S. J., Kleiven, A., Fleten, S. E., Tomasgard, A. (2021).
Mature offshore oil field development: Solving a real options problem
using stochastic dual dynamic integer programming. Computers &
Operations Research.

The first article is a result of my Master’s thesis at the Department of
Mathematical Sciences at Norwegian University of Science and Technology.
I spent my first months of the PhD at the Department of Industrial
Economics and Technology Management rewriting the thesis into an
article. Although the application and methods are relevant for the thesis,
only minor additional material was added to the existing material in the
Master’s thesis, which is why we have decided not to include this article in
the dissertation. In the second article, I contributed with discussions and
editing of the original draft and revisions. The work is methodologically
relevant, but the application is not directly relevant. We therefore decided
not to include the article in the PhD dissertation.
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Chapter 4

Concluding Remarks and
Future Perspectives
The papers in this thesis consider sustainable operations and investment
in hydropower plants. We take a quantitative business analysis point of
view when analysing emerging problems that stem from the transition to
a more sustainable power system. To analyse these problems, we apply
theory and concepts from the areas of statistics, finance, and operations
research in designing novel stochastic processes, optimization models, and
algorithms.

The papers provide several insights on complex decision problems that
owners of hydropower assets can relate to. Paper I gives an introduction
to considerations regarding investment activities in hydropower plants,
with a focus on efficiency degradation and possible performance-enhancing
activities which needs to be planned in an uncertain environment. We
demonstrate how such activities can be valued properly and provide useful
managerial insights. Paper II introduces the operational aspect. The
paper examines whether a hydropower producer can improve water value
estimates by accounting for a negative relationship between local inflow,
system inventory levels, and prices. We present theory that identifies an
opportunity cost by ignoring the negative relationship, and a numerical
case study that suggest very small cost savings in practice. Paper
III and IV introduce coordinated investment and operations planning.
Paper III investigates the impact of short-term flexibility on long-term
capacity investments. We propose an intuitive semi-analytical valuation
framework, and show that the operational flexibility of production assets
can significantly help promote additional capacity in hydropower. Paper
IV focuses on downside risk and analyzes different decision criteria for
establishing investment policies when the parameters of the stochastic
model are unknown. Our analysis shows that our approach may reduce
the variability of the cashflow associated with an irreversible long-term
investment.

The papers present and address various aspects of the problem of
planning preventive maintenance tasks, operations, upgrades and renewals
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in hydropower plants, which remains a challenging problem. The papers
specifically address real options, computational challenges, and challenges
related to heterogeneous data and stochastic modelling. The models
and methods can be extended in several ways. An example of an aspect
that has not been considered is the endogenous effect from operations
on efficiency deterioration and failure probabilities, and thus investment
policies. With an increased industry focus on condition monitoring
of the mechanical state of generation assets and data collection, this
could be an interesting future extension to the models in this thesis. A
second possibility is to extend the models and analysis to imperfectly
competitive electricity markets and incorporate an endogenous electricity
price. A third direction is to consider bidding in sequential markets. The
papers in this thesis have only considered participation in the day-ahead
market, which is the main physical arena for trading power. However,
there exist supplementing markets, and market structures are constantly
evolving. Participation in multiple markets and the effect on medium-term
hydropower schedules and long-term investments could be interesting to
study. Furthermore, the concepts and tools we develop in the papers may
have the potential for broader applications beyond managing hydropower
assets, such as investment analysis in other renewable energy production
assets, resource allocation problems, or portfolio management.
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Abstract We consider an operator of machinery with deteriorating efficiency, facing the problem of
optimally timing of either a minor (maintenance) investment or a major (replacement) investment under
price uncertainty. If a maintenance investment is chosen, the efficiency of the machinery will deteriorate
more slowly, and replacing later is still possible. The optimal decision rule is expressed in the form of
thresholds for long-run prices, indicating that it may be rational to wait to see which of the large and
small investment is the better choice. We relate the setting to repowering of green energy facilities, such
as hydropower plants and wind farms. Our analysis provides several managerial insights. We characterize
the conditions that govern whether the smaller investment should be considered at all, and we quantify
the effect of having a replacement option embedded in a maintenance option. Our analysis demonstrates
that the large investment may get postponed significantly in expectation, which recognizes maintenance
as a temporary alternative to replacement.

Keywords Green energy ¨ Maintenance ¨ Real options ¨ Replacement

1. Introduction

Owners of assets with deteriorating performance often have a range of possible actions to choose from in
order to increase future expected profits. Replacements are often needed, either when the asset suffers
from severe deterioration, the operating requirements change, or when new technology is available.
Determining the time of replacing existing assets involves economic analysis of various drivers, such as the
current value of the existing asset, operation and maintenance costs, and the cost and value associated
with replacing the asset with an improved one [4,15,22]. As an alternative to replacing, maintaining
existing assets can extend the useful economic life and often incurs lower immediate costs. Moreover,
similar to replacement, many maintenance tasks have discretion over timing, uncertain benefits, and
irreversible costs. Both maintenance and replacement actions can therefore be viewed as exercising real
options [11], as opposed to the traditional view, which casts maintenance to be performed until marginal
benefits equal marginal costs [5].

The problem of determining maintenance and replacement schedules under price uncertainty is of
particular importance for operators of existing green energy facilities, such as wind farms and hydropower
plants. Many hydropower plants in the European Union, United States, and Canada were built in the
early to mid 20th century, and many of these plants suffer from inefficiencies in power production [13,23].
Moreover, the number of wind turbines in service are expected to increase over the coming decades [38],
making it increasingly important to assess the value of performance-enhancing activities with uncertain
benefits. Particular focus has been given to the replacement option, which is the process of replacing
existing machinery or equipment with new ones that have higher capacity and/or efficiency. We refer to
this process as repowering. Repowering leads to increased energy or power output, which has a positive
effect on future profits for the operator. Eventually, repowering will appear as an attractive project to
undertake, but such an investment is costly. In practice, different maintenance investment possibilities
can be undertaken to postpone repowering. As an example, maintenance investments in hydropower
plants include rehabilitation of existing turbines through surface treatment and hard coating [42,17],
and changes in the prevailing operational pattern to mitigate the damaging effects already inflicted on
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the machinery.1 Similar preventive tasks can be executed for wind turbines, where the upper cutoff point
for high wind speeds is reduced to extend the economically useful life.

In this paper, we consider performance-enhancing activities, such as maintenance and replacement,
as real options and analyze the range of flexibility that is offered by joint valuation of projects of
different scales. We specify and analyze two mutually exclusive options: i) A replace-only option, and ii)
a compound option where first maintenance is undertaken before replacement at a later point in time.
The first investment alternative we consider is renewal/replacement. Upon renewal, the efficiency, or
the profitability associated with the asset, is reset, while the market price is exogenous and unchanged.
The second investment alternative we examine is a compound option where first maintenance can be
undertaken, while keeping the replacement option alive. In our analysis, maintenance is an investment
that reduces the efficiency deterioration rate and thus alters the drift of the underlying stochastic profit
process. Our study provides a novel framework that incorporates the managerial flexibility which is
present when an operator faces a deteriorating technical sub-system of existing facilities in the presence
of uncertain market prices. In our framework, uncertain market prices are modelled as a Geometric
Brownian motion (GBM), while having a deterministically declining efficiency, which has a negative
effect on the profit stream.

The paper is organized as follows. We review the relevant literature in Section 1.1. In Section 2
we present real option models. In Section 3 we characterize the optimal values, optimal policies and we
analytically compute some comparative statics. In section 4 we conduct numerical experiments, expanding
the analytical work in Section 3. Concluding remarks are provided in Section 5.

1.1 Contributions in Light of Existing Literature

Early contributions to the real options literature that focus on replacement decisions include [33], [11,
Chapter 4], and [32], among others. Further developments in this literature can be divided into two main
categories, namely, capital replacement of physical assets ([44,36]), and asset renewals in general [1,35].2

The former focuses on minimizing losses incurred by having an imperfect component, whereas the latter
studies the problem of maximizing the net profit by balancing the revenue from the component with
its operational and maintenance costs. Our work fits into the latter category. Differently from [1], only
the profitability of the firm’s infrastructure resets upon renewal, while we assume that the market price
is unchanged, which is similar to [35]. In contrast to [35], we assume the efficiency to be deterministic,
which allows us to value different investment alternatives analytically. We contribute to this literature
by having the possibility to postpone renewal by investing in a smaller maintenance project.

Maintenance policies have traditionally been studied from an industrial engineering perspective, where
maintenance often is optimized with criteria such as reliability, availability, work safety, and maintenance
cost [16]. A limitation of traditional maintenance optimization models is that they often do not take into
account market uncertainty. [24] addresses this limitation and proposes a methodology based on option
pricing theory for joint scheduling of production and preventive maintenance under uncertain demand.
Although the maintenance option in our framework has different characteristics, we view maintenance
in a similar light as [24], and consider maintenance as a real option. However, unlike [24], we study
the interaction between a maintenance option and a replacement option when the associated profits are
uncertain, which is new to the real options literature on asset management.

