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Abstract
What is a good prior? Actual prior knowledge should
be used, but for complex models this is often not easily
available. The knowledge can be in the form of sym-
metry assumptions, and then the choice will typically
be an improper prior. Also more generally, it is quite
common to choose improper priors. Motivated by this
we consider a theoretical framework for statistics that
includes both improper priors and improper posteriors.
Knowledge is then represented by a possibly unbounded
measure with interpretation as explained by Rényi in
1955. The main mathematical result here is a construc-
tive proof of existence of a transformation from prior to
posterior knowledge. The posterior always exists and is
uniquely defined by the prior, the observed data, and
the statistical model. The transformation is, as it should
be, an extension of conventional Bayesian inference as
defined by the axioms of Kolmogorov. It is an extension
since the novel construction is valid also when replac-
ing the axioms of Kolmogorov by the axioms of Rényi
for a conditional probability space. A concrete case
based on Markov Chain Monte Carlo simulations and
data for different species of tropical butterflies illustrate
that an improper posterior may appear naturally and is
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useful. The theory is also exemplified by more elemen-
tary examples.

K E Y W O R D S

Axioms for statistics, Bayesian inference, Bayesian problems and
characterization of Bayes procedures, foundations and philosophical
topics, Haldane’s prior, Markov Chain Monte Carlo

1 INTRODUCTION

The purpose of this paper is to present and exemplify recent mathematical developments
(Taraldsen, 2019) that allows a theory of statistical inference that includes both improper pri-
ors and improper posteriors. It is based on a replacement of the axioms of Kolmogorov (1933,
pp. 2, 14) by the axioms of Rényi (1955) as suggested by Taraldsen and Lindqvist (2016)
and reviewed briefly in Appendix. This replacement was suggested already by Lindley (1965,
p. xi), but the mathematics for this was not satisfactorily developed then. One recent impor-
tant development is given by the notion of q-vague convergence towards improper priors as
introduced by Bioche and Druilhet (2016). Another recent development linked to improper
priors is given by fiducial inference as reviewed by Hannig et al. (2016). The main math-
ematical contribution in the presentation that follows gives existence and uniqueness of
a posterior law given a model formulated in the full generality given by the axioms of
Rényi.

An often voiced criticism of the use of improper priors in Bayesian inference is that such priors
sometimes do not lead to a proper posterior. This can typically happen in applied settings with
sparse data (Bord et al., 2018), but also in other cases as demonstrated in Section 4.2. Taraldsen and
Lindqvist (2010) explain that this happens if the marginal distribution of the data is not 𝜎-finite.
The dangers of improper posteriors in Markov Chain Monte Carlo (MCMC) methods of inference
are well recognized (Gelfand & Sahu, 1999; Hobert & Casella, 1996). The latter, however, suggest
that a Gibbs sampler with an improper posterior may be used to obtain meaningful inference for
certain model unknowns.

A particular class of problems arise from spatially varying phenomena. They are often mod-
eled using Gaussian random fields, specified by their mean function and covariance function. The
spatial correlation structure of these models is commonly specified to be of a certain form (e.g.,
spherical, power exponential, rational quadratic, or Matern) with a small number of unknown
parameters. Berger et al. (2001) show that common choices of default prior distributions, such
as the constant prior and the independent Jeffreys prior, typically result in improper posterior
distributions for these models.

Berger et al. (2001) first observed this operationally while analyzing a spatial dataset. The
MCMC simulations seemed to give a nice looking posterior, but a few days later the nice looking
posterior had moved to a different location and had a different shape. If the posterior looks fine,
but continually moves around as the MCMC runs on, then MCMC would not be trustworthy
with improper posteriors. It can in practice be impossible based on simulations only to decide if
the simulations have actually converged, and if the resulting posterior is proper. The result can
be different, but seemingly plausible, from one day to the next given random initialization of the
MCMC simulation.
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Between Handcock and Stein (1993) and Berger et al. (2001) the standard prior used was the
constant prior, so there were many articles written over those 8 years that had improper posteriors
without being explicit on this. Improper posteriors are not uncommon, because it is difficult to
determine good objective priors that avoid the problem (e.g., reference priors). It should be noted
that using vague proper priors does not really solve the problem. A vague prior that approximates
an improper prior will result in similar computational problems.

The structure of the remaining parts of this paper is as follows. Section 2 presents three moti-
vating examples. The first exemplify a typical applied problem solved by MCMC methods, but it
is problematic since the posterior is improper. The other two examples involves respectively the
standard scale prior for a Poisson process and the Haldane prior for the binomial. All examples
demonstrate directly the usefulness of allowing improper posteriors.

Section 3 presents the initial ingredients in a theory for uncertain knowledge as presented by
possibly unbounded measures. The main technical result is Theorem 1 which ensures that prior
knowledge PΘ is mapped uniquely to posterior knowledge Py

Θ given data y and a statistical model
P𝜃Y .

Section 4 gives methods with examples for the actual calculation of posterior knowledge. The
most elementary is a direct natural extension of the common formal manipulation with densities.
It is reassuring that this follows as a consequence of the general theory from Section 3. For more
complicated cases an indicated MCMC method can be used, but further developments can and
should be developed.

Section 5 provides a final discussion including more comments on prior work by Kol-
mogorov (1933), Jeffreys (1939), Lindley (1965), Rényi (1970), Berger (1985), Schervish (1995),
Robert (2007), Taraldsen and Lindqvist (2010), and Taraldsen and Lindqvist (2013). Finally,
Appendix presents further measure theoretic considerations. It is intended for the more math-
ematically oriented reader. The main result is Theorem 2 which proves existence of a unique
conditional law Pt on a Rényispace.

2 THREE MOTIVATING EXAMPLES

Within the theory to be presented here, improper posteriors as such are well-defined mathe-
matically, and interpretable as a representation of the state of knowledge. It is hence of interest
to develop numerical methods for computing such posteriors for complex models that are used
in practice. One possible method is proposed by Tufto et al. (2012, appendix S4) in the context
of inference from spatial mark-recapture data. The resulting improper density for the expected
life-time of certain butterflies is illustrated in Figure 1.

The key idea is to consider the family of posteriors obtained from restriction to intervals, and
then glue the resulting posteriors together in a postprocessing step. The general theory presented
in Section 3 implies that this simple idea represents a valid approach. Knowledge is here not
represented by a probability measure, but is represented by an unbounded measure. This example
is discussed in more detail in Section 4.2

As a simpler motivating example, suppose you observe a homogeneous Poisson process.
Assume your state of knowledge about the rate parameter 𝜆 > 0 is appropriately represented by
a scale invariant prior density (Jeffreys, 1939, p. 122)

𝜋(𝜆) = c
𝜆
. (1)



4 TARALDSEN et al.

F I G U R E 1 An estimate of an improper posterior density. It is obtained by alignment of kernel density
estimates based on separate MCMCMarkov Chain Monte Carlo runs. Each run is restricted to different
subintervals

This density is not a probability density. The positive constant c is arbitrary, and carries no infor-
mation. Similar arbitrary constants will play an important role in the theory in later parts of this
paper.

