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Abstract

The focus on autonomy in the maritime industry has in recent years increased.

Autonomous vessels have the potential to reduce costs and improve safety in the

maritime industry. Unmanned Surface Vehicles (USVs) are reaching the commer-

cial market, e.g., Maritime Robotics, SailDrone, and Kongsberg. However, further

enchantment of the field requires more product development to make it possible for

USVs to perform more complex operations without any human intervention. This

project is a collaboration between NTNU, Fosenregionen, Maritime Robotics, and

SFI Autoship. The project’s grand vision is to connect urban and remote parts of

the Fosen region with autonomous cargo boats. Here, the crew and port handling

is considered to constitute a significant cost associated with short-range shipping.

The objective of this master thesis is to develop solutions for autonomous cargo

handling to connect small remote places, e.g., islands and coastal towns. This

master thesis combines theory and practice to verify any predictions. By looking

at the theoretical aspects of autonomous cargo handling, in addition to testing, the

understanding of the theoretical methods, strengths, and shortcomings is in this

project reviewed.

This thesis describes a vision-based approach of using fiducial markers to aid USVs

while auto-docking. Recent applications of USVs have shown increased ease and

increased efficiency of cargo shipping at precise locations. However, further field

enhancement requires operations over long periods, e.g., days or weeks of which the

vessel must be precisely docked to be refueled/recharged or for complex cargo hand-

ling in transit. Utilizing vision-based techniques allows USVs to orient themselves

to their environment from their perspective and may represent an efficient method

for such vessels to accurately orientate themselves in the docking scenario. In ad-

dition, fiducial markers can give USVs six degrees of freedom orientation relative

to a target, allowing more complex interactions with a potential pier or a floating

docking station.

RTK GNSS with a base station on the pier was used to validate the estimated

camera positions to obtain reliable additional positioning. The experiments show
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that essential computer vision (CV) techniques using fiducial markers perform well

in obtaining accurate outdoor position estimates in optimal conditions. However, in

more adverse conditions, the results demonstrated that the performance decreased

significantly. Finally, suggestions for further development are given.

The following topics are addressed in this master:

1. Challenges with autonomous cargo handling.

2. An overview of available technologies.

3. A edge case for autonomous cargo handling: The docking process.

4. Development of a vision-based system using fiducial markers to precisely ori-

entate a USV in the docking scenario.
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Sammendrag

Denne masteroppgaven er en del av et større forskningsprosjekt i samarbeid med

NTNU, Fosenregionen, Maritime Robotics og SFI Autoship. Målet med forskningen

er å binde mindre urbane regioner av Fosen med autonome cargo fartøyer. For at

ubemannede marine cargo systemer kan n̊a det kommersielle markedet, er det mange

mulige utfordringer som m̊a identifiseres og løses.

Autonome fartøyer kan enten fortøye til flytende brygger eller til stasjonære kaier.

Vi mennesker har evnen til å enkelt kunne justere v̊are bevegelser til omgivelsene,

mens autonome fartøyer har i dag ikke den samme evnen. I tillegg har mennesker

evnen til å lokalisere og posisjonere et fartøy til samme lokasjon og utføre vanskelige

løfteoperasjoner mellom fartøyet og kaien. For at autonome fartøyer som skal kunne

gjøre den samme prosessen uten noen menneskelig medvirkning, kreves det ulike

løsninger som sammen gir autonome fartøyer en lignede evne.

Denne oppgaven beskriver en kamera-basert metode som identifiserer objekt-markører

p̊a en kai og kalkulerer fartøyets orientering relativt til disse n̊ar fartøyet nærmer

seg. Markørene gir fartøyet informasjon om dens orientering i seks frihetsgrader re-

lativt til kaien i et lokalt referanse system. Objekt-markørene er uavhengige om det

er en flytende brygge eller en stasjonær kai. Metoden gjør at fartøyet kan estimere

en lokal presis posisjon av kaien uten bruk av ekstern kommunikasjon til fartøyet.

Ettersom kamerasystemet har evnen til å gi informasjon over seks frihetsgrader, kan

et slikt system gi autonome fartøyer evner til mer komplekse interaksjoner med en

docking stasjon, f.eks. robotarmer p̊a fartøyet som flytter cargo mellom fartøy og

en docking stasjon.

For å verifisere posisjonsestimatene fra kamerasystemet ble det brukt realtids kin-

ematiske måling med en lokal basestasjon. Denne metoden ga en realistisk og

et presist sammenligningsgrunnlag til posisjonsestimatene fra kamerasystemet mot

fartøyets globale posisjoner. Posisjonene fra kamera systemet ble i tillegg Kalman

filtert i et forsøk p̊a å oppn̊a bedre nøyaktighet og ytelse, men ogs̊a integrert som

et steg nærmere for å bli en del av navigasjonssystemet til et autonomt fartøy. Res-

ultatene fra de gjennomførte eksperimentene viste at systemet under gode forhold
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fungerte godt, men i mer utfordrende situasjoner, f.eks. mørke eller reflektert lys,

gikk ytelsen til systemet ned. Til slutt, blir det gitt forslag til forbedringer.

Følgende temaer blir diskutert i denne masteroppgaven:

1. Utfordringer med autonom cargo h̊andtering.

2. Oversikt over tilgjengelige teknologier.

3. En spesialutfordring ved autonom cargo h̊andtering: Dockingprosessen.

4. Utviklingen av et kamera-basert system som bruker fidusielle markører for å

gi presise posisjons estimater.

iv



Preface

This master’s thesis is part of the Master of Science degree in Mechanical Engineering

at the Norwegian University of Science and Technology (NTNU) in Trondheim. The

following thesis was written in its entirety by Lars Digerud during the autumn of

2021, and the workload is equivalent to 30 ECTS. The thesis is an exploratory

research study focusing on the concept of autonomy and uses vision-based techniques

to orientate the USV in the docking scenario.

The motivation for this thesis is an urge to explore different fields of technology

and understand how different fields of technology can be combined and applied to

problems that revolve around autonomous vessels. The author has a bachelor’s de-

gree in mechatronics/mechanical engineering and has worked part-time for Maritime

Robotics with designing, prototyping, and building autonomous systems. Working

at Maritime Robotics has motivated the author to take a more thorough look at

existing technology to solve unsolved problems.

Additionally, I would like to thank my advisors, Kim Alexander Christensen, Martin

Steinert, and Anna Olsen, for their excellent guidance through the thesis work.

A special thank goes to Øystein Volden and Petter Solnør for extensive support

for developing the camera system and helping with performing the experiments

conducted in this thesis.

Finally, I would like to thank my family for all support and my girlfriend, Sandra,

for bearing any frustration through the work and still sticking with me. I love you!

v



vi



Contents

Abstract ii

Sammendrag iv

Preface v

Nomenclature xi

1 Introduction 1

1.1 Motivation and background . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective and research questions . . . . . . . . . . . . . . . . . . . . 3

1.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 The Master‘s Thesis organization . . . . . . . . . . . . . . . . . . . . 4

2 Theory 7

2.1 Aspect of marine docking . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 A short on vessel control . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 A short on the docking process . . . . . . . . . . . . . . . . . 9

2.1.3 Challenges with autonomous cargo handling . . . . . . . . . . 10

2.1.4 Current regulations on the docking of autonomous vessels . . . 11

2.1.5 The Autonomy Engine . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Related work: Demonstrated marine dockings . . . . . . . . . . . . . 17

vii
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Chapter 1

Introduction

1.1 Motivation and background

This master project is part of a larger research project in a collaboration between

NTNU, Fosen region inter-municipal political council (IKPR), Maritime robotics,

and SFI Autoship. The project’s grand vision is to connect remote parts of the

Fosen region with autonomous cargo boats. A significant cost of short-range shipping

comes from the crew and port handling. Here, autonomous shipping is assumed be

significant part of reducing these costs. In addition to this, autonomous shipping

can enable new transport and supply chain opportunities that, thus far, have not

been economically feasible, like individualized transport of packages.

The use and interest of autonomous systems has in recent years increased significant,

ranging from robotic lawn mowers, autonomous cars and buses, to name a few. In

2017, Yara and Kongsberg revealed that they would partner up to build the world’s

first autonomous and fully electric container vessel, Yara Birkeland [1]. The aim is to

eliminate 40 000 truck drives between Yara’s Porsgrunn fertilizer plant in the south

of Norway and the port of Brevik and Larvik, expectantly reducing greenhouse gas

emissions. The initial plan for the vessel was to begin testing in 2019 and be certified

as a fully autonomous cargo ship by 2021. However, as of the thesis being written

the land-based system which interacts with the vessel become too complicated [2].

Nevertheless, Yara and Kongsberg aims to put the ship in action by 2022 [3].

The are several potential advantages of making cargo ships that can navigate and

transport cargo from A to B without any human intervention, e.g., lower transport

costs, more environmentally friendly transport of cargo, better space distribution of

cargo on the ships. Autonomous cargo ships are therefore considered to be a pivotal

element to achieve a much more competitive and sustainable shipping industry.
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Figure 1.1: Concept illustration of Yara Birkeland. Image courtesy to [1].

(a) Vision for master-slave concept

(Schönknecht et al., 1973) [4].
(b) Unmanned Container Vessel Vision

(Kasai et al., 1996).

Figure 1.2: Early visions of unmanned concepts on cargo ships [5].

The idea of autonomous cargo shipping is not new. The ideas presented in figure 1.2

illustrate early visions for the future on concepts of cargo ships, here, ideas about

a master-slave configuration are shown in figure 1.2 a) from Schönknect et al., 1983

[4]. A master ship is used to control several other cargo ships to, e.g., reduce the

amount of crew members. While figure 1.2 b) illustrates a fully unmanned container

vessel. A short excerpt from Schönknect et al., 1983 [4] with their predictions about

future cargo ships:

”In this age of rationalization and automation it would not be difficult

to imagine a ship without a crew. [...] It is indeed quite possible that at

some distant future date the captain will perform his duties in an office

building on shore. In his place he will leave a computer on board the

ship which will undertake all tasks of the navigator’s art, [...] controlling

the ship, and will in fact perform the task much more efficiently.”

By describing a captain performing his duties from an office and an onboard com-

puter undertaking all necessary actions to control the ship, seem Schönknect et al.
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to be quite accurate with their predictions about future cargo ships. Despite re-

cent advances in autonomous marine vessels, several challenges remain before fully

autonomous cargo ships can be a part of the shipping industry.

The marine environment is considered a harsh environment with a dynamic climate

that changes its form throughout the day due to, i.e., tide, currents, and waves

causing any marine craft to move along different directions and axis—making the

docking phase of a ship a complex and high-risk task. A task that demands high

precision, well-adopted control algorithms to precisely predict the ship’s path and

capability to align the ship to the dock. A vital part of this particular task is to feed

the ship with reliable position estimates, of which the ship can perform docking in

a dynamic environment.

1.2 Objective and research questions

This thesis overall goal is to research methods to connect remote regions using

autonomous cargo boats, to bring cargo from location A to location B. Specifically,

the thesis has mainly focused on the auto-docking phase. This phase is seen as a

limitation and, among others, e.g., path planning, collision avoidance, constraints to

make autonomous cargo shipping feasible. Recent applications of USVs have shown

increased ease and increased efficiency of cargo shipping at precise locations, e.g.,

Yara Birkeland. However, further enhancement of the field requires operations over

long periods of time, e.g., days or weeks of which the vessel must be precisely docked

to be refueled/recharged or for complex cargo handling.

Utilizing vision-based techniques allows USVs to orient themselves to their surround-

ings from their perspective and may represent an efficient method for such vessels to

precisely localize and position themselves in the docking scenario. The work in this

thesis is a novel attempt to develop vision-based methods to independently localize

USVs locally to a dock in order to optimize the cargo handling process. In addition,

the value of the vision-based method presented in this thesis is deployable to be

implemented with other types of use cases, e.g., visual controlling of robot arms,

visual monitoring of cargo, visual communication to a USV. Thus, based on the

thesis objective, the following research questions were formulated:

1. Can traditional vision-based techniques be efficiently utilized to locally localize

and estimate the position of a USV relative to a dock?

2. Where are the boundaries of a vision-based navigation system to be used in

outdoor conditions?

3
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1.3 Main contributions

The thesis demonstrates how relative low-cost cameras can aid USVs in obtaining

a precise relative position of a pier or a floating docking station. The main ob-

jective is to develop an independent vision-based positioning system to increase the

redundancy and accuracy of autonomous vehicles’ navigation systems during the

docking phase. Compared to previous work with vision-based navigation for USVs,

the method focuses primarily on only using traditional computer vision and filtering

techniques to allow the method to be computability efficient to be utilized in real-

time systems. The thesis also addresses some challenging weather conditions that a

fully developed camera system must overcome in a marine environment.

1.4 The Master‘s Thesis organization

The thesis is structured as follows:

• Chapter 1: The motivation and the background of the thesis is introduced.

Followed by the objective and research questions, and the main contributions.

• Chapter 2: Introduces the reader to essential aspects of docking of marine

ships, challenges with autonomous cargo handling, and the current regulations

on docking of autonomous vessels with a brief introduction to some aspects on

autonomy. Further, related work of existing docking approaches of autonom-

ous ships is briefly assessed. Then, topics on navigation and communication

are presented, followed by some theory on relevant sensors for USVs. Then, the

pinhole theory is presented, followed by theory on the Kalman filter. Lastly,

theory on fiducial markers is thoroughly presented with a description of the

method to link these to global position systems.

• Chapter 3: Describes the methodology, essential hardware, and required soft-

ware used in this thesis. Here, details about the different product development

stages during the master project are also presented.

• Chapter 4: Presents the results from the different scenarios that the vision-

based system achieved from the conducted experiments.

• Chapter 5: Discusses the diverse topics that have been presented and are

reflected upon in relation to the results from the experiments in order to answer

the research questions.
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• Chapter 6: Concludes the thesis. Additionally, the research questions are

addressed, and recommendations for further research and work is given.
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Chapter 2

Theory

2.1 Aspect of marine docking

The purpose of a pier or a floating dock is to moor a vessel safely and make sure

that the vessel does not drift away. Due to the tide, waves, wind, and current, the

mooring of a marine vessel is a complicated task, especially if no humans are to be

involved in any part of the operation. Consequently, one can divide the dockings in

two different types of docks, a stationary pier or a floating dock. What type of dock

the vessel meets can play a significant role in the vessel’s capability to interact with

the dock.

1. Stationary pier: The vessel is the only thing that moves throughout the

day due to external factors, e.g., tide, currents, waves, and wind. These forces

can also tear on the mechanisms involved in keeping the vessel in its place.

Specifically, it is only the vessel that will fluctuate in its position relative to

the stationary pier throughout the day due to external factors.

2. Floating docking station: A floating docking station will follow the sea

movements. The vessel and the floating docking station can move in various

directions and change their positions throughout the day due to e.g., tide,

currents, waves, and wind.

These two possible docking interactions may cause difficulties in designing a solution

that can suit all types of vessels. Consequently, different system designs for different

types of dockings may be developed for certain types of vessel, but may also play a

significant role on how the vessel plans it route to the dock.

For an unmanned surface vessel, a dock is where it is being moored, but probably

also where the USV for instance is being charged/refueled, loaded/unloaded with
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cargo, or loaded/unloaded with passengers. Therefore, it is important that the USV

can easily identify and localize the dock to initiate an automatic docking sequence,

in which the vessel can safely maneuver to the dock and in a final stage moor itself.