By focusing on several options, we contribute to the stream of literature that studies mutually
exclusive options. More specifically, we complement the literature that studies the types of problems
introduced by [9] where the investment policy is not merely a simple trigger strategy, but may instead be
governed by an investment region that is no longer a connected set. Examples of works that have studied
these types of problems include [6] who analyze mutually exclusive projects under input price and output
price uncertainty, and [2] who analyze a model with stochastic price and deterministic declining output
flow and implications on choices of exit and new technologies involving different flow rates. In line with
the literature on mutually exclusive options, we analyze how features of our model affect investment
triggers when correctly accounting for the full set of choices available.

An important feature of our model is that exercising the maintenance option entails a change in the
drift of the underlying profit flow process, which is similar to [26,20,21]. In this sense, we contribute to
the real options literature where the firm has a one-time opportunity to boost the profit rate. [26] consider
a firm which has the opportunity to innovate an ageing product while facing a declining profit stream.
At any point in time, the firm can choose to continue operations or exit. A predefined change in drift

1 The latter is often done in practice, where the operator lets go of potentially higher revenues, e.g. by reducing loads or
starting the machinery less frequently, in order to maintain its facility and hence postpone a larger investment.

2 The heuristic [1] employ, also used by [37], has been shown not to always lead to correct solutions, see e.g. [8,27].
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that boosts the stream of profits if the firm chooses to innovate. The main findings are that the threshold
for exiting decreases in volatility and that the threshold for investing might decrease in volatility if
the profit boost from investing is sufficiently large. [21] extend the analysis and show monotonicity of
exercise threshold in volatility numerically if the firm can choose the capacity when investing. Similar to
this literature, we provide a comparative statics analysis. We examine how the maintenance option, which
upon exercise reduces the deterioration rate, or equivalently, boosts the profit stream, affect investment
triggers, waiting regions and expected hitting times.

Finally, our case study provides novel insights for real options applications in green energy. Existing
literature on the topic include [29] who find that the investment behavior of professional developers of
hydropower projects is consistent with real options theory. Moreover, [37] use a real option approach to
value different technologies in the energy sector, including photovoltaics, wind, hydro, coal- and gas-fired
power plants, among others, and [14] focus on capacity choice and investment timing in a case where
a local load is to be served, and only surplus power is sold in the market. From this perspective, our
study fits in the growing literature on real option valuation in green energy, see, e.g. [7] or the survey by
[25]. We specifically study mutually exclusive projects with applications in green energy. Other papers
that have studied this include [39] who consider a firm that may choose to deploy an existing green
energy technology, or switch to an unconventional energy technology. Moreover, similar to us, [10] study
mutually exclusive projects with different cost structures. In [10], both the cost and revenue of a project
are stochastic, described by two distinct correlated geometric Brownian motions. Methodologically, our
work is similar, but we focus on investment alternatives allowing to cope with the deteriorating efficiency
of existing green energy facilities rather than cost uncertainty related to undertaking new projects. In
contrast to our work, neither efficiency deterioration nor maintenance are considered.

2. Models

The operator can choose to undertake the following projects: Maintenance investment and replacement.
Moreover, the firm can choose between the following mutually exclusive options:

1. Replace-only option: Replace the existing machinery by new machinery at a fixed cost IR.
2. Compound option: First, invest in maintenance of existing machinery at a fixed cost IM ă IR, followed

by a replacement of the existing (maintained) machinery at cost IR.
3

The operator needs to carefully select which of these options to choose. The correct solution of this
problem, joint valuation, takes the form of decision rules depending on thresholds for the price. We
assume that the operator is price-taking and that investments are made instantaneously, meaning that
there is no investment lag and no shutdown time associated with the execution of any of the projects.4

Cashflows from green energy facilities come from electricity generation. As variable operating costs
for a green energy operator are typically very small, we consider variable costs to be negligible. We let
the profit flow, πptq, consist of three components: Electricity price P ptq, machinery efficiency Qptq, and
production quantity Rptq,

πptq “ P ptqQptqRptq. (1)

We assume that the electricity price, P ptq, follows a GBM,

dP ptq “ αP ptqdt` σP ptqdZptq, (2)

where α is the drift and dZptq is the increment of a Wiener process. The volatility is denoted by σ ą 0. The
choice of a GBM is supported by [34] who indicates that applying a GBM for the price of a commodity
is an appropriate choice when considering long-term investments. Similarly, [14] argue that although
using a GBM to model price dynamics ignores short-term mean reversion in prices, the short-term mean
reversion has a minor influence on long-term investment decisions. Alternatives to GBM for modeling
electricity prices are discussed in [31].

The second component, the production quantity, is denoted by Rptq. The supply of green energy
facilities, e.g. wind for wind farms or inflow to water reservoirs for hydro producers, are by nature
stochastic. However, there is typically a very small memory effect in supply, meaning that this year’s

3 Maintenance required to keep the machinery available on a day-to-day basis is not considered as a maintenance
investment in our model. We consider any other activity that enhances the performance of existing machinery, such as
e.g. surface treatment, coating of turbine blades, or actively protecting components by reducing maximum load in certain
periods, as a maintenance investment. We account for the latter activity by allowing a certain fraction of profit to be lost.

4 In practice these shutdown times vary with the project size, but we regard them as negligible in our analysis as they
typically are short compared to expected project lifetimes.
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supply is a poor predictor of the next year’s supply. Therefore, we consider the instantaneous production
quantity to be deterministic and normalized to 1. Thus, the production quantity is given by

Rptq “

$
’&
’%

1 t ď τ1,

1 ´ k τ1 ă t ď τ2,

1 t ą τ2,

(3)

where τ1 is the time when a maintenance investment is undertaken, and τ2 is the time when replacement is
undertaken. These stopping times are unknown in advance. The parameter k captures the loss of revenues
from changed operational pattern by undertaking the maintenance investment, where k determines the
lost fraction of revenues between τ1 and τ2.

5

The third component that determines the profits in our model is the efficiency of the machinery, Qptq,
which we define as

Qptq “

$
’&
’%

QEe
´γEt t ď τ1,

QEe
´γM t τ1 ă t ď τ2,

QRe
´γEt t ą τ2,

(4)

where γE is the efficiency deterioration rate of the existing and replaced machinery, and γM ă γE is
the efficiency deterioration rate after maintenance. Parameters QE and QR are the initial efficiency
of the existing and replaced machinery, respectively. By solving the differential equation in (2), using
expressions for Rptq and Qptq in (3) and (4), and inserting into (1), we obtain instantaneous profits using
the original machinery, the original machinery after a maintenance investment, and using a replaced, i.e.
new machinery, respectively,

πptq “

$
’’&
’’%

QEpe
pα´γE´ σ2

2 qt`σZptq t ď τ1,

QEpp1 ´ kqe´τ1pγE´γM qepα´γM´ σ2

2 qt`σZptq τ1 ă t ď τ2,

QRpe
τ2γEepα´γE´ σ2

2 qt`σZptq t ą τ2,

where P p0q “ p. The factor e´τ1pγE´γM q adjusts for the deterioration process before maintaining at
time τ1, and the factor eτ2γE resets the deterioration process when the machinery is replaced at time
τ2. Figure 1 illustrates price simulations and corresponding profit flow simulations. In the upper panel,
three price scenarios are generated from the GBM in (2), and the dashed line is the expected price.
The dashed line in the second upper panel is the efficiency, Qptq, and the second lower panel shows the
production quantity Rptq. The profit flow, πptq, in the bottom panel is the product of price, efficiency and
production quantity. Lost profit from changed operations after maintenance, k, is apparent by the vertical
downward shift at τ1, seen in the production panel. Moreover, we observe that profits are expected to
increase at a higher rate (dashed line) between the stopping times τ1 and τ2, because γM ă γE . Using
instantaneous profits, we can formulate the optimal stopping problem for an operator of machinery with
deteriorating efficiency, facing the problem of optimally timing of the maintenance investment project or
the replacement project. We first specify the optimal stopping problem for each of the alternatives, and
then incorporate both in the same framework.

The optimal stopping problem for the replace-only option can be formulated as

FRppq “ sup
τ2

E
„ ż τ2

0

e´ρtQEpe
pα´γE´ σ2

2 qt`σZptqdt´ IRe
´ρτ2

`
ż 8

τ2

e´ρtQRpe
τ2γEepα´γE´ σ2

2 qt`σZptqdt
ˇ̌
ˇP p0q “ p

ȷ
.