The density of the number X of Poisson process occurrences in the interval (0, t] is

f (x|𝜆) = (𝜆t)x

x!
e−𝜆t, x = 0, 1, 2, … (2)

The posterior corresponding to observing zero occurrences follows by multiplying the prior by
the likelihood as usual. The result is then an improper posterior

𝜋(𝜆|X = 0) = c e−𝜆t

𝜆
. (3)

This posterior knowledge for 𝜆 is different from the initial prior knowledge in Equation (1). High
values for 𝜆 are less reasonable given the observation X = 0. Further updating can be done with
this posterior as a prior, and this is consistent with only one updating based on the initial prior.
We claim that this is a correct way of incorporating the information given by X = 0. Section 3
introduces the necessary mathematics, and its interpretation. The previous argument is then a
special case of the general theory.

A related example is the Beta posterior density

𝜋(p|x) = c px−1(1 − p)n−x−1, (4)

for the success probability p after observing x successes out of n trials in a Bernoulli process. This
corresponds to the improper Haldane (1932) prior
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𝜋(p) = c p−1(1 − p)−1, (5)

discussed by Jeffreys (1939, p. 123). The Haldane prior is the invariant prior corresponding to a
natural group structure. Interested readers may consult Jaynes (1968), Eaton (1989), and Terenin
and Draper (2017) for further explanation. Assuming a Haldane prior is hence equivalent with a
symmetry assumption similarly to assuming the scale invariant prior in Equation (1).

The observation of the number of successes x results in a corresponding updating of the uncer-
tainty associated with p. The posterior in Equation (4) contains the information given by the
binomial model, the observation x, and the prior in Equation (5). The posterior, however, is in
this case improper for x = 0 and for x = n. There is nothing wrong with observing x = 0 or x = n,
and a theory for inference should include these possibilities. This theory is presented next.

3 A THEORY FOR UNCERTAIN KNOWLEDGE

3.1 Knowledge and uncertainty

What is knowledge? Knowing the definition of the exponential function is a possible example.
Another example could be that the second law of Newton gives a very precise description of cer-
tain phenomena in nature. A third example could be any of the claims made by Sigmund Freud
regarding the behavior of humans. Depending on the situation at hand, many would agree that
there is uncertainty involved in these examples. Both knowledge and uncertainty are concepts
used in everyday life without any strict definition. The interpretation depends on the context.
Usage of these terms in the context of statistics requires more precision.

A concrete example is the electron rest mass. According to Wikipedia in 2021 it equals
9.1093837015(28) × 10−31kg. The number 28 in parenthesis gives the standard uncertainty as
required and defined in the Guide to the expression of uncertainty in measurement (GUM) by the
Joint Committee for Guides in Metrology (JCGM, 2008). It is important to recognize that there
is an international standard for reporting uncertainty. The JCGM, chaired by the Director of the
BIPM (Bureau international des poids et mesures), was formed in 1997 by the seven International
Organizations that had prepared the original versions of the GUM.

The electron mass exemplifies that any quantity in physics determined by measurements, with
the exception of the seven quantities defining the basic SI units (BIPM, 2019), has a corresponding
uncertainty. The same is true for any estimate obtained from all kinds of data considered by statis-
ticians. The standard uncertainty equals, in the Bayesian interpretation of the GUM, the SD of
the probability distribution encoding the uncertain knowledge regarding the electron rest mass.

Uncertain knowledge is represented by a probability distribution in conventional Bayesian
statistics. This is exemplified by the probability distribution for the electron rest mass.
O’Hagan (2019) exemplify more generally elicitation of expert knowledge concerning an
uncertain quantity. The knowledge is expressed in the form of a probability distribution. The
notion of a probability distribution is defined mathematically by the axioms of Kolmogorov
(1933, pp. 2, 14). Knowledge in this context is always uncertain knowledge, and the term uncer-
tain knowledge is hence replaced simply by the term knowledge. We choose to say simply prior
knowledge instead of prior uncertain knowledge. It is even customary to speak directly of the prior
and the posterior as in the title of this paper.

Bayesian inference is in principle embarrassingly simple and general: Prior knowledge is
transformed uniquely to posterior knowledge by the observed data and the statistical model
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for the data. In the simplest cases this is proved as a consequence of Bayes theorem, but the
proof in full generality is more complicated. It was given by Kolmogorov (1933, p. 53, eq. 1).
With this Kolmogorov developed further the measure theoretic formulation of probability the-
ory given by Frechet (1930) and others. Kolmogorov (1933, p. v) emphasize especially the theory
of conditional probabilities and conditional expectations as important novel contribution in his
book.

The main mathematical result below is a generalization of Kolmogorov’s theory of condi-
tional probabilities to include the case where knowledge is represented by a measure which
can be unbounded. With this we develop further the axiomatic theory of probability formu-
lated by Rényi (1955). The resulting Theorem 1 gives conditions such that prior knowledge is
transformed uniquely to posterior knowledge by the observed data and the statistical model
for the data also when knowledge is represented by a possibly unbounded measure. We con-
sider this to be a most important and needed result given the widespread use of improper
priors.

3.2 Mathematical preliminaries

A complete understanding of the material to be presented requires familiarity with measure
theory as presented by Rudin (1987). For completeness we recall some of the basic defini-
tions and recap some less standard definitions. This is necessary to avoid confusion since some
well-recognized writers use conventions that deviate from what we consider to be standard. This
is exemplified by Casella and Berger (2001, p. 2) who defines an event to be any subset of a sample
space, and by Halmos (1950, p. 30) who defines a measure to be a countably additive set function
defined on a ring of sets.

A family  of subsets of a set  is a 𝜎-algebra if it is closed under complements and countable
unions. A set A ⊂  is by definition measurable if A ∈  . A measurable space is a set equipped
with a 𝜎-algebra. A measure 𝜇 is a countably additive function 𝜇 ∶  → [0,∞] where  is a
𝜎-algebra (Rudin, 1987, p. 16). This means that 𝜇(∅) = 0 and 𝜇(A1 ∪ A2 ∪ … ) = 𝜇A1 + 𝜇A2 +
… when A1,A2, … are disjoint. A measure space  is a measurable space equipped with a
measure 𝜇.

Definition 1 (Admissible condition). An admissible condition A in a measure space equipped
with the measure 𝜇 is a measurable set A such that 0 < 𝜇A < ∞.

This definition is as given by Taraldsen and Lindqvist (2016, definition 1, p. 5009) and by
Rényi (1970, p. 72). A more general definition of an admissible condition is defined by Rényi (1970,
p. 38) for the more general case where  is a conditional probability space. We discuss this in
more detail in Appendix.

The measure 𝜇 is a probability measure and  is a probability space if 𝜇 = 1. A measure
𝜇 is finite if 𝜇 <∞. More generally, the measure 𝜇 and the measure space  are by definition
𝜎-finite if  is a countable union of admissible conditions. Even more generally, the measure 𝜇
and the measure space  are by definition s-finite if 𝜇 is a countable sum of finite measures (Last
& Penrose, 2017).

A function 𝜙 ∶  →  is measurable if B = 𝜙−1(A) = (𝜙 ∈ A) = {x|𝜙(x) ∈ A} is measurable
whenever A is measurable. The push-forward measure 𝜇𝜙 = 𝜇 ◦ 𝜙−1 is the measure defined by
𝜇𝜙(A) = 𝜇(𝜙 ∈ A). If 𝜇 is s-finite, then it follows that 𝜇𝜙 is s-finite. If 𝜇 is 𝜎-finite, then it does not
follow that 𝜇𝜙 is 𝜎-finite. This motivates Definition 2.
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Definition 2 (𝜎-Finite function). Let ( , , 𝜇) be a measure space and let  be a measurable
space. A measurable function 𝜙 ∶  →  is 𝜎-finite if the push-forward measure 𝜇𝜙 is 𝜎-finite.