For a human being, this operation may be easy because humans can adjust their

actions based on the input from the surroundings in a more efficient way than a

robot.

The motions of a marine craft is considered to take place in 6 degrees-of-freedom

(DoF), whereas the equations of motions can be derived using the Newton-Euler

or Lagrange equations [6]. The three first degrees are defined as the translational

motions, heave, sway and surge. Heave is the vessel’s vertical motion (up/down),

whereas sway is the vessel’s linear transverse motion (side to side) and surge is

linear longitudinal movements (front/back). The three last degrees are defined as

the rotational motions, pitch, roll, and yaw. Pitch is the up and down rotation along

its transverse direction (side-to-side or port-starboard), while the roll is the tilting

rotation about along its longitudinal axis (front-back or bow-stern) and yaw is the

turning rotation of the USVs vertical axis.

Because a USV can move in 6 DoF, the development of automatic latching mech-

anisms to moor a USV becomes increasingly tricky. This process might be more

manageable when working with stationary piers. Floating docks, however, which

also can move within 6 DoF may make the process of mooring become more ar-

duous. However, unlike a marine craft, a floating dock is probably permanently

anchored. The movements of the floating dock can therefore in most situations be

assumed to be less than the movements of a marine craft. This difference between

a stationary dock and a floating dock may severely affect the USVs ability to align

itself.

2.1.1 A short on vessel control

Vessel control is usually divided into three independent blocks called guidance, nav-

igation and control [6]. These systems interact with each other through data and

signal transmission. The different blocks can further be extended. Guidance is the

action or a system that continuously computes a marine craft’s desired position,

velocity, and acceleration. Essential components for a guidance system are motion

sensors, external data such as weather, wave height, current speed, and direction,

and a computer to process this data. Navigation is the marine crafts’ ability to

determine its position/attitude, course and distance traveled. Finally, control, spe-

cifically motion control, determines the necessary control of forces and moments to

satisfy a specific control objective.
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In addition, there are two conditions a marine craft can operate under as defined by

[6]:

• Fully actuated marine craft. Consequently, a fully actuated marine craft

working in 6 DoF must be equipped with actuators that can provide independ-

ent forces and moments in all directions.

• Underactuated marine craft. In many cases, having a fully actuated vessel

is not practical. For example, a marine vessel can be equipped with a single

rudder and a propeller, which means the control system cannot satisfy a 6

DoF control objective. However, it is still possible to control the ship with

fewer DoF.

2.1.2 A short on the docking process

The objective of a cargo vessel in the docking process is to navigate to the dock safely,

latch/lock itself with the dock, load/unload cargo, and then eventually navigate back

to the sea. A typical scenario for an autonomous cargo boat can unfold as follows:

1. The cargo boat arrives at the dock and positions itself with sensors and

thrusters.

2. The cargo boat latches or secures itself with the dock.

3. The hatches and doors open, allowing humans, or automatic onshore solutions,

to pick up cargo.

4. Humans and onshore solutions load cargo onto the cargo vessel.

5. The cargo boat un-docks and starts navigating out of the harbor in to the sea.

It is essential to keep people, materials, and the surroundings safe during all stages.

Therefore, the docking process must be repetitive with high precision and accuracy.

USVs usually navigate with GPS in ”waypoint mode,”, i.e., a predefined path. The

waypoints are usually set with global coordinates. A GPS point will only give

the vessel information about where the dock is in global coordinates. However,

it is crucial for safety and long-term use to have systems locally on the vessel to

provide precise relative position estimates about the dock, as if the vessel is to

moor to floating jetty, this position will change throughout the day. As for mooring

mechanisms to moor a marine craft without any human intervention, it is crucial

that the vessel can closely align itself to the same point. Otherwise, the locking
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mechanism will probably have to extensively move its position to the vessel to be

capable to moor the USV.

Last but not least, it is essential to note that the conditions of a USV or a floating

dock can change due to fuel, passengers walking on/off, or cargo being loaded on/off

the USV or dock, inducing movements on both objects.

2.1.3 Challenges with autonomous cargo handling

Typically, during the docking process, the cargo crew aligns the vessel to the harbor,

ensuring that easy maneuvering to the dock is possible. The captain usually takes

manual control over the thrusters and moves the vessel slowly in place, while the deck

crew throws mooring lines onshore to the onshore crew to moor the vessel safely. This

method is often used by larger vessels. For smaller vessels that only need to make a

quick stop to load/unload cargo, aligning the vessel to the dock is usually enough,

with thrusters pushing the vessel against the dock. This method reduces personnel

and loading time because the whole docking process is much simpler. However, the

method is not feasible for cargo vessels to be moored for more extended periods

or lifting on/off heavy/complex cargo. Additionally, depending on the schedule,

fueling/charging method, the vessel may need to be connected to a precise point on

the dock. In short, the following points give a brief overview of the challenges an

autonomous cargo vessel must meet in the docking scenario:

• Navigation: Because there are many different layouts of harbors and po-

tential blockages, a cargo vessel must be capable of identifying these in order

to avoid dynamic and static obstacles. This requires sensors that can give

valuable data to the vessel motion control system so that the programmed

algorithms can make precise decisions and move the vessel with high accuracy

to avoid these.

• Weather conditions: Weather can heavily affect the sensors’ performance,

by disturbing the sensor data. Rain, fog, darkness, glare, heat, coldness, and

dew can dramatically decrease the sensors’ line of sight. Therefore, the limits

of the sensors must be found, in addition to figuring out how well the sensors

work in difficult weather conditions to ensure safe autonomous operations.

• Hacking/spoofing: The threat of hackers. Manipulating sensors to give

erroneous estimates to fool the onboard systems will always be challenging.

Cyber-attacks can be done in different ways. In addition, there are also other

ways of performing cyber attacks, such as spoofing, jamming, bitstream ma-

nipulation, or physically blocking the vessel from entering the dock. Such
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attacks can manipulate the vessel to do unwanted maneuvers, harming the

vessel, its cargo, or the surroundings.

• Mechanical design - mechanisms: In order to make autonomous systems

safer, it may also be necessary to understand what effects an autonomous

vessel can have on the environment and what effects the environment can

have on the vessel. Such as having a mechanism to lock the vessel to the dock.

Alternatively, make sensors/or relevant systems perform better.

• Interacting with the dock: The loading/unloading of passengers, cargo or

fuel may change the vessel dynamics or the position of the vessel, which is

a process a mooring solution must handle. For instance, heavy cargo, which

is not along the vessel’s baseline but on the furthest side of the transverse

direction, may impose massive movements on the vessel once these are lifted

onto a floating dock.

• Loss of external communication: A significant challenge for autonom-

ous vessels is loss of communication with external services during the docking

phase. Because communication with external services, especially in a docking

phase, is critical for the autonomous vessel to achieve safe dockings. If the

vessel loses external communication, it could lose its positioning, thus becom-

ing a danger for itself and its surroundings. Furthermore, if the vessel does

not have a backup solution, it could crash into a quay or other surrounding

vessels—several possible reasons for such failures, e.g., hacking and software

failure.

For recent years there have been autonomous cars, buses, and trucks, in addition to

self-supported sailing drones [7], and drones being flown across the globe. However,

one significant difference between autonomous vessels and autonomous vehicles is

that in the event of loss of communication or propulsion power, a vessel may drift

and crash into whatever may be in the vessel’s direction. In contrast, a vehicle will

stay in the same position.

2.1.4 Current regulations on the docking of autonomous

vessels

Due to the rapid advancement of making land-based vehicles and drones autonom-

ous, the shipping industry for transporting cargo has gained more interest in op-

timizing the way cargo is being transported around the globe. The benefits of

autonomous shipping may be numerous and include lower operational costs, greener
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transport, and increased safety for both crew and the vessel. There is no longer a

question of whether one can make autonomous vessels. The question is now when

one can start making feasible autonomous vessels. However, before autonomous

vessels can become a reality, certain technologies must be developed further before

being implemented safely on vessels. Bureaus Veritas and DNV are two independent

classification agencies that set industry standards to make different industries safe.

The following note from Bureau Veritas gives an indication of what guidelines such

classification agencies believe autonomous vessels must follow [8].

The note divides automation into several degrees. In general, any vessel which is to

be fully autonomous can be divided into:

• A0: Human operated: Automated or manual operations are under human

control. Human decisions and controls all functions.

• A1: Human directed: Decision support: system suggests actions. Humans

make decisions and actions.

• A2: Human delegated: No System invokes functions. Humans must con-

firm decisions. Humans can reject decisions.

• A3: Human supervised: System invokes functions without waiting for

human reaction. System is not expecting confirmation. Humans are always

informed of decisions and actions.

• A4: Full automation: System invokes functions without informing the hu-

man, except in case of emergency. The system is not expecting confirmation.

Humans are informed only in case of emergency.

This thesis does not go further into the various levels of automation but points out

that it is vital to have several solutions that can work together to form a better

output in a docking scenario for an autonomous vessel. Having several solutions is

better than having one single system to tackle different types of sources of failure.

This is especially important if a vessel is to reach level A4: Full automation.

As of for docking and un-docking of vessels, the note from Bureau Veritas says:

“2.2.4 The docking, un-docking, mooring, un-mooring and anchoring operations, as

well as the harbor navigation or port approach and the assistance in distress situ-

ations should be controlled or remotely supervised in case the degree of automation

does not allow a full automation for these operations”.

“2.5.4 When the degree of automation requests supervision during operations in har-

bor (e.g. docking and un-docking) or heavy traffic conditions near shore, land-based
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communication networks should be used to provide a maximum availability and a

minimum latency”.

“2.6.1 The docking and un-docking procedures should be monitored by sensors (e.g

pressure sensors, radar...) to confirm that there are no obstacles for the safe pro-

gress”.

“2.6.2 A device should be available to stop the sequence of docking or un-docking

at any time in the event that the system has not been able to detect a hazardous

situation”.

As of for cargo on autonomous vessels; the note from Bureau Veritas says in general:

• 2.12 Cargo: Cargo should be carefully loaded, stowed, and monitored at all

times and for all operations. The stowage of the cargo should be ensured at

port, since the vessel could have few or means (less or no crew and equipment)

to ensure proper cargo securing at sea.

• 2.9 vessel status and dynamics: Cargo monitoring should be a part of the

vessel status

• 5 Cargo management system: In general, have cargo management system

that overall ensures that the cargo does not compromise the safety of the vessel

or not degrade the environment.

Following the guidelines, a final docking sequence for a fully autonomous vessel will

require a robust system made up of several subsystems working together. As for

other regulations, a final fully-automated vessel would also have to follow the regu-

lations in Norway and internationally, the rules of the road at sea (“Sjøveisreglene”)

[9], the maritime code (“Sjøloven”) [10], the harbour act (“Havne- og farvannslov-

ene”) [11], the international convention of life at sea (SOLAS), and convention on the

International Regulations for Preventing Collisions at Sea (COLREG) [12]. These

regulations cover topics that a final fully autonomous system will follow.

2.1.4.1 Positioning requirements for autonomous vessels

Research by C. Kooij et al. from 2018 explores the question of when autonomous

vessels will arrive and tries to predict the threshold of certain technologies necessary

to make vessels fully autonomous [13]. The study looked at navigation, diverse

propulsion fuels, and the cost of making the cargo handling of vessels fully automatic.

In short, their findings for navigation were that for general navigation at sea, an

accuracy of 10 m was required, but in ports, the absolute accuracy needs to be at
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2.5 m, and for an automatic docking sequence, an absolute accuracy of 0.10 m is

required. These values are only based on GPS accuracy and do not say anything

about IMU, cameras, lidars, proximity sensors, or other types of sensors could be a

part of the solution to better give accurate position data.

Research from Smart, 2013 [14] have shown that a requirement of 0.01 meter in

general horizontal positioning accuracy is needed to keep the integrity in a docking

sequence until the system would have to alert an external operator in an unwanted

event. However, DNV GL [15], states in their guidelines for autonomous and re-

motely operated vessels that vessels must reach an absolute positioning accuracy of

0.1 meter with 95 % probability during the docking phase, confirming C. Kooij et

al. research. It must be mentioned that Bureau Veritas has currently not set any

positioning requirements in their guidelines for autonomous shipping [8].

2.1.5 The Autonomy Engine

Marine autonomous systems that can change their behavior due to unanticipated

events during an operation are called ”autonomous” [16]. As described earlier, for a

marine system to be fully autonomous, it must be capable of detecting various scen-

arios, understanding these, and acting on the data the system has at that particular

time. This implies that the system must have several sensors for sensing different

scenarios and simultaneously analyze the data the system is retrieving and act on

this information. To make autonomous systems safe; redundant solutions must be

developed if one sensor/capability is lost during the operation.
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Figure 2.1: High-level sensor and software system block diagram, with a poten-

tial vision-based navigation approach to fed the navigation system with position

estimates.

Figure 2.1 shows an illustration of a possible layout of an autonomous system with

auto-docking of the vessel. A vision-based approach is also included to feed the

navigation system with position estimates. Here, guidance, navigation, and a control

system with auto-docking are presented. Concepts such as situation awareness, risk

assessment, path planning, sensor fusion, the external operator are also presented

in the layout. A short note on these concepts:

• Situational awareness is crucial for the system to identify dangerous threats

as soon as possible to perform any operation safely. Being aware of the sur-

roundings will make the vessel capable of changing its behavior in relation to

the environment and to notify the remote control in the case of an unwanted

event.

• Risk assessment is to be capable of assessing what risk different situations

possess. Thus, making the safest choice in that situation.

• Path planning, the vehicle capability to plan a route from A to B. There has

been much work done in this field in recent years, developing more intelligent

and more efficient methods for vessels to plan more optimized and robust

trajectories [17]. However, such systems rely on precise position data from

the navigation systems, and in scenarios where GNSS or vital position data

are not available, such methods may no longer function properly. It is critical

to have several solutions from which the path planning methods can derive
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information to address this issue. In addition, in the event of a failure, one

example being the loss of external communication, it is essential to have local

on-board systems that these path planning methods can work with to make

autonomy more robust.

• Sensor fusion is the ability to bring together inputs from multiple sources of

sensors, for instance, radars, cameras, and lidars, to form a single model or an

image of an environment. By fusing data from different sensors, one may get

more insight into the environment or more precise data.

• External operator is personnel ready to take control in situations where the

vehicle is not capable of taking action itself—implying that the vessel must

have a strong communication link to the remote control room.
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2.2 Related work: Demonstrated marine dock-

ings

2.2.1 Rolls-Royce and Wärtsilä

In 2018 Rolls-Royce demonstrated a fully autonomous trip with a large ferry from A

to B, including a fully automated docking sequence without any human intervention[18].

The operation was carried out between Parainen and Nauvo in Finland. At around

the same time, another company called Wärtsilä demonstrated an auto-docking se-

quence of a passenger ferry in the fjords of Norway [19]. These two companies

demonstrated that with the current technology available are fully capable of dock-

ing larger passenger vessels. However, a captain must be on-board ready to take

control if an unpredictable failure happens.

Figure 2.2: The 3. December 2018 Rolls-Royce demonstrates the world first fully

autonomous ferry. Image courtesy to [18].