(5)

We assume that the decision-maker discounts the future profit at a constant exogenous rate, ρ ą α´γE .
This assumption ensures that it would never be optimal to delay exercise either of the options forever,
as the expected growth would exceed the discount factor.

The optimal stopping problem for the compound option is given by

5 Changed operational pattern means that the operator chooses to deviate from the optimal production policy to reduce
the deterioration rate of the machinery.
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Fig. 1: Illustration of dynamics of prices and profits, with numerical values P0 “ 40, QE “ 0.80, QR “
0.95, α “ 0.025, γE “ 0.04, γM “ 0.004. Colored lines in the upper panel represent price simulations,
and the profit flow for each simulated price path is illustrated in the lower panel. Times τ1 and τ2 are
times where maintenance and replacement takes place, respectively, and are unknown in advance.

Gppq “ sup
τ1,τ2ąτ1

E
„ ż τ1

0

e´ρtQEpe
pα´γE´ σ2

2 qt`σZptqdt´ IMe
´ρτ1

`
ż τ2

τ1

e´ρtQEpp1 ´ kqe´τ1pγE´γM qepα´γM´ σ2

2 qt`σZptqdt´ IRe
´ρτ2

`
ż 8

τ2

e´ρtQRpe
τ2γEepα´γE´ σ2

2 qt`σZptq
ˇ̌
ˇP p0q “ p

ȷ
.

(6)

Note that in this problem, the maintenance action must be undertaken before renewal/replacement. The
next problem takes into account that the maintenance action can be skipped:

Hppq “ sup
τ1,τ2ěτ1

E
„ ż τ1

0

e´ρtQEpe
pα´γE´ σ2

2 qt`σZptqdt´ IMe
´ρτ11tτ1ăτ2u

`
ż τ2

τ1

e´ρtQEpp1 ´ kqe´τ1pγE´γM qepα´γM´ σ2

2 qt`σZptqdt´ IRe
´ρτ2

`
ż 8

τ2

e´ρtQRpe
τ2γEepα´γE´ σ2

2 qt`σZptq
ˇ̌
ˇP p0q “ p

ȷ
.

(7)

The firm can either (1) choose τ1 ă τ2 which corresponds to the compound option or (2) choose τ1 “ τ2
which corresponds to the replace-only option. If τ1 “ τ2 the second term in (7), which is the time spent
using the machinery between the maintenance investment and replacement investment, becomes zero,
and the firm does not have to pay any maintenance investment costs, which is ensured by the indicator
function 1tτ1ăτ2u. The only difference between (6) and (7) is that the firm can choose τ1 “ τ2 and replace
directly without maintaining first.

3. Characterization of Optimal Policies and Values

This section presents the solutions to (5), (6), and (7). We first analyze the replace-only option and
the compound option separately, and then provide an analysis when both are considered in the same

43



6 E. M. Dønnestad, S.-E. Fleten, A. Kleiven, M. Lavrutich, A. M. Teige

framework, as defined in (7). For ease of notation, we define µE “ ρ ´ α ` γE and µM “ ρ ´ α ` γM .
Similar to [1], we aim at identifying the economic conditions that trigger a renewal to restore the economic
potential of the machinery. In their framework, the option to renew the asset appears attractive when
the revenue stream from the existing one is low, similar to a put option. This is because exercising the
renewal option entails the output revenue being restored to the original value. However, in our case, a
renewal appears attractive when the profit associated with the existing machinery is high, i.e. we view
the replacement option as a call option, as opposed to [1]. The difference is that, in our case, it is the
price that drives the profitability of any investment alternative. Replacing when the price is low will not
appear attractive as the firm has to pay a sunk cost, which will not be covered by the profit stream of
the renewed machinery.

3.1 Replace-Only Option

Proposition 1 gives the value of the option to replace the machinery defined in (5).

Proposition 1 It is optimal for the firm to replace its machinery as soon as P ptq reaches the optimal
threshold, given by

pR̊ “ βE
βE ´ 1

¨ µE

QR ´QE
IR, (8)

where

βE “ 1

2
´ α ´ γE

σ2
`

dˆ
α ´ γE
σ2

´ 1

2

˙2

` 2ρ

σ2
. (9)

Thus, the value of the option to replace the existing machinery is given by

FRppq “

$
’’&
’’%

A1p
βE ` QEp

µE
if p ă pR̊,

QRp

µE
´ IR if p ě pR̊,

(10)

where

A1 “ IR
βE ´ 1

„
βE ´ 1

βE
¨ QR ´QE

µE
¨ 1

IR

ȷβE

. (11)

This option represents a single investment opportunity, and therefore closely resembles the solution
of a standard real option problem, e.g. as in [11]. The values in the continuation region, p ă pR̊, and in
the stopping region, p ě pR̊ are given in (10). In the waiting region, the last term is the perpetual profit
without any investment, whereas the first term represents the value of the option to improve the efficiency
once the profit is large enough. When the replacement option is exercised, the producer operates with
increased efficiency of the machinery, QR, and with a deterioration rate γE .

3.2 Compound Option: Maintenance before Replacement

The second option, the compound option, is a constrained sequential option where the maintenance
project needs to be undertaken before the replacement project. The optimal stopping problem is formulated
in (6). We solve this problem backwards, where Proposition 2 gives the value of the replacement option,
provided that the maintenance project already is undertaken.

Proposition 2 With the maintenance investment option already exercised, it is optimal for the firm to
replace its existing machinery as soon as P ptq, t ą τ1, reaches the optimal threshold given by

pM̊,R “ IR
βM

βM ´ 1
¨ µEµM

QRµM ´ p1 ´ kqQEµE
, (12)

where

βM “ 1

2
´ α ´ γM

σ2
`

dˆ
α ´ γM
σ2

´ 1

2

˙2

` 2ρ

σ2
. (13)
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Thus, the value of the option to replace the existing machinery, after having maintained it, is given by

GRppq “

$
’’&
’’%

B2p
βM ` p1 ´ kqQEp

µM
if p ă pM̊,R,

QRp

µE
´ IR if p ě pM̊,R,

(14)

where

B2 “ IR
βM ´ 1

„
βM ´ 1

βM
¨ QRµM ´ p1 ´ kqQEµE

µEµM
¨ 1

IR

ȷβM

. (15)

The solution in Proposition 2 is very similar to the replace-only option, but in this case the profit flow
in the continuation region p ă pM̊,R is affected by the maintenance investment option being exercised
beforehand. The value in the stopping region p ě pM̊,R coincide with the perpetual revenues of the
replace-only alternative in the stopping region in (10), i.e. the value when p ą pR̊. As the sequential
investment alternative eventually will lead to a replacement of the machinery, the trade from going
from a maintained state to a replaced state of the machinery must entail a net positive increase in the
operating profits. If not, the option to replace after maintenance investment will have no value. This can
be expressed as follows:

p1 ´ kqQEµE ă QRµM . (16)

The value of the option to invest in the first stage, i.e. to undertake a maintenance investment on the
existing machinery, is presented in Proposition 3.

Proposition 3 It is optimal for the firm to invest in maintenance of its existing machinery as soon as
P ptq, t ă τ1, reaches the optimal threshold pM̊ which implicitly solves the equation given by

B2
βE ´ βM

βE
p˚ βM

M ` βE ´ 1

βE
¨ QE pp1 ´ kqµE ´ µM q

µEµM
pM̊ ´ IM “ 0, (17)

where βE and βM are given in (9) and (13), respectively. Thus, the value of the option is given by

GM ppq “
$
&
%
B1p

βE ` QEp

µE
if p ă pM̊ ,

GRppq ´ IM if p ě pM̊ ,

(18)

where

B1 “ B2
βM
βE

p˚ βM´βE

M ` QE

βE
¨ p1 ´ kqµE ´ µM

µEµM
p˚ 1´βE

M , (19)

and where GRppq and B2 is given by (14) and (15), respectively.

It is worth pointing out that the value in the stopping region (18) is not a linear function of profit,
reflecting the fact that it is an option itself. This option value is given by the option value to replace after
having maintained, which is the option value in (14). We also note that the solution to the characteristic
equation, βE , differs from βM in Proposition 2 due to the change in degradation rate from the degradation
rate in a maintained state, γM , to the degradation rate of the non-maintained state, or equivalently,
replaced state, γE . Since βM is governed by the smallest degradation rate, it follows that βE ą βM .

3.3 Joint Framework for the Compound Option and the Replace-Only Option

We now compare the two investment alternatives to determine when it is optimal for the firm to choose
to invest sequentially or simply replace the machinery. The problem is formulated in (7). The following
proposition gives the condition for when the replace-only alternative always dominates the sequential
investment alternative.

