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Abstract 
 

Hydrogen can be adopted as a clean alternative to hydrocarbons fuels in the marine sector. 

Liquid hydrogen (LH2) is an efficient solution to transport and store large amounts of hydrogen, 

thus it is suitable for the maritime field. Additional safety knowledge is required since this is a 

new application and emerging risk might arise. Recently, a series of LH2 large-scale release 

tests was carried out in an outdoor facility as well as in a closed room to simulate spills during 

a bunkering operation and inside the ship’s tank connection space, respectively. The extremely 

low boiling point of hydrogen (-253°C) can cause condensation or even solidification of air 

components, thus enrich with oxygen the flammable mixture. This can represent a safety 

concern in case of ignition of the flammable mixture of LH2 and solid oxygen, since it was 

demonstrated that the resulting fire may transition to detonation. In this study, the 

abovementioned LH2 release experiments were analysed by using an advanced machine 

learning approach. The aim of this study was to provide critical insights on the oxygen 

condensation and solidification during an LH2 accidental spill and to evaluate whether the 

hydrogen concentration within the gas cloud formed due to the LH2 evaporation would reach 

the lower flammability limit. In particular, a model was developed to predict the possibility and 

the location of the oxygen phase change and of the hydrogen concentration above the lower 

flammability limit depending on the operative conditions during the bunkering operation (e.g. 

LH2 flow rate). The model demonstrated accurate and reliable predicting capabilities. The 

outcomes of the model can be exploited to select effective safety barriers and adopt the most 

appropriate safety measures in case of liquid hydrogen leakage. 
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Chapter 1 Introduction 

Introduction 

 

1.1 Background 
 

Nowadays hydrogen is gaining increasing importance, as it is considered a promising source of 

energy (Aaneby, Gjesdal and Voie, 2021). In fact, it represents one of the best alternatives to 

fossil fuels and guarantees a “clean, secure and affordable energy future” (Birol, 2019). 

Hydrogen is a light, non-toxic and abundant substance, characterised by a wide flammability 

rage (4-75 vol% in air) and an extremely low ignition energy (0.019 mJ), (Aaneby, Gjesdal and 

Voie, 2021). Its gravimetric energy density is considerable: for given mass, hydrogen contains 

about 2.5 times more energy than natural gas (Verfondern et al., 2021). However, hydrogen gas 

density at atmospheric conditions is very low (0.0883 kg/m3 (NIST, 2022)), which means that 

in order to reduce its volume and increase its storage capacity it must be compressed or 

liquefied. Liquid hydrogen is indeed one of the most efficient solutions for storage and 

transportation of hydrogen, being more practical when it comes to bunkering and handling of 

the fuel (Aaneby, Gjesdal and Voie, 2021). The most significant drawback of liquid hydrogen 

is the high amount of energy required by the liquefaction process (Verfondern et al., 2021); 

since hydrogen gas is a supercritical fluid, it cannot be liquefied by compression at a normal 

ambient temperature, therefore the liquefaction is performed cryogenically, obtaining a 

cryogenic fluid stored virtually at atmospheric pressure and at a temperature of -253°C (NIST, 

2022).  

Many hazards connected to the storage and utilisation of liquid hydrogen can be identified, and 

they are analysed in safety and risk assessments. The main issue is associated with leakage, 

which leads to the formation of cryogenic pools on the ground, the propagation of flammable 

clouds in the environment as well as major damages on humans and infrastructures in case of 

ignition (Verfondern et al., 2021). Moreover, the low storage temperature of liquid hydrogen 

may cause condensation or solidification of air components, such as nitrogen and oxygen, 

which might clog ventilation masts or other pipes (Aaneby, Gjesdal and Voie, 2021). In 

addition, the liquefaction or solidification of oxygen is of major concern, since it could enrich 

flammable mixtures, having a higher boiling point than nitrogen, and therefore it would increase 

the likelihood of detonation in case of ignition (Hooker, Willoughby and Royle, 2011). Many 
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tests have been performed to investigate these hydrogen safety aspects, both on a laboratory 

scale and on a larger scale, such as those performed by the Norwegian Defence Research 

Establishment (FFI) in the UK. Those experiments have provided useful data for the elaboration 

and improvement of numerical models employed in risk analyses (Aaneby, Gjesdal and Voie, 

2021).  

 

1.2 Objectives 
 

The aim of this thesis is to provide a data driven model which is able to support the engineer in 

the decision-making process in critical situations of safety concern.  

The method described in this work is based on the analysis of liquid hydrogen leakage data to 

build a model capable of performing several tasks (e.g. prediction, classification, etc.). Such 

data consist in measurements returned by sensors in experimental studies carried out by the 

Norwegian Defence Research Establishment (FFI) concerning hydrogen release scenarios. The 

tests reproduce possible leakage events in bunkering operations.  

First, a detailed analysis of the leakage scenarios has been performed in order to identify the 

main problems connected to the handling and storage of an ultra-low boiling point cryogenic 

fluid. Then, after accurate research to identify the most suitable methods, Machine Learning 

models have been developed and tested on their ability to predict the occurring of those issues, 

such as the formation of liquid or solid oxygen and hydrogen gas concentration. In other words, 

the main objectives of this thesis are: 

• the analysis of experimental studies to identify different classes related to safety issues; 

• the training of three Machine Learning models: Linear, Deep and Wide&Deep; 

• the evaluation of the capability of those models to predict the different classes. 

 

1.3 Approach 
 

All the analyses described in the present work have been performed on databases built on data 

collected during the experimental studies conducted by the Norwegian Defence Research 

Establishment. 

Firstly, the data collected during such experimental tests involving liquid hydrogen leakage 

have been studied and the main problems connected to a cryogenic liquid spill have been 
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evaluated. The databases have been built on the basis of the pointed-out problems: some 

mitigation measures in case of a release scenario have been analysed and a response time 

necessary to such measures to take action has been considered to develop the databases.  

Finally, these datasets have been used to train and evaluate three different machine learning 

models: the Linear Model, the Deep Model and the Wide&Deep Model. 

The analyses have been performed using python as a programming language. Both PyCharm 

2021.2 and Google Collaboratory have been used.  

The method presented in this thesis has been developed with the purpose of predicting the 

condensation or solidification of air oxygen and the formation of a flammable atmosphere: 

using this method to predict other metrics may not lead to the same results. 

 

1.4 Outlines 
 

This work includes six chapters and two appendices. Chapter 2 describes the theoretical 

background of the present work, and it is divided into four sections. In the first section, the 

experimental studies conducted by the FFI are described in detail. In the second section, the 

main hazards connected to liquid hydrogen accidental releases are analysed. In the third section, 

some mitigation measures to be activated in case of a cryogenic liquid spill scenario are 

presented. The fourth section introduces Machine Learning and dives deeper into the models 

utilised in this work. Chapter 3 focuses on the different databases built upon the experimental 

studies’ data. Furthermore, the analyses performed during this thesis work are described in 

detail. Specifically, the final section of the chapter focuses on the Machine Learning 

simulations. In Chapter 4, the results obtained from the analyses described in Chapter 3 are 

presented. The results are then discussed and evaluated in depth in Chapter 5. Moreover, the 

limitations of the methods are here highlighted and some suggestions about possible 

improvements are provided. In the final chapter (i.e. Chapter 6), the findings are summarized 

and some recommendations for further works are presented. Finally, Appendix A includes the 

code used for the Machine Learning simulations while Appendix B shows some extracts of the 

analysed databases. 
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Chapter 2 Theoretical background 

Theoretical background 
 

2.1 Experimental studies 
 

The Norwegian Defence Research Establishment (FFI) has performed a series of experimental 

tests with the objective of understanding the liquid hydrogen behaviour to facilitate its 

introduction as fuel for ships. The release tests were carried out by varying the flowrate and 

duration to simulate realistic accidental spills for maritime applications (Aaneby, Gjesdal and 

Voie, 2021).  

Two different kinds of tests have been performed: 

• Outdoor leakage studies; 

• Closed room and ventilation mast studies. 

 

2.1.1 Outdoor leakage studies 
 

The outdoor leakage tests consisted in the release of liquid hydrogen on the ground on a pad 

above which many sensors and thermocouples were placed. Ambient conditions were recorded 

in each test; the measurements included wind speed and direction, humidity and ambient 

pressure. The wind speed and direction were measured through sensors installed in a mast near 

the pad. In each test, pad temperature, field temperature and gas concentration, were recorded. 

Temperature measurements were conducted using thermocouples. The hydrogen concentration 

in air was measured by oxygen sensors whose measurements were translated to hydrogen 

concentrations based on oxygen depletion. 

A total of 48 thermocouples were placed on or in the test pad for the outdoor leakage 

experiments, as shown in Figure 1, and more than 40 thermocouples were used for field 

temperature measurements (see Figure 3).  
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Figure 1. Outdoor leakage studies: placement of thermocouples to measure pad temperature and calorimeters to 

measure heat flux (ignited tests only) (Aaneby, Gjesdal and Voie, 2021). 

 

Figure 2. Details around the release point. The red dots indicate the locations of the surface measurements; the 

green dots indicate the locations of the measurements below the concrete surface. The blue cross indicates the 

release point of LH2 (Aaneby, Gjesdal and Voie, 2021). 
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Figure 3. Outdoor leakage studies: initial instruments’ locations for measurements of field temperature, gas 

concentration, thermal radiation and field overpressure (pink squares: oxygen sensors and thermocouples for 

field temperature measurements; red dots: radiometers; blue circles: pressure sensors). The blue cross indicates 

the release point of LH2 (Aaneby, Gjesdal and Voie, 2021). 

A total number of seven tests were performed. These tests aimed to simulate liquid hydrogen 

spills from bunkering operations, as depicted in Figure 4. The liquid hydrogen release flowrates 

were varied up to 50 kg/min – which reproduce real accidental release rates – and two 

intermodal containers were placed close to the release point to simulate obstacles. 

 

Figure 4. Illustration of a truck to ship bunkering (Aaneby, Gjesdal and Voie, 2021) 
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As stated by Aaneby, Gjesdal and Voie (2021), this study aimed to (i) provide information 

about the formation, propagation and duration of a cryogenic liquid pool, (ii) evaluate the gas 

cloud generated by such leakage and (iii) describe the cloud behaviour in case of ignition as a 

simple burning, a deflagration or a detonation event. 

As emerged from the tests, the formation of the liquid pool on the ground depended on the 

orientation of the release hose (vertical downwards or horizontal) and it only extended up to 

0.5 m from the release point. The release of a cryogenic fluid may lead to condensation and 

freezing of air components on the ground due to the ultra-low boiling point of hydrogen - 20 K 

(Perry and Green, 2008). These phenomena are particularly critical since they might enhance 

the risk of explosion of the flammable mixture in case of ignition. Moreover, the concentration 

of hydrogen within the gas cloud generated by the partial vaporization of the released liquid 

hydrogen exceeded the lower flammability limit (LFL) within 50 m from the release point. In 

none of the tests a spontaneous ignition was observed. 

 

2.1.2 Closed room and ventilation mast studies 

The closed room and ventilation mast studies consisted in liquid hydrogen release on the bottom 

of a shipping container to simulate the spill of the cryogenic fluid in the technical room (tank 

connection space, TCS) connected to the storage tank (see Figure 6).  

Ambient conditions were recorded in each test; the measurements included wind speed and 

direction, humidity and ambient pressure. The wind speed and direction were measured through 

sensors installed in a mast near the pad. Temperature and gas concentration were measured in 

the TCS and in the field.  

In the enclosed room studies setup, 15 thermocouples were placed on the TCS floor, 10 

thermocouples were placed in the TCS and three more inside the ventilation mast, as shown in 

Figure 5.  



 
 

9 
 

 

Figure 5. Ventilation mast studies: locations of thermocouples (red dots) and oxygen sensors (green dots). Floor 

of the TCS to the left (top view). TCS connected to ventilation mast to the right. Blue cross indicates the release 

point of LH2 (Aaneby, Gjesdal and Voie, 2021). 

 

 

Figure 6. Illustration of a tank connection space (TCS) also called coldbox, connected to a ventilation mast 

(Aaneby, Gjesdal and Voie, 2021) 

 

A total number of eight tests were performed. In one test the enclosed room was first purged 

with nitrogen in order to prevent the formation of flammable mixtures that can lead to 

explosions in case of ignition. The main objectives of these tests were the following: 

• providing information about the hydrogen concentration inside the TCS; 
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• detecting eventual clogging of the ventilation mast; 

• observing pressure build-up in the TCS due to the evaporation of liquid hydrogen. 

As outlined in the report, the concentration of hydrogen in the room reached 100% within 30 s 

after the release had started. Moreover, since the room was not completely tight, no pressure 

build-up was observed due to liquid hydrogen vaporization. 

Furthermore, the condensation or solidification of air components inside the ventilation mast 

did not result in its clogging. Finally, evidence of condensed or frozen air components on the 

floor’s surface in the room remained for a long period, whereas the liquid pool on the ground 

rapidly evaporated. 

 

2.2 Liquid hydrogen release hazards 

A liquid hydrogen release scenario is analysed in this section.  

The cryogenic liquid initially flashes to gas when released onto the ground due to the large 

temperature difference between the liquid and the ground surface. Then, the surface cools down 

enough to allow the formation of a pool of liquid hydrogen within few minutes. The cloud of 

gaseous hydrogen is visible due to the condensation of water vapour contained in air during the 

release. Moreover, its dispersion highly depends on the wind speed and direction.  

Therefore, the pool formed on the ground is composed of liquid hydrogen and condensed air. 

It is also possible to observe the formation of a solid deposit which might be a mixture of solid 

oxygen and nitrogen (Royle and Willoughby, 2014). Figure 7 shows how the growth of a solid 

deposit might be formed. 

 

Figure 7. Schematic representation of solid air accumulation during a liquid hydrogen spill scenario (Atkinson, 

2021). 
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Air condenses and freezes on the pool’s surface and right in front of it, the solid deposit 

eventually impedes the liquid to flow further on the ground. Not all the droplets of condensed 

air fall on the liquid pool. Many of them fall outside the pool due to the restriction of the liquid 

extent caused by the solid deposit. In this way, condensed air – whose components have higher 

boiling points than the hydrogen one – accumulates and freezes on the previously deposited 

material forming a larger amount of solid deposit, at a temperature higher than the hydrogen 

boiling point. Only the quantity of solid material which is right in front of the liquid pool reaches 

temperatures close to -253°C, being in contact with LH2. Therefore, only a proportion of the 

solid deposit forms a detonable mixture with liquid hydrogen (Atkinson, 2021). 

The main problem connected to the condensation and freezing of air components on the ground 

is related to the behaviour of the flammable mixture in case of ignition: a condensed phase 

explosion might occur. Condensed phase explosions can have harmful consequences to both 

buildings and people (Davies, 1993), which manifest as: 

• shock wave: the explosion event is accompanied by a blast wave that instantly increases 

the atmospheric air pressure to a peak value which can cause great damage to buildings 

and people. Then this overpressure phase is followed by a phase of negative pressure, 

as shown in Figure 8, which can still cause moderate damage. 

 

Figure 8. Pressure trend over time after an explosive event (Ramasamy et al., 2013).  

Generally, an overpressure of 0.70 bar is considered as resulting in total demolition of 

constructions. Human lungs are generally highly resistant to overpressure, while the 

main death cause in case of explosion is due to impact with hard surfaces. 
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• Fragment generation: as a result of explosion fragments can be either generated from 

the initial tank or container involved in the explosion – primary missiles – or from 

objects close to it – secondary missiles. The energy delivered to them from the blast 

wave can transform the fragments into missiles characterised by high velocity and 

penetration effects. 

• Thermal radiation: typically caused by fireballs growth. These fires consist in 

immediate ignition of the aerosol cloud above the pool generated after the rupture of the 

tank containing the liquid hydrogen under pressure and can cause damage to humans by 

direct contact with the flame or by radiation. Secondary fires can be generated by 

radiation exposure. 

The condensed phase explosion may or may not occur if a liquid hydrogen – condensed air 

mixture is ignited depending on some conditions. Many experimental tests were performed in 

the past in order to investigate the behaviour of the flammable mixture composed by liquid 

hydrogen and oxygen. Those tests established that in case of ignition of a liquid hydrogen – 

pure solid oxygen mixture, a rapid deflagration to detonation transition occurs and can still be 

observed if the solid oxygen is diluted with nitrogen to 50 % wt/wt (Atkinson, 2021). For higher 

nitrogen contents the mixture burns without exploding. This means that if air condenses on the 

surface of a cryogenic liquid spill, the resulting flammable mixture may or may not lead to a 

condensed phase explosion if ignited. The outcome depends on the composition of the frozen 

air and the extent to which it has been enriched with oxygen: oxygen has higher melting and 

boiling temperatures than nitrogen, therefore it may condense faster than nitrogen, leading to 

oxygen enrichment in the solidified deposit (Aziz, 2021). 

More recent studies about large hydrogen spills scenarios onto concrete pads have shown 

significant condensed phase explosion following the initial ignition (secondary explosion), 

revealing that some flow conditions such as hydrogen to air ratio and wind conditions lead to 

oxygen enrichment and facilitate the deflagration to detonation transition (Atkinson, 2021). 