Another company that has demonstrated automatic docking is Volvo, with the Volvo

Pentas system. This system is developed for smaller vessels and is designed to assist

the boat driver [20] during the docking phase. The system uses sensors onboard

the vessel and on land to assist the boat driver. Here, as with the systems from

Rolls-Royce and Wärtsilä, a captain must be present in case of any failure.
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Figure 2.3: milliAmpere2 in the docking phase. Developed by NTNU as a re-

search project for autonomous system. The overall goal of the project is to develop

intelligent solutions to bring passengers from place a to a place b.

The milliAmpere2 is another vessel currently designed to reach autonomy level A3:

Supervised Current regulations on the docking of autonomous vessels, and later to

reach autonomy level A4. The vessel is currently on the research stage and uses RTK

GNSS fused with an IMU integrated into an INS as the primary navigation source

and near distance sensors to give accurate distance measurements to the floating

dock. When writing this thesis, the lidars, the radar, and the cameras are not used

in the docking sequence. The vessel has four azimuth thrusters, giving the vessel

great maneuverability. In short, the docking sequence for milliAmpere2 can briefly

be described as follows:

1. Approach - (navigation), the milliAmpere2 navigates to the dock with 0.50

- 2.00 m distance from the dock, with ca. 0.01 - 1.00 m precision (data not

confirmed). Depending on the accuracy of the GNSS system.

2. Docking - (sensing the dock), uses near field sensors to aid the navigation

system to precisely estimate the distance to the floating dock.

3. Mooring - (pushing the vessel against the dock), the docking sequence

initiates once the near field sensors sense the dock. The milliAmpere2 moves

slowly to the dock and makes a small controlled ”crash” into the dock while

using propulsion power to keep the vessel at position.

4. Un-docking - (rotating the thrusters in the opposite direction), once

the loading/offloading of the passengers are done. Then the un-docking se-

quence initializes, which rotates the thrusters before the thrusters push the

vessel to the other side of the channel.
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This approach to dock the vessel is considered the simplest method to moor a vessel

for a shorter time automatically. The method avoids the problem of working with

mechanisms that latches and secures the vessel in place, a process that may require

a higher level of positioning accuracy. Another advantage of the method is that it

allows the passengers to board and depart quickly, making the transit time shorter

for the passengers. Development of latching mechanisms to secure the milliAmpere2

is under development to lock the vessel to a docking station in an attempt to allow

the vessel to be shut down and e.g., charge the onboard batteries for more extended

periods without any human intervention.

2.2.2 Vision-based docking

In 2019, Ø. Volden researched whether vision-based systems could be utilized to

successfully dock a small unmanned vessel. His thesis explored different ”vision-

based” techniques and whether these could be used to estimate relative positions

between a dock and a vessel. In his research, he used lidars, stereo-cameras, and

mono-cameras in order to recognize fiducial markers [16]. One of his approaches

was to use deep learning techniques to recognize fiducial markers on land, acting

as markers intended to be identified and classified, which the vessel then could

use to orient itself with. The main contribution of this research was to develop

systems/techniques to position the vessel in events of loss of external communication,

making the navigational system more redundant and more robust, thus making the

vessel fully self-supported in a docking sequence.

Figure 2.4: Illustration of Ø. Volden experiment with a Otter USV and fiducial

markers on the pier. Image courtesy to Ø. Volden [16].
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The research results showed that vision-based systems could be utilized to get posi-

tion estimates to align the vessel. The overall results of the experiments showed that

lidars, mono- and stereo-cameras could be utilized to get position estimates relative

to a pier/dock. However, localizing a dock with a lidar can be quite computationally

heavy. It may also be challenging to extract the needed information from the lidar

to localize or use the information to precisely get accurate positional estimates of

the dock. However, a significant benefit of using lidar is that one may get precise

positioning information about the surroundings, the shape of possible obstacles, and

the distance in varying weather conditions. The thesis compared mono- and stereo-

camera capabilities, and the main findings were that the mono-camera delivered

almost equally the same performance as the stereo-camera.

2.2.3 Roboat

Roboat is another company that is developing smaller autonomous vessels. Their

primary focus is developing urban solutions to transport cargo and passengers and

is researching on new possible usages of urban autonomy[21].

Figure 2.5: Roboat docking platform using fiducial markers. Image courtesy to

[21].

In the figure 2.5 one can see the Roboat using fiducial markers to create a local

coordinate system on the docking. The Roboat uses this system to locally localize

the docking. This method may give the vessel capability to move to the same

position relative to the docking. As a part of the research prior to Roboat, the team

also researched latching mechanisms to latch several vessels together and develop

methods to latch the vessel to a dock. The purpose is to develop autonomous

systems in the Amsterdam canals. Figure 2.6, shows a fiducial marker, specifically,
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AprilTags, in use to create a local reference coordinate system on each vessel. These

tags offer 6-DoF position estimates between the vessels, which comes in handy when

the vessels can have motion in around six axes. Moreover, Mateos et al. [22],

mentions that by using fiducial markers as local reference systems, one can minimize

the impacts on canal walls, additionally one does not need any power supplies to

power the markers. However, localizing such markers in the dark can thus be a

challenge for a camera system.

Figure 2.6: Roboat latching mechanism using AprilTags to give each USV orient-

ation estimate about each other. Roboat uses the same approach as a part of the

solution to latch to a dock[22].
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2.3 Navigation and communication

Navigation and communication are essential technologies for making unmanned ves-

sels feasible. Navigation is essential for a USVs ability to determine its location

within an environment and determine its path to a final destination without any

human intervention. There are different types of technologies the USV can use to

navigate, but USVs mainly use GNSS signals fused with an onboard IMU integrated

into an INS to position themselves and navigate from A to B. Therefore, this thesis

will briefly introduce some critical navigation and communication technologies.

2.3.1 Global Navigation Satellite System (GNSS)

The Global Navigation Satellite System (GNSS) is a system developed to provide

geolocation and time information to a GNSS receiver anywhere on or near the Earth.

Global Positioning System, GPS, is, for instance, a part of the GNSS system. For a

GNSS system to fully work, there must be an unobstructed line of sight to four or

more GNSS satellites or any base stations. Obstacles such as buildings, mountains,

or GNSS jamming devices can block or weaken the GNSS signal. Onboard marine

vehicles, there is also a potential for internal interference with onboard equipment

[23]. These sources of interference can result in no or poor geological position accur-

acy. To increase the accuracy and reliability of GNSS signals, one can set up a base

station or several base stations with a known position. This method is called real-

time kinematic positioning (RTK) positioning, which under certain circumstances

can obtain centimeter precision [24].

2.3.1.1 RTK GPS (Real Time Kinetic Global Positioning System

Figure 2.7: Concept illustration of how RTK GPS works. Illustration courtesy to

[25].
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RTK GPS provides higher positioning accuracy for systems that demands higher

position precision. For safe operations, utilizing RTK GPS for autonomous vessel

can be seen as vital part of the USV navigation system. With one or several RTK

ground station, an information flow through the Ultra High Frequency (UHF) band

exist. RTK GPS are designed to give centimeter precision when it is correctly setup.

Figure 2.7 gives an brief illustration of the setup. RTK GPS was later used in the

experiments carried out in this thesis as a ”ground-truth” to compare the vision-

based position estimates to global position estimates.

2.3.1.2 Other systems

Ultra Short Baseline positioning (USBL) and Long Baseline positioning (LBL) are

examples of two other systems, primarily used in underwater positioning systems

for Remotely Operated Vehicles (ROVs). With a USBL system, the vessel sends

out an acoustic impulse (ping) received by an ROV transponder. This system is

capable of giving distance and bearing position estimates. An LBL system is based

on having beacons on the seabed, and the ROV position is triangulated based on

these beacons.

2.3.2 The North-East-Down (NED) coordinate system

GPS coordinates describe positions on Earth. These coordinates can be expressed

in several ways. In order to compare estimated camera positions relative to GPS

positions, this thesis uses the North-East-Down (NED) coordinate system. This is

because this coordinate system is defined as a local tangent plane to the Earth’s

surface, relative to a specific geographical position, defined by latitude, longitude,

and altitude. Furthermore, the coordinate system is defined with the first dimension

pointing North, the second pointing East, and the third axis pointing Down towards

the center of Earth. This thesis will evaluate the results using this coordinate system

to precisely compare the results between the camera detections and the achieved

GPS positions. The calculations converting from the global system to the local

system, NED, are done with the Python module pymap3d.

2.3.3 Inertial Measurement Unit (IMU)

IMU is a device made up of a three-axis gyroscope, three-axis accelerometer, and,

sometimes, three-axis magnetometers, as well as a one-axis barometric pressure

(altitude) sensor [6], used to measure forces, angular rate, and orientation of a
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system. These devices usually deliver a precise estimate about a system’s orientation

and play a central role in aiding a navigation system for manned- or unmanned

vehicles to provide heading and positioning information. However, a major challenge

with IMUs is that they can quickly lose accurate position data. IMUs typically suffer

from accumulated error, also called “drifting.” This comes from the fact that the

IMU’s positioning data continue integrating the acceleration estimations to calculate

velocity and position. Due to this integration, one gets a measurement error that

is accumulated over time. This so-called drifting is an ever-increasing difference

between where the system thinks it is located and the actual location.

As for autonomous vessels’ ability to navigate from one target to another, one of

the most important systems on-board is the GPS fused with an IMU. The benefit

of having a GPS fused with an IMU, which gives global and time information, is

that the combination of the two systems often can give an exact position estimate.

To avoid or to keep the accumulated error in the IMU at the lowest; the IMU is

corrected by the GPS position estimates. A significant weakness of this system is its

dependency on external communication. If the GPS signal is blocked or obstructed,

the vessel can become fully inoperative. In a docking situation, a loss of external

communication could impose a significant threat as the vessel would not be able to

position itself.

2.3.4 Visual and odometry navigation

Odometry uses motion sensors to determine the vessel’s position over time and loc-

alize itself within the environment. This allows the vessel to orientate itself within

the environment from its perspective. Such sensors can, for instance, be mono- or

stereo-cameras, which gives a position estimate about its surroundings. A great

benefit of using visual aid and odometry in robotic navigation is that cameras can

generally give more information about their surroundings than what an IMU or a

GPS can. In addition, cameras are less expensive than standard navigation sys-

tems, and utilizing machine vision to navigate USVs may be an intelligent method

to achieve safer autonomous operations. A camera can, for instance, calculate dis-

tances and determine what objects are in the field of view to give essential data

to a navigation system. However, vision-based navigation systems can easily be

obstructed or interfered with, and therefore it has their weaknesses.
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Figure 2.8: Concept illustration of a Otter USV in a docking scenario with fiducial

markers, which can give 6-DoF position estimates of the dock to the USV. Here,

the Otter USV can use marker a) to get precise position estimates and necessary

information for the USV to preciserly align itself with the dock. While marker b)

can be used by a robot arm to put cargo on the dock no matter if the dock is a

floating/or a fixed dock.

Figure 2.10 illustrates a concept of using fiducial markers to create a local coordinate

system on the docking. These markers can create a 6-DoF local coordinate system

on each marker, these reference systems can also be used to give the USV estimates

about its orientation in 6-Dof relative to the marker. Which may make it more

convenient for underactuated and fully actuated vessels to orient themself to a pier

or a docking station. Marker a) can, for instance, be used to locally create a reference

system to feed the USV with local positions of the dock, while marker b) can be

used for instance by a onboard robot arm to put cargo on dock safely.

2.3.4.1 SLAM

SLAM stands for simultaneous localization and mapping and is a computational sys-

tem for constructing and updating a map of an unknown environment - while also

keeping track of a robot’s position in a map. For several years algorithms and meth-

odologies have been developed to optimize this system. SLAM uses several different

sensors to construct a map and orientate a robot within the map. Consequently, if

one sensor fails, the system should still keep functioning.
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Figure 2.9: Illustration of a point cloud of the Safe Autonomous ships (SFI)

Autoship office, created with the ZED2i camera using its built-in IMU and stereo-

camera capability.

Figure 2.9 shows a visual SLAM map created with the ZED2i camera and the ZED

API with ROS. The map is created by using the ZED2i built-in IMU and its stereo

vision capability. However, it must be specified that this SLAM algorithm heavily

depends on the camera built-in IMU and uses odometry to build a point cloud

that uses ”loop closure” to correct the IMU. This means the underlying algorithms

recognize features from the captured images and correct the camera’s built-in IMU

position to avoid drift. With an accurate camera position, it is possible to create

an accurate 3D map of the surroundings seen by the camera. The loop closure is

performed using depth and visual information, and relays on the environment to be

mapped is colorful. Such methods are considered computatively costly.
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2.4 Sensors

In its broadest definition, a sensor is a device that can detect changes in its envir-

onment and send information to other electronic devices. This section will briefly

introduce relevant technologies that could be utilized in the docking phase of USVs.

2.4.1 Distance Sensors

Sensors that can sense the distance of an object without being in contact [26] is

often associated with being called distance sensors. Such sensors can be inductive,

capacitive, ultrasonic, laser, or IR-based. The advantage of such sensors is that

they can robustly calculate the distance to particular objects with relatively high

accuracy, in varying conditions, and are quite cheap. On the other hand, providing

more information about the surroundings may be limited to such sensors. For robotic

applications, such sensors are usually necessary for specific tasks.

2.4.2 Lidar

Compared to Electro-Optical and IR cameras, a lidar is not passive and has similar

features as certain types of distance sensors in that Lidar is laser-based and emits a

pulse reflected by the surroundings. The time from the pulse is sent to its return is

used to create a map of the surroundings. Some lidars spin a beam in a circle, which

emits a pulse at regular intervals, while others can emit a pulse within a smaller

range. Lidars for building maps of their surroundings are precise because of how

a lidar works. Using filtering methods, materials and unwanted noise, such as rain

and snow, can be filtered away with Lidar technology.
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Figure 2.10: Point cloud image of a docking scenario produced by a lidar. A pier

and three fiducial markers can be seen in the image. Image courtesy to [16].

A considerable disadvantage with lidar technology is that the technology is currently

considered costly and computatively demanding. Estimating orientation for robots,

e.g., 6-DoF, from Lidar data may be challenging. Lidars are excellent at giving pre-

cise position estimates about their surroundings, even in more demanding weather

conditions, but are currently limited to giving orientation estimates to a robot. Re-

cent applications of Lidars are usually for collision avoidance, recognizing particular

objects, and distance measurement between the lidar and the object along with a

few directions.

2.4.3 Radar

Radars are designed to emit high-intensity radio waves in pulses spinning in a beam

around 360 degrees. These radio waves can travel long distances until they reach an

object that reflects the radar signal. This method gives a precise position estimate

and an estimate of the object’s shape. Radars are of great use in many different

fields, including the naval and aviation field and meteorology, where it is being used

for weather forecasting. Compared to lidars, a radar sends a pulse with a longer

wavelength, resulting in a greater range and the ability to penetrate heavier objects,

e.g., snow, birds, fog, which can be filtered away.
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2.4.4 Infrared camera

Infrared cameras (IR), also called thermal cameras, measure heat energy in the

sensors’ field of view. This heat energy is defined as light waves with a wavelength

of 1000 - 1400 nm, while conventional cameras can detect lights in the 400 - 700

nm spectrum. This difference allows IR cameras to distinguish objects such as

living creatures because they emit(s) heat to their surroundings. An important

note about IR cameras is the way they measure resolution. Optical cameras count

pixels to measure resolution, while IR cameras usually follow a Johnson criterion by

estimating the number of line pairs across a target [27]. In practice, this criterion,

combined with the fact that IR cameras measure longer wavelengths, makes thermal

cameras better at detecting specific targets from further distances than conventional

optical cameras.