Proposition 4 It will be optimal to replace directly if the following holds for all p:

IR
βE ´ 1

„
βE ´ 1

βE
¨ QR ´QE

IRµE
p

ȷβE

´B2βMp
βM ´QE

p1 ´ kqµE ´ µM

µEµM
p` IM ě 0, (20)

where B2 is given by (15).
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p∗
R0

(a) Relevant triggers if Proposition 4 holds. Between 0
and p˚

R, it is optimal to wait (white). For higher values
it is optimal to replace (light grey).

p∗ M p∗ L p∗ H0

(b) Relevant triggers if Proposition 4 does not hold.
Between 0 and p˚

M , and between p˚
L and p˚

H it is optimal
to wait (white), between p˚

M and p˚
L it is optimal to

perform the maintenance investment (dark grey), and
for values greater than p˚

H it is optimal to replace (light
grey).

Fig. 2: Continuation and stopping regions when considering the compound option and the replace-only
option jointly. Relevant thresholds depend on whether Proposition 4 holds or not.

The proof of Proposition 4 is provided in A.3. To determine whether the replace-only alternative is
the dominant choice, the option values for the different regions need to be taken into account. If the
replace-only option has a higher value than the compound option in the region before any thresholds are
reached, the replace-only option will always have the higher value. If Proposition 4 holds it will never
be optimal for the producer to choose the sequential investment alternative, meaning that the threshold
for replacement is given by Proposition 1, and the value of Hppq defined in (7) coincides with FRppq in
(10). Relevant thresholds if Proposition 4 holds are illustrated in Figure 2a.

Relevant thresholds when Proposition 4 does not hold are illustrated in Figure 2b. The solution
space is divided into four different regions, p0, pM̊ q, rpM̊ , pL̊q, rpL̊, pH̊q, and rpH̊ ,8q. The threshold pM̊ is
given by (12), whereas the remaining thresholds will be defined below. In the first and the third regions,
it is optimal to wait, whereas the second and fourth regions are stopping regions, where investments
are undertaken immediately. We refer to these four regions as waiting, maintenance, inaction, and
replacement regions, respectively. The value of the option Hppq can be written as

Hppq “

$
’’’’&
’’’’%

B1p
βE ` pQE

µE
p ă pM̊

B2p
βM

M ` p1´kqQEpM

µM
´ IM pM̊ ď p ă pL̊

CpβE `Dpβ
´
E ` QEp

µE
pL̊ ď p ă pH̊

QEp
µE

´ IR p ě pH̊

(21)

In the first region, the waiting region p0, pM̊ q, the option value Hppq coincides with the value of the
option in the continuation region in (18). It is optimal to wait until the investment threshold pM̊ is
reached, and then to perform the maintenance action. This is the same continuation region as in the
standard model proposed by [11].

In the second region, the maintenance region rpM̊ , pL̊q, it is optimal to perform the maintenance
action immediately in order to reduce the degradation rate and retain the option to replace it. In this
case, the value of H is given by the value of the option in the stopping region in (18), or equivalently,
the difference between the value in the continuation region in (14) and the maintenance investment cost.

The third region, the inaction region rpL̊, pH̊q, is defined by two thresholds pL̊ and pH̊ that form an
intermediate region of inaction around an indifference point. We show that the indifference point always
is a part of the inaction region, where it is optimal for the operator to wait, in A.4. It follows that Hppq
on the interval rpL̊, pH̊q, is of the form CpβE ` Dpβ

´
E ` QEp

µE
. The first two terms represent the value of

waiting without having made any irreversible decisions yet. More specifically, the first term represents the
option to replace directly if the price increases to pH̊ , whereas the second term represents the option to
invest sequentially if the price decreases to pL̊. The coefficients C and D, as well as the optimal stopping
thresholds pL̊ and pH̊ can be found by solving the value matching and smooth pasting conditions. A
feature that follows from the existence of the inaction region rpL̊, pH̊q is that it can be optimal for the
firm to undertake an investment even though the price falls. It is optimal to exercise the maintenance
investment option when the price falls to pL̊, because pL̊ is higher than pM̊ , above which it would be
optimal to perform the maintenance action in the constrained sequential alternative. Moreover, it is too
costly to wait until the price reaches the upper threshold pH̊ and then invest in replacement due to the
time value of money. The prerogative to choose between two different projects, instead of being confined
to either one of them, also increases the demand for information and creates an additional incentive to
delay investment. Thus, in this particular region, it is optimal to delay the investment even though it
would be optimal to invest if only the compound option was available.

In the fourth region, the replacement region rpH̊ ,8q, it is optimal to replace immediately, and the
option value coincides with the option value in the stopping region in (10).
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3.4 Comparative Statics

In this section, we focus on the degradation rate parameters, γE and γM . Comparative statics and
relevant conditions are formalized in Proposition 5 and 6.

Proposition 5 An increase in γE leads to an increase in the threshold for replacement before and after

maintenance:
Bp˚

RBγE
ą 0 and

Bp˚
M,R

BγE
ą 0.

Proposition 6 Under the condition in (16), an increase in γM and γE leads to a decrease in the
threshold for replacement after maintenance and the threshold for maintenance, respectively:

a.
Bp˚

M,R

BγM
ă 0

b.
Bp˚

MBγE
ă 0 if and only if K2pM̊ ą K1IM , where K1 and K2 are provided in (78)-(79).

Extensive numerical testing shows that the condition in Proposition 6 is met for reasonable parameter
values. These results complement existing analytical results on the impact of changes in the drift
parameter of the underlying stochastic process. These results include [26], where the investment threshold
is monotonic in the drift, and [21], where the return function is strictly increasing in the post-investment
drift rate. A difference between our model and the above-mentioned studies is that we consider two
performance-enhancing projects that can boost profit, while [26] and [21] consider one project that
boosts profit and the possibility to exit operations. Therefore, our results show that monotonicity in
investment thresholds, with respect to the drift, are preserved also in the situation when the firm instead
has the option to invest in a larger project, as opposed to exit. In the next section, we analyze the
sensitivity of the thresholds with respect to other model parameters numerically.

4. Numerical Illustrations

In this section, we examine the implications of our model in a hydropower example. We analyze expected
hitting times and study how our results are affected by changes in selected parameter values. Furthermore,
we examine the conditions under which the optimal choice transitions from the dichotomous environment,
i.e. if Proposition (4) does not hold, to when the replace-only choice is dominant over the entire state
space, or vice versa.

4.1 Parameter Choices

Our baseline parameter values are given within a Norwegian hydropower context. When considering the
efficiency of the existing machinery, we consider a mid-life machinery that has experienced some efficiency
decay but is still some time from reaching its economic lifetime. We set 0.91 as a baseline value. The
efficiency of a new machinery reflects the state of the art for this technology. This parameter varies
depending on the type of machinery and on how the machinery is designed to operate with different
loads. According to [30], a suitable value for QR is 0.95, which also gives a realistic difference between
QE and QR.

6.
The degradation rate for machinery in the hydropower industry is quite low compared to other

energy generating industries. In the appraisal of applications from Norwegian hydropower producers, the
regulator, the Norwegian Water Resources and Energy Directorate (NVE), uses a guiding degradation
rate of 0.000877, which is a suitable choice as a baseline value. A suitable value for the post-maintenance
parameter γM is significantly harder to find because of the lack of empirical studies on the subject. Thus,
we opt for a value which gives an obvious reduction in the degradation rate so that the firm might be
willing to perform a maintenance investment. Still, the reduction cannot be too large as this would mean
that the machinery virtually does not degrade, which contradicts industry observations. With this in
mind, we set the value for γM equal to 0.0005.

The investment costs, IR and IM , are highly dependent on the specific hydropower plant due to
the high level of idiosyncracy. However, some general characteristics of the relationship between the
two do exist. First, the value of IM should be significantly lower than IR. This is because of the
difference in the physical characteristics of the two investments. A replacement requires a brand new
machinery to be made, whereas a maintenance investment is a significantly less extensive procedure.
Moreover, a replacement typically means that the plant is unavailable for a longer period compared to
maintenance, which means that there is a higher cost associated with production loss. To quantify the

6 The numerical values for QE and QR are based on a Francis turbine subject to Norwegian weather and market
conditions.

7 https://www.nve.no/Media/5330/veileder-elsertifikater-ou vannkraftverk 09-02-2017.pdf
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suitable cost levels, we have consulted several experts on the area. Based on these discussions, and taking
the limitations above into account, we have set IR equal to 30 MNOK, IM is set to 1.75 MNOK, and
fraction of profits lost to changed operations in the maintenance project, k, is set to 0.005. In the setting
of a hydropower producer with storage reservoirs, changed operational pattern, e.g. using the machinery
for production through periods with low prices to avoid unnecessary starts and stops, implies a relatively
small change in the production schedule.