It follows as a consequence that 𝜇 is 𝜎-finite if there exists a 𝜎-finite 𝜙. Definition 2 is as used
and discussed further by Taraldsen and Lindqvist (2010), Taraldsen and Lindqvist (2016), and
is a generalization of the concept of a regular random variable defined by Rényi (1970, p. 73).
The push-forward measure 𝜇𝜙 of a 𝜎-finite measure 𝜇 by a 𝜎-finite measurable function 𝜙 is a
𝜎-finite measure. Furthermore, it follows that a conditional measure 𝜇y concentrated on the level
sets (𝜙 = y) = {x|𝜙(x) = y} with the property 𝜇y() = 1 can be defined. This is explained in more
elementary terms by Taraldsen and Lindqvist (2010). The concept of a conditional measure is
discussed in more technical detail in Appendix.

The main mathematical results in the following is given by Theorem 1 and Theorem 2. These
theorems prove that the conditional measure 𝜇y concentrated on (𝜙 = y) can be defined also
for any measurable function 𝜙 for, respectively, the case of a 𝜎-finite space  and a conditional
probability space  . The normalization 𝜇y() = 1 is then not possible in general.

A statistical model is according to currently accepted theories defined as an indexed family
of probability measures on the sample space (McCullagh, 2002, p. 1225). The index is the model
parameter. We need an additional technical requirement. We will assume that the indexed family
of probability measures is a measurable family of probability measures.

Definition 3 (Measurable family of probabilities). Let 𝜇y be a probability measure on a mea-
surable space ( , ) for each y in a measurable space  . The family {𝜇y|y ∈ } is a measurable
family of probability measures if {y|𝜇y(A) ≤ 𝛼} is measurable for all real 𝛼 and all measurable A.

In the context of probability and statistics a sample space is by definition a measurable
space. An event is a measurable set in a sample space. This corresponds to the axioms of Kol-
mogorov (1933, pp. 2, 14) which require that ∅ is an event, that Ac is an event when A is an
event, and that A1 ∪ A2 ∪ … is an event when A1,A2, … are events. The underlying abstract
space (Ω,  ,P) is assumed by Kolmogorov (1933) to be a general probability space. It is abstract in
the sense of never being specified. It is simply assumed to exist and obeying the axioms. Actual
existence must be proved in every concrete modelling case.

We will assume that the underlying abstract (Ω,  ,P) is allowed to be a general measure space.
An admissible condition A is then from the above defined to be an event such that 0 < P(A) < ∞.
The other definitions given above are similarly inherited. This is next exemplified and motivated
by the uniform law on the real line. Two recipes for obtaining conditional probabilities are derived
along the way. The first recipe holds for conditioning on a general 𝜎-finite random quantity as
explained by Taraldsen and Lindqvist (2010), but the second holds for a general random quantity
and is a novelty here. In the latter case the result is not a single conditional probability, but a
family of probabilities indexed by the admissible conditions.

3.3 Conditional probabilities

Symmetry is important in physics, and also in the context of statistics. Knowledge can in some
cases be determined by assuming symmetry. The standard prior knowledge PΘ for a location
parameter Θ with sample space ΩΘ = R is given by letting PΘ(A) equal the length of A. The mea-
sure PΘ is uniquely determined, up till multiplication with a positive constant, by being shift
invariant. In this case PΘ(ΩΘ) = ∞ ≠ 1, and this shows that PΘ is not a proper prior: It is not a
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probability distribution. The prior PΘ is, however, 𝜎-finite since the sample space ΩΘ = R is a
countable union of finite intervals An = [−n,n]. A random quantity Θ is more generally said to
be 𝜎-finite if the corresponding knowledge PΘ is 𝜎-finite as defined by Definition 2.

Any random quantity, including Θ, is a function defined on the underlying sample space Ω
equipped with a law P. It is called a random quantity since there is uncertainty associated with Θ.
This uncertainty, the knowledge PΘ of Θ, or simply the law of Θ, is defined as in the theory of
Kolmogorov (1933, eq. 1, p. 21) by Taraldsen and Lindqvist (2010) to be

PΘ(A) = P(Θ ∈ A). (6)

A random quantity Θ is, by definition, a function Θ ∶ Ω → ΩΘ such that (Θ ∈ A) is an event
for all events A ⊂ ΩΘ. This ensures that PΘ is well defined by Equation (6). The reader is hereby
warned and reminded that the notation (Θ ∈ A) is ambiguous. It does not mean that Θ is an ele-
ment in A, but it denotes the event {𝜔|Θ(𝜔) ∈ A} in Ω. This convention, and similar conventions
for other events determined by conditions on random quantities, is used by Kolmogorov (1933,
p. 22), and other researchers in probability (Doob, 1953, p. 11). We apologize for this reminder,
but feel that it is necessary since there are many authors in the mathematical literature that do
not use this convention.

It is assumed above, and throughout this paper, that Ω is equipped with a positive measure
P defined on the family  of events. This is as in the theory of Kolmogorov, but the requirement
P(Ω) = 1 is dropped. The sample space Ω is simply assumed to be a measure space (Rudin, 1987,
p. 16, def. 1.18).

The above location prior assumption gives that

P(Ω) = P(Θ ∈ ΩΘ) = PΘ(ΩΘ) = ∞, (7)

so the underlying law P can not be a probability measure in this case. The law P is, however,
𝜎-finite sinceΩ equals the countable union of the events Bn = (−n ≤ Θ ≤ n) and P(Bn) = 2n < ∞.
It turns out, as explained below, that assuming P to be 𝜎-finite is sufficient for the construction
of a transformation from a 𝜎-finite prior PΘ into a 𝜎-finite posterior Py

Θ given data Y (𝜔) = y and a
statistical model P𝜃Y .

Taraldsen and Lindqvist (2010) define the conditional knowledge P𝜃(A) = P(A|Θ = 𝜃) for the
case where Θ is 𝜎-finite. It is defined as the Radon–Nikodym derivative of the measure 𝜇(C) =
P(A ∩ (Θ ∈ C)) with respect to PΘ. This means that 𝜇(d𝜃) = P𝜃(A)PΘ(d𝜃), and implies

E(𝜓(Θ)A) = ∫ 𝜓(𝜃)E𝜃(A) PΘ(d𝜃) = E[𝜓(Θ)E(A|Θ)]. (8)

This is a generalization of the common double expectation formula used in probability the-
ory. The case A = Ω gives as a consequence that P𝜃(Ω) = 1, so the conditional knowledge is
normalized in this case. The underlying sample space Ω is hence equipped with a measur-
able family (P𝜃|𝜃 ∈ ΩΘ) of conditional probability measures even though the measure P itself is
unbounded. Taraldsen and Lindqvist (2010) discuss this in nontechnical terms with many more
examples.