2.4.5 Electro-Optical Camera

Electro-Optical (EO) cameras are passive sensors that capture visual images of

scenes in front of them and work quite similarly to how IR cameras work. At a

basic level, electro-optical cameras measure the reflected light emitted from a light

source in the 400 - 700 nm spectrum (lenses and filters can affect this range). The

images are then built up by zeros and ones in an array containing information about

the colors captured and where they are present. This array of information makes

it possible to extract, recognize, and estimate distances to the objects captured by

the camera. There are several methods for recognizing features in images, such as

the classical techniques that sort information based on colors and then recognize the

geometrical shapes, to learning-based approaches (i.e., deep neural networks).
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Figure 2.11: Object detections with position estimates with traditionally

computer-vision techniques. Used for an small soccer robot to navigate and shoot

a ball into a goal. Detection of ball, goal, obstacles and wall is based on the each

objects colour. The system were run on a raspberry pi 2. The navigation between

the obstacles where done by applying a potential field telling the soccer robot where

it potential were a obstacle. Developed by the author at the Queensland University

of Technology during his exchange in 2018.

Cameras can be a significant source of information for an autonomous cargo vessel.

However, utilizing all the information a camera can capture might be difficult. Much

research has been done on this topic, and more research will be carried out in the

future.

Despite the benefits cameras possesses, the main drawback that affects the per-

formance of a conventional camera is the amount of light in the scene which can

be captured. In the darkness, there is less light which the camera sensor can cap-

ture, and therefore less information about the scene will be captured. This results

in lower detailed images with less information that can be extracted. There is no

information to be retrieved in absolute darkness, and a conventional camera may

become useless. The information particularly influences the Vision-based algorithms

a captured image possesses to extract any context. Changes in the light, shadows,

motion blur, texture, rain, snow, and fog are environmental conditions that influence

a camera’s performance. Camera-based algorithms will therefore have problems in

such situations.
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2.5 Pinhole camera geometry theory

The pinhole camera model is a mathematical simplification of the relationship

between 2D image coordinates and 3D coordinates, and its projection onto the

image plan of an ideal pinhole camera.

Figure 2.12: The left part illustrates the pinhole camera model, while the right

part maps points to the image point. Illustration courtesy to [28].

In figure 2.12, a 3D point with the coordinate X = (X, Y, Z)T is mapped to an

image point where a line join the point x to the center of where the projection meets

the image plane. Due to similar triangles, the point (X, Y, Z)T can be mapped to

the point fX/Z, fY/Z, f)T on the image plan. As the resulting image coordinate

represents a constant distance between the camera and center and the image plane,

one can therefore ignore this constant that gives the following relationship:

X = (X, Y, Z)T → (fX/Z, fY/Z)T (2.1)

which describes the relationship from 3D world coordinates to 2D image coordinates.

The equation 2.2 can further be extended with homogeneous coordinates and be

written as the matrix:

XY
Z

→
fXfY
Z

 =

f 0 0 0

0 f 0 0

0 0 1 0



X

Y

Z

1

 = diag(f, f, 1)[I3x303x1]


X

Y

Z

0

 (2.2)

In equation 2.2, the diag(f, f, 1) is the diagonal matrix, I3x3 is the identity matrix

and 03×1 is a 3× 1 zero vector. An element X can now be introduced as the world

point, given by the coordinate vector (X, Y, Z, 1)T and Xc for a corresponding point

in the image plane represented by a homogeneous coordinate 3-vector. Further, the

matrix P is being introduced as the homogeneous 3 × 4 camera projection matrix.

Equation 2.2 can compactly be written as,

Xc = PX (2.3)
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where

P = diag(f, f, 1)[I3x303x1] (2.4)

The transformation done in equation 2.2 assumes that the origin of the image plane

coincides with a principal point, meaning the point where the principal axis intersects

an image plane. In practice this results in,

(X, Y, Z, 1)T → (fX/Z + px, fY/Z + py)
T (2.5)

where (px, py)
T are the coordinates of the principal point. With a principal offset,

this equation can be written in homogeneous coordinates as,

fX + Zpx

fY + Zpy

Z

 =

f 0 px 0

0 f py 0

0 0 1 0



X

Y

Z

1

 = k[I3x303x1]


X

Y

Z

0

 (2.6)

where

K =

f 0 px

0 f py

0 0 1

 (2.7)

is defined as the camera matrix. The last step involves a change of coordinates,

from meters to pixels, which can be performed with the pixel density of the imaging

sensor. The number of pixels per unit distance in image coordinates along horizontal

and vertical directions can be defined as mx = nx/sx and my = ny/sy. nx, ny, sx

and sy, are in this case representing the number of pixels in the imaging sensor and

the physical size of the sensors in meters, respectively. The camera matrix is further

used to calculate the orientation, pose, of fiducial markers and map the fiducial

markers into global 3D coordinates.

2.6 The Kalman filter

Kalman filtering is a filtering method that provides estimates of some unknown

variables measured and observed over time. The filter is named after Rudolf E.

Kalman, who was one of the primary developers of the theory. Some of the first filter

equations were formulated and published during the 1960s. The method is widely

used in numerous applications, but particular aircraft, spacecraft, and ships are

positioned dynamically. For example, filtering and fusing GPS signals and IMU data

to obtain a more precise position estimate. This thesis will go briefly into the Kalman
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filtering algorithm, formulated by Y. Kim and H. Bang [29] and implemented with

the pykalman package [30], briefly based on the implementation from [31]. The

Kalman filter can be modeled with the following equation 2.9:

xk = Fxx−1 + Buk−1 + wk−1 (2.8)

where F is the state transition matrix applied to the previous state vector xk−1, B is

the control input matrix applied to the control vector uk−1, and wk−1 is the process

noise vector assumed to be zero-mean Gaussian with the coveriance matrix Q, i.e

wk−1 ∼ η(0, Q). The process model is paired with the measurement model that

describes the relationship between the state and the measurements at the current

time step k as:

zk = Hxk + νk (2.9)

where zk is the measurement vector, H is the measurement matrix, and νk is the

measurement noise vector assumed to be zero-mean Gaussian with the coveriance

matrix R, i.e., νk ∼ η(0, R).

The purpose of the Kalman filter is to provide a xk at time given an initial estimate

of x0, the series of measurement, z1, z2, . . . , zk, and the information of the system

described by F, B, H, Q, and R.

The Kalman filter algorithm can be expressed of two stages: Prediction and update.

The hat operator,ˆ, means an estimate of a variable, and the superscripts −and +

denote predicted (prior) and the updated (posterior) estimates, appropriately. The

prediction state estimate is defined as:

x̂−k = F x̂+
k−1 +Buk−1 (2.10)

and its predicted error covariance,

P−k = FP+
k−1F

T +Q (2.11)

The update stages are then defined as,

ỹk = zk −Hx̂−k (2.12)

Kk = P−k H
T (R +HP−k H

T )−1 (2.13)

x̃+
k = x̃−k +Kkỹ (2.14)

P+
k = (I −KkH)P−k (2.15)
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Equations 2.12, 2.13, 2.14 and 2.15 are defined as the measurement residual, Kal-

man gain, updated state estimate and the updated error covariance, respectively.

The predicted state estimate is evolved from the updated previous state estimate.

In the update stage, the measurement residual ỹk is computed first. The measure-

ment residual is the difference between the true measurement, zk, and the estimated

measurement Hx̂−k . The filter estimates the current measurement by multiplying

the predicted state by the measurement matrix. ỹk is later then multiplied by the

Kalman gain, Kk, to provide the correction Kkỹk to the predicted estimate x̂−k .

Once the updated state estimate has been calculated, then the error covariance, p+k ,

is calculated to be used in the next time step.

To properly function, the Kalman filter needs an initial value, x̂+
0 , and an initial

guess of the error covariance matrix, P+
0 . Lastly, the Kalman filter implements the

prediction and the update stages for each time step, k = 1, 2, 3, ..., after initializing

the estimates. Importantly, the Kalman filter is derived on the assumption that the

process and measurement models are linear and be expressed with the matrices F,

B, and H, whereas the process and measurement noise are additive Gaussian.
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2.7 Fiducial markers

2.7.1 Why use fiducial markers?

To use vision-based detection systems to locate a dock, one must have distinguishable

features on the dock that the vision system can recognize. Such features can be

specific markers that distinguish themselves from the environment, making it easier

for the vision system to identify and estimate the orientation. There may be many

visual features a vision-based navigation system could detect and try to estimate its

position from. Briefly, these can be summarized as:

• Natural landmarks, such as already installed marine lights or features on the

specific dock, which a vision system can be trained or programmed to detect.

The challenge here is that features can come in any shape, and there is no

concise way natural markers can be described for a vision system. Therefore,

making it hard to create a robust algorithm that could be utilized.

• Fiducial markers is another option, which is a standardized marker com-

pared to natural landmarks, developed for robotic applications to give robots

6 DoF orientation estimate to their surroundings. Such markers are pre-defined

with a specific shape, have an internal code, and developed to be easily detec-

ted by a camera.

Fiducial markers are designed for robotic vision applications and provide 6-DoF

orientation estimates. Additionally, fiducial markers may also be a cheap option to

realize autonomous cargo transport to connect remote places because making a local

reference system with fiducial markers may make it feasible to dock smaller USVs

on floating docking stations. Consequently, fiducial markers were chosen to explore

how well such markers perform in marine environments. Furthermore, utilizing

fiducial markers to get 6 DoF position estimates for a USV may be more efficient to

precisely control a USV to a dock. It may also open up the possibility of designing

mechanisms to lock the vessel or other complex systems to interact with the USV.

2.7.2 What is a fiducial marker?

A fiducial marker is an object meant to be placed within the field of view of a

camera, designed for robotic applications, that is computationally effective and can

provide position and orientation data to a robot. A fiducial marker is composed of

an external black border and an inner region that encodes a binary pattern. The
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inner region is unique and identifies each marker, consisting of more or fewer bits.

The figure 2.13 shows a brief overview of different types of fiducial markers developed

in recent years.

Figure 2.13: Illustration of different types of fiducial markers families, illustration

from [32].

Fiducial markers have been developed for different purposes and can contain a cer-

tain amount of information, dependent on the type and size of the markers. The

figure 2.13 shows a brief overview of different types of fiducial markers developed in

recent years. Depending on the type of family, some fiducial marker families, such

as the AprilTag3 family, Standard52h13, can have up to 48 714 unique marker IDs

[33]. An AprilTag marker, as shown in figure 2.13, is a specialized fiducial marker

developed by Olson [34], renowned for its detection speed, robustness, and extremely

low false positive detection rates. Wang and Olsen improved the algorithm to im-

prove computational efficiency further and to enable detection of smaller tags [35].

The AprilTag fiducial markers can, for instance, be seen in landing zones in video

content from Amazon [36], Google delivery drones [37] and for Boston Dynamics

warehouse robots [38], where these markers aid the robots with accurate position

estimates. A fiducial marker is an marker meant to be placed within the field of view

of a camera, designed for robotic applications, that is computationally effective and

can provide position and orientation data to a robot. A fiducial marker is composed

of an external black border and an inner region that encodes a binary pattern. The

inner region is unique and identifies each marker, consisting of more or fewer bits.

2.7.3 The detection pipeline

As this thesis mainly uses AprilTag markers, the thesis gives, therefore, a brief

introduction to the AprilTag detection algorithm developed from [35]. The detection

algorithm of AprilTag markers attempts to detect and find all possible AprilTags
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markers in a grayscale image. Firstly, the image is binarized to grayscale using an

adaptive thresholding algorithm. Then all the connected black and white regions

are segmented into connected components. Then any quads are fit to each cluster

border pixel. Finally, poor quad fits and undecodable tags are discarded, and only

a valid output is allowed and returned.

Then markers are identified by projecting the image into 2D homogeneous points

from the AprilTag coordinate system, called the homography matrix, and is then

estimated by the Direct Linear Transform (DLT) algorithm formulated by [28]. Then

the internal code is identified by dividing the marker into a 6 × 6 grid or another

size, dependent on the specific marker to be detected, of which the internal cells

contain the ID information.

Figure 2.14: The illustration shows the different steps of the AprilTag detector.

The input image (a) is binarized using an adaptive thresholding algorithm, (b) then

the connected black and white regions are segmented into connected components

(c). Next, component boundaries are segmented using a novel algorithm, which

efficiently clusters pixels that border the same black and white region. Lastly, the

quads are fit to each cluster border pixels (d), bad quad fits, and undecodable tags

are discarded, and only valid detections are returned (e). Illustration from [35].

Each valid detection contains the marker id number, which is the marker identific-

ation number, centre, which is the marker center, corners, which is a list of pixel

coordinates defined in the following order: left bottom, right bottom, right bottom,

right top and left top, Rvec which is the 3D rotations and Tvec which is the 3D

translations.
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2.7.4 Pose estimation of AprilTag markers

Estimating the orientation, specifically, the marker pose, is being done with a

method called Perspective-n-Point (PnP), which uses four points (e.g., four corners)

that lays on planar surface [39]. The AprilTag algorithm in this thesis is using

the cv2.solvePnp() algorithm, based on the Levenberg-Marquardt optimization[40],

which inputs object points, image points, the camera matrix and the camera distor-

tion matrix to output Rvec and Tvec of the marker. A challenge of this method is

that it is only using four coplanar points, which is subject to a ambiguity problem,

see figure 2.15.

Figure 2.15: Illustration of the ambiguity problem. The same marker can be

projected into two different locations.

The ambiguity problem comes from the fact that only four coplanar points (corners

of the marker) are used to calculate the marker’s 6-DoF orientation and pose. The

output of this problem can be seen as that the estimated orientation is being flipped

around one or several axes. This causes that either the marker is flipped in respect to

the camera or the camera is flipped in respect to the marker. Using several markers,

which combined gives a position, may solve this problem, developed by [23] [41], and

[42], as a method to precisely land drones with great accuracy. This method uses

several pre-defined markers with its location to each other in a bundle configuration

to output precise position estimates of the drone relative to the marker. Developed

for Unmanned Aerial vehicles (UAVs) to create a local reference point to enable

more precise landing.
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2.7.5 The link between a vision-system to global position

systems

Figure 2.16: Illustration of the link between AprilTag to NED coordinates. Here,

three fiducial markers are set up on the pier. Each marker creates a local reference

system seen from the Otter perspective. A GPS reference point must be set in the

center of the fiducial marker origin to link GNSS positions to fiducial markers.

The figure 2.16 visualizes the link between the camera system to NED coordinates.