Estimation of parameters σ and α often demands an in-depth analysis of different economical and
site-specific factors. We use the work of [3] as a basis for σ, and set α to reflect the expected rate of
inflation. For the volatility, we choose σ “ 0.2 as our baseline, whereas the drift rate, α, is set to 0.025.
The discount rate for a given repowering project, ρ, can vary significantly, depending on the plant’s
risk characteristics and financing. [3] argue for a discount rate of 7% on an investment in a setting
similar to ours. However, in recent years, the discount rate has shown a downward trend [12]. A survey
performed by the consulting and accounting firm [18] proposes a guiding discount rate of 5.75% for a
levered hydropower firm. Their results were obtained by consulting incumbents in the Nordic hydropower
industry. Since the latter study is more up to date, we choose a discount rate of 6%.

Table 1 summarizes the baseline parameter values which are used in the analysis.

Parameter Description Symbol Baseline Value

Discount rate ρ 0.06
Starting efficiency of the existing machinery QE 0.91
Starting efficiency of a new machinery QR 0.95
Degradation rate of original machinery γE 0.00087
Degradation rate of maintained machinery γM 0.0005
Investment cost of replacement IR 30
Investment cost of maintenance IM 1.75
Fraction of profits lost to changed operations k 0.005
Volatility of gross profit σ 0.2
Growth rate of gross profit α 0.025

Table 1: Baseline parameter values

After solving (5)-(7), the thresholds for maintenance, lower threshold for waiting, the threshold for
replacing directly if options are valued separately, and the threshold for replacing directly if options are
valued jointly for the baseline values are: pM̊ “ 32.1, pL̊ “ 37.5, pR̊ “ 69.5, pH̊ “ 69.7, respectively.

4.2 Value Functions

Figure 3 indicates how far the replace-only option value, FRppq, and the compound option value, GM ppq,
are from the joint value of the options. In Figure 3, the relative difference, pHppq´V ppqq´pFRppq´V ppqq

Hppq´V ppq and
pHppq´V ppqq´pGM ppq´V ppqq

Hppq´V ppq are represented by black and grey curves, respectively. We adjust the option

values by V ppq “ QEp
µE

, which is the profit generated by doing nothing. The value of doing nothing enters

in all values, see (10), (18), and (21), and by adjusting for this value we can analyze the additional profit
generated by considering the replace-only option and compound option, respectively. Several features can
be observed. First, the compound option adds value in the region p ă pH̊ . This can be seen by studying
the black solid line in Figure 3, showing a positive relative difference between the joint option value,
Hppq, and the replace-only option value FRppq in the region p ă pH̊ . This highlights the added value of
having a smaller investment project in the portfolio. Second, having the option to replace directly adds
value to the compound option in the region from p ą pL̊. In this region, the relative difference between
the joint value Hppq and the compound option value GM ppq is positive. Third, separate valuation of the
replace-only option and the compound option leads to suboptimal investment thresholds. At the point p̄
we observe that the compound option value and the replace-option value are equal. Below this, the firm
would maintain immediately, and above this point the firm would wait and replace if the price reaches
pR̊ under separate valuations. Under joint valuation we find triggers pH̊ ą pR̊ and pL̊ ă p̄ for our base
case parameter values.
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4.3 Expected Hitting Times

Figure 4a shows the expected time to hit the threshold pR̊, i.e. the threshold for replacement in the
replace-only alternative, ErT1s, and the expected time to exit the inaction region, ErT2s, i.e. hitting
either pL̊ from above or pH̊ from below, given a current price in between the thresholds.8
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(a) The expected time to hit the replace-only threshold
(dashed line) and to exit the inaction region (solid line) for
p “ 50.
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(b) The expected time to hit the replace-only threshold
(dashed line) and to replace after having maintained (solid
line) for p “ 30.

Fig. 4: Expected hitting times as a function of volatility for the following parameter set: ρ “ 0.06, QE “ 0.91, QR “ 0.95,
γE “ 0.00087, γM “ 0.0005, IR “ 30, IM “ 1.75, k “ 0.005, and α “ 0.025.

We observe that the expected time to exit the inaction region, for the current price p “ 50, first
increases in volatility and then decreases. This can be explained by the fact that both the replacement
option and compound option become more valuable as σ increases. This means that the probability of
hitting the replacement threshold first decreases with σ for the initial price below this threshold, and
the probability of hitting the maintenance threshold first increases with σ for the initial price above this

8 We follow the approach presented in [43], and calculate the expected times to hit the investment thresholds. In Figures

4a-4b, ErT1s “ 1
´σ2{2`α´γE

ln

ˆ
p˚
R
p

˙
, ErT3s “ 1

´σ2{2`α´γM
ln

ˆ
p˚
M,R

p

˙
, and the expected time to exit the inaction region

is ErT2s “ 1
0.5σ2´α`γE

ˆ
ln

ˆ
p

p˚
L

˙
´ ln

ˆ
p˚
H

p˚
L

˙ ˆ
1 ´ `

p{p˚
L

˘1´2pα´γEq{σ2
˙

{
ˆ
1 ´ `

p˚
H{p˚

L

˘1´2pα´γEq{σ2
˙˙

.
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threshold. Moreover, we observe that having the option to replace directly delays the expected time for
the firm to act by 2.4 years for our baseline of σ “ 0.2, compared to only having the compound option.
In addition, if the firm does not have the option to maintain, the expected time until the investment
is 80 years. Figure 4b shows the expected time to replace with and without the compound option as a
function of volatility, at the current price p “ 30. At this price, it is optimal to exercise the compound
option immediately for values of σ between 0 and 0.20. Figure 4b shows that the expected time spent in
the maintained state is ErT3s “ 65 for σ “ 0.15, while the expected time to replace, without the option
to maintain, is ErT1s “ 54. Hence, a large investment is expected to be delayed significantly with the
replacement option embedded in the maintenance option, compared to only having the option to replace.

4.4 Sensitivity Analysis of Investment Thresholds

As comparative statics for model parameters are difficult to obtain analytically, we perform the sensitivity
analysis using numerical illustrations for reasonable parameter values. In the subsequent figures, we use
dark grey and light gray shading to illustrate the stopping region for the compound option and the
replace-only option, respectively. The investment threshold when the replace-only option is dominant
over the entire state space is pR̊. The maintenance region lies between pM̊ and pL̊. The region above pH̊
is the replacement region.

We start by examining the effect of volatility, σ in Figure 5.
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Fig. 5: The effect of varying volatility for the following parameter set: ρ “ 0.06, QE “ 0.91, QR “ 0.95, γE “ 0.00087,
γM “ 0.0005, IR “ 30, IM “ 1.75, k “ 0.005, and α “ 0.025. The compound option is exercised in the dark grey region,
the replace-only option is exercised in the light grey region, and white is the waiting region.

As can be seen, the second inaction region rpL̊, pH̊q increases in volatility. Interestingly, both pL̊ and
pH̊ increase in volatility, until the replace-only alternative becomes dominant (around σ “ 0.34). Thus,
it can be optimal for the hydropower firm to undertake an investment even though the price falls. [19]
find a similar behavior when considering mothballing and exit options. However, unlike in their analysis,
where the lower threshold decreases in volatility, in our model, pL̊ increases in σ. This is due to the added
value of the replacement option that is available after having exercised the maintenance option.

The effect of changing the initial efficiency of the existing machinery, QE , is shown in Figure 6.

50



A Real Options Analysis of Existing Green Energy Facilities: Maintain or Replace? 13

pM
*

pL
*

pH
*

pR
*

0.70 0.75 0.80 0.85 0.90 0.95

20

40

60

80

100

120

140

QE, efficiency of existing machinery

p
,

p
r
i
c
e

pM
*

pL
*pH

*

pR
*

Fig. 6: The effect of varying pre-investment machinery efficiency for the following parameter set: ρ “ 0.06, σ “ 0.20,
QR “ 0.95, γE “ 0.00087, γM “ 0.0005, IR “ 30, IM “ 1.75, k “ 0.005, and α “ 0.025. The compound option is exercised
in the dark grey region, the replace-only option is exercised in the light grey region, and white is the waiting region.

In contrast to the volatility, a lower efficiency of the machinery makes the replace-only option
dominant. To understand this, note that if the efficiency is already low, the payoff from replacing and
restarting the degradation process dominates that of the maintenance investment, which only slows
down degradation, even though the cost is higher. In addition, we observe that when the dichotomous
environment is prevailing, all thresholds except pM̊ experience a significant increase when QE approaches
QR. This is because when the net benefit of replacing the machinery is smaller, the firm requires
a drastically higher price level before it is profitable to replace. However, the same effect has little
influence on the threshold to perform the maintenance investment, pM̊ . This can be explained by two
contradicting incentives. On the one hand, the firm has an incentive to invest in maintenance earlier
because reducing the degradation rate on a machinery with higher efficiency extends its economic lifetime
more substantially, and hence delays the subsequent replacement. On the other hand, the threshold
is indirectly affected by the replacement option through the implicit equation (17). This gives the
hydropower producer an incentive to delay the investment because replacement is no longer as imminent
with such a high efficiency of the initial machinery. The dominating effect is the former, which leads to
a reduction in the threshold.

