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Introduction: Accelerometer-based measurements of physical activity types are commonly used to replace self-reports. To advance
the field, it is desirable that such measurements allow accurate detection of key daily physical activity types. This study aimed to
evaluate the performance of a machine learning classifier for detecting sitting, standing, lying, walking, running, and cycling based on
a dual versus single accelerometer setups during free-living. Methods: Twenty-two adults (mean age [SD, range] 38.7 [14.4, 25-68]
years) were wearing two Axivity AX3 accelerometers positioned on the low back and thigh along with a GoPro camera positioned on
the chest to record lower body movements during free-living. The labeled videos were used as ground truth for training an eXtreme
Gradient Boosting classifier using window lengths of 1, 3, and 5 s. Performance of the classifier was evaluated using leave-one-out
cross-validation. Results: Total recording time was ~38 hr. Based on 5-s windowing, the overall accuracy was 96% for the dual
accelerometer setup and 93% and 84% for the single thigh and back accelerometer setups, respectively. The decreased accuracy for
the single accelerometer setup was due to a poor precision in detecting lying based on the thigh accelerometer recording (77%) and
standing based on the back accelerometer recording (64%). Conclusion: Key daily physical activity types can be accurately detected
during free-living based on dual accelerometer recording, using an eXtreme Gradient Boosting classifier. The overall accuracy

decreases marginally when predictions are based on single thigh accelerometer recording, but detection of lying is poor.
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Accelerometer-based measurements of physical activity types
(e.g., by hip- or wrist-worn sensors) are commonly implemented in
large population-based studies and longitudinal studies to supple-
ment or replace self-reports (Doherty et al., 2017; Fuzeki et al.,
2017; Van Der Velde et al.,, 2017). A common method for
processing the raw accelerometer signal is to map the accelerome-
ter output to intensity level of physical activity by applying a set of
predefined cut points (Heesch et al., 2018; Migueles et al., 2017;
Watson et al., 2014). An alternative and complementary approach
is to classify different postures and physical activity types by use of
rule-based algorithms (Crowley et al., 2019; Skotte et al., 2014) or
machine learning classifiers (Arvidsson et al., 2019; Narayanan
etal., 2020; Stewart et al., 2018). Which postures and activity types
that can be detected and with which accuracy depends on several
factors such as the positioning and number of sensors and the
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window length used for extracting information from the accelera-
tion signal (Arvidsson et al., 2019; Twomey et al., 2018).

Regarding the use of machine learning, a recent study indicates
that a random forest classifier can detect sitting, lying, standing,
walking, running, and cycling with high overall accuracy based on
training data obtained in a semi free-living environment, using two
accelerometers positioned on the thigh and low back (Narayanan
et al.,, 2020). Although a multiaccelerometer setup is likely to
provide superior validity, a single-accelerometer setup will often be
more desirable (e.g., lower cost, convenience for the participants).
Thus, it is important to investigate to what extent a single sensor
setup can provide valid estimates of key daily physical activity
types in a free-living setting. Interestingly, a recent study showed
that a random forest classifier can perform reasonably well in
detecting most everyday physical activity types based on a single
sensor on the thigh or low back (Stewart et al., 2018). However, the
study was carried out in a controlled laboratory setting, and it is not
clear if the results can be generalized to free-living (Farrahi et al.,
2019). Moreover, while the abovementioned studies have used a
random forest classifier, it has been suggested that extreme gradient
boosting (XGBoost) is a more powerful approach for supervised
learning problems (Chen & Guestrin, 2016).

The aim of this study was to evaluate the performance of an
XGBoost classifier in detecting key daily physical activity types
(i.e., sitting, standing, lying, walking, running, and cycling) during
free-living based on a dual (thigh and back) versus single acceler-
ometer setup (thigh or back). We also explored to what extent the
window length for extracting information from the accelerometer
signal influences the performance of the classifier. The latter is
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important because it will provide information about the possible
trade-off between performance of the classifier and the computa-
tional cost in analyzing data.

Methods

Participants

Twenty-two adults (eight females, 38.7 + 14.4 years [range 25-68],
weight 72.9 + 10.9 kg [range 56-92], height 177 + 8.5 cm [range
1571911, body mass index 23.1 +2.4 kg/m? [range 19.2-28.4])
were recruited via word of mouth among university/hospital staff to
participate in the study. Potential participants were excluded if they
had any physical or cognitive impairment that would prevent them
from fully participating in the study protocol. All participants
provided written informed consent and ethical approval was
granted by the Regional Committee for Ethics in Medical
Research, Mid-Norway (2015/1432).