These studies revealed that ambient air is fully condensed if the liquid hydrogen to ambient air 

ratio exceeds a value of 7, as shown in Figure 9. In this case there is no oxygen enrichment. 
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Figure 9. Equilibrium state of liquid hydrogen and air mixed in different proportions – Molar proportion of 

condensed air (Atkinson, 2021). 

If more air is present the ratio falls. For a hydrogen to air ratio of 3 or less, no condensation of 

air is observed, it all remains entrained in the gas phase. If the hydrogen to air ratio is between 

3 and 7, varying degrees of oxygen enrichment can be observed (see Figure 10). The first liquid 

(i.e. condensed air) formed as more hydrogen is mixed with air has an oxygen molar fraction 

of around 60%, reached at a temperature of around 72K (see Figure 10 and Figure 11). 
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Figure 10. Equilibrium state of liquid hydrogen and air mixed in different proportions - Oxygen mole fraction in 

the liquid phase (Atkinson, 2021). 

 

Figure 11. Equilibrium state of liquid hydrogen and air mixed in different proportions – Final Temperature       

(Atkinson, 2021). 

Another hazard connected to the leakage of liquid hydrogen is related to the vapour cloud which 

is formed immediately after the release. This cloud may be characterised by the concentration 

of gaseous hydrogen in air. If this concentration reaches the lower explosivity limit, a 
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flammable atmosphere, which could cause a simple fire or an explosion if ignited, arises.  When 

a leakage occurs, part of the cryogenic liquid flash vaporises forming a flammable aerosol (Liu 

et al., 2019). If it is immediately ignited a jet fire continuously fed by the leakage is originated. 

On the other hand, if an immediate ignition is not present, a cloud is formed and it spreads as a 

plume from the release point along the wind direction, diluting with air. If the dilution is fast 

enough, the cloud disperses safely, whereas, if the cloud finds a delayed ignition (i.e. 1÷5 

minutes after the release began) a fire or an explosion are generated: 

• vapour cloud fire: fire with no explosive effects; 

• vapour cloud explosion: fire with explosive effects. It occurs when the flame front 

accelerates to a velocity higher than 40 m/s in presence of partial confinement 

(Thomas, Eastwood and Goodrich, 2015). 

Since the consequences of an explosion event are extremely severe – due to the above-

mentioned aftermaths – predicting whether or not the concentration of hydrogen in the cloud 

will reach the lower flammability limit is crucial (Pritchard and Rattigan, 2010). 

 

2.3 Mitigation measures 

Once the release has occurred, some safety procedures should be automatically activated. 

Typically, sensors and detectors can be used to detect hydrogen leakages. These sensors should 

incorporate automatic shutoff to limit the amount of liquid hydrogen released and activate 

alarms to warn the operators. A good practice is to set the detector’s set point at 1% hydrogen 

by volume in air, which corresponds to 25% of the lower flammability limit (LFL), (Hydrogen 

Tools, 2022). Sensor and detectors might also be designed so that they could activate mitigation 

tools, such as sprinklers, water curtains or release inert gases in case of hydrogen leakage 

detection, as well as ventilation. 

Many tests have been performed in order to guarantee the possibility to utilise such tools as 

mitigation measures to control the flow or accumulation of liquid hydrogen and the dispersion 

of hydrogen gas, as described by Atkinson (2020).  

Ventilation is one of the most important mitigation measures since it ensures that the flammable 

gas is prevented from accumulating and it can either be natural – due to pressure differences 

between indoor and outdoor spaces, or due to the wind blowing in outdoor spaces – or 

mechanical – achieved using fans (Spoelstra, 2020). 
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Sprinklers and water curtains are water systems typically used in the firefighting framework, 

since they can be automatically activated by high temperature.  

Automatic sprinklers are heat-sensitive devices designed to activate at certain temperatures to 

release a stream of water, and to distribute it in a specified pattern. In normal conditions, water 

is entrained by a cap or valve held tightly against the nozzle. Then, it is sprayed out by the 

releasing mechanism in case of activation. The most commonly used release mechanisms 

include fusible links, glass bulbs, and chemical pellets. Sprinklers are made for installation in 

an upright (SSU), pendent (SSP), or sidewall position (Spoelstra, 2020). 

A water curtain is defined as a line of closely spaced sprinklers. Water spray curtains are used 

for the dispersion of hazardous vapor clouds through different mechanisms (Rana and 

Mannan, 2010 and Rana, Guo and Mannan, 2010): 

• mechanical effects of creating a barrier to the passage of a gas cloud and imparting 

momentum to it – the imparted momentum can disperse the vapour cloud upwards, 

downwards or sideways depending on the nozzle orientation; 

•  dilution of the gas cloud by air entrained by the water spray; 

• thermal effects between the gas cloud, water droplets, and entrained air – it can play 

an important role in dissipating cold clouds by enhancing their buoyancy; 

• absorption of gas in water droplets with or without chemical reaction. 

The main problem when using water system is related to the potential generation of a rapid 

phase transition (RPT), which might occur when a cryogenic liquid vaporises violently upon 

encountering water (Verfondern, 2021). It is not a chemical explosion since it is not provoked 

by a combustion or other chemical reactions. Instead, RPT events are vapor or physical 

explosions. However, they are powerful enough to determine major damage. The experimental 

studies performed by the European project PRESLHY (Verfondern, 2021) proved that such 

explosion does not occur when water droplets get in contact with liquid hydrogen, hence both 

sprinklers and water curtains are effective in mitigating liquid hydrogen release’s 

consequences. However, the contact with water enhances the rate of vaporisation and if the 

cloud is ignited it could lead to a larger fireball (Verfondern, 2021). These tools are fast acting, 

a typical response time is about 3 minutes after the activation temperature has been reached 

(Wade et al., 2007). 

Inert gases, such as nitrogen, argon, helium, carbon dioxide can be introduced inside an 

enclosed room where hydrogen has been released in order to reduce the concentration of oxygen 
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in air. Since an explosion needs a combustible, an oxidizer (oxygen) and an ignition to occur, 

if oxygen concentration is lower than the flammability limit because of the presence of an inert 

gas, the explosion cannot occur, as represented schematically in Figure 12, where point C 

represents the minimum concentration of oxygen below which the mixture cannot burn if 

ignited (Baldissin, 2015). 

 

Figure 12. Explosivity triangular diagram related to a generic combustible gas (Baldissin, 2015). 

 The lower concentration of oxygen also guarantees to avoid its solidification which could bring 

to a severe condensed phase explosion in case of oxygen enrichment of the flammable mixture, 

as described in section 2.2. The main drawback of this approach is that the room must be 

immediately evacuated before entering the inert gas, since oxygen depletion is responsible of 

asphyxia, which is lethal for human being; therefore, the response time increases (Arrieta et al., 

2009). 

All of these mitigation measures are time-sensitive: they typically have a response time of a 

few minutes, but the sooner they are activated, the more effective their action is. Therefore, the 

prediction of a liquid hydrogen release’s consequences is crucial to establish and quickly 

activate the most appropriate mitigation measure. Machine Learning techniques allow to build 

models able to carry out these kinds of predictions. 
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2.4 Machine Learning approach 

Machine learning is a field of Artificial Intelligence (AI) (Brink, Richards and Fetherolf, 2016). 

Artificial intelligence can be described as “the effort to automate intellectual tasks normally 

performed by humans” (Chollet, 2017).  

The history of AI began in 1950, when AI was simply a predefined set of rules that applied to 

an input dataset would return some output. Nowadays artificial intelligence has evolved into a 

much more complex field involving many different techniques such as Machine Learning, 

Neural Networks (NN) etc. (see Figure 13).  

 

 

 

The family of AI known as machine learning (ML) has become an important tool for gaining 

information from large data sets (Ben-David and Shalev-Shwartz, 2014). The term refers to 

“the automated detection of meaningful patterns in data” (Ben-David, and Shalev-Shwartz, 

2014), which allows a machine to acquire knowledge from the past. In other words, whereas 

AI requires human to define a set of rules, ML is able to figure out the rules itself knowing the 

input data and what the output should be like. 

Some of ML applications are here listed and many more are discovered every day (JavaTPoint, 

2021): 

• image recognition; 

• risk management; 

• traffic prediction; 

• product recommendations; 

• self-driving cars; 

Figure 13. Artificial Intelligence’s constituent parts (ActiveWizards, 2019). 
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• spam detection; 

• medical diagnosis; 

 

There are three main categories of machine learning (ActiveWizards, 2019):  

• supervised learning: the model is fed with both input and output data to perform a task, 

such as Classification (for categories or classes prediction) or Regression (to predict a 

continuous outcome); 

• unsupervised learning: the model is fed only with the input data; 

• reinforcement learning: the system is rewarded for correct outcomes and penalised for 

wrong ones developing an algorithm with the highest reward and the lowest penalty.  

Since the aim of this thesis is to determine whether or not a certain hydrogen release will cause 

air component’s liquefaction or solidification or if the resulting cloud will be or will be not 

characterised by a concentration of hydrogen higher than the LFL, Classification only has been 

used. In the next section, a more detailed description of the Classification task is given.  

 

2.4.1 Supervised Learning 

Before diving deeper into Classification’s general aspects, it is necessary to introduce some 

definitions (Mohri, Rostamizadeh and Talwalkar, 2018), and in order to make them clearer a 

simple example is used. The Titanic’s passengers are taken into consideration, and the task of 

the learner is to guess whether a certain passenger will survive or not (TensorFlow, 2022a).  

• Example: instance of data or item used for learning. In the Titanic example these items 

correspond to the collection of passengers. 

• Features: vector of attributes associated to an instance of data. In the example above 

some relevant features may be the age, the sex, the class, etc. of the passenger. The 

values of the features can either be numerical (e.g. 24, as the passenger age), categorical 

(e.g. Female, as the passenger sex) or Boolean (Nilsson, 2005). If the task is to predict 

the liquefaction or freezing of air components due to liquid hydrogen leakage, some 

meaningful features, for instance, might be the release rate and orientation, as well as 

the pressure inside the tank that leaks and the wind characteristics. 
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• Labels: values or categories assigned to an example that have to be predicted by the 

model. In the Titanic example the label is ‘survived’, or ‘not survived’. 

• Train dataset: set of examples used to train the model (e.g. set of passengers), including 

corresponding labels. 

• Test dataset: set of examples used to validate the model and evaluate its performance. 

The algorithm predicts the labels associated to these examples and then they are 

compared to the actual labels to evaluate the performance.  

The previously described example is a supervised learning binary classification problem, which 

is the one used in this thesis. It might be reduced to the following question: given an example 

x from a dataset X, which value between 0 (associated to the non-happening of a certain event) 

and 1 (associated to the happening of a certain event) the corresponding label will assume 

(Smola, and Vishwanathan, 2008)?  In order to answer this question, the model has to be trained 

and tested. First, relevant features must be associated to each example of the train dataset. 

Second, these features are used to train the model. The aim of the training step is to find a 

function that correlates the labels to the features (Brink, Richards and Fetherholf, 2016). This 

function is also called the model of the ML algorithm (TensorFlow, 2021a). 

Finally, the test dataset, which the model has not seen yet, is used to predict the labels. The 

output of the evaluating phase is a probability vector: the first value is the probability of the 

label being 0 and the second value is the probability of the label being 1. These probabilities 

are then compared to a threshold value (0.5 by default) to determine the predicted labels that 

will be compared to the actual labels to evaluate the performance of the model by calculating a 

loss function. Such function can either be represented by a mean absolute error, a mean squared 

error, etc. 

 

2.4.2 TensorFlow 

In the past decades, machine learning techniques have led to advances in many different fields, 

especially due to the availability of new ML models and software platforms for building such 

models (Abadi et al., 2016).  

TensorFlow is an open-source programme for machine learning designed by Google that allows 

to easily build models no matter what programming language is used (TensorFlow, 2022b).  

Some features of TensorFlow might be summarised as follows: 
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• it is able to easily define, optimise and calculate mathematical expression using multi-

dimensional arrays, also known as tensors; 

• it includes a coding support of deep neural networks and machine learning approaches; 

• it uses GPU computing. 

TensorFlow offers a variety of machine learning and deep learning algorithms and includes a 

consistent number of ML libraries. The basic data structure used in TensorFlow language is the 

tensor, which is characterised by a rank, that is the number of dimensions of the tensor, a shape, 

that is the number of rows and columns, and the data type of a tensor’s elements. Tensors are 

the connecting edges of the data flow graphs used to execute numerical computation (Tutorials 

Point, 2018). 

Generally speaking, the aim of this work is to build three different models (Linear, Deep and a 

combination of these two – Wide&Deep) using TensorFlow’s estimators, which, given inputs 

and a number of parameters, return the necessary operations to perform training, evaluation or 

predictions (TensorFlow, 2021b). 

 

2.4.3 Models 

Many models are available to perform a Classification task based upon algorithm such as 

Random Forest, Decision Trees, etc. (Shin, 2020). In this thesis, a Linear model, a Deep Neural 

Network and a hybrid Wide&Deep model are used in the framework of the python library 

Tensorflow. 

 

2.4.3.1 The Linear Model 

A linear Classifier in Machine Learning is a method that “makes classification decision based 

on the value of a linear combination of characteristics of an object” (Guru99, 2021). Therefore, 

these classifiers separate data using a line, a plane or a hyperplane - which represents a plane 

in more than 2 dimensions - (Machine Learning Notebook, 2021), as depicted in Figure 14. 
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Figure 14. Binary classification example: the classes are coded as a binary variable (blue=0, orange=1). The 

line represents the decision boundary defined as 𝑋𝑇𝑊 = 0.5 where X is the inputs vector and W is the weights 

vector (Hastie, Friedman and Tibshirani, 2009). 

Three major algorithms are synthetically explored in this section, but only the first one has been 

used to demonstrate the approach: 

• Perceptron: it consists in a transfer function and an activation function. The transfer 

function, takes the features vector as input, and its output is then transferred to the 

activation function, as in Equation (1): 

𝑌 = 𝑤𝑜 + ∑ 𝑥𝑗𝑤𝑗
𝑝
𝑗=1 = 𝑓(𝑤, 𝑥)                                            ( 1 ) 

Equation (1) can be written as an inner product: 𝑌 = 𝑋𝑇𝑊 (Hastie, Friedman, and 

Tibshirani, 2009). 

Where Y represents the output (vector of predicted labels), X the vector of inputs (it is 

usually a matrix containing the features associated to each object), wo is the intercept or 

bias and W is the vector of weights. Y is then defined as a linear function of all the 

features xj. The weights represent the direction of the correlation between features and 

labels: a positive correlation rises the probability of the positive class whereas a negative 

correlation increases the probability of the negative class (Guru99, 2021). The activation 

function acts like a threshold in this case, as shown in Equation (2). 
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𝑜𝑢𝑡𝑝𝑢𝑡 =  {
1, 𝑓(𝑤, 𝑥) ≥ 0
0, 𝑓(𝑤, 𝑥) < 0

                                                       ( 2 ) 

 

• Logistic regression: it is based upon a sigmoid function defined as follows 

ℎ(𝑧) =  
1

1+𝑒−𝑧                                                         ( 3 ) 

The sigmoid function in Equation (3) represents the activation function, it receives a 

weighted linear combination of features as input (𝑋𝑇𝑊) and gives a number between 0 

and 1 as output, which is the probability of observing a certain label.  

 

• Support vector machine: given some linearly separable data many hyperplanes can act 

as a separation boundary, SVM chooses the optimal one, as represented in Figure 15. 

 

Figure 15. On the left: possible decision boundary hyperplanes. On the right: optimal decision 

boundary hyperplane (Mohri, Rostamizadeh and Talwalkar, 2018). 

The optimal hyperplane is the one that has the maximum margin, which is the maximum 

distance from the data points of each class. 

The linear model is generally fast, easy to interpret and suitable for analysing large sets of 

features as well as reliable (Hastie, Friedman, and Tibshirani, 2009). Moreover, inter-features 

relations’ effect on the output can be taken into consideration by combining different features 

into a single column, obtaining the so-called Crossed Features (TensorFlow.org, 2020c).  

The main drawback of linear models is that they cannot describe nonlinear relations between 

features nor even express the effect of previously unseen combinations of features (Cheng et 

al., 2016). 
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2.4.3.2 The Deep Neural Network 

Neural networks are nonlinear statistical models. They can be represented by a network diagram 

as depicted in Figure 16.      

 

Figure 16. Neural Network diagram, adapted from Danilov and Karpov (2018). 

For K-class classification, there are K units on the right, which represent the probabilities of 

each class. For a binary classification method as the one analysed in this thesis K=2. 

X1, …, Xp are the inputs, which are linearly combined to obtain the derived features Z1,..ZM. 

These units are known as hidden units, and they constitute a hidden layer. A neural network 

may consist of several hidden layers, in that case we talk about deep neural networks 

(Kriegeskorte and Golan, 2019). Generally speaking, it is better to have too many hidden units 

rather than too few, otherwise the model might not be flexible enough to catch nonlinearities in 

the data. Choosing a good number of hidden layers is led by experience and background 

knowledge (Hastie, Friedman, and Tibshirani, 2009). 