In Figure 7a and 7b, the value of IM and IR vary, respectively.
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Fig. 7: The effect of varying investment costs for the following parameter set: ρ “ 0.06, σ “ 0.20, QE “ 0.91, QR “ 0.95,
γE “ 0.00087, γM “ 0.0005, k “ 0.005, and α “ 0.025. The compound option is exercised in the dark grey region, the
replace-only option is exercised in the light grey region, and white is the waiting region.

Increasing the replacement cost IR increases all thresholds. In addition, the replace-only alternative
is dominating only for low values of IR. This is because the value gained from the maintenance project
before an eventual replacement is not high enough compared to directly replacing the machinery for low
replacement cost. As the maintenance investment cost IM increases, the inaction region becomes larger
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and the investment threshold pM̊ increases. The thresholds pL̊, and pH̊ , however, decline with IM . This
is because for larger IM , the replace-only option becomes more attractive.

Figure 8 shows the effect of changing the discount rate ρ.
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Fig. 8: The effect of varying discount rate for the following parameter set: σ “ 0.20, QE “ 0.91, QR “ 0.95, γE “ 0.00087,
γM “ 0.0005, IR “ 30, IM “ 1.75, k “ 0.005, and α “ 0.025. The compound option is exercised in the dark grey region,
the replace-only option is exercised in the light grey region, and white is the waiting region.

We observe that increasing ρ effectively devalues the sequential investment, making the single investment
choice dominant for higher values of ρ. A higher discount rate dampens the relative importance of the
change in drift after the maintenance investment, so the sequential alternative loses its attractiveness, and
thus the gain of a lifetime extension is discounted too much to be a viable choice for the firm. Therefore,
the maintenance investment region shrinks as a result of an increase in the threshold pM̊ and a decline
of pL̊. In the case of the replace-only threshold, however, it is not as clear-cut. In fact, the threshold pH̊
deceases for low values of ρ and increases for large values of ρ. This happens due to two opposing effects.
On the one hand, the replacement option becomes more attractive than the maintenance option as ρ
increases. On the other hand, however, increasing the cost of capital reduces the value of the expected
future cash flows from replacement relative to the expected future cash flows from continuing current
operations. Similar opposing effects for the discount rate have been found in the literature, e.g. [28]
who found that the entry timing of a firm who considers entering a market with an active incumbent,
is non-monotonic in discount rate. For large values of ρ the discounting effect dominates, and the firm
is incentivized to replace the machinery earlier, making it the more valuable option. It is also worth
mentioning that the waiting region r0, pM̊ q and the inaction region rpL̊, pH̊q are expanding with ρ. This
is caused by an increased value in the option to invest in either of the two alternatives and hence increases
the opportunity cost of investing immediately.
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Fig. 9: The effect of varying degradation rate for the following parameter set: ρ “ 0.06, σ “ 0.20, QE “ 0.91, QR “ 0.95,
IR “ 30, IM “ 1.75, k “ 0.005, and α “ 0.025. The compound option is exercised in the dark grey region, the replace-only
option is exercised in the light grey region, and white is the waiting region.
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The effects when changing the degradation rates γE and γM are shown in Figure 9a and 9b, respectively.
These Figures supplement Propositions 5 and 6 by illustrating the investment thresholds based on
a realistic set of parameter values for a hydropower operator. We observe that when γM is low, the
dichotomous environment dominates, whereas for large γM the firm will choose to replace directly. This
is because the more efficient the maintenance investment is, implying a smaller γM , the more valuable
the maintenance option becomes. Varying γE has the opposite effect, there the dichotomous environment
dominates when γE is large. These effects can be explained by the increased benefits of maintenance for
low γM and large γE , which leads to an increase of the investment thresholds which define the inaction
region. At the same time, pM̊ decreases drastically under the dichotomous regime. Both of these changes
can be explained by the attractiveness of operating after the maintenance project when the relative
difference between γE and γM escalates. By executing the maintenance project earlier, the benefit is
reaped sooner and the time until a replacement is required is prolonged due to the decelerated degradation
rate. When γE increases, the inaction region, rpL̊, pH̊q, shrinks, while the maintenance region, rpM̊ , pL̊q,
expands rapidly. Moreover, note that pR̊ is independent of γM , since this parameter only relates to the
maintenance project in the sequential investment alternative. We also see that pR̊ is quite insensitive to
changes in γE . This is most likely due to the drift rate being dominated by the profitability growth α.

4.5 Limitations

In this paper, we provide a novel perspective on managing assets with deteriorating performance by
quantifying the effect of correctly accounting for the mutually exclusive mitigation options. We emphasize
the real options perspective within the field of maintenance and renewal. To keep the model tractable,
we make several assumptions, e.g., deterministic efficiency deterioration and Gaussian relative changes in
long-term prices. However, it is valuable to extend the current framework to account for potential other
real-world features, such as stochastic efficiency deterioration, or breakdown risk. This can be done by, for
example, assuming that the degradation rate follows a GBM with negative drift, and that the breakdown
risk is represented by a Poisson jump process or a gamma process [41]. Intuitively, the additional source
of uncertainty in efficiency will make the option to wait more valuable in line with the standard real
options theory. However, such extensions will require numerical solutions. Another interesting extension
is to add other options to the investment portfolio, for example, sequential maintenance options. We
demonstrate our framework on a hydropower example, and the framework allows to provide insights for
investment decisions in other power generating industries, e.g., wind power. In order for the model to fit
other particular industries, the numerical values will have to be adjusted. Compared to hydro-specific
estimates, this will likely imply slightly higher values of the efficiency deterioration [40] and in the case
of stochastic deterioration, also a higher volatility of the efficiency deterioration process in the case of
wind energy.

5. Conclusions

This paper examines the decisions of a firm concerning a potential maintenance or replacement of
machinery within a real options framework. We present a tractable model, applicable to general asset
management, where we examine the conditions for when it is optimal to undertake investments, and
possibly switch from the minor maintenance project to the major replacement project. The paper
contributes to the literature on replacement options in mutually exclusive investment projects within
the real options framework.

We find that there is a possibility that the investment region is dichotomous. That is, the investment
region is no longer a connected set, similar to the findings in [9] and [19]. We demonstrate implications
of our model by studying investment alternatives for a hydropower producer facing a deteriorating
efficiency of its generation units. Our analysis shows that hydropower producers are likely to operate
in an environment where the dichotomous investment environment is present. We further find that the
dichotomous environment is more likely to be present when the maintenance option is valuable, and that
the maintenance investment becomes preferable when the volatility, the discount rate, the maintenance
investment cost, and the deterioration rate after maintenance are low, and when the replacement cost
and the deterioration rate before maintenance are high. By analyzing expected hitting times, we find that
that the replacement decision may be delayed significantly in expectation with the replacement option
embedded in the maintenance option. Furthermore, for intermediate values of the current price, the
expected time for the producer to act is first increasing in volatility, then decreasing, when the sequential
investment alternative and replace-only alternative are valued jointly. However, if the alternatives are
valued separately, the inaction region does not exist, and the producer would undertake maintenance
investment immediately. This shows the importance of properly identifying the potential alternatives
available in the project portfolio.
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A. Proof of Propositions

A.1 Proposition 2

The stopping value is given by

GRppq “ E

«ż 8

0
e´ρtQRpe

´
ˆ

pα´γE´ σ2

2
qt`σZptq

˙

dt

ff
´ IR “ QRp

µE
´ IR. (22)

(23)

In the continuation region, the problem is almost the same as in Proposition 1. The differences between the two are
that the initial condition and drift of the profit flow. Using parameters from the profit flow after maintenance at time τ1,
we obtain the following expression for the value of the replacement option in the continuation region,

GRppq “ B2p
βM ` p1 ´ kqQEp

µM
, (24)

where

βM “ 1

2
´ α ´ γM

σ2
`

dˆ
α ´ γM

σ2
´ 1

2

˙2

` 2ρ

σ2
. (25)

To find the optimal stopping value, p˚
M , the value matching and smooth pasting conditions must be met. These are

given by the following expressions:
Value matching:

B2p
˚ βM
M ` p1 ´ kqQEp

˚
M

µM
“ QRp

˚
M

µE
´ IR. (26)

Smooth pasting:

B2βMp
˚ βM ´1
M ` p1 ´ kqQE

µM
“ QR

µE
. (27)

Solving these equations to find p˚
M and B2, yields

p˚
M “ βM

βM ´ 1
¨ µEµM

QRµM ´ p1 ´ kqQEµE
¨ IR, (28)

B2 “ IR

βM ´ 1

„
βM ´ 1

βM
¨ QRµM ´ p1 ´ kqQEµE

µEµM
¨ 1

IR

ȷβM

. (29)

Thus, the value of the option to replace in the sequential alternative is given by

GRppq “

$
’’&
’’%

B2p
βM ` p1 ´ kqQEp

µM
if p ă p˚

M ,

QRp

µE
´ IR if p ě p˚

M .