Here the GNSS origin is set in the marker origin, making it possible to compare the

GNSS positions against a vision-based navigation system. The Apriltag algorithm

computes a 3 × 3 homography matrix that project 2D points in homogeneous co-

ordinates from the tag’s coordinate system using a Direct Linear Transform (DLT)

algorithm [28]. Computing the tag’s position and orientation requires additional

information, such as the camera focal length and physical size of the tag. The 3× 3

homography matrix computed from the DLT algorithm can be written as a product

of the 3× 4 camera projection matrix P, which is assumed to be known. The joint

rotation matrix [R—t], 4× 3 is called a matrix of extrinsic parameters and is used

to describe the camera motion around a static scene, or vica versa, the rigid motion

of an object in front of a camera. The camera global orientation is then calculated
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with the following equations from [43];

sm′ = K[R|t]M ′ (2.16)

Fully extended, equation 2.16 can be written:

s

uxvy
1

 =

fx 0 cx

0 fy cy

0 0 1


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz



X

Y

Z

1

 . (2.17)

Here, s is the marker pixel coordinates on the camera sensor, K is the camera matrix

as defined with equation 2.7, X, Y and Z are the locale coordinates of the marker

in the camera frame, and R|t is the rotation translation matrix. Finding the global

camera position of the camera is found by calculating the inverse of the R|t matrix,xy
z

 = [R|t−1]

XY
Z

 . (2.18)

The absolute distance between camera and marker can therefore be found with the

following equation,

|ddistance2marker| =
√
x2 + y2 + z2. (2.19)

The marker’s pitch, yaw, and roll angles can be found by only focusing on the 3× 3

rotation elements of the R—t matrix, also denoted as the rotation matrix.

φx = arctan2(r32, r33) (2.20)

φy = arctan2(−r31,
√
r232 + r233) (2.21)

φz = arctan2(r21, r11) (2.22)

Using φx,φy and φz further one finds the yaw, pitch and roll angles represented in

radians:

yaw =

cosφx − sinφx 0

sinφx cosφx 0

0 0 1

 (2.23)

pitch =

 cosφy 0 sinφy

0 1 0

− sinφy 0 cosφy

 (2.24)

roll =

1 0 0

0 cosφz − sinφz

0 sinφz cosφz

 (2.25)
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Design and implementation

This section briefly describes the methodology used in this thesis, an overview of

the hardware and the software architecture of the Otter USV, the development of

the vision-system and the experiment setup.

3.1 Methodology: Rapid prototyping

Figure 3.1: Stages of rapid prototyping.

Rapid prototyping is an agile

strategy used throughout the

product development process

and was used in this thesis

to develop the camera system.

The method allows to test tech-

nologies to build an deeper un-

derstanding of certain technolo-

gies. The methodology is based

on multiple iterations generated

during a short period based on

feedback and analysis. In addi-

tion, the process is a way to validate the hypothesis that a product will solve the

problem it is intended to solve. More on this can be found in [44].

The ”rapid” part comes from the speed at which the prototypes are produced, how

quickly feedback is gathered and synthesized, and how fast iterations can go through

the same process. For this thesis, this has meant testing ideas and algorithms to

gather a deeper insight to develop an solution that can solve a particular problem.
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3.2 Hardware

This section describes the primary hardware used in this project.

3.2.1 The Otter USV

The Otter is a small underactuated Unmanned Surface Vehicle (USV) currently

used as a test platform in various experiments at NTNU. The vehicle is forth while

set up with two Torqeedo thrusters, four Torqeedo batteries, an Ouster OS2 lidar,

two GNSS-antennas, and a ZED2i camera. Figure 3.2 shows the Otter USV and the

setup of the experiment carried out in this thesis.

Figure 3.2: Brief overview of the Otter setup and a RTK base station on the quay.

3.2.2 Illuminated AprilTag markers

The motivation behind illuminated markers as seen in figure 3.3 was to create mark-

ers that could be utilized in absolute darkness and/or in more challenging weather

conditions. The figure shows the produced markers in the TrollLab workshop. The

backlight was created by some roof light panels from the workshop. A hand con-

troller could easily change the light brightness and light temperature. The markers

internal code were laser cut in fins and then painted black. Figure 3.3, d) shows

the marker’s code, c) is the marker without any background light, while b) is with

background light on, and a) is showing the final marker illuminating in darkness.

The final marker was tested indoors at TrollLabs, as seen in figure 3.4 to test if
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the fiducial marker could be detected and decoded. The full size of the markers

where 0.5 m × 0.5 m, while the distance between the corners of the markers was

0.412 m×0.412 m. The chosen marker size made it possible to compare the camera

system performance to other results achieved in the literature, e.g., [45].

Figure 3.3: Production of the prototype illuminated markers.

Figure 3.4: In-door test of one illuminated marker with the aruco-detection al-

gorithm at TrollLabs. Image captured with the ZED2i camera in 2202 x 1242 pixel

resolution. A local reference point can be seen on the marker. Here, the camera

system was not adjust to be used on the Otter USV. Therefore colors are included

in the image.
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3.2.3 The ZED2i camera

The ZED2i camera was chosen as it could record images in 2K (2208×1242) resolu-

tion, was IP66 certified, had polarized lenses, and had an easy-to-integrate Applica-

tion Programming Interface (API), making it easy to communicate with the camera.

Furthermore, the ZED2i camera also came with several built-in sensors, such as an

IMU, barometer, and magnetometer. This made it easier to test and build applic-

ations as one had easy access to all its sensors through the Stereolabs ZED API.

Another benefit of the camera is that the camera is widely used in different open-

source communities, which means that there is information available on the internet

on how to implement features or debug occurring errors. Lastly, the ZED2i camera

is precisely pre-factory-calibrated, so one does not need to re-calibrate the camera

to get the camera matrix. Equation 3.1 shows the zed2i camera matrix used in this

thesis,

K =

fx 0 cx

0 fy cy

0 0 1

 =

1069.38 0 1103.6696

0 1069.38 664.69

0 0 1

 . (3.1)

Figure 3.5: The ZED2i camera mounted on the Otter USV.

3.2.4 The Otter USV hardware set-up

The GNSS antennas mounted on the Otter were two GPS-1000 GNSS survey anten-

nas mounted on the bow and on the stern. Both were connected to their own Ublox

F9P-ZED GNSS receiver. The stern receiver was configured as a ”moving base,”

sending RTCM (Radio Technical Commission for Maritime Services) corrections to

the bow, which is set up in a ”rover” configuration. This setup makes the bow

receiver capable of precisely estimating the USV heading.
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The Otter USV was also equipped with an ADIS16490 IMU, currently only used

to log acceleration and angular rate and not fused with the GNSS system to aid

the positioning system. Both GNSS receivers and the IMU is connected through a

SentiBoard to ensure precise timing. However, the Otter USV is equipped with an

SBG Ellipse2-D, INS (Inertial Navigation System), which is being fed with GNSS

signals from the Ublox antennas. The GPS signals and the IMU positions are fused,

and Kalman filtered in order to get precise position estimates. The SBG is interfaced

with ROS through the SBG ROS Driver. The data from the SBG is also sent to a

Unified Navigation Environment (DUNE), software, and for logging through a ROS

IMC bridge. More information about the Otter setup can be found in [46].

3.3 Software

This section describes the primary software used in this project.

3.3.1 Robot Operating System (ROS)

The Robot Operating System, also called ROS, is an open-source collection of soft-

ware, modules, libraries, and tools used in robotic systems [47]. The software is

built to be modular in terms of nodes. Where each different node is publishing data

(sensors, etc.) at different frequencies and other nodes are listening. This software

was explicitly used for logging data and visualizing the data recorded on the Otter

USV. All data was logged in Rosbags, which is a format that can contain data from

all sensors from the Otter. However, to precisely analyze the logged data, addi-

tional software from StereoLabs, ZED API [48] that is using CUDA version 11.0

from Nvidia [49] with self-developed scripts, had to be utilized.

3.3.2 Choice of programming language

To be able to iterate quickly, the Python programming language was selected.

Mainly because it is considered an easy language to understand and has excellent

support, with a significant binding to languages like C in case of speed bottlenecks.

In addition to this, it can be written to work with many varying platforms, such as,

e.g., ROS, StereoLabs API. All code was written in Ubuntu version 18 as Ubuntu

is a modern, open-source platform based on the Linux kernel and supports many

different core technologies [50].
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3.4 Development

This section briefly shows the development, testing, and progression of the develop-

ment of the algorithms used to develop the vision-based navigation system.

Figure 3.6: A simple timeline of the development and the work in this thesis.

3.4.1 Stage 1: Detect markers

Figure 3.7: Detection of three fiducial markers with a locale coordinate system on

each. Here the Aruco detection algorithm and library in use.

The first stage was to develop code to detect fiducial markers. Figure 3.7 shows

three fiducial markers that are detected in a image. The orientation of each is then

calculated and used to draw the marker respective reference system on each. Each
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marker has a local coordinate system, which can be seen with the red, green, and

blue lines pointing in x-, y- and z-direction, respectively.
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3.4.2 Stage 2: Extract position and orientation information

Figure 3.8: Detection of a 10cm× 10cm aruco marker from a distance of 6.30 m.

Calculation of the camera orientation to the marker is also displayed in the image

(image screenshot by the computer screen).

The next stage was to extract the orientation estimates of the marker locale co-

ordinate system and then calculate the camera’s orientation relative to the marker.

Figure 3.8 shows the orientation of the camera relative to the camera. This inform-

ation was displayed on the screen as seen in the figure 3.8, here the distance to the

marker and the marker position on the camera is estimated. Different equations and

methods are here being tested to validate the progression.
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3.4.3 Stage 3: Perform indoor tests

Figure 3.9: Detection of two 0.412m × 0.412m markers with the aruco detection

algorithm, with 1280×720 resolution. Link to recording: https://www.youtube.com/

watch?v=EGs43mpN0DE.

The third stage was to perform larger indoor tests to predict the system performance

and how well the system could estimate the camera’s position relative to the markers

on longer ranges, but also to figure out methods to validate the position estimates

achieved with the vision-system. These were carried out on the 14th of October

2021. The figure 3.10 shows the results of the indoor tests with plots showing the

position estimates as a function of time for each axis. In this test, a Kalman filter

is also included to filter out wrong position estimates and estimate a more precise

camera position.
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(a) 3D view of the camera path, with the two

markers plotted.

(b) Position estimates along the Z-axis.

(c) Position estimates along the X-axis. (d) Position estimates along the y-axis.

Figure 3.10: Results of the pre-testing with the aruco detection algorithm before

the outdoor experiments, with a Kalman filter implemented by [51].

Figure 3.10 shows the results of the indoor testing with the camera position es-

timates. The camera system can estimate the position of the markers and their

orientation relative to the camera. The plots were plotted with algorithms from

[51], repository, which is developed to use AprilTags with the Aruco detection al-

gorithm [52] to navigate an indoor drone. As seen in the figure, the camera system

is getting many wrong position estimates along the z-axis, while this seems quite

accurate around the x- and y-axis. The Kalman filter seems to smooth out the

results.

Notice that in figure 3.10 b) it seems that the camera system is getting the ambiguity

problem around the Z-axis. Around the x- and y-axis, this does not seem to not

occur. However, the position estimates are quite inaccurate at a greater distance

from the markers. The Kalman filter seems to filter out the outliers and smooth out

50



Chapter 3 – Design and implementation

the position estimates.

The indoor tests gave no actual estimates on how well the system was performing

outdoors in different scenarios or how accurate the system was to predict the camera

positions. Therefore, it was decided to do perform some outdoor experiments to

validate the positions from the vision-system. Using the USV INS system as a

ground truth to benchmark the positions estimates from the camera system was

considered a good method to test the system performance with outdoor conditions.

3.4.4 Stage 4: Perform outdoor experiments

The experiments conducted in this thesis were necessary because there were no rel-

evant data-sets with challenging outdoor scenarios available. Consequently, there

were no data-sets that could be utilized to benchmark the developed camera system.

The experiments were also needed to raise awareness of the typical outdoor chal-

lenges a vision-based system needs to overcome if it is to be used in the future as

an additional independent system or as a backup system to enable complex outdoor

operations for autonomous marine vessels.

3.4.4.1 Planning of the experiments

The planning of the experiments was done in cooperation with Ø. Volden and

P. Solnør who were interested in gathering data for their work. Therefore, the

experiments were carried out on the 8.-9. November 2021 in front of the Maritime

Robotic office in Trondheim, Norway. They helped the team with power the RTK

GPS and with waterproof boots to launch and recover the Otter. The cooperation

was mutually beneficial, as multiple people were necessary to ensure everything

was working correctly and that all data was appropriately recorded. It must be

mentioned that the marker tag detection algorithm was changed to the AprilTag

algorithm from [53], to get comparable results with Ø. Volden work.

It must also be mentioned that the advisors, K. A. Christensen, S. Kohtala and M.

Steinert also advised on relevant scenarios to be tested for.

3.4.4.2 Testing scenarios

Different testing scenarios were specified to analyze the vision system performance

of estimating the USV positions to a dock. The testing scenarios were set to estab-

lish the boundaries of a vision-based system and achieve a deeper understanding of
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potential threats a vision-based navigation system must overcome if a vision system

should work along with other positioning systems, as a part or entirely independ-

ently. It must be mentioned, that if any smaller cargo boats are to be capable

to dock to a floating dock without any human intervention, these vessels must be

capable to localize the docks precisely. The different testing scenarios were set to:

• Optimal conditions - getting a benchmark of the vision-based system per-

formance. This scenario was assumed to be in cloudy weather with even light.

• Smoke/fog, to simulate fog and to see of this affects the system performance.

• Water droplet on lens, to demonstrate how rain affects the system perform-

ance.

• Harbor in darkness, to test the system performance in low light.

• Illuminated markers, to test if background-lightened fiducial markers could

be utilized to make fiducial markers more detectable in the dark by the vision-

system.

• Counter light and mirrored counter light, to see how this affects the

camera performance and the predicted position estimates.

In addition to these scenarios, tests were also carried out to get range estimates and

precision estimates about the camera system compared with GNSS data. However,

no data-sets for any scenarios with heavy rain, snow, or homogeneous fog were

carried out, though tests for such weather conditions are necessary if a robust vision-

based navigation system is to be fully developed.
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This section presents the most important observations and results from the exper-

iments carried out in this thesis. All position estimates between the vision-system

and the onboard INS were precisely time sampled, making it possible to compare

each system against each other carefully. Furthermore, because the RTK GPS po-

sitions estimates had a higher frequency was this data post-processed and time-

synchronized with the estimated positions from the camera. Only estimates calcu-

lated from one single marker are used to analyze the vision-system performance.

Comparing estimates from one single marker may give a better picture of the vision

system performance to RTK GNSS positions.

4.1 Overview

Figure 4.1: Map of the harbor where the experiments were carried out. Illustration

of a USV approaching a conceptional quay.
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A illustration of the Trondheim harbor with a potential cargo vessel approaching a

conceptional dock can be seen in figure 4.1. The location of the conceptional dock is,

in this figure, approximately the exact location where the following experiments were

carried out. The objective of the experiments was to collect data sets of different

weather conditions and different vessel approaches from different angles.

Figure 4.2: Illustrations to give a context to the experiments.

Figure 4.2 a) shows the Otter USV approaching illuminated AprilTag markers in

the darkness with smoke to illustrate fog. A marker without any illuminated light

was used in the middle to get a benchmark for the illuminated markers. Figure 4.2

b) shows the vessel approaching the markers in ”daylight”. It must be specified that

this image do not illustrate the lightning during the ”optimal condition” experiment.

Here, the light was slightly more brighter, with
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4.2 Camera observations

Figure 4.3: Camera observation of the different scenarios. a) the lightened up

markers, b) water droplet on the camera lens, c) counter-light, d) darkness, e) fog

and d) mirrored counter-light. Link to the dataset with the illuminated marker:

https://www.youtube.com/watch?v=XhEYvEJEDaY&ab channel=LarsDigerud.