Measurement of Physical Activity Types

Participants were equipped with two AX3 accelerometers (Axivity
Ltd., Newcastle, United Kingdom) and a video camera (GoPro
Hero 3+, San Mateo, CA). One accelerometer was positioned
centrally on the lower back at the third lumbar segment (L3)
and one on the front of the right thigh approximately 10 cm above
the upper border of the patella. These placements were chosen
based on user testing and piloting as well as findings in recent
studies, showing promising results in detecting key physical
activity types with similar sensor placements (Narayanan et al.,
2020; Stewart et al., 2018). To attach the sensors, a 5X7 cm
moisture permeable film (Opsite Flexifix; Smith & Nephew,
Watford, United Kingdom) was attached to the skin. The sensor
was then positioned on top of the film using double-side tape and
covered with a second film layer of 10 X 8 cm. The video camera
was placed on the chest with a chest harness (GoPro Chesty),
pointing toward the feet to record leg and lower body movements.
This positioning of the camera also allows identification of the
orientation of the body relative to the surroundings.

BI'EIW TraW

The participants met with a research assistant at their workplace
to have the sensors and camera mounted. After mounting the sensors
and camera, the participants were free to carry out their activities as
usual in their work or home environment for about 1.5-2.0 hr, that is,
there were no restrictions on the participants’ whereabouts or
physical activities during the data collection. However, to ensure
that data were recorded for the target physical activity types, the
participants were instructed to accumulate at least 2—3 min of sitting,
standing, lying down, walking, and jogging/running during the
recording period. There was no enforced order or time period for
carrying out these activities, and participants were encouraged to
carry out their everyday free-living activities as normally as possible.
Cycling was not an activity that was naturally included within the
recording period, and a round of outdoor cycling was therefore
added as an extended part of the protocol.

Instrumentation

The AX3 is a small and lightweight (23 x 32.5 x 7.6 mm, weight
11 g) triaxial accelerometer with a configurable sampling fre-
quency between 12.5 and 3,200 Hz and range between +2 and
+16 g. In the current study, the accelerometers were configured to
record at 50 Hz and a range of +8 g. The raw data was stored on a
512 MB internal memory and downloaded as binary file (Con-
tinuous Wave Accelerometer format) for visualization and fur-
ther analysis. The AX3 OmGui software (version 1.0.0.37; Open
Movement, Newcastle University, United Kingdom) was used to
configure the sensors and download the accelerometer data. The
GoPro Hero3+ (GoPro, Inc., San Mateo, CA) is small and light-
weight video camera (41 X 59 X 21 mm, weight 135 g). Video files
were recorded at 30 fps at 1,280 x 720 pixels in an MP4 format and
stored in 20-min lengths on a 64 GB SanDisk Ultra XC I micro
SD card.

Data Processing and Machine Learning

The videos were downloaded from the SD card and converted into
an AVI file format with a resolution of 640 pixels X360 pixels
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Figure1 — Tllustration of the main steps in developing the machine learning classifier. The raw acceleration data was first band-pass filtered before the

data from back and thigh sensors were synchronized. The accelerometer data was thereafter synchronized with the labeled data from the annotated videos
and segmented into 1-, 3-, and 5-s windows. Based on the six data streams (three from each sensor), we created 138 features and determined their
importance using Gini importance. The final classifier includes 90 features for the dual accelerometer setup and 45 features for the single accelerometer
setups. During the training of the classifier, hyperparameter tuning was carried out to determine the best possible configuration. The resulting
configuration was then used to build individual classifiers for the dual and single accelerometer setups. LOOCV was thereafter performed to determine the
performance of the classifier. See text for more details. B =back; T =thigh; a = annotated; F = features; LOOCYV = leave-one-out cross-validation;
XGBoost = extreme gradient boosting.
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maintaining a frame rate of 25 fps. The videos were annotated
frame by frame using the Anvil software package (Kipp, 2014)
following a coding scheme for 10 physical activity types. The
coding scheme was linked to a set of definitions, describing the
onset and offset of the 10 target physical activity types
(Supplementary Table S1 [available online]).