Consider next the random variable

T = (0 ≤ Θ ≤ 1). (9)
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where again PΘ(A) is the length of A ⊂ R. Note that here, and in the previous paragraph, we
identify an event and the corresponding random variable given by its indicator function. This
convention is as used by Finetti (1972, p. xxiii), Hartigan (1983, p. 14), and many other authors.
Again, we apologize for this reminder, but feel that it is necessary since again there are other
writers that do not use this convention. Many authors write 𝜒A or 1A for the indicator function of
an event, but we prefer to write simply A for both the event and the indicator function.

The indicator variable T takes only the values 0 and 1, and

P(T = 0) = ∞. (10)

The measure PT is then not 𝜎-finite, so the indicator variable T is not 𝜎-finite. Another example
of a non-𝜎-finite variable is the number X of occurrences in the interval (0, t] of the homogeneous
Poisson process considered in the Introduction.

The previous exemplifies that there exist many natural random quantities that are not 𝜎-finite.
The next aim is to define the conditional law Pt for these case, and more generally for any random
quantity T. The definition will be a strict generalization of the above definition of P𝜃 for the case
where Θ is 𝜎-finite.

An event B that fulfills the condition 0 < P(B) < ∞ is by Definition 1 an admissible condition.
The reason is that the conditional knowledge P(⋅|B) defined by

P(A|B) = P(AB)
P(B)

, (11)

gives a probability measure on Ω for each admissible B. Consequently, the conditional
probability

Pt(A|B) = P(A|B,T = t). (12)

can be defined as above Equation (8), but with P(⋅) replaced by P(⋅|B). The resulting conditional
knowledge given T = t is hence represented by a family {Pt(⋅|B)} of probability measures indexed
by the admissible conditions. This is similar to how the knowledge P is represented, and inter-
preted, by the family {P(⋅|B)} of probability measures as explained by Rényi (1970, pp. 33-37). The
initial ingredients in the theory of Rényiare explained in Appendix.

3.4 Posterior knowledge

We next show how a single posterior knowledge Pt is obtained in the most general case of an
arbitrary random quantity T. Let QT be a 𝜎-finite measure that dominates PT . This assumption
means that QT(N) = 0 implies PT(N) = 0. The measure QT is not unique, but it always exists since
P is assumed to be 𝜎-finite. A proof is given by Lemma 1 in Appendix. The conditional knowledge
Pt is then defined by letting Pt(A) = P(A|T = t) be the Radon–Nikodym derivative of the measure
𝜇(C) = P(A ∩ (T ∈ C)) with respect to QT . This means that 𝜇(dt) = Pt(A) QT(dt). In this case it
does not follow as a consequence that Pt(Ω) = 1. In fact, the conditional knowledge Pt, is only
unique up till multiplication by an arbitrary positive c(t). This ambiguity is a consequence of the
choice of QT . The conditional knowledge Pt is a probability measure only when T is 𝜎-finite, and
then only by the choice QT = PT .
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The corresponding conditional expectation gives the important disintegration

E(𝜓(T)A) = ∫ 𝜓(t)Et(A) QT(dt), (13)

valid for any positive random variables A and 𝜓(T). This corresponds to the double expectation
formula used in ordinary probability theory and generalizes Equation (8).

The result so far is the construction of a posterior knowledge Pt(⋅|B) for any admissible con-
dition B, and a construction of a single posterior knowledge Pt unique up till multiplication by a
positive c(t). Theorem 2 in Appendix shows that the two constructions are linked by the relation:

Pt(AB) = Pt(A|B)Pt(B). (14)

Equation (14) can also be used to construct Pt starting from all Pt(⋅|B) as demonstrated by
Taraldsen et al. (2017). The above construction using the dominating measure QT is more straight-
forward. The construction gives additionally a link between the theory of conditional probability
spaces by Rényi (1970) and the theory of disintegration by pseudo-image measures as presented
by Bourbaki (1959, VI.44).

A statistical model is given by a measurable family {P𝜃Y |𝜃 ∈ ΩΘ} of probability measures P𝜃Y on
the data space ΩY indexed by the model space ΩΘ. Measurability of the family is as in Definition 3
with  = ΩY and  = ΩΘ. The model Θ and the data Y are random quantities so they are mea-
surable functions Θ ∶ Ω → ΩΘ and Y ∶ Ω → ΩY . The previous arguments have the following
important consequence for Bayesian inference. It states that observed data y and a statistical
model gives a well-defined mapping from prior PΘ knowledge to posterior Py

Θ knowledge.

Theorem 1. Assume that a measurable family of probability measures is specified for the data, and
that the data is given. This determines a transformation of 𝜎-finite prior knowledge into a unique
𝜎-finite posterior knowledge.

Proof. The proof follows from the above arguments, but we will nonetheless summarize the
main ingredients. The assumption implies that a joint law of data and model (Y ,Θ) is given by
PY ,Θ(dy, d𝜃) = P𝜃Y (dy)PΘ(d𝜃). It can hence be assumed that (Y ,Θ) ∶ Ω → ΩY × ΩΘ with the joint
law determined by the underlying 𝜎-finite law P on Ω. The prior law PΘ is then mapped into the
posterior law Py

Θ given by Py
Θ(A) = Py(Θ ∈ A). The posterior law Py is defined by the disintegra-

tion E[𝜓(Y )A] = ∫ 𝜓(y)Py(A) QY (dy)where QY is a 𝜎-finite measure that dominates PY . Existence
and uniqueness of Py is a consequence of the Radon–Nikodym theorem. The choice of QY is not
unique, but different choices give equivalent posteriors. The notion of c(y)Py being equivalent
with Py is motivated by the interpretation by the proper probabilities Py(A|B) = Py(AB)∕Py(B) for
0 < Py(B) < ∞. This corresponds to Equation (14) which is valid more generally: If 0 < P(B) < ∞,
then Py(⋅|B) can be defined from P(⋅|B) and Y using the Radon–Nikodym theorem directly. This
gives a family Py(⋅|B) of conditional probabilities indexed by B. Equation (14) ensures that the
definition of the posterior in terms of a single posterior or as a family of conditional probabilities
indexed by B’s are consistent. ▪

The claimed uniqueness above does not mean that the posterior Py
Θ is a unique 𝜎-finite mea-

sure for each y. It does not even mean that Py
Θ is a measure for almost all y. It can, however, be

represented as a 𝜎-finite measure if it is additionally assumed that ΩΘ is a Borel space. This is
discussed and explained in more detail in Appendix.
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3.5 Interpretation

Finally, we will explain how knowledge represented by a measure K can be interpreted. This
interpretation is used for the case where K is a marginal or a conditional knowledge, or the under-
lying law P, and for any sample space on which K is defined. The knowledge K is interpreted by
considering

K(A|B) = K(AB)
K(B)

. (15)

This defines the family {K(⋅|B) | 0 < K(B) < ∞} of conditional probability measures indexed by
the family of admissible conditions B. The interpretation of each conditional probability can be,
depending on the situation at hand, in a frequentist sense (Kolmogorov, 1933, pp. 3-5) or in a
subjective sense (Lindley, 2014, p. 19). This is explained in a plethora of introductory books on
probability and statistics.

The difference now is that the single probability measure of Kolmogorov is replaced by a con-
sistent family of probability measures. Consistency is defined and discussed in Appendix. The
interpretation as given by the interpretation of all conditional probabilities in Equation (15) is
explained in more detail by Rényi (1970, pp. 33-37). Additional interpretation is given by the
definition of what it means to sample from an unbounded measure. This is described further
down in Section 4.3.