Figure 4.3 shows the challenges a robust camera system must overcome if cameras

are to be utilized to navigate USVs in the docking scenario. The figure shows

captured images of the worst scenarios that were captured during the experiment.

All images were captured in ”gray-scale” to save bandwidth, but also because the

detection algorithms are using gray-scale images as an input to detect the markers.

Figure 4.3 a) shows the illuminated AprilTag markers. The IKEA light panels were

on the lowest brightness setting in this scenario 1. However, the illuminated markers

become too bright, causing the vision-system not capable to detect the markers. The

edges around the markers become also non-straight, making the markers impossible

to be identified by the camera system. In figure 4.3 b), one can see that the third

marker in the middle of the two observed markers is also almost not possible to

decipher due to the water droplet on the lens. Figure 4.3 c) and 4.3 f), shows

the challenges with counter-light and mirrored counter-light made by the sun. The

counter-light creates larger white areas on the image, making the camera system

incapable of detecting any markers. The figure 4.3 d) illustrates the challenge with

a harbor in the darkness. Figure 4.3 e) shows how the images are influenced by

smoke, supposed to simulate fog.

1Link to the dataset with the illuminated markers: https://www.youtube.com/watch?v=

XhEYvEJEDaY&ab channel=LarsDigerud
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4.3 Scenario 1: Optimal conditions

To establish a benchmark and test the system performance, the first scenario was

carried out in what was considered to be the most optimal condition: Cloudy weather

with even light.

(a) Experiment 1 Overview

(b) USV absolute distance to marker. (c) Absolute error.

Figure 4.4: The results of experiment 1, link to dataset: https://www.youtube.

com/watch?v=gno73QVMDfY&ab channel=LarsDigerud. Position from only marker

ID 227 is in this dataset calculated.

Figure 4.4 a), b) and c), shows the overview results of the vision-based system.

Here, one can see that the vision-based system is capable of detecting the markers

and estimate the vessel positions from a short to a great distance close to the RTK
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GPS ground-truth. Figure 4.4 a) gives an overview of the calculated path from

the camera system, unfiltered and Kalman filtered position estimates against the

”ground truth” RTK GPS path. The figure shows that the camera system could

detect and estimate the vessel position to the marker from a great range. Figure

4.4 b) shows the absolute distance between the USV and the marker, calculated by

the vision-system and the RTK GPS positions with the equation 2.19. The figure

4.4 c) shows the magnitude of the absolute error of the measured camera positions

to RTK GPS along North, East, and Down/altitude as a function of time.

The ambiguity problem seems to be present in figure 4.4 a), as outliers in the

upper left corner. The ambiguity problem is more clearly described in section 2.7.4.

However, it seems that the Kalman filter is capable to handle this, and filter out

these outliers and still estimate the correct position of the USV. Notice, in figure

4.4 b) there are none position outliers. The magnitude of the position errors from

figure 4.4 seems to be down to the centimeter range.

Summary, the results in figure 4.4 shows that the camera system is capable of

estimating the USV position relative to the marker versus the USV GNSS system.

The furthest distance from which the camera system was capable of estimating the

USV position was from ca. 28 m range, as seen in figure 4.4 b), with an absolute

error of 0.10 m along all axes as seen in figure 4.4 c).

57



Chapter 4 – Results

(a)

(b) (c)

Figure 4.5: (a) Shows the AprilTag camera position estimates unfiltered and Kal-

man filtered to RTK GPS along the east axis as a function of time, while (b) illus-

trates the RMSE error and (c) illustrates the covariance.

Figure 4.5 shows the AprilTag position estimates along the East axis versus time,

while figure 4.5 b) shows the Root Mean Square Error (RMSE) of the Kalman

filtered camera positions estimates versus the RTK GPS path. Figure 4.5 c) shows

the RTK GPS versus AprilTag position estimates, an indication of the covariance

of the position estimates from both camera and RTK GPS.

Pay close attention to figure 4.5 a), and the unfiltered AprilTag position estimates

below zero. These wrong position estimates are maybe a result of the orientation

is being flipped around the y-axes on the local marker coordinate system or, in

this plot, around the North axis, indicating the ambiguity problem as explained in
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section 2.7.4. Plot b) shows that the camera system can calculate the USV position

along the East axis with an RMSE accuracy lower than 10 cm within a 4,8 m range

from the marker. Up to a 15 m range, the accuracy seems to be within 0.75 m. A

large deviation can be seen at ca 16 m, where the RMSE error was calculated to

1.75 m. However, this deviation was much lower at 17.5 m.
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(a)

(b) (c)

Figure 4.6: (a) Shows the AprilTag camera position estimates unfiltered and Kal-

man filtered to RTK GPS along North as a function of time, while (b) illustrates

the RMSE error and (c) illustrates the covariance.

Figure 4.6 shows the AprilTag position estimates along the North axis versus time,

while figure 4.6 b) shows the Root Mean Square Error (RMSE) versus the RTK GPS

track and figure 4.6 c) shows the RTK GPS versus AprilTag position estimates, an

indication of how accurate the position estimates are. Plot b) shows that the camera

system can calculate the USV position along the East axis with an RMSE accuracy

lower than 10 cm within a 7 m range from the marker. Up to 20 m range, the

accuracy seems to be within 0.60 m, before the accuracy increases to 1 m from 20

to 25 m range.
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(a)

Figure 4.7: Shows the AprilTag camera position estimates unfiltered and Kalman

filtered to RTK GPS along the altitude/Down axis.

Figure 4.7 shows the AprilTag position estimates along the down/altitude axis versus

time. The results along this axis were neglected as the East and North axes were

assumed to be of the most importance. However, the figure 4.7 shows that the

camera system was capable of estimating the altitude with relatively high accuracy,

around time 50 - 60 s, where the USV was at the closest range to the marker. Still,

the filtered AprilTag path estimate seems not as smooth as along the other axes,

East and North axes.
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4.4 Scenario 2: Fog/smoke

The purpose for this scenario was to identify how fog degrades the camera system’s

performance to detect markers and estimate the USV position.

(a) Experiment 2 overview

(b) USV distance to marker. (c) Absolute error

Figure 4.8: Results of experiment 2: Fog: Link to dataset: https://www.youtube.

com/watch?v=IdBrYB4kcN4&ab channel=LarsDigerud. Position from only marker ID

227 is in this dataset calculated.

Figure 4.8 a) shows all the predicted position estimates by the camera system, with

the predicted Kalman filtered path against the RTK GPS path. The figure indicates

that the unfiltered position estimates are largely subjected to the ambiguity problem

around the y-axis on the marker. The ambiguity problem may be the cause of
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why the Kalman filter is failing in this scenario. The initial position estimates

that are fed to the Kalman filter seem to be entirely wrong and deviate from the

actual position estimates as seen from the RTK GPS. This causes the Kalman

filter to predict and produce wrong position estimates, and once the valid position

estimates are fed to the Kalman filter, these are discarded because they deviate too

much from the real ones. The result is that the Kalman filter fails to estimate the

USV position. However, as seen in figure 4.8 b), the absolute unfiltered distance

estimates to the marker seem to be quite accurate, calculated with equation 2.19.

Furthermore, the absolute error calculated with the Kalman positions against RTK

GPS along the East- and the altitude-axis seems to be relatively accurate along with

the Altitude/down and North axes, while the error along East is quite distinct.
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4.5 Scenario 3: Mirrored counter-light

The objective of this scenario was to identify the issues counter-light may present.

In order to get comparable results with the other scenarios and due to a specific

GPS location; The results from this scenario uses only mirrored-light.

(a) Experiment 3 Overview

(b) USV distance to marker. (c) Absolute error

Figure 4.9: Results of experiment 3: mirrored counter-light results.

Link to dataset: https://www.youtube.com/watch?v=ikBzOHf1T-E&ab channel=

LarsDigerud. Position from only marker ID 227 is in this dataset calculated.

Figure 4.9 shows that mirrored counter-light made the camera system to estimate

many positions outliers. Notice that many of the positions estimates seems to be

subjected to the ambiguity problem. The Kalman filter is also struggling with
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filtering the actual position estimates. A reason for this, as explained in the previous

scenario 4.4, may be that the first position estimates fed to the Kalman filter seem

to be entirely wrong, causing the Kalman filter to start with a very wrong initial

positions. Compared to scenario 2, the Kalman filter seems to compensate and

estimate more correct positions once the USV is on a closer range to the marker.

However, the USVs absolute distance to the marker seems to be quite accurate

according to the RTK GPS, as seen in figure 4.9. Which indicates that the camera

system can calculate the absolute distance to the marker with high accuracy, but

not the position of the USV relative to the marker.
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4.6 Scenario 4: Water droplet on the lens

The objective of this scenario was to illustrate how a water droplet affects the

captured images, and thus the camera positioning system performance.

(a) Experiment 4 Overview

(b) USV distance to marker. (c) Absolute error

Figure 4.10: Results of experiment 4: Water drop on the camera lens.

Link to dataset: https://www.youtube.com/watch?v=syAfvDmEmEE&ab channel=

LarsDigerud. Position from only marker ID 227 is in this dataset calculated.

There was only a tiny water droplet on the lens during this experiment to simulate

rain. Still, its position made it impossible for the camera to calculate the USVs

position relative to the marker as seen in fig 4.10 a). The USVs position is only

estimated at the beginning of its journey to the marker, but these position estimates

66

https://www.youtube.com/watch?v=syAfvDmEmEE&ab_channel=LarsDigerud
https://www.youtube.com/watch?v=syAfvDmEmEE&ab_channel=LarsDigerud


Chapter 4 – Results

seem to be relative accurate according to figure 4.10. Figure 4.10 b) and c) only

show the absolute distance and the absolute error of where the marker is detected.

However, as seen in figure 4.11, the camera is capable of detecting the markers on

the side of the marker that is concealed by the water droplet. As mentioned at

the beginning of this section, the camera system is only calculating the orientation

of the USV from one single marker, therefore positions estimates from other the

detections are discarded.

Figure 4.11: Marker detections with water droplet on the camera lens. Here

marker ID 227, which is used to estimate the USV position is concealed by a water

droplet.
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4.7 Scenario 5: Harbor in darkness

The objective of this scenario was to test how well the camera system was to detect

the markers in a harbor in darkness. However, it must be specified that absolute

darkness was not achieved due to light noise from the surroundings. Thus, this may

set a more realistic harbor setting where such markers have to be detected.

(a) Experiment 5 Overview

(b) USV distance to marker. (c) Absolute error

Figure 4.12: Results of experiment 5: Harbor in darkness. Link to dataset https://

www.youtube.com/watch?v=7BlAfv6XNX0&ab channel=LarsDigerud. Positions from

only marker ID 227 is being calculated.

As seen in figure 4.12 a) one can see that the camera detections were relatively few.

In figure 4.12 a) one can see the camera system is getting several false detections
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which seems to be due to the ambiguity problem. However, in figure 4.12 the

camera system is capable of calculating the distance to the marker with relatively

high accuracy, while in figure 4.12 c) the absolute error of each marker is between

zero to approximately 2.8 m along the north axis. The camera system was not

capable of detecting any marker when the USV was at the closest range to the

marker, between time 45 s and 57 s as seen in 4.12 b). However, the camera system

was in this scenario capable of detecting and estimating the USV distance to the

marker from a distance of ca. 12 m.
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4.8 Summary of the results

Figure 4.13: Summary of the results. *Estimated absolute error below 10 cm

within 4.8 m range. **Detection only when the marker was visible.

The table 4.13 briefly summarizes the results from the different testing scenarios.

The results from the optimal condition scenario showed that the vision-based system

was capable to detect the markers from a range of 28 m, with a estimated accuracy

below 0.1 m within 4.8 m range. The system was also capable to detect the markers

in most of the other scenarios, but not with the illuminated markers. However,

the vision-based system was not able to robustly estimate any accurate position

estimates in any of these scenarios. The ambiguity problem seemed also to be

present in all scenarios, with varying effects.

4.8.1 Lessons learned

The outdoor experiments posed several new challenges that are absent in an indoor

environment. Firstly, light and darkness may be for a vision-based navigation sys-

tem be the most effective performance factors. Additionally, external factors, such

as water droplets on the lens, fog, and mirrored counter light, demonstrated how

quickly the vision-based system’s navigation ability to estimate positions deterior-

ated. Next, the way the images were captured seemed to deteriorate the amount of

information in each captured frame. A root of this cause may be in the ROS driver,

which saves the images to the Rosbags. Finally, the indoor pre-test to check if the

camera system could detect the illuminated markers indicated that the prototype

illuminated markers were easily detectable indoors with environmental light. This

may imply two things; either that the outdoor lighting made it more challenging

for the detection algorithm to detect the marker or how the frames were captured
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during the experiment. The author believes a change of settings in ROS may be a

solution to this problem.

The experiments also assured the quality of the accurateness of the navigational

system onboard the Otter USV. Looking at the optimal scenario, using RTK GNSS

as a ground truth can be considered successful to asses the vision-based position

estimates.
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Discussion

A novel vision-based approach for estimating a USV position relative to a dock was

implemented and tested for different scenarios in this thesis. Vision-based navig-

ation aims to give the USV capability to orient from its perspective and not rely

on external services for safer and more reliable operations, e.g., autonomous cargo

handling. Furthermore, estimating a USV orientation in 6 DoF to a stationary pier

or a floating docking station may be a part of the solution to give USVs abilities to

achieve more complex interaction with a dock, e.g., latching, charging, on/unloading

cargo, in addition, to serve as an independent positioning system in a safety-critical

operation.

The vision-based system used fiducial markers to estimate the USV position relative

to a pier by creating a locale reference point on the dock seen from the USV per-

spective. The estimated position estimates were then Kalman filtered and compared

against position estimates from the USVs GNSS system. Here, an RTK base station

onshore was additionally used to increase the GNSS position accuracy. The method

was considered a robust and reliable method to compare a vision-based navigation

system performance for different outdoor scenarios in a dynamical environment, to

establish the edge-cases, a potential vision-based navigation system must overcome.

Different testing scenarios were set and conducted to test the vision-based system

integrity and performance for various weather conditions. All the results were cal-

culated from one single marker using the AprilTag detection algorithm by [42],

although several markers were on the pier. This approach was considered to give

fewer sources of errors in the evaluation of the results. The achieved results in the

optimal condition scenario, section 4.3, showed that the vision-based navigation sys-

tem was capable of estimating the USV position from 28 m range from the marker.

However, compared to the USV INS system, the absolute error seemed to be lower

than 0.10 m within 4.8 m range. In a thermal docking phase, this might be within
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the limits from which research from C. Kooij et al. 2018 [13] have set and within

guidelines from Det Norske Veritas [15] as discussed in section 2.1.4.1. Further-

more, the optimal scenario confirmed Volden et al. research from 2021 [45] that

fiducial markers can be utilized to give position estimates to a USV in an outdoor

environment. An essential core difference between the Volden et al. approach and

the presented method, is that this method focuses purely on traditionally computer

vision and filtering techniques to allow the method to be more computationally

lightweight and be utilized in real-time systems.

Despite the noticeable results from the optimal scenario, the other testing scenarios

exposed the vision-based system for more challenging conditions. Fog/smoke gave a

shorter range and fewer detections, with many position outliers. Here, the outliers

caused the Kalman filter to fail. The outliers probably deviated too much from

the true positions making the Kalman filter discard any valid positions. Mirrored

counter-light by sun created large white regions on the images; however, an inter-

esting result from the vision system was that many of the positions estimates also

seemed to be subjected to the ambiguity problem. This caused the Kalman filter to

predict entirely wrong position estimates in this scenario. However, at close range,

the Kalman filter estimated more correct position estimates.