Figure 1 illustrates the main step in the development of the
machine learning classifier. To prepare the accelerometer data for
the training of the machine learning classifier, the data from each
sensor were exported from the raw files, resampled, and filtered
using a fourth-order Butterworth band-pass filter (Jackson, 2018).
Finally, the back and thigh data were synchronized. The labeled
data from the video annotations were synchronized with the
accelerometer data, using three heel drops that were visible both
in the accelerometer signal and video recording. As a result, six
data streams of back and thigh accelerometer data were labeled
with the respective activities.

The labeled accelerometer data were used as the ground truth
to train, tune, and fit an XGBoost machine learning classifier.
XGBoost was introduced by Chen and Guestrin (2016) as a novel
implementation of the gradient boosting decision trees to increase
efficiency, improve robustness, and prevent overfitting. An
XGBoost classifier is an additive model that combines multiple
sequentially aligned decision trees. Throughout the layers, each
tree is built based on the results of trees in previous layers. Boosted
ensembles are highly expressive. To prevent overfitting, the com-
plexity of each tree and the total number of trees generated must be
controlled.

The XGBoost works on features computed from the acceler-
ometer data segments (e.g., 1-, 3-, or 5-s windows). We conducted
preliminary investigations to determine relevant features by asses-
sing all possible feature count combinations (i.e., from 1 to 138
features) and their contribution to overall accuracy using the Gini
importance (Nembrini et al., 2018). This revealed that the perfor-
mance of the model was saturated at about 40-45 features (i.e., no
further improvement in performance with adding more features).
Based on this, we selected 12 time-domain features (mean, stan-
dard deviation, skewness, kurtosis, average crossing rate, min/q25/
q50/q75/max of the acceleration, total signal energy, and correla-
tion between all axes) and three frequency domain features (mean
amplitude of the signal, SD, and median frequency). Each window
is therefore represented by 90 features for the dual accelerometer
setup and 45 features for the single accelerometer setup, which are
based on the 15 feature types computed for each axis with a 50%
overlap of the windows. Furthermore, during the training of the
classifier, we performed hyperparameter tuning using a grid search
for the best F1 score over the following parameter ranges: learning
rate set to 0.1; the maximum tree depth range between 15, 20, and
25; the maximum number of estimators between 20 and 70;
subsample size is 0.6; and the lambda used for the L2 regularization
of leaf node weights set to 1.0. The hyperparameter sweep was
performed over two of the 22 leave-one-subject-out folds. Once the
best configuration was identified, we built an individual model for
the back and thigh, as well as for back and thigh individually.
Notably, the probability of including multiple activity types in-
creases with increasing window length and the XGBoost uses
majority voting for each window to predict the activity type.

Figure 2 shows an example for one subject of accelerometer
recordings from the thigh and back, the labeled physical activity
types based on the video recordings (i.e., ground truth), the
predictions produced by the XGBoost classifier, and the instances
with true and false predictions.

DETECTING PHYSICAL ACTIVITY TYPES IN FREE-LIVING 3

Statistics and Performance Metrics

Two raters individually labeled the videos from two participants,
and Cohen’s kappa statistic was used to assess the interrater
reliability. The predictive performance of the XGBoost classifier
was assessed by using leave-one-out cross-validation. In this
approach, the classifier is trained on the data from all participants
except one, which is kept out and used as the test data set.
Averaging the results across all participant data provide an estimate
of the overall performance of classifier. This process was repeated
for the dual and single accelerometer setups (back and thigh, thigh,
and back) and the three window lengths (1, 3, and 5 s).

Performance metrics for the XGBoost classifier included
precision, sensitivity (also termed recall), specificity, and overall
accuracy. Precision for each of the target physical activity types
was calculated as the sum of true positives divided by the sum of
true and false positives. Sensitivity is the proportion of true
positives that are correctly identified, calculated as the number
of true positives divided by the sum of true positive and false
negatives. Specificity is the proportion of true negatives that are
correctly identified and was calculated as the number of true
negatives divided by the sum of true negatives and false positives.
Overall accuracy was calculated as the proportion of correctly
classified instances divided by the total number of samples. The
result of each of these performance metrics is a value between 0 and
1 with a higher number indicating better performance of the
classifier. Due to the imbalance between activity classes (see
Figure 3), we report the weighted performance metrics. Finally,
Kappa statistics were calculated to provide a measure of agreement
beyond that expected by chance.