A particular consequence of the interpretation is that we will consider the knowledge K to
be equivalent with the knowledge cK for any positive c since K and cK define the same family
of conditional probabilities. If K depends on some quantity q then c can also depend on q. This
is exemplified in the proof of Theorem 1. Again, K and cK define the same family of conditional
probabilities.

This interpretation is in particular used for the priors and posteriors for the butterfly, Pois-
son process, and Bernoulli process examples in Section 2. It is most important since it gives
the needed interpretation of the mathematical theory in the context of statistical inference. This
interpretation is in particular used for both the prior and the posterior. They are on an equal
footing, and this is how uncertain knowledge is represented in a statistical model of a real world
phenomena.

4 CALCULATING POSTERIOR KNOWLEDGE

4.1 Conditional densities and Bayesian inference

Routine Bayesian argumentation is given by specification of a prior density 𝜋(𝜃), and a family
of probability densities f (y|𝜃) for the data y conditionally given the model 𝜃. Combined with
observed data y, this gives the posterior density 𝜋(𝜃|y). The observation and the model gives hence
a transformation of the prior into the posterior. The symbols f and 𝜋 are used here, and in the fol-
lowing, as generic symbols for densities and conditional densities. It will next be demonstrated
how this can be justified also with improper priors and posteriors as a special case of the gen-
eral definition of a conditional knowledge given in Section 3. This will in particular justify the
inference based on sampling from the Poisson process and the Bernoulli distribution discussed
in Section 2.
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The above assumptions mean more precisely that the probability model for the data Y given
a model Θ = 𝜃 is given by

P𝜃Y (dy) = f (y|𝜃) 𝜇(dy), (16)

and the prior knowledge for the model Θ is given by

PΘ(d𝜃) = 𝜋(𝜃) 𝜈(d𝜃), (17)

with 𝜎-finite measures 𝜇 and 𝜈. Typical examples are given by Lebesgue measure and
counting measure, but the theory is not restricted to these cases. Interesting examples
include measures concentrated on a manifold such as a circle, a sphere, or more exotic
objects.

Equations (16) and (17) are equivalent with

PY ,Θ(dy, d𝜃) = f (y, 𝜃) 𝜇(dy)𝜈(d𝜃), (18)

where

f (y, 𝜃) = f (y|𝜃)𝜋(𝜃). (19)

The assumption P𝜃Y (ΩY ) = 1 ensures in particular that the previous two equations imply
Θ ∼ 𝜋(𝜃) 𝜈(d𝜃) as stated in Equation (17).

From Theorem 1 in Section 3 it follows that a unique posterior Py
Θ(d𝜃) is defined. Starting with

a joint density as in equation (18) the posterior is given, as proved below, by Py
Θ(d𝜃) = 𝜋(𝜃|y) 𝜈(d𝜃)

with

𝜋(𝜃|y) = c(y)f (y, 𝜃). (20)

There is no need for the arbitrary constant c(y) since two proportional densities are equivalent
when considered as conditional densities for the parameter 𝜃. The c(y) carries no information,
but is included to show the arbitrariness of the y dependence.

The proof of Equation (20) with c(y) = 1 follows by observing that PY is dominated by QT = 𝜇

since

P(Y ∈ C) = ∫C

(
∫ f (y, 𝜃) 𝜈(d𝜃)

)
𝜇(dy). (21)

The disintegration

P[(Θ ∈ A) ∩ (Y ∈ C)] = ∫C
Py
Θ(A) 𝜇(dy) = ∫C

(
∫A

f (y, 𝜃) 𝜈(d𝜃)
)
𝜇(dy), (22)

proves that 𝜋(𝜃|y) = f (y, 𝜃) with respect to the 𝜎-finite measure 𝜈 as claimed. A different choice
for the dominating measure QT will give a different c(y) normalization of 𝜋(𝜃|y), but the condi-
tional knowledge is unchanged by this. All together, this gives a unique transformation of a prior
knowledge into a posterior knowledge.
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F I G U R E 2 Map showing the spatial location of the traps used in the mark-recapture example (Devries &
Walla, 2001, reproduced from). Solid lines represent trails. Numbers designate individual replicate trap sites in
the sampling areas (1–5). Scale bars are in meters

4.2 A mark-recapture model for butterflies

The previous subsection proved that the posterior is simply given by the product of the
likelihood with the prior. This is exactly as in classical theory for cases described sim-
ply by densities, but without the need of a normalization constant. In more compli-
cated cases the likelihood may not be available, but Theorem 1 ensures existence of a
unique posterior more generally. To illustrate the application of our new theoretical frame-
work in a realistic applied setting we consider MCMC based Bayesian inference based
on spatially explicit mark-recapture data for different species of tropical butterflies (Tufto
et al., 2012).

Data were collected using 25 traps located at permanent spatial location separated by distances
ranging from about 40 m up to 2 km as shown in Figure 2. During sampling, the traps were baited
with fermented fruit that easily attracts species of fruit feeding butterflies. Sampling was con-
ducted approximately concurrently once every day, for five consecutive days during the first 10
days of each month over a period from 1994 to 2004. When captured, previously unmarked indi-
viduals were given unique marks before being released. For each marked individual the complete
subsequent mark-recapture history was then recorded consisting of a sequence of trap identities
(if recaptured) or zeros (if not recaptured) at each subsequent sampling time point. For the nine
species used in the study the number of marked individuals were between 102 and 1972 and the
number of recaptures between 17 and 709. Tufto et al. (2012) and Devries and Walla (2001) give
more details.

It is assumed that all individuals disperse according to independent Brownian motions in two
dimensions. The position of individual k at the ith sampling event, conditional on its position at
the (i − 1)th sampling event, is z(k)i |z(k)i−1 ∼ N(z(k)i−1, 𝜎

2(ti − ti−1)I2), where 𝜎2 is the infinitesimal vari-
ance. Furthermore, the adult life span follows an exponential distribution with mortality rate 𝜆.
The model assumes that an individual becomes trapped with probability one if its location z(k)i
is within the trap attraction distance v of any given trap at the time ti of a given sampling event.
Individuals that are not captured are thus at a distance greater than v from all traps at the time of
a given sampling event. Hence, not capturing an individual also provide some information about
the model parameters.
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In addition to the primary model parameters 𝜎2, 𝜆 and v, the statistical model also involves,
for each marked individual k, a latent time of death Tk and the latent spatial locations z(k)i at all
sampling time points up to time Tk. Conditional on the observed mark-recapture history of each
individual, the primary model parameters and Tk, these latent locations have a multivariate Gaus-
sian distribution truncated to locations inside and outside distances v from the different traps.
The other model quantities similarly have simple conditional distributions facilitating inference
via Gibbs sampling.

Given limited knowledge about the primary model parameters, independent, improper scale
priors were used for 𝜎,𝜆, and v by Tufto et al. (2012). This translates to a uniform improper prior on
the log of expected adult lifespan log(1∕𝜆). While diagnostic checks of the resulting Markov-chain
did not in any way indicate an improper posterior, it follows that the posterior distribution for the
above model must be improper with this choice of prior as explained next.