With water droplets on the lens, the vision-based system could not detect the spe-

cific marker as long as the marker was concealed, as seen in figure 4.8. Feeding

the vision system with position estimates from several markers could compensate

for this problem to a certain point, as seen in figure 4.11, where the surrounding

markers are still detected. A harbor in the darkness gave the vision-based system

less light to extract context from the images. This scenario gave significantly fewer

position estimates with several outliers, which seems also to be subjected to the

ambiguity problem. Absolute darkness was not reached, but light disturbance from

the surroundings gave a realistic scenario for a potential operation in a dark harbor.

A possible solution to increase the detection rate and range for a harbor in darkness

could be possible by using illuminated markers. However, no position estimates

were achieved with the illuminated markers in the outdoor experiment, despite the

positive indoor pre-test in section 3.4. This may be caused by the ROS driver that

receives and saves the images from the camera onboard the USV. Nevertheless, such

fine-tuning is beyond this initial research and development scope.

All results from all scenarios seemed to indicate position outliers subjected to the am-

biguity problem. To overcome this problem, position estimates from several markers

could be used together to form a more robust output. Malyuta et al. 2019, suggest

a method of pre-configuring the markers in a known pattern [23]. If one or sev-

eral markers are concealed, such a method would probably keep the integrity of the
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vision-based navigation system if one or several markers are not detected. Further,

fusing the AprilTag position estimates with an IMU could potentially increase the

position accuracy and precision. This approach is explored by Kayhani et al. 2019

[54] with positive results. However, if this solves the ambiguity problem is unknown.

For practical applications, the Kalman filter can be initialized with GNSS positions

to compensate for positions subjected to being ambiguous to aid the Kalman filter

to overcome this issue. To avoid sudden jumps in GNSS positions, it is also essential

to check that the difference in estimated position between the camera system and

the INS is minimal. Therefore, utilizing vision-based positioning could alert any

external operators if the primary positioning system is out of its valid range. Lastly,

using cameras with a larger dynamic range and greater resolution will probably

increase the system’s performance.

In summary, vision-based techniques may, in certain conditions, overcome some lim-

itations of traditional positioning methods. However, vision-based positioning has

several challenges to be addressed before serving as an independent positioning sys-

tem in safety-critical docking operations. Many of these challenges are believed to

be solved by further hardware and software development. Nevertheless, the presen-

ted vision-based navigation method herein is believed to accommodate autonomous

cargo handling.
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Chapter 6

Conclusion

The thesis demonstrates that vision-based positioning using fiducial markers can be

utilized to aid in the auto-docking scenario of a USV in creating a locale reference

point on dock seen from the vessel perspective. In terms of detection accuracy, the

results demonstrated that traditional computer vision algorithms were appropriate

to estimate the USV position with a concise accuracy in optimal weather condi-

tions. However, the vision-based system might fail due to the ambiguity problem

in more adverse conditions, e.g., mirrored counter-light and a harbor in darkness.

Furthermore, experiences throughout the experiments showed that several external

factors, e.g., illuminated markers, a water droplet on the lens, notably influence

the vision-based system performance and must be addressed before such a system

can be included as an independent navigation system. Lastly, using cameras with

a larger dynamic range, and greater resolution will probably increase the system’s

range. Using several markers together may form a more independent vision-based

navigation system.

6.1 Future Work

Experiences with developing the vision-system from the ground, highlighted multiple

features for future development. The suggestions are presented and discussed below:

• Use the AprilTag algorithm with bundle features developed by [23]. This may

help improve the accuracy, range, and system robustness, as one or several

markers could be non-visible and still get position estimates.

• Use a high-dynamic camera instead of the ZED2i camera. This will probably

help improve the camera performance in situations as counter-light, wrong
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exposure from the camera, rain, snow, etc.

• Use a camera with higher resolution. This will probably improve the range

and accuracy.

• Explore the possibilities for using illuminated markers with very low backlight

to enable the possibilities for using the marker in darkness. Using a high-

dynamic camera may also improve the performance of using such markers.

• Implement deep-learning algorithms, such as the deep-tag algorithm [55], to

improve the detection rate in difficult weather conditions. May be more com-

putatively costly.

• Explore at what range such markers should be detected on and then choose a

suitable marker size. For example, is it necessary to detect the marker at 30

m range for smaller USVs?

• Explore the possibilities for using markers to communicate with the vessel in

events when the vessel has lost all its external communication.

• Collect more data sets from challenging weather conditions such as heavy

snowing and more ”homogeneous” fog.

• Explore the computational cost of having a camera-detection system used to

navigate the vessel, both in terms of a backup solution and in the last phase

of the docking as the primary positioning source.

• Explore the possibilities for doing more advanced operations between the dock

and the vessel, as one can achieve 6-DoF position estimates (e.g., putting

a robot-arm on the vessel to put cargo from the vessel onto the quay), as

illustrated in the figure 2.10.

• Use Kartverkets position services to get better ground-truth precision, as one

will have access to more RTK base stations, which may give a better position-

ing accuracy than achieved in this thesis [56]. One may also get rid of setting

up a base station to get a precise global position ground truth.

As listed, several features can further be developed to improve the vision-based

navigation system.
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Appendix A

The detection algorithm

This appendix shows only parts of the AprilTag detection algorithm necessary to

detect AprilTag markers and estimate the camera position relative to the AprilTag

marker in x-,y- and z-coordinates:

from AprilTag.scripts import apriltag

while frame == True: # simplification

gray = cv2.cvtColor(frame , cv2.COLOR_RGB2GRAY)

options = apriltag.DetectorOptions(families='tag36h11 ',
border=1, nthreads=4, quad_decimate=1.0, quad_blur=0.1,

refine_edges=True , refine_decode=False , refine_pose=True ,

debug=False , quad_contours=True)

detector = apriltag.Detector(options)

camera_params = (1069.38, 1069.38, 1103.6696 , 664.64) #iZed2

tag_size = 0.412 # [m]

detections , frame = detector.detect(gray , return_image=True)

for i, detections in enumerate(detections):

# e0: initial error , e1: final error , pose: marker position

pose , e0 , e1 = detector.detection_pose(detection ,

camera_params , tag_size)

# invert marker orientation to get relative camera

orientation:

pose = np.linalg.inv(pose)

# camera orientation relative to AprilTag marker:

x = float(pose[0,3])

y = float(pose[1,3])

z = float(pose[2,3])
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Appendix B

Implementation of the Kalman

filter

Implementation of the Kalman filter defined in section 2.6 was implemented with the

Python package Pykalman from [30]. The purpose of implementing the Kalman filter

was to demonstrate it use, filter out any unwanted position estimates and to get a

more precise position estimates from the positions received from the camera system.

Besides also to get a more fundamental knowledge of how Kalman filters works.

The Kalman filter was hugely motivated by the results achieved with the algorithms

from [51], which demonstrated its use. However, this implementation seemed from

different testing that it might not be properly implemented. The indoor test results

achieved in 3.4 demonstrated the Kalman filter usefulness to recover a more precise

position estimate of the camera relative to the marker. The following Kalman filter

was further used to estimate the camera positions plotted in chapter 4, results.

from pykalman import Kalmanfilter

import numpy as np

# xp , yp and zp contains position estimates along each axis

positions = np.column_stack ((xp,yp,zp))

initial_position = np.array([xp[0], 0, yp[0], 0, zp[0], 0])

dt = 0.04 # timestep

state_transition_matrix = np.array([[1, dt , 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0],

[0, 0, 1, dt, 0, 0],

[0, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 1, dt],

[0, 0, 0, 0, 0, 1]])

measurement_matrix = np.array([[1, 0, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0],

[0, 0, 0, 0, 1, 0]])
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measurement_coveriance = 11*np.eye(3) # measurement coveriance

prev_state = initial_position.copy() # previous state matrix

prev_cov = np.eye(6) # previous coveriance

kf = KalmanFilter(transition_matrices = state_transition_matrix ,

observation_matrices = measurement_matrix ,

observation_covariance = measurement_coveriance)

allstates = []

for pos in positions:

measurment_residual = pos - measurement_matrix@prev_state

if np.linalg.norm(measurment_residual) < 2:

prev_state , prev_cov = kf.filter_update(prev_state ,

prev_cov , pos)

else:

prev_state , prev_cov = kf.filter_update(prev_state ,

prev_cov)

allstates.append(prev_state)

positions_kalman_filtered = np.array(allstates)

print("Kalman filter done")

xp = positions_kalman_filtered[:, 0] # filtered x positions

yp = positions_kalman_filtered[:, 2] # filtered y positions

zp = positions_kalman_filtered[:, 4] # filtered z positions
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GPS coordinates to NED

coordinates

This appendix shows how the global coordinates were changed to NED coordinates.

from pymap3d import geodetic2ned

import numpy as np

# initiate position / position defined in the marker origin

lat0 = float()

ion0 = float()

h0 = float()

# arrays containing the respective positions

lat = np.array()

ion = np.array()

h = np.array()

gps2NED = np.zeros((0,3)) # NED coordinates

for i in range(len(lat)):

north , east , down = geodetic2ned(lat[i], ion[i],h[i],lat0 ,ion0 ,

h0 ,deg=True)

gps2NED = np.append(gps2NED , [[north , east ,down]],axis=0)
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Appendix D

Paper

The appended conference paper ”Vision-based positioning using Fiducial Markers

to aid auto-docking of Unmanned Surface Vehicles” has been written as a result

of the work in this thesis. It included a method of using fiducial markers to aid

unmanned surface vehicles while auto-docking. Additionally, it highlights adverse

conditions such a system must overcome and supplements this thesis.
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Vision-based positioning using Fiducial Markers to aid auto-docking of 

Unmanned Surface Vehicles 

Lars Digerud*, Øystein Volden**, Kim A. Christensen*, Sampsa Kohtala*, Martin Steinert* 

*Department of Mechanical and Industrial Engineering, Norwegian University of Science and 

Technology, 7491 Trondheim, Norway (e-mail: larsdi@stud.ntnu.no, Kim@fosenregionen.no, 

sampsa.kohtala@ntnu.no, martin.steinert@ntnu.no) 

** Department of Engineering Cybernetics, Norwegian University of Science and Technology, 7491 

Trondheim, Norway (e-mail: oystein.volden@ntnu.no) 

Abstract: This paper describes a method of using fiducial markers to aid Unmanned Surface Vehicles 

(USVs) while auto-docking. Recent applications of USVs have shown increased ease and efficiency of 

cargo shipping operations. During auto-docking, it is essential that the USV can orient itself precisely and 

in real-time for long periods of time without losing signal to external services. Utilizing vision-based 

techniques allows USVs to orient themselves to their environment from their perspective and may represent 

a new method for such vessels to precisely orient themselves in the docking scenario. The work in this 

paper is a novel attempt to develop and evaluate vision-based strategies to localize USVs to the dock. We 

used Real-Time kinematic GNSS with a base station on the dock to validate the vision-based position 

estimates. The experiment shows that traditional computer vision techniques using fiducial markers give 

accurate outdoor position estimates in good conditions. We also highlight adverse conditions where the 

performance decreases significantly. 

Keywords: Ambiguity problem, Autonomous docking, Fiducial markers, Kalman filter, Object detection, 

Vision-based navigation, Pose estimation

1. INTRODUCTION 

The most common source of positioning data for USVs is the 

Global Navigation Satellite System (GNSS) fused with an 

internal Inertial Measurement Unit (IMU), which is integrated 

into an inertial navigation system (INS) to increase positioning 

accuracy and precision. Precise and accurate positioning is 

required during the docking phase. Research from Kooji, 

Colling, and Benson (2018) and guidelines from Det Norske 

Veritas (DNV) (2018) have currently set the required 

positioning accuracy in docking scenarios to be within 0.1 

meters for autonomous vessels. Current research works at 

fusing INS with proximity sensors such as lidar to get a precise 

estimate of the distance to the pier. GNSS and Real-Time 

Kinematic (RTK)-GNSS systems are dependent on external 

services and suffer from precision degradation and signal loss 

in occluded urban or canyon environments (Malyuta et al., 

2020). Furthermore, such signals can interfere with external 

objects and internal devices producing noise such as Wi-Fi or 

the vessel being jammed by cyber-attacks. To overcome some 

of these limitations, we propose a method that uses a fiducial 

marker system to estimate the USVs orientation with a 

monocular camera to aid the USV during the docking scenario. 

USVs can either dock at a stationary pier or a floating docking 

station that will move throughout the day. The latter requires a 

local reference point from which the USV can orient itself to 

get a good location estimate. This paper argues that fiducial 

markers in the form of AprilTags can be used as reference 

points for vision-based localization to enable more reliable and 

safer docking operations.  

1.1 Related work 

Several approaches for unmanned vision-based docking have 

been developed. Yang et al. (2013) presented a monocular 

visual landing method based on the estimation of the 6 Degree 

of Freedom (DoF) orientation of a circled H-marker to land an 

Unmanned Aerial Vehicle (UAV). Malyuta et al. (2020) used 

AprilTags to make a UAV fly, dock, and charge itself 

autonomously with high accuracy and precision. Volden et al. 

(2021) suggest a method of estimating the USV position in the 

docking scenario using ArUco markers with Convolutional 

Neural Network testing both mono- and stereo camera 

configurations. The work focused on outdoor performance and 

demonstrated that using such techniques made it possible to 

estimate the USV position in a range of up to 16 m, both for 

mono- and stereo camera configurations. Mateos et al. (2019) 

and Mateos (2020) used fiducial markers to orient several 

USVs to each other to latch the USVs together or latch a USV 

to a docking station. 

1.2 Main contributions 

This paper demonstrates how relatively low-cost cameras can 

aid USVs in obtaining a precise relative position estimate of a 

pier or a floating docking station, using a high precision RTK-

GNSS for validation. The main objective is to develop an 

independent vision-based positioning system to increase the 

redundancy and accuracy of autonomous vehicles' navigation 

systems during the docking phase. The method focuses on only 

using traditional computer vision and filtering techniques to 

allow the method to be computationally efficient and be 

utilized in real-time systems. The paper also addresses some 
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adverse weather conditions that a fully developed camera 

system must overcome. 

1.3 Outline 

The paper is organized as follows. Section 2 describes the 

vision-based detection and positioning system. Section 3 

describes the experimental setup and procedure. Results and 

discussions are presented in section 4, with the conclusion in 

section 5.  

2. DESIGN, ALGORITHMS, AND IMPLEMENTATION 

The vision-based system uses a camera to feed images to an 

AprilTag detection algorithm, where PnP is used to estimate 

the relative position of the USV. A Kalman filter is applied to 

improve accuracy by removing outliers. An overview of the 

system is shown in Figure 1. 

 

Figure 1. Block diagram describing our vision-based navigation 

system. 

2.1 Fiducial markers 

Fiducial markers are commonly used in computer vision 

applications for automatically detecting reference points in a 

physical space. The markers can be used to estimate 6 DoF 

relative to the camera or a robot, making fiducial markers 

valuable in dynamic environments where robots need exact 

position estimates. There are different types of markers, 

including circular, squared, or colored shapes. Each type 

consists of unique patterns which constitute the marker ID.  