Results

Figure 3 shows the distribution of the labeled video data and the
merging of the 10 labeled subcategories into the six main target
physical activity types. Total time with annotated video recordings
was 37.9 hr, ranging from 1.6 hr for running to 17.5 hr for sitting.
The Kappa value for the interrater agreement between the scoring
by the two independent raters was .96.

For the dual accelerometer setup, overall accuracy in detecting
the six target physical activity types was similar for the 1 s (95%),
3 5 (96%), and 5 s (96%) window lengths. The corresponding
overall accuracy was marginally lower when based on the single
thigh accelerometer recordings, that is, 92%, 93%, and 93%,
respectively. The overall accuracy was reduced to 80%, 84%,
and 84% when based on the single back accelerometer recording.
Furthermore, the Kappa values for the dual accelerometer setup and
different window lengths were 0.91 (1 s), 0.92 (3 s), and 0.92 (5 s),
respectively. The corresponding Kappa values for the thigh setup
were .82 (1), .85 (3 s), and .85 (5 s), whereas for the back setup the
values were .69 (1 s), .74 (3 s), and .74 (5 s), respectively.

Table 1 shows the performance metrics for detecting the six
target physical activity types, based on the dual and single accel-
erometer setups and using 5-s windowing. Overall, precision,
sensitivity, and specificity were high for detecting all six target
physical activity types when based on the dual accelerometer
recording. When based on a single accelerometer setup, the
performance metrics were high (=80%) for all target physical
activity types except lying down when based on the single thigh
accelerometer recording (i.e., precision 77%, sensitivity 64%) and
standing when based on the single back accelerometer recording
(i.e., precision 64%, sensitivity 54%).
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Figure2 — Example of an 80-min recording period from one subject. The lower panels show the accelerometer recordings from thigh (e) and back (d).
The middle panels show the labeled PATs based on the video recordings (c) and the predicted PATs (b) using a window size of 5 s. The upper panel shows
the instances with true and false predictions (a). PATs = physical activity types.

Figure 4 shows the confusion matrixes for the dual (a) and
single (b and c) accelerometer setups using 5-s windowing. For
the back accelerometer recording, misclassifications were most
pronounced for standing, that is, 37.7% of the time labeled as

standing was misclassified as sitting (Figure 4b). For the thigh
accelerometer recording, the poor detection of lying was mainly
explained by 28.7% of the samples being misclassified as sitting
(Figure 4c).
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Figure 3 — Time distribution of the labeled video data for each subcategory and the six target physical activity types.

Table 1

Performance Metrics for Detecting the Six Target Physical Activity Types and Postures for the Dual and
Single Accelerometer Setups, Using 5-s Windowing for Data Extraction

Sensor setup and activity type Precision

Sensitivity

Specificity

Back and thigh

Lying down 0.93 [0.83, 1.00]
Sitting 0.99 [0.98, 1.00]
Standing 0.88 [0.82, 0.93]
Walking 0.88 [0.83, 0.93]
Running 0.89 [0.81, 0.98]
Cycling 0.94 [0.92, 0.97]
Back
Lying down 0.93 [0.83, 1.00]
Sitting 0.80 [0.71, 0.88]
Standing 0.64 [0.54, 0.74]
Walking 0.82 [0.74, 0.91]
Running 0.89 [0.79, 0.98]
Cycling 0.86 [0.74, 0.97]
Thigh
Lying down 0.77 [0.61, 0.94]
Sitting 0.86 [0.78, 0.95]
Standing 0.90 [0.86, 0.94]
Walking 0.86 [0.79, 0.93]
Running 0.91 [0.83, 0.99]
Cycling 0.93 [0.89, 0.98]

0.99 [0.97, 1.00]
0.99 [0.97, 1.00]
0.87 [0.84, 0.91]
0.90 [0.85, 0.96]
0.91 [0.83, 1.00]
0.92 [0.86, 0.98]

0.99 [0.97, 1.00]
0.86 [0.81, 0.92]

0.99 [0.99, 1.00]
0.99 [0.98, 1.00]
0.98 [0.97, 0.99]
0.98 [0.97, 0.99]
1.00 [0.99, 1.00]
1.00 [0.99, 1.00]