The output is then modelled as a function of the linear combination of such derived features: 

𝑍𝑚 = 𝜎(𝛼𝑜𝑚 + 𝑎𝑚
𝑇 𝑋), 𝑚 = 1, … , 𝑀                                          ( 4 ) 

𝑇𝑘 = 𝛽𝑜𝑘 + 𝛽𝑘
𝑇𝑍, 𝑘 = 1, … , 𝐾                                               ( 5 ) 

𝑓𝑘(𝑋) = 𝑔𝑘(𝑇), 𝑘 = 1, … , 𝐾                                                ( 6 ) 
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where Z = (Z1,... ,ZM) is the vector of the derived features, T = (T1,T2,... ,TK) is the vector of 

the linear combinations of the derived features and: 

•  𝛼0𝑚 = bias; 

•  𝛼𝑚 = vector of model parameter𝑠; 

•  𝜎 = activation function; 

•  𝛽0𝑘 = bias; 

•  𝛽𝑘 = vector of model parameters; 

•  𝑌𝑘 = a label; 

•  𝑔𝑘 = the output function. 

The activation function σ(v) is usually chosen as a sigmoid (Hastie, Friedman, and Tibshirani, 

2009). The output function allows to finally convert the vector of outputs T.  

The output function initially utilised was the identity function 𝑔𝑘(𝑇) = 𝑇𝑘, mainly applied to 

regression tasks, which nowadays has been replaced by the softmax function in Equation (7): 

𝑔𝑘(𝑇) =
𝑒𝑇𝑘

∑ 𝑒𝑇𝑙𝐾
𝑙=1

                                                                      ( 7 ) 

The neural network parameters, or weights, are tuned during the training phase using either the 

squared error or the cross-entropy deviance (Hastie, Friedman, and Tibshirani, 2009): 

𝑅(𝜃) = − ∑ ∑ 𝑦𝑖𝑘𝑙𝑜𝑔𝑓𝑘(𝑥𝑖)
𝐾
𝑘=1

𝑁
𝑖=1                                                      ( 8 ) 

The approach is to minimize R by gradient descent, through a back-propagation algorithm: first 

the activation states are computed upward for each unit; then, the predicted outputs are 

compared to the expected ones and the deviance is calculated (see Equation (8)). This allows 

to calculate the sensitivity of the cost evaluating how much the deviance would change by 

varying the activation.  

Finally, each weight is adjusted in the direction that minimises the error (Kriegeskorte and 

Golan, 2019).  

As a general consideration, Deep Neural Networks, in opposition to linear models, are able to 

capture even nonlinear relations between features, can generalise better and can produce 

decision boundaries of any shape, as one can notice in Figure 17 (Hastie, Friedman, and 
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Tibshirani, 2009). On the other hand, though, they require a higher computational effort and 

are more sensitive to the quality of the input dataset (Brink, Richards and Fetherolf, 2016). 

 

Figure 17. A neural network example: representation of two decision boundaries (Hastie, Friedman, and 

Tibshirani, 2009). 

 

2.4.3.3 The Wide&Deep Model 

The Wide&Deep Learning was developed by Google for recommender systems.  

It was developed to overcome the previously described models’ flaws. The main feature of wide 

and deep learning is the integration of a wide linear model and a deep neural network, in order 

to achieve both their respective powers of memorisation and generalisation (see Figure 18).  

The wide learning part consists in a generalised linear model responsible for memorisation, that 

“emphasises on frequent co-occurrences of the features in the past” (Bastani, Asgari and 

Namavari, 2019).  

The Deep Neural Network (DNN) part consists of a nonlinear statistical model responsible for 

generalisation, which exploits new inter-relations between features that have never or rarely 

occurred in the past. In these cases, in fact, wide learning would fail as there are no data to train 

the model. On the other hand, deep learning can generalise to previously unseen interactions. 

The resulting model is able to achieve both tasks by integrating the two approaches – 

memorisation and generalisation – being able to account for unseen features interactions, but 
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still avoiding the over-generalisation typical of deep learning. The training of wide and deep 

parts is carried out jointly by backpropagation (Bastani, Asgari and Namavari, 2019). 

 

Figure 18. Illustration of the Wide&Deep model (Bastani, Asgari and Namavari, 2019). 

 

2.4.4 Performance metrics of machine learning models 

Performance metrics are vital in evaluating a model’s performance. Among the wide number 

of performance metrics available, only those which better evaluate the specific model’s 

performance must be selected. In binary classification problems, the confusion matrix depicts 

the total number of predictions dividing them in four possible outcomes (see Figure 19): 

• True Positive (TP): both the real label and the predicted label of a sample are positive 

(= 1); 

• True Negative (TN): both the real label and the predicted label of a sample are negative 

(= 0); 

• False Positive (FP): the real label is negative and the predicted label is positive; 

• False Negative (FN): the real label is positive and the predicted label is negative (Jiao 

and Du, 2016). 

Most of the classifier’s performance metrics are obtained combining these four values. 
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  Predicted Label 

  0 1 

 
0 TN FP 

1 FN TP 

 

Figure 19. Confusion matrix. TP = true posisitve, FP = false positive, FN = false negative, TN = true negative 

Based on the definitions above three basic performance metrics can be obtained as follows: 

• 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑁+𝑇𝑃+𝐹𝑃
 which expresses the fraction of predictions correctly 

performed by the model (Google, 2020a); 

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  which expresses the fraction of correct positive predictions; 

• 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
 which expresses the fraction of real positive labels correctly predicted, 

(Google, 2020b).  

A classification algorithm uses a parameter known as decision threshold to decide which class 

a given sample belongs to. The default threshold is 0.5, but this parameter can be changed in 

case of class imbalance in the initial dataset, and this leads to a modification of the values inside 

the confusion matrix. More specifically, by decreasing the decision threshold the number of FP 

increases whereas the number of FN decreases (Seliya and Hulse, 2009). Therefore, precision 

and recall vary as functions of the decision threshold and for given values of the threshold, a 

precision-recall curve can be obtained. 
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Figure 20. Example of Precision-Recall curve obtained for different threshold values (GitHub,2020a). 

The Precision-Recall curve introduces another important performance metric which is the Area 

Under the Precision-Recall Curve (AUCpr) (see Figure 20). This is represented by a single 

value ranging from 0 to 1; the higher the AUCpr the better the classifier’s performance. (Seliva 

and Hulse, 2009).  

Finally, another significant metric is the F-measure, that can be calculated as a function of 

Precision and Recall: 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
(1+𝛽2)∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2∙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     (Chinchor, 1992)                                                                     ( 9 ) 

Where 𝛽 = 1 if precision and recall are of equal weight, and the F-measure in this case would 

be their harmonic mean, 𝛽 = 1.5 if recall’s optimisation is more important than precision’s 

optimisation, and 𝛽 = 0.5 if recall is half as important as precision (Chinchor, 1992). The 

maximum value of the F-measure corresponds to the best threshold value, that optimises 

precision or recall or both the parameters. 

 

  

 

https://sinyi-chou.github.io/images/prauc/PR_auc_area_plot.png
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Chapter 3 Databases and simulations 

Databases and simulations 
 

The databases used in this work have been obtained from data collected during experimental 

tests performed in England by the FFI (Aaneby, Gjesdal and Voie, 2021), as described in 

Paragraph 2.1. The analyses performed in the thesis are here presented and described in detail. 

Specifically, the step-by-step procedure followed to build the Machine Learning models is 

outlined. 

 

3.1 Data used 

Three different databases have been developed: 

• First database: outdoor leakage studies – condensation or freezing of air components 

prediction; 

• Second database: outdoor leakage studies – hydrogen concentration within the gas cloud 

prediction; 

• Third database: closed room studies, also referred to as indoor leakage studies for 

simplicity – condensation or freezing of air components prediction. 

All the databases consist of temperature and hydrogen concentration values measured by 

several thermocouples and oxygen sensors (to determine the concentration of hydrogen in air 

by oxygen depletion) respectively, placed nearby the liquid hydrogen release. Each row of the 

database represents the temperature or concentration value given by each element in a certain 

timestamp. Each column represents a piece of information characterising the release. 

The common attributes between the three databases are listed in Table 1.  

Table 1. Common features between the three databases. 

Feature Description 

Timestamp Time elapsed after the beginning of the release test 

Ambient pressure Ambient pressure measured by a sensor 
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Relative humidity Relative humidity measured by a sensor  

Release rate Rate that characterises the release scenario 

Release orientation Direction of the release hose, can either be horizontal or vertical 

downwards 

Internal pressure Liquid hydrogen tank internal pressure measured by four sensors 

Internal temperature Liquid hydrogen tank internal temperature measured by four 

thermocouples 

Temperature values Temperature values measured by the thermocouples  

Thermocouples 

positions 

Spatial coordinates of each thermocouple 

 

Additional features for the outdoor leakage studies databases: 

Table 2. Outdoor leakage studies databases' additional features 

Feature Description 

Wind direction  Wind direction detected at 10 m and 5 m above the ground 

Wind speed  Wind speed detected at 10 m and 5 m above the ground 

 

Additional features for the enclosed room studies database: 

Table 3. Indoor studies database's additional features. 

Feature Description 

Purge In some of the experimental studies the container is either purged 

with air or nitrogen 

Sealing The container is characterised by two openings: the low-level vent 

(connection point between the TCS and the hydrogen tank) and 

the opening connecting the ventilation mast to the container. The 

experimental tests might be conducted with all of the openings 

sealed, none of them sealed or only the low-level vent sealed 
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Not all the thermocouples used in the experimental studies are considered in the databases. As 

discussed in Paragraph 1.2, the main objective of this thesis is to build a model able to predict 

the condensation or solidification of air oxygen due to the accidental release of a cryogenic 

fluid in the atmosphere. Since many thermocouples are placed considerably far away from the 

release point, it is highly improbable that such thermocouples would reveal the presence of 

liquid or solid oxygen, so they have been excluded from the database. All the thermocouples 

placed over 30 m away from the release point have been excluded from the first database used 

to predict the condensation or freezing of air components. Moreover, the thermocouples placed 

inside the test pad were not considered in the development of the database as well, since no air 

can be found under the cement pad’s surface. 

In order to evaluate whether the concentration of hydrogen in the gas cloud reaches the lower 

flammability limit or not, all the oxygen sensors placed at 30, 50 and 100 m from the release 

point in the wind direction, as represented in Figure 3, have been considered in the second 

database.  

For the third database, only the 25 thermocouples placed inside the TCS were considered to 

build it in order to evaluate the formation of liquid or solid oxygen inside the TCS and to 

perform a comparison with the outdoor case. 

Finally, as mentioned before, the databases have been developed by considering a row for each 

temperature or concentration value measured by every single thermocouple or sensor for each 

instant of time, for the entire duration of the experimental test. This has been repeated for every 

test and all the data collected for each of them have been merged.  

A simplified representation of the first outdoor leakage studies database is reported in Table 4 

to provide an example. For a better understanding of the databases’ structures see the tables in 

Appendix B. 

Table 4. Simplified representation of the First database (outdoor leakage studies). 

Timestamp (s) Ambient pressure 

(mbar) 

... Temperature values (°C)  

t0 P  TT01 

Test 1 

… 

... P  ... 

t0 P  TT48 

... ...  ... 
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tf P  TT01 

... P  ... 

tf P  TT48 

t0 P  TT01 

… 

Test 7 

... P  ... 

t0 P  TT48 

... ...  ... 

tf P  TT01 

... P  ... 

tf P  TT48 

     

3.1.1 Labels 

One or more labels have been associated to each timestamp based on the value measured by the 

thermocouple or sensor. The label must refer to a future event in order to allow a prediction 

using the previously described models.  

For the first and third databases two labels have been investigated: for each position on the pad, 

liquid oxygen or solid oxygen deposition may or may not be observed. The label is 1 if the 

value measured by the specific thermocouple after 200 s is lower than the boiling point – to 

predict the condensation of air oxygen – or the melting point – to predict the solidification of 

air oxygen – of pure oxygen. Only in one case this method cannot be applied: in one of the 

experimental tests of the indoor studies the enclosed room was previously purged with nitrogen, 

therefore no oxygen was present inside the room once the release had started. For this specific 

situation a label of 0 has been associated to each thermocouple for every timestamp. 

For the second database only one label has been considered: for each position on the pad a 

concentration of hydrogen in air higher than the lower flammability limit may or may not be 

observed after 200 s. 

Both the oxygen boiling and melting point have been considered at an average pressure of 0.96 

bar, and they are equal to Tb = -183.5 °C and Tm = -218.79 °C, respectively (Perry and Green, 

2008). 
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The lower flammability limit of hydrogen considered at atmospheric pressure is 4% vol. 

(Hochgraf, 2009). 

In this work, a response time of 200 seconds has been considered to predict the condensation 

or freezing of air components or the formation of a flammable atmosphere.  

The models will then be able to carry out a prediction of the label corresponding to a certain 

thermocouple after 200 s. Since in this thesis hydrogen sensors activated systems have been 

considered as mitigation measures for liquid hydrogen leakage’s consequences, the 200 s 

interval has been selected on the basis of water systems’ response time after a hydrogen release. 

 

3.1.2 Database analysis 

The first database contains five experimental tests with a total of 48 thermocouples each. The 

second database contains four experimental tests with a total of 30 concentration sensors each.  

The third database contains five experimental tests with a total of 25 thermocouples, all of them 

placed inside the container.  

Not all the experimental tests have been considered in the databases since some of them were 

not long enough to allow a consistent prediction or were conducted in different wind conditions 

with respect to the others.  

 

3.1.2.1 Outdoor leakage studies databases 

In order to better analyse the different databases, the histograms representing the features’ 

distributions are here discussed. The abscissa axis gives the values assumed by the feature into 

consideration, whereas the ordinate axis represents the number of repetitions of that value in 

the database. 

                                                                                

Figure 21. Distribution of the temperature values measured by the thermocouples (TT) considered in the first 

database (outdoor case). 
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As shown in Figure 21 the temperature values measured by the different thermocouples vary 

between 0°C and -250°C, with the larger number of repetitions being at the extremes of the 

distribution.  

 

 

Figure 22. Distribution of the label values considered in the first database (outdoor case) for the labels (a) 

liquid oxygen formation and (b) solid oxygen formation. 

 

Figure 22 represents the labels taken into consideration for the first database: a value of 1 is 

assigned to those thermocouples which will measure a temperature lower than the boiling or 

melting point of oxygen after 200 s, whereas a value of 0 is assigned to those thermocouples 

which will measure a temperature value higher than the boiling or melting point of oxygen. As 

expected, liquid oxygen is formed on the ground many more times than solid oxygen, since the 

boiling point, being higher, is more easily reached than the melting point.  

 

Figure 23. Distribution of the hydrogen concentration (HC) values measured by the oxygen sensors in the 

second database. 

(a) (b) 
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The hydrogen concentration (HC) values measured by the different oxygen sensors vary 

between 0% and around 10%, with the larger number of repetitions being at the lower extreme 

of the distribution, as displayed in Figure 23.  

 

Figure 24. Distribution of the label values considered in the second database (outdoor case). 

The chart in Figure 24 reveals that the second database is strongly imbalanced, being the 

negative label detected many more times than the positive one, which indicates that 

experimentally the concentration of hydrogen in air after the release rarely reaches the lower 

flammability limit of 4% that guarantees the fire to occur in case of ignition of the flammable 

mixture. 

 

3.1.2.2 Enclosed room and ventilation mast studies database 

Figure 25 highlights that the temperature values measured by the different thermocouples vary 

between 0°C and -250°C, with the larger number of repetitions being at the lower extreme of 

the distribution, which then smooths towards 0°C.  

 

Figure 25. Distribution of the temperature values measured by the thermocouples (TT) considered in the third 

database (indoor case). 
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Figure 26. Distribution of the label values considered in the third database (indoor case) for the labels (a) liquid 

oxygen formation and (b) solid oxygen formation 

 

Figure 26 represents the labels taken into consideration for the third database: a value of 1 is 

assigned to those thermocouples which will measure a temperature lower than the boiling or 

melting point of oxygen after 200 s, whereas a value of 0 is assigned to those thermocouples 

which will measure a temperature value higher than the boiling or melting point of oxygen. It 

can be stated that liquid oxygen is formed on the ground many more times than solid oxygen. 

Moreover, differently from what happens for the outdoor case, the temperature inside the 

container is low enough to allow a significant condensation of oxygen, so that the probability 

to find it in the liquid state is higher than the one to find it in a gaseous phase, as depicted in the 

first chart of  Figure 26. 

 

3.2 Procedure description 

The first step in developing a machine learning algorithm is to build a database containing both 

features and labels (see Section 2.4.1). The selection of the most relevant features relies mainly 

on experience. Next, the database is split into two parts; the first one is used to train the model 

and the second one is used to evaluate it. Later, the model is selected (e.g. Linear, Deep or 

Wide&Deep), and the features are converted to fit the model’s needs. Finally, the model is 

trained and evaluated. In this thesis Python has been used to code and build the models. 

A more detailed description of these steps is presented in the following. 

(a) (b) 
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3.2.1 Database creation 

Features and labels must be organised to form a database – a matrix – to prepare the data to 

feed the models with.  The database is built in such a way that the features are reported in the 

columns of the database itself and the labels are stored in the last column. Each row of the 

database represents a list of the hydrogen release features for each sensor or thermocouple and 

the related label. The general structure of a hypothetic database is displayed in Table 5. 