A fiducial marker system usually consists of a detection 

algorithm and a coding system. The detection algorithms are 

often based on traditional image processing techniques such as 

edge detection, blob detection, and image binarization. For 

instance, ARTag (Fiala, 2004), ArUco (Garrido-Jurado et al., 

2014), and AprilTag (Wang and Olson, 2016) use black-and-

white cells in a checker-board system, whose quadrilateral 

boundary is detected by analyzing the lines. The markers' 6-

DoF pose is then estimated using Perspective-n-Point (PnP) 

with four points corresponding to the markers' four corners. 

Under certain conditions, e.g., when the marker is viewed with 

low pixel resolution, the calculated pose from a single marker 

may be subjected to an ambiguity problem where there can be 

two unique solutions, i.e., the marker being projected in two 

different orientations, and consequently estimating two 

different camera locations. In general, this is not a problem as 

long as the marker is sufficiently close to the camera or 

multiple markers are used (Collins and Bartoli, 2014). The 

precision of such markers is usually down to a millimeter 

depending on the environmental lighting, camera resolution, 

distance to marker, and the marker size.  

2.2 Fiducial Markers and Global Positions 

Figure 2 visualizes the relationship between the AprilTags and 

the global position in our experimental setup. In order to 

compare the estimated camera positions to RTK GNSS 

positions, the North-East-Down (NED) coordinate system was 

used. The NED system is defined as a local tangent plane to 

the earth's surface, relative to a specific geographical position, 

represented by latitude, longitude, and altitude. Furthermore, 

the NED system is defined with the first dimension pointing 

north, the second pointing east, and the last, down, pointing 

towards the earth's center. Here, the RTK GNSS origin is set 

in the marker origin, thus making it possible to compare the 

RTK GNSS against the vision-based navigation system.  

 

Figure 2. Experiment setup with the Otter USV and fiducial markers 

on the pier. The NED coordinate system is also visualized, 

showing the relationship between the markers and the global 

positioning system. 

The AprilTag algorithm computes a 3 × 3 homography matrix 

that projects 2D points in homogeneous coordinates from the 

tag coordinate system using a Direct Linear Transform (DLT) 

algorithm (Hartley and Zisserman, 2004) to compute the tag 

position and orientation. DLT also requires the camera focal 

length and the physical size of the marker. The 3 × 3 

homography matrix computed from the DLT algorithm can be 

written as a product of the camera projection matrix, which is 

assumed to be known, and the joint rotation matrix R|t, 3 × 4, 
which is called a matrix of extrinsic parameters, and is used to 

describe the camera motion around a static scene, or vice 

versa, the rigid motion of an object in front of a camera. The 

camera global orientation is then calculated with the following 

equations from Guo et al. (2020),  

𝑠𝑚′ = 𝐾[𝑅|𝑡]𝑀′ (1) 

where 𝑠 is the marker pixel coordinates on the camera sensor, 

𝐾 is the camera matrix, 𝑀′ is the local coordinates of the 

marker in the camera frame, and 𝑅|𝑡 is the rotation translation 

matrix. Fully extended, (1) can be written as: 
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𝑠 [

𝑢𝑥 
𝑣𝑦

1
] = [

𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] = [

𝑟11 𝑟12 𝑟13 𝑡𝑥

𝑟21 𝑟22 𝑟23 𝑡𝑦

𝑟31 𝑟32 𝑟33 𝑡𝑧

] [

𝑋
𝑌
𝑍
1

] , (2) 

Finding the global camera position of the camera is obtained 

by calculating the inverse of the 𝑅|𝑡 matrix: 

[
𝑥
𝑦
𝑧

] = [𝑅|𝑡]−1 [
𝑋
𝑌
𝑍

] . (3) 

The Euclidean distance between the camera and the marker 

can then be obtained as, 

|𝑑𝑎𝑏𝑠| = √𝑥2 + 𝑦2 + 𝑧2. (4) 

2.3 Kalman Filter 

A Kalman filter can be utilized to provide a precise position 

estimate of an object (e.g., by fusing GNSS and IMU data). 

We use the Kalman filter to accurately determine the vehicle 

position relative to the pier for our vision-based system. The 

filter is modeled with the following equation as defined by 

(Kim and Bang, 2019): 

𝑥𝑘 = 𝐹𝑥𝑥−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1 (5) 

where 𝑭 is the state transition matrix applied to the previous 

state vector 𝑥𝑘−1, 𝑩 is the control input matrix applied to the 

control vector 𝑢𝑘−1, and 𝑤𝑘−1 is the process noise vector 

assumed to be zero-mean Gaussian with the covariance matrix 

𝑸, i.e., 𝑤𝑘−1 ∼ η(0, 𝑄) found empirically. The process model 

is paired with the measurement model that describes the 

relationship between the state and the measurements at the 

current time step k as, 

𝑧𝑘 = 𝐻𝑥𝑘 + ν𝑘 (6) 

where 𝑧𝑘 is the measurement vector, H is the measurement 

matrix, and v𝑘 is the measurement noise vector assumed to be 

zero-mean Gaussian with the covariance matrix R, i.e., ν𝑘 ∼
η(0, 𝑅).  

The purpose of the Kalman filter is to provide a state 𝑥𝑘 at time 

step 𝑘 given an initial estimate of 𝑥0, the series of 𝑘 

measurements, 𝑧1, 𝑧2, …, 𝑧𝑘, and the system's information 

described by F, B, H, Q, and R. 

The Kalman filter algorithm can be expressed by prediction 

and update stages. The hat operator,  ,̂ means an estimate of a 

variable, and the superscripts − and + denote predicted (prior) 

and the updated (posterior) estimates, accordingly. The 

prediction state estimate is defined as, 

𝑥𝑘
−̂ = 𝐹𝑥𝑘−1

+̂ + 𝐵𝑢𝑘−1 (7) 

and its predicted error covariance as, 

𝑃𝑘
− = 𝐹𝑃𝑘−1

+ 𝐹𝑇 + 𝑄 (8) 

The update stages are then defined as, 

𝑦𝑘̃ = 𝑧𝑘 − 𝐻𝑥𝑘
−̂ (9) 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑇(𝑅 + 𝐻𝑃𝑘

−𝐻𝑇)−1 (10) 

𝑥𝑘
+̃ = 𝑥𝑘

−̃ + 𝐾𝑘𝑦̃ (11) 

𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘

− (12) 

where 9, 10, 11 and 12 are defined as the measurement 

residual, Kalman gain, updated state estimate and the updated 

error covariance, respectively. The predicted state estimate is 

evolved from the updated previous state estimate. In the update 

stage, the measurement residual 𝑦𝑘̃  is computed first. The 

measurement residual is the difference between the true 

measurement, 𝑧𝑘, and the estimated measurement 𝐻𝑥𝑘
−̂. The 

filter estimates the current measurement by multiplying the 

predicted state by the measurement matrix. 𝑦𝑘̃ is later then 

multiplied by the Kalman gain, 𝐾𝑘, to provide the correction 

𝐾𝑘𝑦𝑘̃
 to the predicted estimate 𝑥̂𝑘

−. Once the updated state 

estimate has been calculated, the error covariance matrix, 𝑝𝑘
+, 

is calculated to be used in the next time step.  

To properly function, the Kalman filter needs an initial value, 

𝑥̂0
+, and an initial guess of the error covariance matrix, 𝑃0

+. 

Importantly, the Kalman filter are derived on the assumption 

that the process and measurement models are linear and can be 

expressed with the matrices F, B and H, whereas the process 

and measurement noise are additive Gaussian. 

3. EXPERIMENTAL SETUP AND TESTING 

Our system consists of an USV called Otter equipped with 

GNSS receivers and an IMU integrated into an INS. The Otter 

is developed by Maritime Robotics in collaboration with the 

Norwegian University of Science and Technology (NTNU) as 

an experimental test platform to conduct sea trials. We used a 

camera onboard the USV and an onshore base station for 

processing positioning data, and a wireless radio for 

communication. The USV and camera specifications can be 

seen in Table 1 and Table 2 respectively. All actions of the 

USV during the experiment were remote-controlled, and all 

data were recorded with the Robotic Operating System (ROS) 

for post-processing. The AprilTag markers' physical size were 

0.412 𝑚 × 0.412 𝑚 located on the pier, as seen in Figure 2. 

3.1 Environmental effects on AprilTag detection 

Six different scenarios were analyzed to test how the camera 

system performed in both good and adverse weather 

conditions. The scenarios can be seen in Figure 4 showing the 

following conditions: a) markers at night with backlight 

illumination (no detection), b) water droplets on the lens (no 

detection), c) optimal light conditions, d) the harbor in 

darkness, e) fog, and f) mirrored counter light from the sun. 
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Figure 3. The fully equipped Otter USV and the onshore RTK 

GNSS base station. 

3.2 Accuracy 

Three scenarios were further analyzed to measure the accuracy 

of our vision-based positioning system. Scenario 1: Optimal 

conditions, scenario 2: Mirrored counter light and scenario 3: 

Harbor in darkness. All position estimates were calculated 

based on information from one single marker.  

Table 1. Otter USV specifications 

Dimensions 2 m by 1.08 m symmetric 

footprint 

Position and heading 

reference system 

Two GNSS receivers in 

bow and stern 

IMU ADIS 16490 

INS SBG Ellipse2-D 

 

Table 2. Zed2i camera specifications 

Model name 2 m by 1.08 m symmetric 

footprint 

Pixel format RGB 

Resolution 2208 × 1242 

Sample rate 15 Hz 

 

4. RESULTS AND DISCUSSION 

This chapter presents and discusses the positional accuracy of 

the vision-based system for each of the three scenarios.  

 

Figure 4. ZED2i camera observations as seen from the Otter USV, 

a) with illuminated markers, b) water droplet on the lens, c) 

optimal conditions, d) harbor in darkness, e) smoke to simulate 

fog, and f) mirrored counter light. 

4.1 Scenario 1: Optimal conditions 

Figure 5 shows the top-down view of the Otter approaching 

the marker in NED coordinates. The yellow points show the 

Otters' position estimates by the AprilTag system, while the 

Kalman filtered path can be seen as the red dotted line and the 

RTK GNSS path as the green dotted line.  

 

Figure 5. USV RTK GNSS path with raw and Kalman filtered 

positions from the camera system. 

In the upper left corner of Figure 5, we can see a few erroneous 

position estimates, which are likely caused by the ambiguity 

problem (marker orientation predicted incorrectly). Moreover, 

the results show that the Kalman filter can remove these 

outliers and estimate an accurate USV position. 

Figure 6 shows the absolute distance to the marker, calculated 

from the camera and the RTK GNSS positions with equation 

4. Notice that there are no outliers for the unfiltered position 
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estimates in the figure, which indicates that the ambiguity 

problem does not affect absolute distance. 

 

Figure 6. USV absolute distance to marker during its mission. 

Figure 7 shows the AprilTag position estimates along the three 

axes: East, North, and Down versus time. Some position 

estimates seem to be flipped symmetrically in the East axis, 

which explains why the absolute distance remains accurate 

compared to the RTK GNSS. This problem does not appear 

along the North axis. However, the Down axis has multiple 

positional outliers, making it less precise than the Eastern and 

Northern axes. 

 

Figure 7. Positions along East, North, and Down as a function of 

time. 

Figure 8 shows the absolute error of the raw position estimates 

to RTK GNSS along North, East, and Down as a function of 

time. The absolute error is below the 0.1-meter requirement set 

by DNV between 50 s to 63 s when the Otter is within a range 

of 5 meters to the marker. 

 

Figure 8. The absolute error of the raw position estimates. 

Figure 9 shows the RMSE of the estimated camera positions 

by the AprilTag system compared to the RTK GNSS. The 

unfiltered and the Kalman filtered positions seem to have a 

high positive covariance, indicating that the Kalman filter may 

not significantly increase the absolute positioning accuracy. 

However, it does not reflect the ambiguity problem, which 

causes the coordinates along the East axis to deviate as shown 

in Figure 7. 

 
Figure 9. RMSE for unfiltered and Kalman filtered position 

estimates. 

4.2 Scenario 2: Mirrored counter light 

Figure 10 shows the results of testing with a mirrored counter 

light. The figure shows that the camera system estimates 

contain many outliers compared to the true RTK GNSS 

estimates. Additionally, the Kalman filter started with wrong 

initial conditions, which caused incorrect predictions. 

However, the Kalman filter accurately predicts the USV 

position when the distance to the marker is low. 



6 

 

 

Figure 10. USV RTK GNSS path with estimated positions during 

the mirrored counter light scenario. 

4.3 Scenario 3: Harbor in darkness 

Figure 11 shows position estimates when the USV approached 

the pier at night. As seen in the figure, the camera system is 

getting significantly fewer position estimates compared to 

scenarios 1 and 2. In addition, it seems that many of the 

estimates are close to the RTK GNSS positions, but some are 

not. It is difficult to tell whether these position estimates are 

subjected to the ambiguity problem, but they cause the Kalman 

filter to estimate wrong positions.  

 

Figure 11. USV RTK GNSS path with estimated positions during 

the harbor in darkness scenario. 

4.4 Discussion 

All the results were calculated from one single marker using 

the AprilTag detection algorithm by Wang and Olson (2016). 

The camera system in scenario one successfully created a local 

reference point on the pier to estimate the USV position. The 

method can accurately estimate the USV positioning at a range 

of up to 5 meters, thus, demonstrating that the camera system 

can provide sufficient positioning accuracy as an independent 

positioning system. The method is robust in optimal weather 

conditions, despite a few outliers. However, system 

performance degraded significantly in more adverse 

environmental conditions (e.g., mirrored counter light and a 

harbor in darkness). This may be due to the ambiguity 

problem, which the Kalman filter also struggled to 

compensate. 

Pre-configuring multiple markers in a known pattern may 

improve positioning accuracy and ensure the vision-based 

system integrity. Malyuta et al. (2020) suggest using several 

AprilTags in a bundle configuration to estimate a UAV 

position robustly. However, if all markers or only a single 

marker is detected, the estimated positions may be subjected 

to the ambiguity problem. Fusing the AprilTag position 

estimates with the IMU may improve the position estimates 

further (Kayhani et al., 2019). For practical applications, the 

Kalman filter can also be initialized with GNSS positions to 

improve the vision-based system before the final docking 

phase. To avoid sudden jumps in position, it is also important 

to check that the difference in estimated position between the 

camera system and the INS is minimal. 

In summary, vision-based techniques may overcome some 

limitations of traditional positioning methods in certain 

conditions, especially in the event of lost communication to 

external services or interference. Furthermore, vision-based 

positioning could also alert any external operators if the 

primary positioning system is out of its valid range. However, 

vision-based positioning has several challenges that must be 

addressed before serving as an independent positioning system 

in safety-critical docking operations. 

5. CONCLUSION 

This paper has demonstrated how vision-based positioning can 

be utilized to aid in the auto-docking scenario of a USV by 

creating a locale reference point between the USV and a 

docking station. In terms of detection accuracy, the results 

have shown that traditional computer vision algorithms can 

estimate the USV position with reasonable accuracy in optimal 

weather conditions. However, the vision-based system is 

limited during adverse conditions, including mirrored counter-

light and darkness. These scenarios must be addressed before 

a vision-based system can be included as an independent 

navigation system. Lastly, we believe using cameras with a 

higher dynamic range, and greater resolution will increase 

performance. Using several markers may also improve the 

robustness before an independent vision-based navigation 

system can be deployed. 
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