0.99 [0.97, 1.00]
0.88 [0.85, 0.92]

0.54 [0.47, 0.60]
0.88 [0.82, 0.95]
0.87 [0.76, 0.97]
0.83 [0.72, 0.94]

[
[
0.95 [0.92, 0.97]
0.97 [0.95, 0.98]
1.00 [0.99, 1.00]
0.99 [0.99, 1.00]

0.64 [0.49, 0.79]
0.88 [0.76, 1.00]
0.88 [0.85, 0.91]
0.89 [0.84, 0.95]
0.91 [0.87, 0.95]
0.90 [0.80, 1.00]

0.98 [0.97, 1.00]
0.95 [0.93, 0.97]
0.99 [0.98, 1.00]
0.97 [0.96, 0.98]
0.98 [0.96, 1.00]
1.00 [0.99, 1.00]

Note. Values are mean calculated across participants with 95% confidence intervals in parentheses.

Discussion

The current results indicate that key daily physical activity types
can be detected by a XGBoost classifier in a free-living setting with
high overall accuracy. The overall accuracy was marginally better
for the dual accelerometer setup compared to the single thigh
accelerometer setup, while the overall accuracy for the single back
accelerometer setup was markedly lower. The lower overall accu-
racy for the single accelerometer setups was mainly explained by
poor detection of lying down (based on the thigh accelerometer
recording) and standing (based on the back accelerometer

recording). In other words, a single back accelerometer seems to
provide limited possibilities for discriminating between sitting and
standing, while a single thigh accelerometer does not discriminate
well between lying and sitting. Thus, future studies that aim to
assess physical activity types may consider these trade-offs when
choosing sensor setup. The window length for processing the
accelerometer data had minor influence on overall accuracy, except
when using the single back accelerometer setup.

Numerous studies have been published in recent years, focus-
ing on the validity of machine learning techniques to detect
physical activity types based on accelerometer recording
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Figure 4 — Confusion matrixes for the dual (a) and single accelerometer setups (b and c) based on classification using 5-s windows. The labeled

physical activity types are shown in the rows, while the predicted physical activity types are shown in the columns. Values are row percentages. The bar to

the right indicates the shading according to percentages.

(Demrozi et al.,, 2020). Narayanan et al. (2020) used a dual
accelerometer setup like what we used in the present study and
showed that the same key physical activity types can be detected by
arandom forest classifier. However, they applied a semi free-living
protocol for recording of training data, and they did not investigate
if recordings from a single thigh or back accelerometer can be used
to detect key daily physical activity types. Moreover, Giurgiu et al.
(2020) found that thigh-worn accelerometers provide a valid
detection of sedentary behavior, that is, merging sitting/lying
postures. However, the training data were obtained using a semi-
structured protocol in a laboratory setting, and they did not
investigate to what extent the thigh accelerometer recording could
be used to differentiate between a sitting and lying posture. The
current study extends on the above studies, showing that an
XGBoost classifier can be used to accurately detect key daily
physical activity types during free-living based on a dual acceler-
ometer setup. Moreover, a single accelerometer on the back or
thigh can be used to accurately detect most key daily physical
activity types. Although the overall accuracy was better for the
thigh accelerometer recording compared to the back accelerometer
recording (i.e., 93% vs. 84% using 5-s windowing), it should be
noted that this difference was mainly explained by a poor precision
in detecting standing based on the back accelerometer recording
(i.e., standing misclassified as sitting; see Figure 4b). Moreover, it
should be noted that the precision in detecting lying down was
markedly attenuated when based on the single thigh accelerometer
recording. A similar drop in accuracy of detecting standing and
lying down was found in a recent study when based on a single
thigh or lower back accelerometer recording compared to the dual
accelerometer recording; however, the study was performed in a
controlled lab setting (Stewart et al., 2018).