Table 5. Machine Learning Database: general structure. 

 

       The databases have been developed by considering a row for each temperature or concentration 

value measured by every single thermocouple or sensor for each instant of time, for the entire 

duration of the experimental test. This has been repeated for every test and all the data collected 

for each of them have been merged. 

Selecting the most meaningful features often requires a trial-and-error approach. Only the most 

meaningful features that have been used in the final simulations are now presented. 

First and second databases’ features: 

• the timestamp when the thermocouple or sensor measures a value of temperature or 

concentration; 

• ambient pressure measured during the experimental test; 

• release rate;  

• relative humidity measured during the experimental test (RH%); 

• release orientation;  

• hydrogen tank internal pressure measured by the sensor P01;  

Feature 1 Feature 2 … Feature n Label 

t0   TT0 1 

...   ... … 

tf   TTf 0 
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• hydrogen tank internal pressure measured by the sensor P02;  

• hydrogen tank internal pressure measured by the sensor P03;  

• hydrogen tank internal pressure measured by the sensor P04;  

• hydrogen tank internal temperature measured by the sensor PT_01;  

• hydrogen tank internal temperature measured by the sensor PT_02; 

• hydrogen tank internal temperature measured by the sensor PT_03; 

• hydrogen tank internal temperature measured by the sensor PT_04; 

• wind direction measured by a sensor placed at 10 m from the ground 

(Wind_Direction_High); 

• wind direction measured by a sensor placed at 5 m from the ground 

(Wind_Direction_Low); 

• wind speed measured by a sensor placed at 10 m from the ground (Wind_Speed_High); 

• wind speed measured by a sensor placed at 5 m from the ground (Wind_Speed_Low); 

• temperature or concentration values measured by the thermocouples and sensors (TT or 

HC); 

• spatial coordinates of the instrumentation (x, y, z). 

 

Third database’s features:  

• the timestamp when the thermocouple or sensor measures a value of temperature or 

concentration; 

• ambient pressure measured during the experimental test; 

• release rate;  

• relative humidity measured during the experimental test (RH%); 

• type of purge preformed (air or nitrogen);  

• type of sealing (enclosed room partially or completely sealed);  
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• hydrogen tank internal pressure measured by the sensor P01;  

• hydrogen tank internal pressure measured by the sensor P02;  

• hydrogen tank internal pressure measured by the sensor P03;  

• hydrogen tank internal pressure measured by the sensor P04;  

• hydrogen tank internal temperature measured by the sensor PT_01;  

• hydrogen tank internal temperature measured by the sensor PT_02; 

• hydrogen tank internal temperature measured by the sensor PT_03; 

• hydrogen tank internal temperature measured by the sensor PT_04; 

• temperature values measured by the thermocouples (TT); 

• spatial coordinates of the instrumentation (x, y, z). 

The last column of Table 5 represents the labels; a label can be either zero or one. If the 

thermocouple or sensor will measure the presence of liquid or solid oxygen or a concentration 

of hydrogen higher than the LFL within 200 s, the label is “1”. Otherwise, the label is “0”. 

 

3.2.2 Data pre-processing 

Nowadays it is a good practice to pre-process the data using a normalization method in order 

to avoid the higher impact of some features over others only due to their different scale. The 

normalization method used in this work is the MinMaxScaler and has been selected among 

others as it is the most utilised in various fields of application with good results. Therefore, all 

the variables are rescaled to be in the range [0,1] through the following approach: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
      (Pedregosa et al., 2021a)                                                                   ( 10 ) 

 

3.2.3 Training and evaluation datasets 

The database is split in two parts. The first part will be used for the training phase, the second 

part will be used to evaluate the performance (i.e. the prediction capability) of the trained 

models. The training database comprises the 75% of the original database. The remaining part 
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constitutes the evaluation database. In the original database, the data (i.e. rows) are displayed 

in chronological order and this may pose problems when splitting the database: for instance, it 

may happen that most of the positive labels “occurred” in the first part of the database (i.e. the 

training part) and very few positive labels would be included in the evaluation dataset. Machine 

Learning algorithms prefer well-distributed data, therefore before splitting the original 

database, the rows must be randomly shuffled to avoid poor data distribution.  

Finally, the last column of the evaluation databases (i.e. the labels) must be removed and stored 

in a separate variable. Since the aim of the evaluation phase is to predict the label and then 

compare it to the actual one, the model must not have access to the true label during the 

evaluation phase. 

 

3.2.4 Further elaboration of the database 

In some cases, when the databases are highly imbalanced (i.e. the number of positive labels is 

much lower than the number of negative labels) it is necessary to furtherly elaborate the initial 

database.  

Over-sampling and under-sampling techniques are applied in specific cases in order to improve 

class balance. In this thesis the SMOTE (Synthetic Minority Over-sampling Technique) 

technique has been utilised, since it is one of the most commonly used in various fields of 

application with good results. “SMOTE works by selecting examples that are close in the 

feature space, drawing a line between the examples in the feature space and drawing a new 

sample at a point along that line” (Brownlee, 2021). 

In other words, a generic example from the minority class is selected and a certain number 

(usually 5) of the nearest neighbours are identified. Then, one neighbour is chosen and a 

synthetic example is created in a point between the two examples in the feature space through 

a convex combination of such examples, as shown in Figure 27. 

This algorithm can create as many synthetic examples for the minority class as required to 

balance the dataset.  
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Figure 27. Graphic representation of SMOTE algorithm, adapted from GitHub (2020b). 

Over-sampling or under-sampling techniques are usually applied to train datasets only, as the 

evaluation dataset is a collection of previously unseen real data whose labels’ values must be 

predicted by the model to test its performances. 

 

3.2.5 Model selection and features conversion 

In this work, only supervised learning has been used. Three different models have been trained 

and evaluated (i.e. Linear, Deep, Wide&Deep) using the same databases and the same features. 

Still, the features need to be converted based on the selected model, as performed in the code 

in Appendix A.  

Table 6 summarises the features (e.g. numerical, categorical and crossed) used to train each 

model on the different databases: 

Table 6. Features summary. 

 Linear Deep Wide&Deep 

Numeric 
Timestamp 

Ambient_pressure 

Timestamp 

Ambient_pressure 

Timestamp 

Ambient_pressure 
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Where categorical features are non-numerical features (e.g. strings) that can influence the 

prediction’s results, whereas crossed features combine different features in one column as 

described in Paragraph 2.4.3. Crossed features have been selected on the basis of physical 

correlation between the different variables: the release rate depends on tank’s internal pressure, 

whereas the thermocouples and sensors are placed in a certain location identified by 

coordinates. 

Finally, the Deep model and the deep part of the Wide&Deep model have three hidden layers. 

The first hidden layer has 1024 hidden units, the second 512 and the third 256. 

 

Release_rate 

RH% 

P01, …, P04 

PT_01, …, PT_04 

Wind_Direction 

Wind_speed 

TT, HC 

x, y, z 

Release_rate 

RH% 

P01, …, P04 

PT_01, …, PT_04 

Wind_Direction 

Wind_speed 

TT, HC 

x, y, z 

Release_rate 

RH% 

P01, …, P04 

PT_01, …, PT_04 

Wind_Direction 

Wind_speed 

TT, HC 

x, y, z 

Categorical 

Release_orientation 

Purge 

Sealing 

Release_orientation 

Purge 

Sealing 

Release_orientation 

Purge 

Sealing 

Crossed 

x × y × z 

TT (or HC) × x × y × z 

Release_rate × P01 × P02 × 

P03 × P04 

- 

x × y × z 

TT (or HC) × x × y × z 

Release_rate × P01 × P02 × 

P03 × P04 
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3.2.6 Training phase 

The models are fed with the training dataset. During this phase, the weights of the models are 

optimised to provide an accurate mapping from the input (the features) to the output (the labels). 

All the models have been trained for the same number of steps. 

 

3.2.7 Evaluation phase 

The trained models are now evaluated on their ability to predict the correct labels. The 

evaluation database is fed into the model. As a result, the model provides the predicted label’s 

probability (as discussed in section 2.4.1). The threshold used to evaluate the predicted label is 

set by default to 0.5. By comparing the predicted labels with the real labels, the software 

calculates and displays the performance metrics described in Section 2.4.4. Although useful, 

these metrics are limited to the default threshold, that can be changed in order to optimise one 

of the performance metrics to obtain a more meaningful prediction for each specific case. 

All of the previously described steps have been repeated and applied to a new version of the 

databases. In order to build a model that could be used in emergency situations of liquid 

hydrogen accidental release, the features that are not likely to be obtained quickly have been 

removed from the original databases. In a chemical plant ambient pressure, humidity, wind 

direction and speed are continuously monitored, moreover in case of accidental releases the 

release rate and orientation can be easily obtained. Some coordinates can be also fed into the 

model in order to predict the condensation or solidification of air oxygen or the formation of a 

flammable atmosphere in certain locations in the field. The only feature which is not likely to 

be easily measured in a real hydrogen spill scenario is the temperature or the hydrogen 

concentration in the field, since usually there are no thermocouples or sensors permanently 

placed in the field. Therefore, the column storing the values measured by such thermocouples 

or sensors has been removed from the databases and a new model has been built. 
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Chapter 4 Results  

Results 

 

Several simulations have been performed, firstly using raw data and secondly pre-processing 

the data using the MinMaxScaler normalization method. 

 

4.1 TensorFlow simulations 

This section focuses on the results obtained from the three previously introduced models trained 

and evaluated on the complete databases (i.e. the databases containing the temperature or 

concentration values column). 

 

4.1.1 Outdoor leakage studies 

The main results of the simulations performed on the outdoor leakage studies data are here 

reported. All the performance metrics presented in this chapter have been obtained for a 

decision threshold default value of 0.5. 

 

4.1.1.1 First database: label “liquid oxygen formation” 

• Results without data normalization 

 

Table 7. Performance metrics resulting from the evaluation of the three models trained over the raw outdoor 

leakage studies database for the label “liquid oxygen formation” 

 

 

 

 Accuracy Precision Recall AUC_pr 

Linear 0.929 0.934 0.895 0.981 

Deep 0.968 0.958 0.966 0.995 

Wide&Deep 0.971 0.961 0.971 0.996 



 
 

48 
 

The confusion matrices resulting from the three different models are displayed in Figure 28. 

 

 

 

The precision-recall curves obtained by varying the threshold between 0 and 1 associated to the 

different models are depicted in Figure 29, Figure 30 and Figure 31.  

 

 

Figure 29. Precision-recall curve of the Linear Model (label: liquid oxygen; first database without data 

normalization) 

 

  Predicted Label 

  0 1 

 
0 98449 4820 

1 8030 68437 

  Predicted Label 

  0 1 

 
0 100027 3242 

1 2579 73888 

  Predicted Label 

  0 1 

 
0 100289 2980 

1 2209 74258 

 

Figure 28. Confusion matrices obtained for the label “liquid oxygen” without having performed data pre-

processing on the first database by emplying the (a) Linear Model, (b) Deep Model and (c) Wide&Deep Model. 
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Figure 30. Precision-recall curve of the Deep Model (label: liquid oxygen; first database without data 

normalization) 

 

 

Figure 31. Precision-recall curve of the Wide&Deep Model (label; liquid oxygen; first database without data 

normalization) 

By observing the metrics in Table 7, it is possible to conclude that the Linear model produces 

smaller metrics, whereas the Deep model and the Wide&Deep model produce similar larger 

metrics, thus they perform better than the Linear model. The confusion matrices displayed in 

Figure 28 highlight that the linear model is weaker when it comes to predicting the label “1”: 

the number of False Negatives (bottom left of the confusion matrices) is higher than the number 

of False Positives (top right of the confusion matrices). The opposite behaviour can be observed 

for the Deep and Wide&Deep models. 

 

 

 

Deep Model 

Wide&Deep Model 
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• Results with data normalization 

Table 8. Performance metrics resulting from the evaluation of the three models trained over the normalized 

outdoor leakage studies database for the label “liquid oxygen formation” 

 

 

The confusion matrices resulting from the three different models are displayed in Figure 32. 

 

The precision-recall curves obtained by varying the threshold between 0 and 1 associated to the 

different models are reported in Figure 33, Figure 34 and Figure 35. 

 

 Accuracy Precision Recall AUC_pr 

Linear 0.902 0.848 0.936 0.949 

Deep 0.909 0.872 0.922 0.962 

Wide&Deep 0.909 0.871 0.923 0.962 

  Predicted Label 

  0 1 

 
0 92898 10371 

1 5948 70519 

  Predicted Label 

  0 1 

 
0 92856 10413 

1 5906 70561 

  Predicted Label 

  0 1 

 
0 90457 12812 

1 4861 71606 

Figure 32. Confusion matrices obtained for the label “liquid oxygen” having performed data pre-processing on 

the first database by employing the (a) Linear Model, (b) Deep Model and (c) Wide&Deep Model. 
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Figure 33. Precision-recall curve of the Linear Model (label: liquid oxygen; first database with data 

normalization) 

 

 

Figure 34. Precision-recall curve of the Deep Model (label: liquid oxygen; first database with data 

normalization) 

 

 

Figure 35. Precision-recall curve of the Wide&Deep Model (label: liquid oxygen; first database with data 

normalization) 

Linear Model 

Deep Model 

Wide&Deep Model 
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Once again, by observing the metrics in Table 8, it is possible to conclude that the Linear model 

produces smaller metrics, whereas the Deep model and the Wide&Deep model produce similar 

larger metrics. The confusion matrices displayed in Figure 32 highlight that the models are 

weaker when it comes to predicting the label “0”; the number of False Negatives (bottom left 

of the confusion matrices) is always lower than the number of False Positives (top right of the 

confusion matrices).  

 

4.1.1.2 First database: label “solid oxygen formation” 

• Results without data normalization 

Table 9. Performance metrics resulting from the evaluation of the three models trained over the raw outdoor 

leakage studies database for the label “solid oxygen formation” 

 

The confusion matrices resulting from the three different models are displayed in Figure 36. 

 

 

The precision-recall curves obtained by varying the threshold between 0 and 1 associated to the 

different models are depicted in Figure 37, Figure 38 and Figure 39.  

 Accuracy Precision Recall AUC_pr 

Linear 0.977 0.817 0.935 0.956 

Deep 0.994 0.983 0.942 0.994 

Wide&Deep 0.994 0.982 0.942 0.993 

  Predicted Label 

  0 1 

 
0 161478 3154 

1 982 14122 

  Predicted Label 

  0 1 

 
0 164383 249 

1 875 14229 

  Predicted Label 

  0 1 

 
0 164377 255 

1 872 14232 

Figure 36. Confusion matrices obtained for the label “solid oxygen” without having performed data pre-

processing on the first database by employing the (a) Linear Model, (b) Deep Model and (c) Wide&Deep Model. 
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Figure 37. Precision-recall curve of the Linear Model (label: solid oxygen; first database without data 

normalization) 

 

 

Figure 38. Precision-recall curve of the Deep Model (label: solid oxygen; first database without data 

normalization) 

 

 

Figure 39. Precision-recall curve of the Wide&Deep Model (label: solid oxygen; first database without data 

normalization) 

Linear Model 

Deep Model 

Wide&Deep Model 
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By observing the metrics in Table 9, it is possible to conclude that, similarly to the previous 

case, when predicting the label “solid oxygen formation” the Linear model produces smaller 

metrics, whereas the Deep model and the Wide&Deep model produce similar larger metrics. In 

opposition to what has emerged from the results obtained from the prediction of oxygen’s 

condensation, the confusion matrices displayed in Figure 36 highlight that the Deep and 

Wide&Deep models are weaker when it comes to predicting the label “1”; the number of False 

Negatives (bottom left of the confusion matrices) is higher than the number of False Positives 

(top right of the confusion matrices). The opposite behaviour can be observed for the Linear 

model. 

 

• Results with data normalization 

Table 10. Performance metrics resulting from the evaluation of the three models trained over the normalized 

outdoor leakage studies database for the label “solid oxygen formation” 

 

The confusion matrices resulting from the three different models are displayed in Figure 40. 

 

 

The precision-recall curves obtained by varying the threshold between 0 and 1 associated to the 

different models are depicted in Figure 41, Figure 42 and Figure 43.  

 Accuracy Precision Recall AUC_pr 

Linear 0.957 0.830 0.613 0.807 

Deep 0.967 0.873 0.706 0.878 

Wide&Deep 0.966 0.868 0.700 0.874 

  Predicted Label 

  0 1 

 
0 162736 1896 

1 5845 9259 

  Predicted Label 

  0 1 

 
0 163084 1548 

1 4435 10669 

  Predicted Label 

  0 1 

 
0 163021 1611 

1 4528 10576 

Figure 40. Confusion matrices obtained for the label “solid oxygen” having performed data pre-processing on 

the first database by employing the (a) Linear Model, (b) Deep Model and (c) Wide&Deep Model. 
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Figure 41. Precision-recall curve of the Linear Model (label: solid oxygen; first database with data 

normalization) 

 

 

Figure 42. Precision-recall curve of the Deep Model (label: solid oxygen; first database with data 

normalization) 

 

 

Figure 43. Precision-recall curve of the Wide&Deep Model (label: solid oxygen; first database with data 

normalization) 

Linear Model 

Deep Model 

Wide&Deep Model 
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The performance metrics in Table 10 show that the Linear model tends to perform worse than 

the Deep and Wide&Deep models. The confusion matrices displayed in Figure 40 highlight 

that all the models are weaker when it comes to predicting the label “1”; the number of False 

Negatives (bottom left of the confusion matrices) is always higher than the number of False 

Positives (top right of the confusion matrices).  