Impropriety follows from a notable feature of mark-recapture data: We can not know if a given
individual is alive and not captured or dead at any given sampling event after its last capture. For
a finite number of sampling time points, the probability of not recapturing an individual after its
last recapture (and the total likelihood) therefore tends to a positive limiting value as the expected
adult lifespan tends to infinity (or equivalently, when the adult mortality rate tends to zero) since
the probability that an individual happens to be outside the attraction distance v of all traps at all
sampling time points after its last recapture is strictly positive. Combined with a uniform prior
on the log of expected adult life span, the resulting posterior density also tends to a limiting value
for large values of log(1∕𝜆), making the joint posterior distribution improper.

We have argued that there is nothing inherently incoherent with improper posteriors, but that
improper posteriors is a valid outcome of Bayesian inference involving improper priors. Com-
puting improper posteriors is therefore of interest. This is discussed more generally in the next
section, but the concrete example is here explained first.

Instead of running a single Markov chain, a possible method used by Tufto et al. (2012,
appendix S4) is to run several Markov chains restricted to different subintervals for expected adult
longevity log(1∕𝜆). For each Markov chain, an estimate of the marginal posterior density of this
parameter (up to an unknown constant) can be computed using for example kernel density esti-
mation. To account for the restricted domain of the truncated target density, the reflection method
of Silverman (1986, p. 30) was used. Under the assumption that the overall marginal, improper,
posterior density of the parameter is a continuous, smooth function, an estimate of this density (up
to an arbitrary constant c) was obtained by alignment of the kernel density estimates computed
for each subinterval.

The estimate obtained using this method is as shown in Figure 1. Although the estimate
is computed for log10(1∕𝜆) up to 6 only, the estimate strongly indicates that the density tends
to a limiting positive value for large log(1∕𝜆) such that the overall density indeed is improper.
It is worth noting that the density in the flat tail to the right is about 13 orders of magni-
tude smaller than at the mode which explains why this was undetected by traditional MCMC
convergence-diagnostics.

In subsequent studies using such posteriors as prior, it would seem reasonable to estimate
the density for larger parameter values in flat tails by extrapolation. It is also clear that the above
method can be further improved. One shortcoming are the artifacts appearing at the boundaries
between each subinterval resulting from Silverman’s reflection method. How to best align the
kernel density estimates for each subinterval, also accounting for the likely smoothness of the
density function, is another open question. It may also be worth considering other subdivisions
schemes perhaps involving overlapping intervals.
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4.3 Knowledge sampling

In simple cases the posterior knowledge is given by the product of the likelihood and the prior as
proved in Section 4.1, and exemplified in the Introduction. In more complicated cases it is neces-
sary to consider sampling based methods. This is exemplified in Section 4.2, and more generally by
likelihood-free models as in fiducial inference (Taraldsen & Lindqvist, 2013) or in models treated
by approximate Bayesian computation (Marin et al., 2012). The posterior density may be analyti-
cally intractable, it may be defined on an intractable manifold (Diaconis et al., 2013), or a density
may simply not exist. This raises a fundamental question:

What is knowledge sampling?

The answer is well known when knowledge Kz is represented by a probability measure K, but
what about the case where knowledge is represented by an unbounded measure K?

The answer presented below can also be used for interpretation purposes. This kind of inter-
pretation parallels the interpretation of a probability as given by the law of large numbers. It will be
shown that the concept of a random sample of size n from K is given by a random sample of pairs
(𝛾1,w1), (𝛾2,w2), … , (𝛾n,wn) from a joint probability distribution of a quantity 𝛾 and weight w.
This result holds generally, but it is presented next only for the case where the knowledge is
represented by a density.

Assume that knowledge for a parameter 𝛾 is represented by a density 𝜋 with respect to a
𝜎-finite measure 𝜈. The aim of sampling can be to compute integrals of the form

J = ∫ 𝜂(𝛾)𝜋(𝛾) 𝜈(d𝛾). (23)

The normalization of 𝜋 is arbitrary, so the computation will always be about comparing two or
more integrals of this form.

The integral equals

J = ∫ 𝜂(𝛾)w(𝛾)p(𝛾) 𝜈(d𝛾), (24)

where p is a suitably chosen probability density and the weight w = 𝜋∕p. Sampling from
𝜋 can then be done by sampling from p, and returning a weighted sample sequence
(𝛾1,w1), (𝛾2,w2), … . The sequence can be an iid sequence and then (𝛾1,w1), (𝛾2,w2), … , (𝛾n,wn)
is by definition a random sample of size n from 𝜋. It can more generally be a Markov chain
as in more modern methods. In both cases, the choice of p should be dictated by 𝜋 and
the family of function 𝜂 under consideration, but also by implementation issues. This can
require considerable skullduggery as demonstrated in a most readable way by Trotter and
Tukey (1956).

The previous argument identifies knowledge sampling with weighted sampling. The interpre-
tation explained by Rényi (1970, pp. 33-37) gives a more fundamental answer: Sampling from P is
defined by sampling from P(⋅|B) for all admissible conditions B. In the density case this translates
into being able to compute all integrals

J = ∫B
𝜂(𝛾)wBp(𝛾) 𝜈(d𝛾), (25)
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with wB = ∫B 𝜋(𝛾) 𝜈(d𝛾), and p(𝛾) = 𝜋(𝛾|B) = 𝜋(𝛾)∕wB. This is then a special case of the weighted
sampling.

How and why should it be possible to sample from P(⋅|B) for all admissible conditions B? It is
intuitively clear that P is uniquely determined by P(⋅|Bn)where B1 ⊂ B2 … with∪iBi = Ω. A proof
of this is given by Taraldsen and Lindqvist (2016, p. 5014). It follows hence that it is sufficient to
determine P(⋅|Bn) for appropriately chosen Bn. The general argument can be continued, but we
choose instead to illustrate a general idea by the example considered in Section 4.2.

A visualization of knowledge can be given by plotting the density as in Figure 1. The abscissa
is given by the expected adult life span 1∕𝜆 of the butterflies for the interval I = (0, b) with
b = 1,000, 000 days. The arguments in Section 4.2 indicate that the density should approach a con-
stant, and the choice of b is so large that this is also indicated in Figure 1. Altogether, the graph
gives a complete picture of the knowledge about the expected adult life span of the butterflies.

Finally, we will explain how simulations can be used more generally to determine a poste-
rior density on a large interval I of parameter values 𝛾 = 𝜓(𝜃). It is assumed that the model P𝜃Y
and the prior on 𝜃 is such that B = {𝜔|𝜓(Θ(𝜔)) ∈ I} gives that 0 < Py(B) < ∞. This implies that
Py(⋅|B) is a probability. There is then a corresponding unique posterior probability distribution
for 𝛾 restricted to I. The problem has by this been reduced to the problem of sampling from a
probability distribution, but it can still be problematic since I is large.

Assume that I can be divided into smaller intervals I1, … , Im so that sampling can be done
for each interval as from the argument in the previous paragraph. The sampling method itself
can be of any of the kinds used for posterior sampling for probability distributions and may be
differently adapted for each interval. The sampling for each interval is from the law for the entire
interval, but normalized to be a probability on each interval.