(30)

A.2 Proposition 3

In the stopping region, one pays the investment cost to obtain the second option. Thus, the value of the option is given by

GM ppq “ B2p
βM ` p1 ´ kqQEp

µM
´ IM . (31)

In the continuation region, the Bellman equation must hold. This equation is given by

ρGMdt “ ErdGM s ` QEp0dt. (32)

Solving this equation for the homogeneous and the particular solution yields the following expression for the option
value:

GM “ B1p
βE ` QEp

µE
, (33)

where

βE “ 1

2
´ α ´ γE

σ2
`

dˆ
α ´ γE

σ2
´ 1

2

˙2

` 2ρ

σ2
. (34)

At the investment threshold, p˚
M , the following value matching and smooth pasting conditions must hold:

Value matching:

B1p
˚ βE
M ` QEp

˚
M

µE
“ B2p

˚ βM
M ` p1 ´ kqQEp

˚
M

µM
´ IM . (35)

Smooth pasting:

B1βEp
˚ βE´1
M ` QE

µE
“ B2βMp

˚ βM ´1
M ` p1 ´ kqQE

µM
. (36)
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The expression for p˚
M cannot be solved analytically, but implicitly solves the following equation:

p
˚ βM
M B2

βE ´ βM

βE
` p˚

M

βE ´ 1

βE
¨ QEpp1 ´ kqµE ´ µM q

µEµM
´ IM “ 0. (37)

Given the value of p˚
M , one can calculate the value of B1 as

B1 “ B2
βM

βE
¨ p˚ βM ´βE

M ` QE

βE
¨ p1 ´ kqµE ´ µM

µE ¨ µM p
˚ 1´βE
M . (38)

Thus, the value of the option is given by

GM pp0q “

$
’’&
’’%

B1p
βE ` QEp

µE
if p ă p˚

M ,

B2p
βM ` p1 ´ kqQEp

µM
´ IM if p ě p˚

M .

(39)

A.2.1 Proof of Unique Solution for pM̊

The implicit solution for p˚
M in the sequential alternative, given by (37), is of the following form:

Ψpp˚
M q “ Ap

˚ βM
M ` Bp˚

M ´ C “ 0. (40)

To prove the existence of a unique solution for p˚
M we start by defining the domain of the above function, which is

restricted to positive values only, i.e. p˚
M P r0,8⟩. We also know that βM is the positive root of the quadratic equation

given by (13), and is thus greater than 1 (see [11]).

We can prove that the constants A, B and C are strictly positive. A consists of two terms, namely pβE´βM
βE

q and the

constant B2 defined by (15). First, we know that βE ą βM due to the fact that γE ą γM . This means that pβE´βM
βE

q is

always positive. In order for B2 to be positive, we must assume that

QRµM ą p1 ´ kqQEµE . (41)

This inequality signifies that the net benefit of replacing the machinery after first having upgraded it is positive.
Combined, these two parts yield that A is always positive. Furthermore, to assure a positive B, we require that

p1 ´ kqµE ě µM . (42)

This is the same as assuming that the net benefit from upgrading the pre-existing machinery is either zero or strictly
positive, which must be true, otherwise the option would have no intrinsic value. The last constant, C, represents the
investment cost of upgrading and is by definition always strictly greater than zero. As we know that the constants are
always positive, we can take the derivative of (40) to show that the function is monotonically increasing

Ψ 1pp˚
M q “ AβMp

˚ βM ´1
M ` B. (43)

Since we have already confirmed that βM ą 1, this is a monotonically increasing function for p˚
M P r0,8⟩. By applying

the intermediate value theorem, we therefore know that (40) has a unique solution for p˚
M .

A.3 Proposition 4

We know that when all thresholds are reached, the value of the sequential option is IM to the right relative to the option
to replace directly. It is also known that the derivative of the option value in the stopping region of GM is less than the
derivative of the option value in the stopping region for FR. From value matching and smooth pasting, we know that the
values in the continuation regions will always converge towards the values in their respective stopping regions in terms
of both values and derivatives. Using this, and the fact that the first derivatives of all option values in the continuation
regions are strictly positive, it can be shown that the sequential option will first converge towards a less steep function and
thereafter converge towards the right-shifted parallel line. It will therefore never cross the option value which converges
towards the stopping value of the replace-only option.

Let us, therefore, consider the option values where both alternatives are in the first inaction region. In the case where
FR is more valuable, the following inequality will hold:

FC
R ´ GC

M ě 0 (44)

Inserting the relevant expressions from (10) and (18), yields

„
A1p

βE ` pQE

µE

ȷ
´

„
B1p

βE ` pQE

µE

ȷ
“ A1p

βE ´ B1p
βE ě 0. (45)

The inequality simplifies to

A1 ´ B1 ě 0. (46)

57



20 E. M. Dønnestad, S.-E. Fleten, A. Kleiven, M. Lavrutich, A. M. Teige

We now substitute these parameters by their expressions given in Eqs. (11) and (19)

IR

βE ´ 1

„
βE ´ 1

βE
¨ QR ´ QE

µE
¨ 1

IR

ȷβE

´
„
B2

βM

βE
p

˚ βM ´βE
M ` QE

βE
¨ p1 ´ kqµE ´ µM

µEµM
p

˚ 1´βE
M

ȷ
ě 0. (47)

By reformulation,

IR
βE

βE ´ 1

„
βE ´ 1

βE
¨ QR ´ QE

IRµE
p˚
M

ȷβE

´ B2βMp
˚ βM
M ´ QE

p1 ´ kqµE ´ µM

µEµM
p˚
M ě 0. (48)

Thus, if (48) holds, replace only will be the dominant choice in the entire state space.

A.4 The indifference point

The indifference point, p̃˚, never belongs to any of the stopping regions and will always be located between p˚
L and p˚

H .
We show this in this subsection. The point is implicitly given by the following equation:

B2p̃
˚ βM ` p1 ´ kqQEµE ´ QRµM

µEµM
p̃˚ ´ pIM ´ IRq “ 0, (49)

where βM and B2 are given by (13) and (15), respectively. When contemplating investment, the firm will select the
alternative which generates the highest net expected profit, given the current price p. The value of investment is therefore
the highest stopping value of the two alternatives, i.e. maxtGS

M , FS
R u. When the two alternatives are equally valuable, it is

called the indifference point. This point is given as the solution to

B2rp˚ βM
0 ` p1 ´ kqQE rp˚

µM
´ IM “ QRrp˚

µE
´ IR. (50)

Rearranging, we get

B2rp˚ βM `
„ p1 ´ kqQEµE ´ QRµM

µE ¨ µM
ȷ

rp˚ ´ pIM ´ IRq “ 0. (51)

For values of p below the indifference point, the value of the sequential option exceeds that of the replace-only option,
and vice versa for values above the indifference point.

The intuition for why the indifference point never belongs to the stopping region is quite instructive. We start with the
heuristic argument put forward by [11] to justify the smooth pasting condition. Suppose that the current profit is equal to
the indifference point. Then, by waiting for a small time dt, the firm can observe the evolution of the profit without having
to make any decisions. The intuitive idea is that by waiting a little longer, the firm can observe the next step of p and
choose to invest on either side of rp˚. The resulting average pay-off is thus greater than the payoff obtained by investing at
the indifference point itself since the payoff at this point is not differentiable. This is an implication that follows directly
from Jensen’s inequality, which states that, given a convex function, equally spaced changes in p0 give rise to unequally
spaced changes in V pp0q. In particular, V rEppqs ď ErV ppqs. This remains true even though the average payoff must be
discounted because it occurs at a later time dt. The reason is that, for a Brownian motion, the movements are proportional
to

?
dt, which is valid for the expected payoff. However, the cost due to discounting is of magnitude dt, and thus when dt

is small, the
?
dt-term dominates. The result is that the firm is better off by waiting for more information, which gives rise

to an inaction region. Thus, whenever the inequality given by Proposition 4 does not hold, in contrast to [11], the stopping
region is dichotomous, and the optimal investment decision is not governed by a simple trigger strategy.