 

4.1.1.3 Second database: label “hydrogen concentration above the LEL” 

• Results without data normalization 

Table 11. Performance metrics resulting from the evaluation of the three models trained over the raw outdoor 

leakage studies database for the label “hydrogen concentration above the LFL” 

 

The confusion matrices resulting from the three different models are displayed in Figure 44. 

 

The precision-recall curves obtained by varying the threshold between 0 and 1 associated to the 

different models are depicted in Figure 45, Figure 46 and Figure 47.  

 Accuracy Precision Recall AUC_pr 

Linear 0.983 0.406 0.624 0.370 

Deep 0.988 0.584 0.254 0.322 

Wide&Deep 0.984 0.397 0.433 0.382 

  Predicted Label 

  0 1 

 
0 162109 1989 

1 822 1362 

  Predicted Label 

  0 1 

 
0 163704 394 

1 1630 554 

  Predicted Label 

  0 1 

 
0 162716 1382 

1 1220 964 

Figure 44. Confusion matrices obtained for the label “hydrogen concentration above the LFL” without having 

performed data pre-processing on the second database by employing the (a) Linear Model, (b) Deep Model and (c) 

Wide&Deep Model. 
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Figure 45. Precision-recall curve of the Linear Model (label: hydrogen concentration above the LFL; second 

database  without data normalization) 

 

 

Figure 46. Precision-recall curve of the Deep Model (label: “hydrogen concentration above the LFL; second 

database without data normalization) 

 

 

Figure 47. Precision-recall curve of the Wide&Deep Model (label: hydrogen concentration above the LFL; 

second database without data normalization) 

Linear Model 

Deep Model 

Wide&Deep Model 
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As it can be observed by the precision-recall curves and by the metrics displayed in Table 11, 

all of the models are characterised by high accuracy and low precision and recall, with an area 

under the curve relatively small. The Wide&Deep model seems to give the best performance, 

as it produces the larger area under the precision-recall curve. This means that there is an 

allowance for improvement performing a recall optimisation. 

 

• Results with data normalization 

Table 12. Performance metrics resulting from the evaluation of the three models trained over the normalized 

outdoor leakage studies database for the label “hydrogen concentration above the LFL” 

 

The confusion matrices resulting from the three different models are displayed in Figure 48. 

 

 

The precision-recall curves obtained by varying the threshold between 0 and 1 associated to the 

different models are displayed in Figure 49, Figure 50 and Figure 51. 

 Accuracy Precision Recall AUC_pr 

Linear 0.988 0.649 0.184 0.366 

Deep 0.988 0.646 0.203 0.400 

Wide&Deep 0.988 0.642 0.205 0.411 

  Predicted Label 

  0 1 

 
0 163881 217 

1 1783 401 

  Predicted Label 

  0 1 

 
0 163855 243 

1 1741 443 

  Predicted Label 

  0 1 

 
0 163848 250 

1 1736 448 

Figure 48. Confusion matrices obtained for the label “hydrogen concentration above the LFL” having performed 

data pre-processing on the second database by employing the (a) Linear Model, (b) Deep Model and (c) Wide&Deep 

Model. 
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Figure 49. Precision-recall curve of the Linear Model (label: hydrogen concentration above the LFL; second 

database with data normalization) 

 

 

Figure 50. Precision-recall curve of the Deep Model (label: hydrogen concentration above the LFL; second 

database with data normalization) 

 

 

Figure 51. Precision-recall curve of the Wide&Deep Model (label: hydrogen concentration above the LFL; 

second database with data normalization) 

Linear Model 

Deep Model 

Wide&Deep Model 
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As it can be observed by the precision-recall curves and by the metrics displayed in Table 12, 

all of the models are characterised by high accuracy and low precision and recall, with an area 

under the curve relatively small. Accordingly to what has been seen for the raw database, even 

after pre-processing the input data the Wide&Deep model seems to give the best performance, 

as it produces the larger area under the precision-recall curve.  

 

4.1.1.4 Insights on the Wide&Deep Model’s results 

Being one of the best performing models given the high values of recall and area under the 

precision-recall curve, the Wide&Deep one has been further investigated in its predictive 

capability. A chart displaying the true positive rate (green bar) and the false positive rate (red 

bar) for each probability category has been produced for all the analysed labels. 

• Results without data normalization  

As it can be stated by comparing the bar charts in Figure 52 the model predicts the condensation 

or solidification of oxygen on the ground with a high confidence, being most of the positive 

predictions made within the highest probability range. A higher number of wrong predictions 

are made when it comes to evaluating whether or not the hydrogen concentration in air will 

reach the LFL within 200 s.  

Figure 52 (c), as well as the metrics and curves displayed in Section 4.1.1.3, shows that the 

model cannot make accurate predictions about values of hydrogen concentration in air. The 

obtained metrics are characterised by high accuracy and low precision and recall. 

 (a) (b) 
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To improve the results of the hydrogen gas concentration’s prediction a recall optimisation has 

been performed. The recall optimisation is carried out by finding the best threshold value that 

maximises the F-measure (or F-score), as described in Section 2.4.4. β has been taken equal to 

1.5.  

The following results are obtained: 

• best threshold = 0.066; 

• F-score = 0.476; 

• Precision = 0.293; 

• Recall = 0.657. 

Figure 53 and Figure 54 show the trend of the F-score and the Precision and Recall curves as 

functions of the threshold respectively, whereas Figure 55 shows the fraction of positive 

predictions for each probability class, having considered the best threshold value instead of the 

default value of 0.5 to evaluate the positive predictions. 

(c) 

Figure 52. Fraction of positive predictions for each probability class (Wide&Deep model without data 

normalization) for the labels (a) liquid oxygen formation, (b) solid oxygen formation and (c) hydrogen 

concentration above the LFL 
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Figure 55. Fraction of positive predictions for each probability class obtained considering the best threshold, 

label: hydrogen concentration above the LFL (Wide&Deep model without data normalization). 

 

Figure 54. Precision/Recall over threshold.                                                      

Figure 53. F-score over threshold curve. 
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The charts below represent the spatial extension of the liquid (see Figure 56) or solid (see 

Figure 57) oxygen deposit on the pad. These charts have been obtained by plotting the values 

of the x and y coordinates from the release point corresponding to a positive prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56. Spatial coordinates of the positive “liquid oxygen” predictions of the Wide&Deep model on the (a) 

x and (b) y axis. 

Figure 57. Spatial coordinates of the positive "solid oxygen" predictions of the Wide&Deep model on the (a) x 

and (b) y axis 
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• Results with data normalization 

 The Wide&Deep model trained on normalized data shows the same behaviour as the one seen 

for the model trained on raw data. Figure 58 (a) and Figure 58 (b) highlight that the model is 

quite good at predicting the condensation or solidification of air components on the ground, 

given the high true positive rate for the highest probability range. On the other hand, it seems 

to be rather weak in predicting whether or not the concentration of hydrogen will reach the LFL 

within 200 s.  

 

 

 

In order to improve the model performance when it comes to predicting whether or not the 

concentration of hydrogen in air will be higher than the lower flammability limit the SMOTE 

(Synthetic Minority Over-sampling Technique) technique has been utilised, since the initial 

database is extremely imbalanced (only 1.25% of positive labels over the entire database) . 

Figure 58. Fraction of positive predictions for each probability class (Wide&Deep model with data 

normalization) for the labels (a) liquid oxygen formation, (b) solid oxygen formation and (c) hydrogen 

concentration above the LFL 

 

(a) (b) 

(c) 
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The SMOTE algorithm has been applied to the train dataset only, as the evaluation dataset is a 

collection of previously unseen real data whose labels’ values must be predicted by the model 

to test its performances. Since the database contains both numeric and categorical features, a 

specific SMOTE technique has been implemented: SMOTE-NC; Unlike SMOTE, SMOTE-NC 

is used for datasets containing numerical and categorical features, but it cannot work with only 

categorical features (Imbalanced Learn, 2022).  

The results obtained by the Wide&Deep model trained on the over-sampled dataset are here 

presented: 

 
 

 

                                                                                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 60. Precision-recall curve of the Wide&Deep model trained on the database where SMOTE has been 

applied. 

Accuracy Precision Recall AUC_pr 

0.421 0.022 1.0 0.040 

  Predicted Label 

  0 1 

 
0 67884 96214 

1 0 2184 

Table 13. Results of the Wide&Deep model trained on the oversampled train dataset for the label “hydrogen 

concentration above the LFL”. 

 

Figure 59. Confusion matrix of the Wide&Deep model trained on the oversampled train dataset for the 

label “hydrogen concentration above the LFL”. 
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https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html#imblearn.over_sampling.SMOTE
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Figure 59 shows that the model predicts a high number of False Positives and a null value of 

False Negatives, which means it is weaker when it comes to predicting the label “0”.  

 

4.1.2 Indoor leakage studies 

The main results of the simulations performed on the indoor leakage studies data are here 

reported. All the performance metrics presented in this chapter have been obtained for a 

decision threshold default value of 0.5. 

 

4.1.2.1 Third database: label “liquid oxygen formation” 
 

• Results without data normalization 

Table 14. Performance metrics resulting from the evaluation of the three models trained over the raw indoor 

leakage studies database for the label “liquid oxygen formation” 

 

The confusion matrices resulting from the three different models are displayed in Figure 61. 

 

 

 

 

 

 

 

 Accuracy Precision Recall AUC_pr 

Linear 0.961 0.941 0.987 0.994 

Deep 0.988 0.987 0.990 0.998 

Wide&Deep 0.988 0.989 0.988 0.998 

  Predicted Label 

  0 1 

 
0 51295 3797 

1 786 60684 

  Predicted Label 

  0 1 

 
0 54305 787 

1 626 60844 

  Predicted Label 

  0 1 

 
0 54411 681 

1 723 60747 

Figure 61. Confusion matrices obtained for the label “liquid oxygen” without having performed data pre-

processing on the third database by employing the (a) Linear Model, (b) Deep Model and (c) Wide&Deep Model. 
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The precision-recall curves obtained by varying the threshold between 0 and 1 associated to 

the different models are displayed in Figure 62, Figure 63 and Figure 64.  

 

 

Figure 62. Precision-recall curve of the Linear Model (label: liquid oxygen; third database without data 

normalization) 

 

 

Figure 63. Precision-recall curve of the Deep Model (label: liquid oxygen; third database without data 

normalization) 

 

 

Linear Model 

Deep Model 
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Figure 64. Precision-recall curve of the Wide&Deep Model (label: liquid oxygen; third database without data 

normalization) 

As previously seen for the outdoor studies, even when training the model over the indoor tests’ 

results the Linear model produces smaller metrics, whereas the Deep model and the 

Wide&Deep model produce similar larger metrics. The confusion matrices displayed in Figure 

61 highlight that the Linear model is significantly weaker when it comes to predicting the label 

“0”, being the number of False Negatives (bottom left of the confusion matrices) lower than the 

number of False Positives (top right of the confusion matrices). The Wide&Deep model gives 

the opposite behaviour. 

 

• Results with data normalization 

Table 15. Performance metrics resulting from the evaluation of the three models trained over the normalized 

indoor leakage studies database for the label “liquid oxygen formation” 

 

The confusion matrices resulting from the three different models are displayed in Figure 65. 

 

 

 

 Accuracy Precision Recall AUC_pr 

Linear 0.939 0.926 0.962 0.989 

Deep 0.987 0.984 0.991 0.998 

Wide&Deep 0.986 0.984 0.990 0.998 

Wide&Deep Model 
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Figure 65. Confusion matrices obtained for the label “liquid oxygen” having performed data pre-processing on 

the third database by employing the (a) Linear Model, (b) Deep Model and (c) Wide&Deep Model. 

 

The precision-recall curves obtained by varying the threshold between 0 and 1 associated to the 

different models are depicted in Figure 66, Figure 67 and Figure 68. 

 

 

Figure 66. Precision-recall curve of the Linear Model (label: liquid oxygen; third database with data 

normalization) 
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Figure 67. Precision-recall curve of the Deep Model (label: liquid oxygen; third database with data 

normalization) 

 

 

Figure 68. Precision-recall curve of the Wide&Deep Model (label: liquid oxygen; third database with data 

normalization) 

When training the models over the normalized indoor tests’ results the Linear model is the worst 

performing one. Once again, the confusion matrices displayed in Figure 65 highlight that all 

the models are weaker when it comes to predicting the label “0”; the number of False Negatives 

(bottom left of the confusion matrices) is always lower than the number of False Positives (top 

right of the confusion matrices).  
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4.1.2.2 Third database: label “solid oxygen formation” 

• Results without data normalization 

Table 16. Performance metrics resulting from the evaluation of the three models trained over the raw indoor 

leakage studies database for the label “solid oxygen formation” 

 

The confusion matrices resulting from the three different models are displayed in Figure 69. 

 

 

 

 

Figure 69. Confusion matrices obtained for the label “solid oxygen” without having performed data pre-

processing on the third database by employing the (a) Linear Model, (b) Deep Model and (c) Wide&Deep 

Model. 

 

The precision-recall curves obtained by varying the threshold between 0 and 1 associated to the 

different models are depicted in Figure 70, Figure 71 and Figure 72.  

 Accuracy Precision Recall AUC_pr 

Linear 0.971 0.954 0.925 0.980 

Deep 0.993 0.982 0.987 0.998 

Wide&Deep 0.991 0.975 0.987 0.998 

  Predicted Label 

  0 1 

 
0 87305 1255 

1 2106 25896 

  Predicted Label 

  0 1 

 
0 88063 497 

1 365 27637 

  Predicted Label 

  0 1 

 
0 87848 712 

1 362 27640 R
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Figure 70. Precision-recall curve of the Linear Model (label: solid oxygen; third database without data 

normalization) 

 

 

Figure 71. Precision-recall curve of the Deep Model (label: solid oxygen; third database without data 

normalization) 

 

 

Figure 72. Precision-recall curve of the Wide&Deep Model (label: solid oxygen; third database without data 

normalization) 
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By comparing the figures in Table 16 it is evident that the Linear model produces smaller 

metrics, whereas the Deep model and the Wide&Deep model produce similar larger metrics. 

The confusion matrices displayed in Figure 69 highlight that the models with a deep approach 

are weaker when it comes to predicting the label “0”; the number of False Negatives (bottom 

left of the confusion matrices) is lower than the number of False Positives (top right of the 

confusion matrices).  

 

• Results with data normalization 

Table 17. Performance metrics resulting from the evaluation of the three models trained over the normalized 

indoor leakage studies database for the label “solid oxygen formation” 

 

The confusion matrices resulting from the three different models are displayed in Figure 73. 

 
 

 

 

Figure 73. Confusion matrices obtained for the label “solid oxygen” having performed data pre-processing on 

the third database by employing the (a) Linear Model, (b) Deep Model and (c) Wide&Deep Model. 

 

The precision-recall curves obtained varying the threshold between 0 and 1 associated to the 

different models are depicted in Figure 74, Figure 75 and Figure 76.  

 Accuracy Precision Recall AUC_pr 

Linear 0.941 0.853 0.912 0.931 

Deep 0.983 0.960 0.968 0.996 

Wide&Deep 0.982 0.960 0.967 0.996 

  Predicted Label 

  0 1 

 
0 84156 4404 

1 2477 25525 

  Predicted Label 

  0 1 

 
0 87433 1127 

1 907 27095 

  Predicted Label 

  0 1 

 
0 87443 1117 
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Figure 74. Precision-recall curve of the Linear Model (label: solid oxygen; third database with data 

normalization) 

 

 

Figure 75. Precision-recall curve of the Deep Model (label: solid oxygen; third database with data 

normalization) 

 

 

Figure 76. Precision-recall curve of the Wide&Deep Model (label: solid oxygen; third database with data 

normalization) 
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By comparing the figures in Table 17 it is possible to conclude that the Linear model produces 

smaller metrics, whereas the Deep model and the Wide&Deep model produce similar larger 

metrics. The confusion matrices displayed in Figure 73 highlight that all the models are weaker 

when it comes to predicting the label “0”; the number of False Negatives (bottom left of the 

confusion matrices) is always lower than the number of False Positives (top right of the 

confusion matrices).  

 

4.1.2.3 Insights on the Wide&Deep model’s results 

Being one of the best performing models given the high values of recall and area under the 

precision-recall curve, the Wide&Deep one has been further investigated in its predictive 

capability: for all the analysed labels a chart displaying the true positive rate (green bar) and 

the false positive rate (red bar) for each probability category has been produced. 

• Results without data normalization 

Figure 77 shows the fraction of positive predictions for each probability range for the different 

labels. The model seems to be good at predicting the condensation or solidification of air 

components given that most of the positive predictions are made with the highest probability.  

 

 

 

 

Figure 77. Fraction of positive predictions for each probability class (Wide&Deep model without data 

normalization) for the labels (a) liquid oxygen formation and (b) solid oxygen formation. 