In the case with densities this means that

𝜋(𝛾) = wj𝜋(𝛾|Ij), 𝛾 ∈ Ij, (26)

where the weight is given by

wj = ∫Ij

𝜋(𝛾) 𝜈(d𝛾). (27)

This is a special case of the relation (14). It follows that the density 𝜋 is determined by all the
densities 𝜋(⋅|Ij) if the weights wj can be determined. If it is assumed, as in the case illustrated
in Figure 1, that the density 𝜋 is continuous, then it follows that the weights wj are determined
uniquely up till multiplication by a common constant c.

In practice the previous can be implemented in a variety of ways. One approach is to
use kernel density estimation of each 𝜋(𝛾|Ij), and then glue the pieces together as explained.
This gives problems at the boundary of each Ij. Another approach is to use a single kernel
density estimate for the entire interval I given by putting weights on the samples in each
interval. This problem, and its even more challenging versions in more dimensions, is interest-
ing, but will not be discussed further here. Further work on this will be most important for
applications.

5 DISCUSSION

Lindley (1965, p. xi) writes in the preface of his classic book on Bayesian statistics:
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The axiomatic structure used here is not the usual one associated with the name of
Kolmogorov. Instead one based on the ideas of Rényi has been used.

It can be concluded that Lindley initially supported the use of conditional probability spaces
as introduced by Rényi. We have argued, essentially, that Lindley’s initial intuition is correct. The
theory of Rényigives a natural approach to Bayesian statistics including commonly used improper
priors. Theorem 1 is a natural continuation of the theory of Rényi. It shows, in a mathematically
precise way, that improper posteriors are a natural consequence of allowing improper priors.

Historically, the most influential initial work on Bayesian inference is possibly given by the
book by Jeffreys (1939). Jeffreys (1939, p. 21) argues in particular that the normalization of prob-
abilities is a rule generally adopted, but that the value ∞ is needed in certain cases. This is in
line with the current usage of Bayesian arguments. It is well established that inference based
on the posterior gives, indeed, a most rewarding path for obtaining useful inference procedures
from both a Bayesian and a frequentist perspective (Berger, 1985; Lehmann & Romano, 2005;
Robert, 2007; Schervish, 1995; Taraldsen & Lindqvist, 2013). Taraldsen and Lindqvist (2013) prove
in particular that optimal frequentist decision rules are obtained from Bayesian posteriors, and
also more generally from posteriors obtained by fiducial arguments.

Parts of Jeffreys arguments were mainly intuitive, and there is a lack of mathematical rigor.
We suggest that a rigorous reformulation of some of the original and most important ideas of
Jeffreys (1939) can be done within the mathematical theory introduced by Rényi (1970) and
continued in our presentation here.

Within this framework we reach the view that improper posteriors, just as improper priors, are
not “improper” but reflect the updated state of knowledge about a parameter after conditioning on
the data. Returning to the introductory Poisson-process example, at time t, we have clearly learned
something about 𝜆 in that our belief in large values of the Poisson intensity 𝜆 has decreased while
our relative degree of belief in small values of 𝜆 has remained approximately unchanged. An
improper posterior does not imply that our prior was wrong, but only that more data perhaps
needs to be collected if possible. Proceeding by using the improper posterior at time t as prior
in subsequent inference, say based on the number of occurrences observed in a sufficiently long
subsequent interval (t, t2], we indeed eventually reach the same proper final posterior as the one
reached by combining the initial scale prior and the likelihood for the data on (0, t2]. We hope
that the reader can appreciate that this simple argument indicates also the potential philosophical
importance of representing knowledge by unbounded measures more generally.

An unbounded measure can, according to Rényi, be interpreted by the corresponding fam-
ily of conditional probabilities given by conditioning on admissible conditions. These conditional
probabilities are probabilities in the sense of Kolmogorov, and the interpretation depends on the
application. They can, as Lindley (2014) advocates convincingly, be interpreted as personal proba-
bilities corresponding to a range of real-life events. They can also, as needed in for instance quan-
tum physics (Von Neumann, 1932, p. x), be interpreted as objectively true probabilities represent-
ing a knowledge for how a system behaves when observed repeatedly under idealized conditions.
In classical mechanics probability statement arises from the incompleteness or our knowledge.
In quantum mechanics the fundamental postulates include a probabilistic interpretation and a
nonatomic probability distribution can correspond to complete knowledge. An example is given
by the electron in a hydrogen atom in its ground state (Von Neumann, 1932, p. 297).

The presented theory is not a formal theory for making decisions, but it is a theory for mak-
ing statistical inference. As a concrete example: If the knowledge is given by the uniform law
on the real line, then it is not obvious how the best estimate can be obtained. Similar problems
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can also occur in probability theory as exemplified by the uniform law on the circle. More work
on the connection to decision theory should be done. A full discussion of this, starting with
axioms from Savage (1954), is beyond the scope of the current presentation. The axioms of Sav-
age imply that proper priors and posteriors are the only possible—so the axioms conflict with the
theory we present. Our theory can be seen as based essentially on replacing the axioms of Kol-
mogorov with the axioms of Rényias explained in Appendix. This theory is not a formal theory
for decision-making, but a theory for statistical inference.

Assume now that you accept a theory where the prior knowledge is given by a possibly
unbounded measure. It is then natural, we claim, that you accept that a resulting posterior knowl-
edge can also be represented by a possibly unbounded measure. Both the prior and the posterior
represent knowledge of the same kind.
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APPENDIX A. MEASURE THEORETIC CONSIDERATIONS

The mathematics in the previous presentation is correct, but some readers may feel that it is math-
ematically imprecise. The purpose of this appendix is to supply more details on measure theoretic
aspects. It is assumed that the reader is well acquainted with basic measure theory as presented by
Rudin (1987). The aim next is to present the initial ingredients in the theory of Rényi (1955) which
replaces the theory of Kolmogorov (1933), and then formulate our main mathematical results in
this context.

An event is by definition a measurable set in a measurable space Ω. A family  of events that
obeys the following three axioms is, according to Rényi (1970, p. 38, def. 2.2.1), a bunch:

1. ∅ ∉ 
2. B,C ∈  ⇒ B ∪ C ∈ 
3. There exist B1,B2, … ∈  with ∪iBi = Ω.

A set B ∈  is by definition an admissible condition according to Rényi (1970, p. 38). This is
then a generalization of Definition 1.

A conditional probability space (Rényi, 1970, p. 38, def. 2.2.2) is a measurable space equipped
with a consistent family of probability measures (P(⋅|B)|B ∈ ) where  is a bunch. Consistency
is defined by the relation

P(A|B) = P(AB|C)
P(B|C) , P(B|C) > 0, (A1)

holding for all events A, and all B,C ∈  with B ⊂ C. Taraldsen and Lindqvist (2016) discuss this
in more detail in the context of statistics.

The structure theorem of Rényi (1970, p. 40, thm 2.2.1) gives that any conditional probability
space can be represented by a 𝜎-finite measure 𝜇 in the sense that

P(A|B) = 𝜇(AB)
𝜇(B)

, (A2)

for all events A and all B ∈ . The measure 𝜇 is determined uniquely up to a positive con-
stant factor. Conversely, a 𝜎-finite measure 𝜇 defines a consistent family of probability measures
by Equation (A2), and by defining  = {B|0 < 𝜇(B) < ∞}. The resulting conditional probability
space is, according to Rényi (1970, p. 43), a full conditional probability space. We use the term
Rényispace as equivalent with a full conditional probability space.