A.5 Values for C, D, pL̊ and pH̊

To find the values for C, D, p˚
L and p˚

H , value matching and smooth pasting conditions must be met at the two thresholds.
The conditions at p˚

L are given by
Value matching:

Cp
˚ βE
L ` Dp

˚ β´
E

L ` QEp
˚
L

µE
“ QEp1 ´ kqp˚

L

µM
` B2p

˚ βM
L ´ IM . (52)

Smooth pasting:

βECp
˚ βE´1
L ` β´

EDp
˚ β´

E
´1

L ` QE

µE
“ QEp1 ´ kq

µM
` βMB2p

˚ βM ´1
L . (53)

Rearranging (53), we get

C “
„
QEp1 ´ kq

µM
` βMB2p

˚ βM ´1
L ´ QE

µE
´ β´

EDp
˚ β´

E
´1

L

ȷ
p

˚ 1´βE
L

βE
. (54)

Inserting this into (52) and rearranging, yields

D “ QE
βE ´ 1

βE ´ β´
E

¨ µEp1 ´ kq ´ µM

µEµM
p

˚ 1´β´
E

L ` B2
βE ´ βM

βE ´ β´
E

p
˚ βM ´β´

E
L ´ IM

βE

βE ´ β´
E

p
˚ ´β´

E
L . (55)

By using the expression for D given by (55) in (54), we get

C “ QE
β´
E ´ 1

β´
E ´ βE

¨ µEp1 ´ kq ´ µM

µEµM
p

˚ 1´βE
L ` B2

β´
E ´ βM

β´
E ´ βE

p
˚ 1´βE
L ´ IM

β´
E

β´
E ´ βE

p
˚ ´βE
L . (56)
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On the other end of the interval, the conditions at p˚
H are given by

Value matching:

Cp
˚ βE
H ` Dp

˚ β´
E

H ` QEp
˚
H

µE
“ QRp

˚
H

µE
´ IR. (57)

Smooth pasting:

βECp
˚ βE´1
H ` β´

EDp
˚ β´

E
´1

H ` QE

µE
“ QR

µE
. (58)

Rearranging (58), we get

C “
„
QR ´ QE

µE
´ β´

EDp
˚ β´

E
´1

H

ȷ
p

˚ 1´βE
H

βE
. (59)

Inserting this in (57) and solving for D, yields

D “ βE ´ 1

βE ´ β´
E

¨ QR ´ QE

µE
p

˚ 1´β´
E

H ´ IR
βE

βE ´ β´
E

p
˚ ´β´

E
H . (60)

By using the expression for D given by (60) in (59), we get

C “ β´
E ´ 1

β´
E ´ βE

¨ QR ´ QE

µE
p

˚ 1´βE
H ´ IR

β´
E

β´
E ´ βE

p
˚ ´βE
H . (61)

The expressions for C and D in both ends of the inaction region can be generalized by using the following expressions:

Mi,jppq “ βi ´ 1

βi ´ βj
¨ QR ´ QE

µE
p1´βj ´ IR

βi

βi ´ βj
p´βj , (62)

Ni,jppq “ QE
βi ´ 1

βi ´ βj
¨ µEp1 ´ kq ´ µM

µEµM
p1´βj ` B2

βi ´ βM

βi ´ βj
pβM ´βj ´ IM

βi

βi ´ βj
p´βj . (63)

By setting equal the two expressions for both constants, it is possible to rearrange the initial system to
For C:

N21pp˚
Lq “ M21pp˚

Hq. (64)

For D:
N12pp˚

Lq “ M12pp˚
Hq. (65)

These expressions can now be used to obtain the thresholds p˚
L and p˚

H by using a numerical solution procedure.

A.6 Proposition 5

We start with the first part. To prove this, we follow [28]. Taking the derivative of expression (8) with respect to γE gives

Bp˚
R

BγE “ IR

QR ´ QE

´µE BβEBγE
` βEpβE ´ 1q

pβE ´ 1q2 , (66)

where

BβE
BγE “ ´

α´γE
σ2 ´ 1

2

σ2
b

pα´γE
σ2 ´ 1

2
q2 ` 2ρ

σ2

` 1

σ2

“ βE

σ2
b

pα´γE
σ2 ´ 1

2
q2 ` 2ρ

σ2

. (67)

Rearranging and using the expression for βE ,
b

pα´γE
σ2 ´ 1

2
q2 ` 2ρ

σ2 “ σ2
´
βE ´ 1

2
` α´γE

σ2

¯
, gives

Bp˚
R

BγE “ IR

pQR ´ QEq

¨
˝ βE

βE ´ 1
´

µE
BβEBγE

p1 ´ βEq2

˛
‚

“ IR

pQR ´ QEq

¨
˚̊
˝

βE

βE ´ 1
´
µE

βEb
pα´γE´ σ

2
q2`2ρ

p1 ´ βEq2

˛
‹‹‚

“ IRβE

pQR ´ QEq

¨
˝ pβE ´ 1qpσ2βE ´ σ2

2
` α ´ γEq ´ µE

p1 ´ βEq2
b

pα ´ γE ´ σ
2

q2 ` 2ρ

˛
‚

“ IRβE

pQR ´ QEq

¨
˝

σ2

2
β2
E ` pα ´ γE ´ σ2

2
qβE ´ ρ ` 1

2
pβE ´ 1q2σ2

p1 ´ βEq2
b

pα ´ γE ´ σ
2

q2 ` 2ρ

˛
‚

“ IRβEσ
2

2pQR ´ QEqp1 ´ βEq2
b

pα ´ γE ´ σ
2

q2 ` 2ρ
. (68)
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Differentiating (12) with respect to γE gives

Bp˚
M,R

BγE “ µM IRQRβ
2
M

pβM ´ 1qpQRµM ´ p1 ´ kqQEµEq2 , (69)

which is greater than zero for all βM ą 1, which shows the second part of the proposition.

A.7 Proposition 6

Differentiating (12) with respect to γM gives

Bp˚
M,R

BγM “ IRµE

¨
˝ ´µM pQRµM ´ p1 ´ kqQEµEq BβM

γM
´ QEµEp1 ´ kqβM pβM ´ 1q

pQRµM ´ p1 ´ kqQEµEq2pβM ´ 1q2

˛
‚

ă 0, (70)

since BβM
γM

ą 0, βM ą 0 and QRµM ´ p1 ´ kqQEµE ą 0 if the condition in (16) is met. For the maintenance threshold, let

f denote the implicit equation (17). We have

0 “ df

dγE
“ Bf

BγE ` Bf
Bp˚

M

Bp˚
M

BγE , (71)

which implies

Bp˚
M

BγE “ ´
Bf

BγE

Bf
Bp˚

M

. (72)

Computing the denominator

Bf
Bp˚

M

“ B2βM
βE ´ βM

βE
p

˚βM ´1
M ` βE ´ 1

βE
QE

µEp1 ´ kq ´ µM

µEµM
, (73)

which is positive given the precondition in (16). We are left to show that Bf
BγE

is positive when the condition holds.

Differentiating f with respect to γE gives

Bf
BγE “ 1

µ2Eβ
2
E

pa1 ` a2 ` a3q , (74)

where

a1 “ BβE
BγE µE

ˆ
βMp

˚βM
M µEB2 ` QEp

˚
M

ˆ
µEp1 ´ kq ´ µM

µM

˙˙
,

a2 “ ´ BB2

BγE p
˚βM
M µ2E

`
βEβM ´ β2

E

˘
,

a3 “ QEp
˚
M pβ2

E ´ βEq.
Differentiating B2 with respect to γE gives

BB2

BγE “ ´QR

µ2E

ˆ
βM ´ 1

βM

ˆ
µMQR ´ p1 ´ kqQEµE

IRµEµM

˙˙βM ´1

“ ´ QRβMµM

µEpµMQR ´ p1 ´ kqQEµEqB2 (75)

Inserting for BB2BγE
and BβE

γE
given by (67) into (74), and eliminating B2p

˚βM
M using the implicit equation f gives

Bf
BγE “ K0pK2p

˚
M ´ K1IM q, (76)

where

K0 “ 1

µEβEpβE ´ γEqpβE ´ 1
2

` α´γE
σ2 q , (77)

K1 “ βMβE

˜ˆ
βE ´ 1

2
` α ´ γE

σ2

˙
pβE ´ βM qC2 ´ µ2E

σ2

¸
, (78)

K2 “ µ2E
σ2

C1 pβE ´ βEβM q `
ˆ
βE ´ 1

2
` α ´ γE

σ2

˙
pβE ´ 1q pβE ´ βM q pQE ` C1C2βM q , (79)

where

C1 “ QE pp1 ´ kqµE ´ µM q
µEµM

,

C2 “ QRµEµM

µMQR ´ p1 ´ kqQEµE
.

Hence, Bf
BγE

ą 0 if and only if

K2p
˚
M ą K1IM , (80)

and combined with (72), (73), and (16), this implies
Bp˚

MBγE
ă 0, which shows the second part of the proposition.
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