(a) (b) 
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The charts below represent the spatial extension of the liquid (see Figure 78) or solid (see 

Figure 79) oxygen deposit on the pad. These charts have been obtained by plotting the values 

of the x and y coordinates corresponding to a positive prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 78. Spatial coordinates of the positive “liquid oxygen” predictions of the Wide&Deep model on 

the (a) x, (b) y and (c) z axis. 
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• Results with data normalization 

The Wide&Deep model trained on normalized data shows the same behaviour as the one seen 

for the model trained on raw data. Figure 80 highlights that the model is extremely good at 

predicting the condensation or solidification of air components on the ground, given the high 

true positive rate for the highest probability range.  

 

 

 

 

 

Figure 79. Spatial coordinates of the positive “solid oxygen” predictions of the Wide&Deep model on 

the (a) x, (b) y and (c) z axis. 

(c) 

Figure 80. Fraction of positive predictions for each probability class (Wide&Deep model with data normalization) 

for the labels (a) liquid oxygen formation and (b) solid oxygen formation 
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4.1.3 TensorFlow simulations: emergency situations 

This section describes some of the results obtained by building the models on the databases 

where the temperature (or concentration) values column has been removed, in order to simulate 

the data that can easily be collected in a real emergency situation, as mentioned in Section 3.2. 

To provide some examples only the results coming from the application of the Wide&Deep 

model on raw data (i.e. no data pre-processing has been performed) considering the labels 

“liquid oxygen formation” and “solid oxygen formation” are presented in Table 18.  

Table 18. Emergency situations models’ results 

 Outdoor tests Indoor tests 

Label: liquid oxygen 

formation 

Accuracy = 0.955 

Precision = 0.963 

Recall = 0.930 

AUC_pr = 0.990 

TP = 71092 

FP = 2723 

TN = 100546 

FN = 5375 

 

Accuracy = 0.988 

Precision = 0.988 

Recall = 0.989 

AUC_pr = 0.998 

TP = 60779 

FP = 759 

TN = 54333 

FN = 691 

 

Label: solid oxygen 

formation 

 

Accuracy = 0.990 

Precision = 0.926 

Recall = 0.954 

AUC_pr = 0.981 

TP = 14416 

FP = 1149 

 

Accuracy = 0.989 

Precision = 0.966 

Recall = 0.988 

AUC_pr = 0.997 

TP = 27665 

FP = 968 
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TN = 163483 

FN = 688 

TN = 87592 

FN = 337 

 

The precision-recall curves obtained for both the labels in the outdoor scenario show a trend 

similar to the one displayed in Figure 81. 

 

Figure 81. Precision-recall curve of the Wide&Deep model (outdoor hydrogen leakage scenario, emergency 

situations) 

Whereas, when training the model on the indoor tests’ results for predicting both the labels 

condensation and solidification of air oxygen, the following precision-recall curve is provided: 

 

Figure 82. Precision-recall curve of theWide&Deep model (indoor hydrogen leakage scenario, emergency 

situations) 

The bar charts representing the fraction of positive predictions for each probability class have 

been produced also in this case. As shown in Figure 83 and Figure 84, the built model is quite 

confident in predicting the solidification or condensation of oxygen since most of the correct 



 
 

80 
 

positive predictions are made within the highest probability range. Moreover, the fraction of 

positive predictions is always higher in the “indoor” scenario.  

 

Figure 83. Fraction of positive predictions for each probability class, label: Liquid oxygen formation 

(Wide&Deep model trained over the raw databases where the temperature column has been removed) for the (a) 

outdoor and (b) indoor cases 

 
 

Figure 84. Fraction of positive predictions for each probability class, label: Solid oxygen formation 

(Wide&Deep model trained over the raw databases where the temperature column has been removed) for the (a) 

outdoor and (b) indoor cases. 

 

(a) (b) 

(a) (b) 



 
 

81 
 

Chapter 5 Further elaboration and discuss ion of the resul ts  

Further elaboration and discussion of the 

results 
 

5.1 TensorFlow simulations 

In this chapter the results obtained from the different simulations performed are analysed in 

depth. 

 

5.1.1 Outdoor leakage studies 

The results acquired after having trained and evaluated the three models – Linear, Deep and 

Wide&Deep – show that a deep approach is fundamental in order to obtain good performances. 

This happens both without data normalization and with data pre-processing. The Deep and 

Wide&Deep models have comparable performances, whereas the Linear model seems to 

perform slightly worse.  This is crucial since the Deep model is more sensitive to the quality of 

the data, and being the database built upon sensors’ measurements it is characterised by a high 

quality and detailed dataset, therefore the deep approach gives higher metrics.  

As highlighted by the charts displayed in Figure 52 (a) and Figure 52 (b) in the previous 

chapter, the built model is extremely good at predicting the condensation or solidification of air 

components on the ground, given the high true positive rate for the highest probability range.  

In order to evaluate the magnitude of the oxygen phase change phenomenon, Figure 85 has 

been obtained by tracing a curve around the predicted extension along the x and y axis of the 

liquid or solid oxygen deposit, which is displayed in the charts in Figure 56 and Figure 57. 
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Figure 85. Predicted spatial extension of the liquid and solid oxygen on the test pad for outdoor leakage 

experiments (top view) 

As depicted in Figure 85, the condensation or solidification of air oxygen on the ground is 

predicted to occur only within 1 m from the release point, which is experimentally confirmed 

by the studies carried out by the FFI (Aaneby, Gjesdal and Voie, 2021). The extension of the 

liquid oxygen area is larger than the solid oxygen one and it is elongated in the wind direction.  

From the results obtained in Section 4.1.1.3, it is clear that the built model is extremely weak 

in predicting whether or not the concentration of hydrogen in air will overcome the LFL. The 

results are characterised by high accuracy and false positive rate, and low precision and recall, 

which is what is usually obtained when dealing with imbalanced dataset. To overcome these 

poor performances two approaches have been investigated:  

• recall optimisation by maximizing the F-score; 

• application of an over-sampling technique on the train dataset. 

The results obtained after the recall optimisation are here discussed. 

Maximising the F-score usually results in a lower threshold that leads to a higher recall, being 

the number of false negatives reduced. This is crucial in cases like the one examined here, where 

the hazardous event (hydrogen concentration higher than the LFL) is rare but with serious 

consequences. As depicted in Figure 55 by varying the threshold the model performances 

improve, the model is more confident in predicting the positive class since most positive 

Wind 

direction 
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predictions have a probability higher than 90%.  A comparison between the fraction of positive 

predictions’ distribution before and after optimising the recall can be seen in Figure 86. 

 

 

The main problem still remains the high false positive rate; the model might produce an 

excessively conservative prediction: if it predicts the hydrogen concentration to be above the 

lower flammability limit within 200 s even if this will not occur, safety measures will be 

activated anyway. Safety procedures typically include shutdowns of plants and evacuation of 

personnel, which determines a significant economic damage.  

In order to better comprehend whether the model’s prediction is reliable or too conservative, a 

visual representation of the positive predictions’ distribution has been produced and it is 

displayed in Figure 87. 

 

Figure 86. Fraction of positive predictions' distribution for each probability class; label: hydrogen 

concentration above the LFL. The red and green bars are obtained for a threshold value of 0.5; the grey bars 

are obtained for the best threshold that optimises the recall. 
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Figure 87. Real (blue) and predicted (red) positive labels' distribution 

Figure 87 represents the distribution of the positive labels in the field: the blue number is the 

number of the real positive labels for each location in the field, whereas the red one is the 

number of the positive predictions for each location. The predicted extension of the gas cloud 

with a concentration of hydrogen higher than the LFL does not reach 50 m from the release 

point, as stated in the report by Aaneby, Gjesdal and Voie (2021). Having said that, it is evident 

that the model tends to overestimate the number of positive labels, according to the high false 

positive rate, with only one exception: for x = 27616 mm and y = 11481 mm (spatial coordinates 

from the release point) the model underestimates the number of positive labels. This might be 

due to the fact that, as mentioned in the report (Aaneby, Gjesdal and Voie, 2021), the wind 

blows from the south-west promoting the dispersion in that direction.  

The same procedure has been carried out also considering polar coordinates instead of cartesian 

coordinates: 

z axis: 
z = 0,1 m     719   1492 

z = 1 m         966   2255 

z = 1,8 m      499   1146 
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Figure 88. Real (blue) and predicted (red) positive labels' distribution considering the radial coordinate. 

As previously stated, even considering a radial distance from the release point the concentration 

of hydrogen is predicted to be higher than the LFL only within 50 m. However, Figure 88 shows 

that the number of positive predictions is closer to the number of real positive labels when the 

radial distance is considered, which means that the model should be fed with the radial 

coordinate instead of cartesian coordinates.   

To conclude, despite the high false positive rate, the model is quite good at predicting the 

distribution of the positive labels: the concentration of hydrogen in air is predicted to overcome 

the lower flammability limit within 50 m from the release point, accordingly to what happened 

experimentally. Therefore, on one hand the model tends to overestimate the frequency by which 

such hydrogen concentration is above the LFL and this guarantees a conservative approach, 

which is crucial when dealing with safety aspects; on the other hand, further research must be 

carried out in order to improve and optimise the model’s prediction.  

As previously mentioned, another method to improve the model’s performance is the 

application of an over-sampling technique on the train dataset. The results obtained after having 

z axis: 
  z = 0,1 m      719   867  

z = 1 m         966   1318 

  z = 1,8 m      499   808 
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trained and tested the model over the over-sampled database presented in the previous section 

are here discussed. 

Figure 59 shows that the model predicts a high number of false positives and a null value of 

false negatives, which means it is weaker when it comes to predicting the label “0”.  

The high false positive rate might be caused by the fact that the number of positive examples 

used to create new synthetic samples is extremely low and all the features associated to both 

the labels “0” and “1” are similar to one another. Therefore, the synthetically created data are 

not reliable. In fact, when analysing the labels’ distribution in each features’ pair both for the 

raw database, Figure 89, and the oversampled database, Figure 90, it is glaring that the minority 

class’s synthetic data fall in the region of the majority class, which makes it difficult for the 

model to reliably predict the label “0”. SMOTE, indeed, “is sometimes problematic particularly 

in very skewed dataset as it blindly generalizes the regions of the minority class without regard 

to the majority class instances, this depending on the sparseness of the minority instances in the 

dataset may lead to an increase in class overlapping” (Sowah et al., 2016).  

The results cannot be further improved by evaluating the best threshold, since such threshold 

would end up being extremely close to 1 in order to minimise the number of false positives, 

which is unacceptable. 

A good approach in this case, given the few positive samples, could be to under-sample the 

initial database, so to reduce the class imbalance by randomly deleting some data from the 

majority class. This technique is tendentially avoided because it might determine a loss of 

relevant information.  

 

Figure 89. Raw database's labels distribution in the features plane 
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Figure 90. Oversampled database's labels distribution in the features plane 

 

Another aspect to take into consideration is that, contrary to what one would expect, the model 

trained on normalized data gives much worse results than those obtained from the model trained 

and tested over raw data, as shown in the charts displayed in Chapter 4. This might be due to 

the normalization method chosen. The Min-max algorithm scales a variable in the training 

samples in the interval of [0, 1]. It is useful for preserving the relationships among the feature 

columns, unlike other normalization methods which are based on mean and standard deviations. 

However, when the testing samples fall outside of the training data range, the scaled values will 

be out of the interval [0, 1], and that may pose problems in some applications; moreover, it is 

very sensitive to the presence of outliers (Cao, Stojkovic and Obradovic, 2016). In fact, the 

original values in the normal range are squeezed into a narrow range after the scaling, as 

represented in Figure 91. Outliers do not necessarily need to be the result of measurement 

errors, but may also represent completely valid instances. So, if the dataset contains outliers it 

is going to be biased and results are systematically prejudiced (Singh and Singh, 2020, 

Pedregosa et al., 2021b and Loukas, 2020). 
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Figure 91. Example of how the presence of outliers would affect the data distribution, adapted from Cao, 

Stojkovic and Obradovic (2016). 

 

To evaluate if this is the case, analogous charts to the one displayed in Figure 91 have been 

produced for each feature. Some of the resulting graphs are displayed below. 
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Figure 92. Outliers effect on data normalization for the feature columns (a) ambient pressure, (b) temperature, 

(c) x axis, (d) y axis and (e) tank internal temperature. 
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Figure 92 shows the trend of the scaled features as function of the raw features themselves. 

Some of the features contain outliers, such as the ambient pressure, the spatial coordinates and 

the hydrogen tank’s internal temperature. This is proved by the fact that the inliers are squeezed 

into a narrow range, whereas the distribution of the temperature measured by the thermocouples 

seems to be rather homogeneous. These charts highlight that the normalization method chosen 

might not be the most proper one for this peculiar case, because of the presence of outliers in 

some of the features’ values, therefore, further research should be performed in order to find 

the best normalization technique that would improve the model’s performances.

5.1.2 Indoor leakage studies 

As discussed in the previous section, even when considering the indoor tests’ data the results 

obtained after having trained and evaluated the three models show that a deep approach is 

crucial to get the best performances. This can be observed when no normalization is applied to 

raw data, but it is even more evident when performing data pre-processing. The Deep and Wide 

&Deep models indeed have comparable performances, whereas the Linear model seems to 

perform slightly worse.  Once again, this could be traced back to the high quality of the data, 

being the deep learning approach more sensitive to this parameter.  

The model shows similar predictive capacities for both the condensation and solidification of 

oxygen on the ground. 
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Figure 93. Predicted spatial extension of the oxygen phase change on the ground and inside the tank connection 

space. 

In order to evaluate the magnitude of the oxygen phase change phenomenon, Figure 93 has 

been obtained by tracing a curve around the predicted extension over the x and y axis of the 

liquid or solid oxygen deposit, which is displayed in the charts in Figure 78 and Figure 79. 

As depicted in Figure 93 the condensation of air oxygen on the ground is predicted to occur 

within about 1.5 m from the release point, which is experimentally confirmed by the studies 

carried out by the FFI (Aaneby, Gjesdal and Voie, 2021). The extension of the liquid oxygen 

area is way larger than the solid oxygen one, and droplets of oxygen can be also found in the 

area above the ground in the tank connection space, whereas solid oxygen only settles on the 

concrete pad, where the lowest temperature can be measured due to the presence of liquid 

hydrogen.  

An important aspect that must be underlined is that the results obtained by applying the model 

on normalized data are similar to those collected without pre-processing the database, despite 

what has been stated in the previous section for the outdoor studies. A possible explanation to 

this behaviour might be that the ambient pressure values and the spatial coordinates of the 

thermocouples show a more homogeneous distribution if compared to the outdoor case (see 

       Liquid oxygen 

        Solid oxygen 

1 m 
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Figure 94), and since the MinMaxScaler normalization technique is sensible to outliers, a more 

homogeneous distribution provides better predictive performances. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 94.Outliers effect on data normalization for the feature columns (a) ambient pressure, (b) temperature, 

(c) x axis, (d) y axis and (e) tank internal temperature. 
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5.1.3 Comparison 

Once the “outdoor” and the “indoor” results have been separately analysed, they can be 

compared to one another in order to evaluate possible similarities or major differences. First, 

when comparing the “outdoor” charts in Figure 52 (a) and Figure 52 (b) with the “indoor” ones 

in Figure 77 (a) and Figure 77 (b) it is immediately clear that the model has a higher confidence 

in predicting the condensation or freezing of air components in an enclosed room rather than in 

an open space. This is due to the fact that the condensation or freezing of air components in 

case of cryogenic spills is much more likely to occur if such release is confined within a closed 

room.  

Second, when considering the predicted spatial extension of the liquid or solid deposit, this is 

much higher on the ground of the tank connection space then on the outdoor pad, as pointed 

out by comparing Figure 85 and Figure 93. In fact, inside a container the temperature decreases 

much faster in case of hydrogen leakage determining air components to condense shortly after 

the release. 

Lastly, air oxygen is predicted to condense only on the ground in the outdoor studies, whereas 

Figure 78 (c) shows the predicted presence of liquid oxygen even above the ground, in the tank 

connection space’s atmosphere, since it also reaches low temperatures being heat exchange 

with external air impeded by the container.  

 

5.2 TensorFlow simulations: emergency situations 

The following results have been obtained by training and testing the Wide&Deep model over a 

database where the temperature measurements column has been removed, which has been done 

in order to simulate a real hydrogen leak scenario. First, it is necessary to compare the charts in 

Section 4.1.3 with those represented in Figure 52 (a), Figure 52 (b) and in Figure 77 (a), Figure 

77 (b). By removing the thermocouples measurements from the inputs, the model predicts 

positive labels with a lower degree of certainty, being the positive predictions characterised by 

lower probabilities. This is also confirmed by the higher number of False Positives shown in 

Table 18.  

Second, the built model is quite confident in predicting the solidification or condensation of 

oxygen since most of the correct positive prediction are made within the highest probability 

range. Though, the model is better at predicting the condensation of air oxygen rather than its 

solidification, being the fraction of wrong positive predictions higher in the bar chart in  
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Figure 84. Moreover, when comparing the “outdoor” chart with the “indoor” one it is 

immediately clear that the model has a higher confidence in predicting the condensation or 

freezing of air components in an enclosed room rather than in an open space. This is due to the 

fact that the condensation or freezing of air components in case of cryogenic spills is much 

more likely to occur if such release is confined within an enclosed room. 