In the discussion following Equation (7) it was stated that it was sufficient to assume that P is
𝜎-finite, but also that the corresponding knowledge is equivalently represented by cP where c > 0
is an arbitrary constant. A more precise statement is to assume directly that P equals an equiv-
alence class P = [𝜇] = {c𝜇|0 < c < ∞} where 𝜇 is a 𝜎-finite measure. Due to the Rényistructure
theorem this is the same as assuming that Ω is a full conditional probability space. This is our
basic assumption when the theory of Kolmogorov (1933) is replaced by the generalization given
by Rényi (1970) as discussed in more detail by Taraldsen and Lindqvist (2016).

A particular consequence is that the uniform law PΘ is not a measure, but rather equals the
equivalence class given by all measures that are shift invariant, or equivalently all measures that
are equivalent with Lebesgue measure on the real line ΩΘ. In this case Θ is a regular random
variable in the sense of Rényi (1970, p. 73). This is the same as assuming that Θ is a 𝜎-finite
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quantity as defined more generally by Taraldsen and Lindqvist (2010). The result is then thatΩΘ is
a full conditional probability space with a bunch Θ given by the admissible conditions B defined
by obeying 0 < PΘ(B) < ∞.

The law of a general random quantity Θ is defined by Equation (6), but it must be inter-
preted by using representatives from the equivalence classes: Let 𝜇 ∈ P. Then PΘ = [𝜇Θ] with
𝜇Θ(A) = 𝜇(Θ ∈ A). The resulting equivalence class PΘ does not depend on the choice of 𝜇 ∈ P.
Similar interpretations in terms of representatives must be used also for the other equations and
definitions presented in the previous sections. The convention of using the same symbol P for
both the equivalence class and a representative measure P can be confusing, but it is similar to
using the same symbol f for a function and the resulting equivalence class f ∈ L2(𝜇).

It may seem unimportant to distinguish between a a measure 𝜇 and the corresponding equiv-
alence class [𝜇]. The distinction has, however, many important consequences as discussed by
Taraldsen and Lindqvist (2016). An element [𝜇] in the quotient space is a C-measureand a
C-measurespace is a measurable space equipped with a C-measure. A C-measurespace based
on a 𝜎-finite measure is equivalent with a full conditional probability space (Taraldsen &
Lindqvist, 2016, proposition 3).

A particular consequence is that convergence concepts are changed by going to the quotient
space defined by the equivalence relation. A particularly important example is given by vague con-
vergence of Radon measures which is replaced by q-vague convergence. This is introduced and
discussed in some detail with illustrating examples by Bioche and Druilhet (2016). It is important
because improper priors are often viewed intuitively as limits of proper priors, and this intu-
ition can then be made precise. A different convergence concept is introduced and discussed by
Rényi (1970, p. 57-). Altogether, the mathematics associated with the resulting topologies is here
not fully developed and more can be done.

The conditional law Pt, or equivalently P(⋅|T = t), is defined as explained before Equation (8).
It is, again, an equivalence class, but this time it is more complicated in several ways. Firstly,
equivalence ∼ is defined not by a positive constant, but by a positive measurable function
c(t): 𝜇(⋅)

1 ∼ 𝜇
(⋅)
2 if and only if there exists a positive measurable c with 𝜇t

1(A) = c(t)𝜇t
2(A) for

almost all t for all measurable A. The exceptional set has PT measure 0, but it may depend
on A.

Furthermore, it will not be assumed that 𝜇t ∈ Pt is a measure for almost all t. This is as in
ordinary probability theory as explained by Halmos (1950, p. 209). It is a positive conditional
measure in the sense that 𝜇t(∅) = 0, 𝜇t(A) ≥ 0, and 𝜇t(A1 + A2 + …) = 𝜇t(A1) + 𝜇t(A2) + …
with almost everywhere equality again depending on the measurable sets A,A1, … . It can be
shown that there exists a version of 𝜇t ∈ Pt such that it is a measure for almost all t if Ω is a
Borel space using standard results from measure theory (Royden, 1989, p. 406)(Schervish, 1995,
p. 618). This is not needed nor assumed here. The space Ω is only assumed to be a full
conditional probability space. Integration with respect to 𝜇t can nonetheless be defined as
demonstrated already by Kolmogorov (1933, eq. 10 on p. 54). This is what is needed for
applications

In the discussion preceding Equation (8) it was assumed that there exists a
𝜎-finite measure QT that dominates PT . A more complete statement and proof is as
follows.

Lemma 1. Let Ω be a Rényispace with law P, let ΩT be a measurable space, and let T ∶ Ω → ΩT
be measurable. There exists then a 𝜎-finite measure QT so that QT(A) = 0 implies 𝜇(T ∈ A) = 0 for
all 𝜇 ∈ P.
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Proof. Let QT(A) = 𝜈(T ∈ A) where 𝜈 is a probability measure with the same zero sets as 𝜇 ∈ P.
The existence of a probability measure 𝜈(d𝜔) = w(𝜔)𝜇(d𝜔) with w > 0 is a standard result
(Rudin, 1987, lemma 6.9, p. 121). ▪

Usage of the dominating 𝜎-finite measure QT for cases where PT is not assumed to be 𝜎-finite
is the key ingredient in the construction of Pt. The idea is similar and generalizes the disin-
tegration of a measure relative to a pseudo-image as discussed in the context of measures on
topological spaces by Bourbaki (1959, VI.45). Taraldsen et al. (2017) provide an alternative route
by constructing Pt from Pt(⋅|⋅) more directly.

The following Theorem is a generalization of the structure theorem of Rényi (1970, p. 40, thm
2.2.1) and includes in particular Equation (14).

Theorem 2. Let Ω be a Rényispace with law P and bunch , let ΩT be a measurable space, and let
T ∶ Ω → ΩT be measurable. There exists then a unique conditional law Pt such that

𝜇t(AB) = Pt(A|B)𝜇t(B), (A3)

for all 𝜇t ∈ Pt, all events A and all B ∈ .

Proof. The Rényistructure theorem with 𝜇 ∈ P gives

PT(C|B) = P(T ∈ C|B) = 𝜇((T ∈ C)B)∕𝜇(B).

Disintegration with respect to QT from Lemma 1 gives

𝜇((T ∈ C)B) = ∫C
𝜇t(B)QT(dt).

Combined this gives the identity

PT(dt|B) = (𝜇t(B)∕𝜇(B)) QT(dt).

Disintegration gives also

∫C
𝜇t(AB)QT(dt)∕𝜇(B) = P((T ∈ C)A|B),

which equals, using the previous identity,

∫C
Pt(A|B)PT(dt|B) = ∫C

Pt(A|B)𝜇t(B)QT(dt)∕𝜇(B).

This implies

∫C
𝜇t(AB) QT(dt) = ∫C

Pt(A|B)𝜇t(B) QT(dt),

and Equation (A3) is proved since this holds for all events C in ΩT . ▪
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The previous Theorem 2 contains the structure theorem of Rényi (1970) as a special case by
letting T(𝜔) = 1 for all 𝜔 ∈ Ω. The proof and result provides a link between the disintegration
theory presented by Bourbaki (1959), and the theory of conditional probability spaces introduced
by Rényi (1955). We believe that this combination is an important contribution to mathematical
statistics.