An apparent strength of machine learning classifiers is the
possibility to integrate input from multiple sensors, thereby utiliz-
ing more data to achieve improved accuracy. Our study confirms
this assumption, showing that a dual accelerometer setup outper-
forms a single accelerometer setup on all performance metrics.
However, depending on the research questions, it may be enough to
apply a single accelerometer on the thigh or lower back to record
most key physical activity types. If the primary research question is

related to assessment of “time-on-feet” (standing) and physical
activity (walking, running, and cycling), applying a single thigh-
worn accelerometer can be enough (Crowley et al., 2019; Stevens
et al., 2020). However, if the main purpose is to study sedentary
behaviors and a necessity of differentiating between lying down
and sitting, a back-worn accelerometer is recommended. It should
also be noted that applying a dual-sensor setup in large-scale
studies add both cost and some complexity related to the processing
of data (e.g., the need of synchronizing sensor recordings). More-
over, placing the back sensor requires assistance while a single
thigh sensor in principle can be placed by the participants him-
herself. These additional factors should be considered when
choosing sensor setup in large-scale studies.

Window length has been shown to have impact on the
performance of machine learning classifiers in detecting key daily
physical activity types (Twomey et al., 2018). We used a sampling
frequency of 50 Hz and found that window lengths of 3 or 5 s with
50% overlap for feature generation yielded similar precision,
sensitivity, and specificity for both the dual and single accelerom-
eter setups. Applying a 1-s window with 50% overlap resulted in a
somewhat poorer performance of the XGBoost classifier, espe-
cially when based on the single back accelerometer recording. With
large amounts of the data, it may therefore be advisable to use 5-s
windowing to reduce the computational burden of the machine
learning classifier. We did not investigate window lengths longer
that 5 s, but the probability that a given window contains more than
one physical activity type increases with increased window length.
However, it should be noted that a longer window size can provide
accurate measurement of physical activity with other sensor place-
ments (Farrahi et al., 2019; Willetts et al., 2018).

There are apparent strengths of the current study, such as the
recording of physical activity types during free-living, the explo-
ration of the impact of window lengths on the performance of the
XGBoost classifier, and a training data set of sufficient size to
achieve high overall accuracy. However, there are some limitations
that merit further discussion. First, we included a convenience
sample of healthy adults. Thus, it is not clear if the performance of
the current XGBoost classifier can be generalized to analyzing
back/thigh accelerometer data from other population groups, such
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as children, adolescents, and older adults; that is, this depends on
whether the training data cover the variation in the target popula-
tion. However, for the performance of the XGBoost classifier to
differ significantly between these populations requires a substantial
difference in the movement patterns during walking and running
(static postures [i.e., standing, sitting, lying] and movements during
cycling are not likely to differ between children, adolescents, and
older adults). Although it is unlikely that such differences will have
significant impact on the performance of the classifier, this needs to
be confirmed in further studies. Second, to advance the field
further, it has been advocated that it is necessary to consider the
24-hr compositional nature of key daily physical activity types to
fully understand the physical activity—health associations (Biddle
et al., 2018; Debache et al., 2019; Grgic et al., 2018; Rosenberger
etal., 2019). In addition to the daily physical activity types detected
in the current study, this requires the detection of intensity of
dynamic physical activity types (i.e., walking, running, cycling)
along with accurate detection of sedentary behaviors. For the latter,
it is important to differentiate between sleep and awake time lying
down. Thus, to advance the field further, it is essential that future
work focus on developing measurement systems and analytic
approaches that capture both activity type, intensity within activi-
ties, as well as the sleep—wake phase. Finally, it may be discussed to
what extent the training data in the current study truly represent a
free-living condition. Although there were no constraints on the
physical activity types, we instructed the participants to accumulate
at least a 2-3 min of sitting, standing, lying down, walking, and
running during the recording period. Moreover, the participants
were wearing the chest-mounted GoPro camera throughout the
recording period. Thus, it is possible that the instructions given and
the wearing of the camera influenced the behavior of the partici-
pants. However, the example included in Figure 2 illustrates the
randomness and erratic pattern in shifts between different physical
activity types. The exception was cycling that did not constitute a
natural part of the physical activity types during the recording
period.

Conclusion

Using an XGBoost classifier provides accurate detection of key
daily physical activity types during free-living when based on a
dual accelerometer recording. The overall accuracy in detecting
key daily physical activity types decreased marginally when pre-
dictions were based on single thigh accelerometer recording but
were somewhat poorer when based on the single back accelerome-
ter recording. However, the lowered overall performance was
mainly due to poor detection of lying down (when based on the
thigh accelerometer recording) and standing (when based on the
back accelerometer recording). Depending on the research ques-
tions, it may therefore be enough to record physical activity types
with a single accelerometer on the thigh or lower back.
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