As it can be observed in Figure 95 the spatial extension of liquid oxygen is higher than the solid 

oxygen one. Moreover, the extension of the oxygen deposit’s surface, either liquid or solid, 

tends to be more significant in the indoor leakage scenario. 

 

 

 

Figure 95. Comparison between the indoor and outdoor spatial extension of liquefied and frozen air oxygen in 

case of accidental hydrogen release for the (a) outdoor and (b) indoor leakage cases. 

The predicted spatial extensions are quite similar to those obtained when considering the 

thermocouples’ measurements in the input database, this means that the model trained and 

tested over data that might be easily collected in emergency situations is quite reliable in 

predicting the risk area around the cryogenic liquid release point. 

 

5.3 Safety procedures in case of hydrogen leakage 

In case of a real liquid hydrogen accidental release the proposed method can be utilised to 

predict if, where and to what extent the oxygen in the air condenses or freezes on the ground 
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and the spatial extension of the vapour cloud where the concentration of hydrogen is higher 

than the lower flammability limit, helping the decision-making process related to the safety 

actions that must be taken.  

First, these safety actions usually consist in restricting people not wearing protective equipment 

from the spill area: liquid hydrogen will condense humidity water in the atmosphere, producing 

a vapour cloud and the zone of flammability may extend beyond this cloud (Linde, 2021 and 

Pohanish, 2008). Then all the ignition sources must be safely removed. A shut down procedure 

must be implemented: firstly, it is necessary to stop the leak by closing isolation valves upon 

gas detection; secondly, the hydrogen system needs to be shut down too (DNV, 2021). 

Now, if the model, fed with release rate, orientation, ambient conditions and coordinates of the 

points we are interested in evaluating, predicts the condensation or freezing of oxygen in such 

points, this could lead to the risk of a condensed phase explosion. Moreover, the gaseous 

flammable mixture air-hydrogen if ignited could cause a jet fire or even an explosion in some 

conditions. Therefore, proper safety procedures must be followed. In particular, safety distances 

can be calculated so that personnel can evacuate in a safe area, far away from the incident 

source. “Separation distances, or alternatively referred to as safety distances, are the minimum 

separation between a hazard source and an object (human, equipment or environment), which 

will mitigate the effect of a likely foreseeable incident and prevent a minor incident escalating 

into a larger incident.” (Pohanish, 2008). 

These safety distances can be evaluated on the basis of threshold values of the physical effects 

of fires and explosions: the operator has to reach a distance corresponding to a value of thermal 

radiation or overpressure sufficiently low not to cause any damage. 

Table 19. Thermal radiation threshold values. 

 Thermal radiation (kW/m2) 

With protective equipment 4 ÷ 5        (Crocker and Napier, 1986) 

Without protective equipment 1.5           (Atallah and Allan, 1971) 

 

Table 20. Peak overpressure threshold values. 

 Peak overpressure (kPa) 

Eardrums rupture 35    (Malhotra, Carson, and Mcfadden, 2017) 

Lungs lethal damage 210  (Malhotra, Carson, and Mcfadden, 2017) 
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The explosive energy associated to a condensed phase explosion originated by an outdoor liquid 

hydrogen release of 0.14 kg/s is similar to a blast of about 2 kg TNT (Atkinson, 2021). 

In order to evaluate the safety distance in case of explosion it is necessary to determine the 

scaled distance z (see Equation (11)) first, using the peak overpressure diagram in Figure 96 

(TNO, 2005). 

𝑧 =  
𝑟

(𝑚𝑇𝑁𝑇,𝑒𝑞)1/3                                                                        ( 11 ) 

In Equation (11) r is the distance between the blast’s epicentre and the target. 

 

Figure 96. TNT peak overpressure diagram, adapted from Genova, Ripani and Silvestrini (n.a.). 

Considering a peak overpressure of 35 kPa, at which humans experience minor damages, the 

corresponding value of z (scaled distance) is about 4 
𝑚

𝑘𝑔1/3 , and considering a 𝑚𝑇𝑁𝑇,𝑒𝑞 = 2 𝑘𝑔 

(Atkinson, 2021) the distance between the explosion’s epicentre and the target (human in this 

case) will be about 5 m, which is expected to increase as the release rate increases.  

Following the condensed phase explosion, a fireball usually occurs. 

The resulting fireball expands to reach a diameter of about 8 m (Atkinson, 2021). The fireball 

can be described through a surface emitter model (TNO, 2005): 

𝐼 = 𝐸 ∙ 𝐹 ∙ 𝜏𝑎                                                               ( 12 ) 
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Where E, which is the specific emissivity, is usually about 250÷350 kW/m2 (TNO, 2005); F is 

the view factor, which expresses the proportion of the radiation which leaves the surface of the 

fire and strikes the target, and can be calculated as 𝐹 =  
𝐷2

4𝑋2 where D and X are displayed in 

Figure 97 and represent respectively the fireball diameter and the distance between the target 

and the fireball’s centre. 𝜏𝑎 is the atmospheric transmissivity, which can be calculated as 𝜏𝑎 =

2.02(𝑝𝑤 ∙ 𝐿)−0.09, where pw is the partial pressure of water in air (TNO, 2005). For a value of 

pw = 1200 Pa, 𝜏𝑎 = 2.02(1200 ∙ 𝐿)−0.09. 

 

 

Figure 97. Schematic representation of a fireball, adapted from TNO (2005). 

With these data, it is possible to calculate the safety distance corresponding to a value of thermal 

radiation of 1.5 kW/m2: 

1.5 = 300 ∙
82

4∙𝑋2 ∙ 2.02(1200 ∙ (𝑋 − 4))−0.09                                      ( 13 ) 

From Equation (13): X = 49.2 m.  

Being H = 0.75÷1 D, so considering H = 6 m, 𝑥 =  √𝑋2 − 𝐻2 = 48.8 𝑚.  

In this case, since 48.8 m > 5 m, the safety distance is given by the distance from the epicentre 

of the fire necessary for the target to be protected from the thermal radiation, having 

hypothesised that the projection of the epicentre of the fireball coincides with the release point 

– considering the magnitude of x, and that the fireball originates from the aerosol right above 

the liquid pool, it is a plausible hypothesis. 

In the following, the focus is placed on the case in which no condensed phase explosion occurs 

after ignition of the flammable mixture, which results in a jet fire. The experimental studies 

conducted by the FFI (Aaneby, Gjesdal and Voie, 2021) consider a liquid hydrogen release rate 
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of about 0.71 kg/s, which in case of ignition generates an initial fireball followed by a jet fire. 

The thermal radiation measured at 5 m from the release point is about 61.1 kW/m2. The thermal 

radiation decreases with the square of the distance from the source, so in order to reach an 

acceptable value (< 1.5 kW/m2) the operator must move from the release point of about 30 m 

(Aaneby, Gjesdal and Voie, 2021).  

If the gaseous flammable mixture hydrogen-air is ignited during an indoor liquid hydrogen 

release with a release rate of about 0.5 kg/s, an explosion generally occurs due to the 

confinement of the flame inside an enclosed room. The explosion might take a long time to 

happen, around 30 minutes, if the enclosed room is completely sealed preventing airflow. The 

peak overpressure will be of about 0.2 bar, which is not even high enough to determine 

eardrums rupture on human.  If the enclosed room is not perfectly tight, the airflow increases 

and that determines the explosion to occur immediately after ignition (about 15 s after ignition) 

with a much higher peak overpressure. A peak overpressure of about 2 bar was measured inside 

the enclosed room, which provokes its complete destruction (Aaneby, Gjesdal and Voie, 2021). 

Separation distances might be reduced by the use of mitigation measures. For example, water 

sprays to reduce thermal radiation effects were considered in this work, or walls to protect from 

blast and missiles deriving from explosions may be another effective solution. It is important 

to check that the mitigation measures will not increase the impact of other hazards. For example, 

walls to protect against blast and missiles may inhibit the dispersion of hydrogen increasing the 

time flammable concentrations are present and the likelihood of an ignition. The partial 

confinement introduced by the wall may also increase the probability of a flammable cloud 

detonation (Pohanish, 2008). 
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Chapter 6 Conclusions and further work 

Conclusions and further work 

 

A Machine Learning method for predicting the condensation or freezing of air oxygen and the 

formation of flammable atmospheres in case of liquid hydrogen spills has been developed. The 

method has involved the creation of several databases. 

Three models have been trained and tested on such databases: Linear, Deep and Wide&Deep 

models. The performances of these models have been evaluated over their predicting 

capabilities through the use of performance metrics. In general, the models have shown 

extremely good prediction capabilities when it comes to evaluating the formation of liquid or 

solid oxygen. A Deep approach seems to be essential in order to obtain high performance 

metrics.  

The Machine Learning models built are relatively weak when it comes to predicting whether or 

not the concentration of gas hydrogen in air will reach the lower flammability limit, giving rise 

to a flammable cloud. This might be due to the low number of positive labels, which translates 

into fewer chances to learn: the formation of a flammable cloud seems to be a relatively 

infrequent event if compared to the condensation or freezing of air components. Furthermore, 

some data pre-processing functions, despite being normally performed nowadays, might tend 

to worsen the results. This may be due to the presence of outliers in the database feature 

columns. Given these drawbacks, other data normalization techniques may be investigated. 

Moreover, if the aspect of interest is to predict the formation of a flammable cloud so to avoid 

fires and explosions in case of ignition implementing proper safety measures, further works 

might focus on finding the most suitable over-sampling technique in order to increase the 

number of positive events and properly train and evaluate the models. 

In any case, the built models have the potential to play an essential role in real-life accidental 

hydrogen release scenarios. In fact, if detectors reveal the presence of a hydrogen spill, safety 

measures must be activated. Such safety measures usually comprehend systems shutdown and 

the personnel evacuation to safe spots placed at great distance from the release point. This leads 

to a significant economic loss. Through these models, knowing the spill’s flow rate and other 

parameters easily measured, it would be possible to predict whether or not air oxygen will form 

liquid or solid deposits on the ground, posing a risk of condensed phase explosions, and if the 
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gas cloud will reach a concentration of hydrogen such to cause fire in case of ignition. If none 

of these phenomena are predicted to occur, the safety measures to implement might not 

determine the shutdown of the whole plant, but only local shutdowns and more limited safety 

distances.  
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Appendix A Codes 

Codes 
 

A.1 Linear Model 
 

from __future__ import absolute_import, division, print_function, unicode_literals 

import pandas as pd 

from sklearn.preprocessing import MinMaxScaler 

import numpy as np 

from sklearn.metrics import precision_recall_curve 

import matplotlib.pyplot as plt 

from IPython.display import clear_output 

import tensorflow as tf 

from sklearn import preprocessing 

 

df = pd.read_csv('/content/Database.csv') 

 

columns = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity', 'Release_orientation', 

          'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 'Wind_Direction_High',  

          'Wind_Direction_Low', 'Wind_Speed_High', 'Wind_Speed_Low', 

          'TT', 'x', 'y', 'z', 'liquid_oxygen', 'solid_oxygen'] 

 

# Second Database 

’’’ 

columns = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity', 'Release_orientation', 

          'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 'Wind_Direction_High',  

          'Wind_Direction_Low', 'Wind_Speed_High', 'Wind_Speed_Low', 

          'HC', 'x', 'y', 'z', ‘label’] 

’’’ 

 

# Third Database 

’’’ 

columns = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity', 'Purge','Sealing', 'P01',  

           'P02', 'P03', 'P04', 'PT_01', 'PT_02', 'PT_03', 'PT_04', 'TT', 'x', 'y', 'z', 'liquid_oxygen', 

           'solid_oxygen'] 

’’’ 

 

df.columns = columns 

 

dftrain = df.sample(frac=0.75, random_state=25) 

dfeval = df.drop(dftrain.index) 

 

# Normalization 

numeric=df._get_numeric_data() 
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for column in numeric: 

  xtrain = np.array(dftrain[column]).reshape(-1,1) 

  xtest = np.array(dfeval[column]).reshape(-1,1) 

  min_max_scaler = MinMaxScaler() 

  min_max_scaler.fit(xtrain) 

  xtrain_scaled=min_max_scaler.transform(xtrain) 

  xtest_scaled=min_max_scaler.transform(xtest) 

  dftrain[column]= xtrain_scaled  

  dfeval[column]= xtest_scaled 

 

insert_label = input("Insert label type: ") 

 

if insert_label == "liquid_oxygen": 

    dftrain=dftrain.drop(columns=['solid_oxygen']) 

    dfeval=dfeval.drop(columns=['solid_oxygen']) 

    dftrain.to_csv('dftrain.csv', index=False, encoding='utf-8') 

    dfeval.to_csv('dfeval.csv', index=False, encoding='utf-8') 

    dftrain = pd.read_csv('dftrain.csv') 

    dfeval = pd.read_csv('dfeval.csv') 

    y_train = dftrain.pop('liquid_oxygen') 

    y_eval = dfeval.pop('liquid_oxygen') 

else: 

    dftrain=dftrain.drop(columns=['liquid_oxygen']) 

    dfeval=dfeval.drop(columns=['liquid_oxygen']) 

    dftrain.to_csv('dftrain.csv', index=False, encoding='utf-8') 

    dfeval.to_csv('dfeval.csv', index=False, encoding='utf-8') 

    dftrain = pd.read_csv('dftrain.csv')  

    dfeval = pd.read_csv('dfeval.csv') 

    y_train = dftrain.pop('solid_oxygen') 

    y_eval = dfeval.pop('solid_oxygen') 

 

#Second Database 

’’’ 

dftrain.to_csv('dftrain.csv', index=False, encoding='utf-8') 

dfeval.to_csv('dfeval.csv', index=False, encoding='utf-8') 

dftrain = pd.read_csv('dftrain.csv') 

dfeval = pd.read_csv('dfeval.csv') 

y_train = dftrain.pop('label') 

y_eval = dfeval.pop('label') 

’’’ 

 

CATEGORICAL_COLUMNS = ['Release_orientation'] 

NUMERIC_COLUMNS = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity', 

          'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 

           'Wind_Direction_High', 'Wind_Direction_Low', 'Wind_Speed_High',  

           'Wind_Speed_Low','TT', 'x', 'y', 'z'] 
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# Second Database 

’’’ 

CATEGORICAL_COLUMNS = ['Release_orientation'] 

NUMERIC_COLUMNS = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity', 

          'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 

           'Wind_Direction_High', 'Wind_Direction_Low', 'Wind_Speed_High',  

           'Wind_Speed_Low', 'HC', 'x', 'y', 'z'] 

’’’ 

 

# Third Database 

’’’ 

CATEGORICAL_COLUMNS = ['Purge','Sealing'] 

NUMERIC_COLUMNS = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity','P01',  

                   'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 'TT', 'x', 'y', 'z'] 

’’’ 

 

feature_columns = [] 

for feature_name in CATEGORICAL_COLUMNS: 

  vocabulary = dftrain[feature_name].unique() 

  feature_columns.append(tf.feature_column.categorical_column_with_vocabulary_list(featur

e_name, vocabulary)) 

for feature_name in NUMERIC_COLUMNS: 

  feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float64

)) 

 

crossed = [tf.feature_column.crossed_column(['x', 'y', 'z'], hash_bucket_size=1000),  

           tf.feature_column.crossed_column(['Release_rate', 'P01', 'P02', 'P03', 'P04'], 

                                            hash_bucket_size=1000), 

           tf.feature_column.crossed_column(['x', 'y', 'z', 'TT'], hash_bucket_size=1000)] 

 

# Second Database 

‘’’ 

crossed = [tf.feature_column.crossed_column(['x', 'y', 'z'], hash_bucket_size=1000),  

           tf.feature_column.crossed_column(['Release_rate', 'P01', 'P02', 'P03', 'P04'], 

                                            hash_bucket_size=1000), 

           tf.feature_column.crossed_column(['x', 'y', 'z', 'HC'], hash_bucket_size=1000)] 

’’’ 

 

def make_input_fn(data_df, label_df, num_epochs=10, batch_size=32): 

  def input_function():  

    ds = tf.data.Dataset.from_tensor_slices((dict(data_df), label_df)) 

    ds = ds.batch(batch_size).repeat(num_epochs) 

    return ds 

  return input_function 

 

train_input_fn = make_input_fn(dftrain, y_train) 

eval_input_fn = make_input_fn(dfeval, y_eval, num_epochs=1) 

 

classifier = tf.estimator.LinearClassifier(feature_columns=feature_columns + crossed) 
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classifier.train(train_input_fn) 

 

result = classifier.evaluate(eval_input_fn) 

clear_output() 

print(result) 

 

# Precision-recall curve 

predictions = classifier.predict(eval_input_fn) 

probs = pd.Series([pred['probabilities'][1] for pred in predictions]) 

precision, recall, threshold = precision_recall_curve(y_eval, probs) 

plt.plot(recall, precision) 

plt.xlabel('Recall')  

plt.ylabel('Precision') 

plt.show() 

 

# Predictions 

probs0 = 1-probs 

print(probs0) 

predict=[] 

for item in probs: 

  if item >0.5: 

    predict.append(1) 

  else: 

    predict.append(0) 

pred=pd.Series(predict) 

df_predictions=pd.DataFrame({"Expected": y_eval, "Predictions": pred, "Prob0": probs0, "Pr

ob1": probs}) 

df_predictions.to_csv('df_predictions.csv', index=False, encoding='utf-8') 

 

# Confusion matrix 

from sklearn.metrics import confusion_matrix 

conf_matrix = confusion_matrix(y_eval, pred) 

print(conf_matrix) 
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A.2 Deep Model 
 

from __future__ import absolute_import, division, print_function, unicode_literals 

import pandas as pd 

from sklearn.preprocessing import MinMaxScaler 

import numpy as np 

from sklearn.metrics import precision_recall_curve 

import matplotlib.pyplot as plt 

from IPython.display import clear_output 

import tensorflow as tf 

from sklearn import preprocessing 

 

df = pd.read_csv('/content/Database.csv') 

 

columns = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity', 'Release_orientation', 

          'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 'Wind_Direction_High',  

          'Wind_Direction_Low', 'Wind_Speed_High', 'Wind_Speed_Low', 

          'TT', 'x', 'y', 'z', 'liquid_oxygen', 'solid_oxygen'] 

 

# Second Database 

’’’ 

columns = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity', 'Release_orientation', 

          'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 'Wind_Direction_High',  

          'Wind_Direction_Low', 'Wind_Speed_High', 'Wind_Speed_Low', 

          'HC', 'x', 'y', 'z', ‘label’] 

’’’ 

 

# Third Database 

’’’ 

columns = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity', 'Purge','Sealing', 'P01',  

           'P02', 'P03', 'P04', 'PT_01', 'PT_02', 'PT_03', 'PT_04', 'TT', 'x', 'y', 'z', 'liquid_oxygen', 

           'solid_oxygen'] 

’’’ 

 

df.columns = columns 

 

dftrain = df.sample(frac=0.75, random_state=25) 

dfeval = df.drop(dftrain.index) 

 

# Normalization 

numeric=df._get_numeric_data() 

for column in numeric: 

  xtrain = np.array(dftrain[column]).reshape(-1,1) 

  xtest = np.array(dfeval[column]).reshape(-1,1) 

  min_max_scaler = MinMaxScaler() 

  min_max_scaler.fit(xtrain) 

  xtrain_scaled=min_max_scaler.transform(xtrain) 
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  xtest_scaled=min_max_scaler.transform(xtest) 

  dftrain[column]= xtrain_scaled  

  dfeval[column]= xtest_scaled 

 

insert_label = input("Insert label type: ") 

 

if insert_label == "liquid_oxygen": 

    dftrain=dftrain.drop(columns=['solid_oxygen']) 

    dfeval=dfeval.drop(columns=['solid_oxygen']) 

    dftrain.to_csv('dftrain.csv', index=False, encoding='utf-8') 

    dfeval.to_csv('dfeval.csv', index=False, encoding='utf-8') 

    dftrain = pd.read_csv('dftrain.csv') 

    dfeval = pd.read_csv('dfeval.csv') 

    y_train = dftrain.pop('liquid_oxygen') 

    y_eval = dfeval.pop('liquid_oxygen') 

else: 

    dftrain=dftrain.drop(columns=['liquid_oxygen']) 

    dfeval=dfeval.drop(columns=['liquid_oxygen']) 

    dftrain.to_csv('dftrain.csv', index=False, encoding='utf-8') 

    dfeval.to_csv('dfeval.csv', index=False, encoding='utf-8') 

    dftrain = pd.read_csv('dftrain.csv')  

    dfeval = pd.read_csv('dfeval.csv') 

    y_train = dftrain.pop('solid_oxygen') 

    y_eval = dfeval.pop('solid_oxygen') 

 

#Second Database 

’’’ 

dftrain.to_csv('dftrain.csv', index=False, encoding='utf-8') 

dfeval.to_csv('dfeval.csv', index=False, encoding='utf-8') 

dftrain = pd.read_csv('dftrain.csv') 

dfeval = pd.read_csv('dfeval.csv') 

y_train = dftrain.pop('label') 

y_eval = dfeval.pop('label') 

’’’ 

 

CATEGORICAL_COLUMNS = ['Release_orientation'] 

NUMERIC_COLUMNS = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity', 

          'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 

           'Wind_Direction_High', 'Wind_Direction_Low', 'Wind_Speed_High',  

           'Wind_Speed_Low','TT', 'x', 'y', 'z'] 

 

# Second Database 

’’’ 

CATEGORICAL_COLUMNS = ['Release_orientation'] 

NUMERIC_COLUMNS = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity', 

          'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 

           'Wind_Direction_High', 'Wind_Direction_Low', 'Wind_Speed_High',  

           'Wind_Speed_Low', 'HC', 'x', 'y', 'z'] 
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’’’ 

 

# Third Database 

’’’ 

CATEGORICAL_COLUMNS = ['Purge','Sealing'] 

NUMERIC_COLUMNS = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity','P01',  

                   'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 'TT', 'x', 'y', 'z'] 

’’’ 

 

feature_columns = [] 

for feature_name in CATEGORICAL_COLUMNS: 

  vocabulary = dftrain[feature_name].unique() 

  feature_columns.append(tf.feature_column.indicator_column(tf.feature_column.categorical_

column_with_vocabulary_list(feature_name, vocabulary))) 

for feature_name in NUMERIC_COLUMNS: 

  feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float64

)) 

 

 

def make_input_fn(data_df, label_df, num_epochs=10, batch_size=32): 

  def input_function():  

    ds = tf.data.Dataset.from_tensor_slices((dict(data_df), label_df)) 

    ds = ds.batch(batch_size).repeat(num_epochs) 

    return ds 

  return input_function 

 

train_input_fn = make_input_fn(dftrain, y_train) 

eval_input_fn = make_input_fn(dfeval, y_eval, num_epochs=1) 

 

classifier = tf.estimator.DNNClassifier(feature_columns=feature_columns, 

                                         hidden_units=[1024, 512, 256]) 

 

classifier.train(train_input_fn) 

 

result = classifier.evaluate(eval_input_fn) 

clear_output() 

print(result) 

 

 

# Precision-recall curve 

predictions = classifier.predict(eval_input_fn) 

probs = pd.Series([pred['probabilities'][1] for pred in predictions]) 

precision, recall, threshold = precision_recall_curve(y_eval, probs) 

plt.plot(recall, precision) 

plt.xlabel('Recall')  

plt.ylabel('Precision') 
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plt.show() 

 

# Predictions 

probs0 = 1-probs 

print(probs0) 

predict=[] 

for item in probs: 

  if item >0.5: 

    predict.append(1) 

  else: 

    predict.append(0) 

pred=pd.Series(predict) 

df_predictions=pd.DataFrame({"Expected": y_eval, "Predictions": pred, "Prob0": probs0, "Pr

ob1": probs}) 

df_predictions.to_csv('df_predictions.csv', index=False, encoding='utf-8') 

 

# Confusion matrix 

from sklearn.metrics import confusion_matrix 

conf_matrix = confusion_matrix(y_eval, pred) 

print(conf_matrix) 
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A.3 Wide&Deep Model 
 

from __future__ import absolute_import, division, print_function, unicode_literals 

import pandas as pd 

from sklearn.preprocessing import MinMaxScaler 

import numpy as np 

from sklearn.metrics import precision_recall_curve 

import matplotlib.pyplot as plt 

from IPython.display import clear_output 

import tensorflow as tf 

from sklearn import preprocessing 

from imblearn.over_sampling import SMOTENC 

df = pd.read_csv('/content/Database.csv') 

 

columns = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity', 'Release_orientation', 

          'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 'Wind_Direction_High',  

          'Wind_Direction_Low', 'Wind_Speed_High', 'Wind_Speed_Low', 

          'TT', 'x', 'y', 'z', 'liquid_oxygen', 'solid_oxygen'] 

 

# Second Database 

’’’ 

columns = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity', 'Release_orientation', 

          'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 'Wind_Direction_High',  

          'Wind_Direction_Low', 'Wind_Speed_High', 'Wind_Speed_Low', 

          'HC', 'x', 'y', 'z', ‘label’] 

’’’ 

 

# Third Database 

’’’ 

columns = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity', 'Purge','Sealing', 'P01',  

           'P02, 'P03', 'P04', 'PT_01', 'PT_02', 'PT_03', 'PT_04', 'TT', 'x', 'y', 'z', 'liquid_oxygen', 

           'solid_oxygen'] 

’’’ 

 

df.columns = columns 

 

dftrain = df.sample(frac=0.75, random_state=25) 

dfeval = df.drop(dftrain.index) 

 

# SMOTE for the Second Database 

’’’ 

smotenc = SMOTENC([4],random_state = 101, sampling_strategy=0.3) 

X_oversample, y_oversample = smotenc.fit_resample(df_train[['Time', 'Ambient_pres

sure',  'Release_rate', 'Humidity', 'Release_orientation', 

          'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 

           'Wind_Direction_High', 'Wind_Direction_Low', 'Wind_Speed_High',  

           'Wind_Speed_Low','HC', 'x', 'y', 'z']], df_train['label']) 
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smote_array = np.concatenate([X_oversample, y_oversample.values.reshape(-1, 1)], axis=1) 

dftrain_oversample = pd.DataFrame(smote_array, columns=['Time', 'Ambient_pressure',  

'Release_rate', 'Humidity', 'Release_orientation', 

          'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 

           'Wind_Direction_High', 'Wind_Direction_Low', 'Wind_Speed_High',  

           'Wind_Speed_Low','HC', 'x', 'y', 'z', 'label']) 

 

dftrain_oversample.to_csv('dftrain_oversample.csv', index=False, encoding='utf-8') 

dftrain = pd.read_csv('dftrain_oversample.csv') 

dfeval = pd.read_csv('dfeval.csv') 

y_train = dftrain.pop('label') 

y_eval = dfeval.pop('label') 

’’’ 

 

# Normalization 

numeric=df._get_numeric_data() 

for column in numeric: 

  xtrain = np.array(dftrain[column]).reshape(-1,1) 

  xtest = np.array(dfeval[column]).reshape(-1,1) 

  min_max_scaler = MinMaxScaler() 

  min_max_scaler.fit(xtrain) 

  xtrain_scaled=min_max_scaler.transform(xtrain) 

  xtest_scaled=min_max_scaler.transform(xtest) 

  dftrain[column]= xtrain_scaled  

  dfeval[column]= xtest_scaled 

 

insert_label = input("Insert label type: ") 

 

if insert_label == "liquid_oxygen": 

    dftrain=dftrain.drop(columns=['solid_oxygen']) 

    dfeval=dfeval.drop(columns=['solid_oxygen']) 

    dftrain.to_csv('dftrain.csv', index=False, encoding='utf-8') 

    dfeval.to_csv('dfeval.csv', index=False, encoding='utf-8') 

    dftrain = pd.read_csv('dftrain.csv') 

    dfeval = pd.read_csv('dfeval.csv') 

    y_train = dftrain.pop('liquid_oxygen') 

    y_eval = dfeval.pop('liquid_oxygen') 

else: 

    dftrain=dftrain.drop(columns=['liquid_oxygen']) 

    dfeval=dfeval.drop(columns=['liquid_oxygen']) 

    dftrain.to_csv('dftrain.csv', index=False, encoding='utf-8') 

    dfeval.to_csv('dfeval.csv', index=False, encoding='utf-8') 

    dftrain = pd.read_csv('dftrain.csv')  

    dfeval = pd.read_csv('dfeval.csv') 

    y_train = dftrain.pop('solid_oxygen') 

    y_eval = dfeval.pop('solid_oxygen') 
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# Second Database 

’’’ 

dftrain.to_csv('dftrain.csv', index=False, encoding='utf-8') 

dfeval.to_csv('dfeval.csv', index=False, encoding='utf-8') 

dftrain = pd.read_csv('dftrain.csv') 

dfeval = pd.read_csv('dfeval.csv') 

y_train = dftrain.pop('label') 

y_eval = dfeval.pop('label') 

’’’ 

CATEGORICAL_COLUMNS = ['Release_orientation'] 

NUMERIC_COLUMNS = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity', 

          'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 

           'Wind_Direction_High', 'Wind_Direction_Low', 'Wind_Speed_High',  

           'Wind_Speed_Low','TT', 'x', 'y', 'z'] 

 

# Second Database 

’’’ 

CATEGORICAL_COLUMNS = ['Release_orientation'] 

NUMERIC_COLUMNS = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity', 

          'P01', 'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 

           'Wind_Direction_High', 'Wind_Direction_Low', 'Wind_Speed_High',  

           'Wind_Speed_Low', 'HC', 'x', 'y', 'z'] 

’’’ 

 

# Third Database 

’’’ 

CATEGORICAL_COLUMNS = ['Purge','Sealing'] 

NUMERIC_COLUMNS = ['Time', 'Ambient_pressure', 'Release_rate', 'Humidity','P01',  

                   'P02', 'P03', 'P04', 'PT_01', 'PT_02','PT_03', 'PT_04', 'TT', 'x', 'y', 'z'] 

’’’ 

 

deep_feature_columns = [] 

for feature_name in CATEGORICAL_COLUMNS: 

  vocabulary = dftrain[feature_name].unique() 

  deep_feature_columns.append(tf.feature_column.indicator_column(tf.feature_column.catego

rical_column_with_vocabulary_list(feature_name, vocabulary))) 

for feature_name in NUMERIC_COLUMNS: 

  deep_feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype = ---

---------tf.float64)) 

 

crossed = [tf.feature_column.crossed_column(['x', 'y', 'z'], hash_bucket_size=1000),  

           tf.feature_column.crossed_column(['Release_rate', 'P01', 'P02', 'P03', 'P04'], 

                                            hash_bucket_size=1000), 

           tf.feature_column.crossed_column(['x', 'y', 'z', 'TT'], hash_bucket_size=1000)] 

 

# Second Database 

’’’ 

crossed = [tf.feature_column.crossed_column(['x', 'y', 'z'], hash_bucket_size=1000),  



 
 

112 
 

           tf.feature_column.crossed_column(['Release_rate', 'P01', 'P02', 'P03', 'P04'], 

                                            hash_bucket_size=1000), 

           tf.feature_column.crossed_column(['x', 'y', 'z', 'HC'], hash_bucket_size=1000)] 

’’’ 

 

def make_input_fn(data_df, label_df, num_epochs=10, batch_size=32): 

  def input_function():  

    ds = tf.data.Dataset.from_tensor_slices((dict(data_df), label_df)) 

    ds = ds.batch(batch_size).repeat(num_epochs) 

    return ds 

  return input_function 

 

train_input_fn = make_input_fn(dftrain, y_train) 

eval_input_fn = make_input_fn(dfeval, y_eval, num_epochs=1) 

 

classifier = tf.estimator.DNNLinearCombinedClassifier(linear_feature_columns=crossed,  

                                           dnn_feature_columns=deep_feature_columns, 

                                           dnn_hidden_units=[1024, 512, 256]) 

 

classifier.train(train_input_fn) 

 

result = classifier.evaluate(eval_input_fn) 

clear_output() 

print(result) 

 

# Precision-recall curve 

predictions = classifier.predict(eval_input_fn) 

probs = pd.Series([pred['probabilities'][1] for pred in predictions]) 

precision, recall, threshold = precision_recall_curve(y_eval, probs) 

plt.plot(recall, precision) 

plt.xlabel('Recall')  

plt.ylabel('Precision') 

plt.show() 

 

# Best Threshold for the Second Database 

’’’ 

from numpy import argmax 

fscore = (1+(1.5)*(1.5))*(precision * recall) / (((1.5)*(1.5))*precision + recall) 

# locate the index of the largest f score 

ix = argmax(fscore) 

print('Best Threshold=%f, F-Score=%.3f' % (threshold[ix], fscore[ix])) 

print('Precision=%f, Recall=%.3f' % (precision[ix], recall[ix])) 

plt.plot(threshold, fscore[1:]) 

plt.xlabel('Threshold') 

plt.ylabel('Fscore') 

plt.show() 

plt.plot(threshold, precision[1:], label="Precision",linewidth=2)  
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plt.plot(threshold, recall[1:], label="Recall",linewidth=2)  

plt.title('Precision and recall for different threshold values')  

plt.xlabel('Threshold')  

plt.ylabel('Precision/Recall')  

plt.legend()  

plt.show() 

’’’ 

 

# Predictions 

probs0 = 1-probs 

print(probs0) 

predict=[] 

for item in probs: 

  if item >0.5: 

    predict.append(1) 

  else: 

    predict.append(0) 

pred=pd.Series(predict) 

df_predictions=pd.DataFrame({"Expected": y_eval, "Predictions": pred, "Prob0": probs0, "Pr

ob1": probs}) 

df_predictions.to_csv('df_predictions.csv', index=False, encoding='utf-8') 

 

# Confusion matrix 

from sklearn.metrics import confusion_matrix 

conf_matrix = confusion_matrix(y_eval, pred) 

print(conf_matrix)  
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Appendix B Tables  

Tables 
 

B.1 Extract from the First database 
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B.2 Extract from the Second database 
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B.3 Extract from the Third database 
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