
PKI and IoT Security: How to
choose the most secure
implementation?

December 2021

M
as

te
r's

 th
es

is

M
aster's thesis

Emil Myre

2021
Em

il M
yre

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
De

pa
rt

m
en

t o
f I

nf
or

m
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

PKI and IoT Security: How to choose the
most secure implementation?

Emil Myre

Master in Information Security
Submission date: December 2021
Supervisor: Basel Katt

Norwegian University of Science and Technology
Department of Information Security and Communication
Technology

PKI and IoT Security: How to choose the most
secure implementation?

Emil Myre

15.12.2021

Abstract

This thesis will look into the combination of the technologies IoT and PKI and
how these technologies can be combined to create secure solutions. The enorm-
ous variation of products and implementation forms in especially IoT, introduces
a risk of implementing vulnerabilities with potential catastrophic outcomes in the
event of cyberattacks. The thesis will present an overview and an evaluation of
the current solutions and its vulnerabilities. This will also involve practical im-
plementations of PKI technology with associated vulnerability assessments. There
will also be a recommendation of PKI solution based on certain criterias for the
IoT equipment.

iii

Sammendrag

Denne oppgaven vil fokusere på kombinasjonen av teknologiene IoT og PKI og
hvordan disse teknologiene kan brukes sammen for å lage sikre løsninger. Den
enorme variasjonen av produkter og implementasjonsformer i spesielt IoT, kan
føre til at det implementeres sårbarheter som kan føre til fatale konsekvenser
hvis de blir utnyttet under et cyberangrep. Intensjonen med denne oppgaven
er å presentere en oversikt og en evaluering av nåværende løsninger og dets
sårbarheter. Oppgaven vil også inkludere praktiske implementasjoner av PKI med
tilhørende sårbarhetsanalyser, samt en anbefaling av en eller flere PKI løsninger
basert på egenskaper til IoT utstyret.

v

Preface

This thesis was written as part of the Master of Science in Information Security
at the Norwegian University of Science and Technology (NTNU) in the Autumn
semester of 2021.

I would first of all like to thank my supervisor Basel Katt for guidance and
invaluable support through all stages of the thesis. I would also like to thank
colleagues for new ideas and discussions surrounding the theme of the thesis as
well as my family for providing me with support and continuous encouragement
throughout my years of study. This accomplishment would not have been possible
without them.

Thank you.

Emil Myre

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xi
Tables . xiii
Code Listings . xv
Acronyms . xvii
1 Introduction . 1

1.1 Purpose . 1
1.2 User scenario . 2
1.3 The case . 2
1.4 Research Question . 2
1.5 Methodology . 2

1.5.1 Problem Definition . 3
1.6 Process model . 3

1.6.1 Activity 1: Problem Identification and Motivation 4
1.6.2 Activity 2: Objectives of a Solution 4
1.6.3 Activity 3: Design and Development 4
1.6.4 Activity 4: Demonstration . 4
1.6.5 Activity 5: Evaluation . 5
1.6.6 Activity 5: Communication . 5

2 Background . 7
2.1 Internet of Things . 7
2.2 Public Key Infrastructure . 9

2.2.1 X.509 . 9
2.2.2 Trust . 11
2.2.3 PGP . 11
2.2.4 Blockchain . 11

2.3 Related work . 12
2.4 Challenges for IoT with PKI security . 13

3 Design and threat modeling . 15
3.1 IoT Hardware . 15
3.2 Lab setup . 16

ix

x EM: PKI and IoT Security: How to choose the most secure implementation?

3.2.1 Lab 1 Blockchain . 16
3.2.2 Lab 2 X.509 . 17

3.3 Threat model . 17
3.3.1 STRIDE . 18
3.3.2 Implementing the Threat Model 19

3.4 Vulnerability analysis . 22
3.4.1 Test activities . 23
3.4.2 Software . 23

4 Demonstration and evaluation . 25
4.1 Lab 1 Blockchain . 25

4.1.1 The implementation . 25
4.1.2 Vulnerability assessment . 28

4.2 Lab 2 CA X.509 . 35
4.2.1 X.509 implementation with root CA 35
4.2.2 X.509 implementation with self signed certificate 37
4.2.3 X.509 implementation with automated certificate authority 39
4.2.4 Detailed implementation with root CA 40
4.2.5 Vulnerability assessment . 47

5 Discussion . 53
5.1 Aspects of the implementation method 53
5.2 Aspects of the vulnerability results . 54
5.3 Trust . 55
5.4 Limitations . 55
5.5 The case . 56
5.6 Research Questions . 57

6 Conclusion . 61
6.1 Future work . 61

Bibliography . 63
A Additional Material . 67

Figures

1.1 DSRP Model . 4

2.1 X.509 . 10

3.1 Raspberry Pi 3 . 16
3.2 Threat Model . 18
3.3 Data Flow Diagram Lab 1 . 20
3.4 Data Flow Diagram Lab 2 . 21

4.1 Diode Fleet Overview . 27
4.2 Diode Network Overview . 27
4.3 METAMASK . 28
4.4 Nessus Lab 1 . 30
4.5 Diode Certificate . 33
4.6 Wireshark Lab 1 . 34
4.7 X.509 rootsigned certificate part 1 . 36
4.8 X.509 rootsigned certificate part 2 . 36
4.9 X509-selfsigned-certificate2 . 38
4.10 X509-selfsigned-certificate5 . 39
4.11 Nessus Lab 2 . 49
4.12 Wireshark Lab 2 . 50
4.13 Denial of Service Lab 2 . 51

xi

Tables

4.1 Results implementing Lab 1 . 28
4.2 Relevant Vulnerabilities Lab 1 . 29
4.3 Test Cases Lab 1 . 29
4.4 Vulnerabilities Nessus Lab 1 . 31
4.5 CVE Scores Nessus Lab 1 . 31
4.6 Results Lab 1 . 35
4.7 Relevant Vulnerabilities Lab 2 . 47
4.8 Vulnerabilities Nessus Lab 2 . 49
4.9 Results Lab 2 . 51

5.1 Results comparison . 55

xiii

Code Listings

4.1 Diode CLI . 25
4.2 Diode Static content . 26
4.3 NGINX . 26
4.4 Diode ssh. 27
4.5 ARP scan LAB1 . 29
4.6 NMAP scan LAB1 . 30
4.7 NCRACK scan LAB1 . 32
4.8 Hping LAB1 . 33
4.9 CA X.509 self-signed implementation 37
4.10 CA X.509 self-signed verification . 38
4.11 CA X.509 automated certificate authority 39
4.12 CA X.509 root . 40
4.13 CA X.509 sub . 41
4.14 CA X.509 server . 42
4.15 CA X.509 user . 43
4.16 CA X.509 export . 45
4.17 CA X.509 implementation . 46
4.18 NMAP scan LAB2 . 47
4.19 Hping LAB2 . 50

xv

Acronyms

ARP Address Resolution Protocol. xv

ASN Abstract Syntax Notation One. xv

CA Certificate Authority. xv

CBOR Concise Binary Object Representation. xv

CLI Command Line Interface. xv

CPS Cyber Physical Systems. xv

CRL Certificate Revocation List. xv

CVE Common Vulnerabilities and Exposures. xv

CVSS Common Vulnerability Scoring System. xv

DFD Data Flow Diagram. xv

DNS Domain Name System. xv

DSRP Design Science Research Process. xv

HTTP Hypertext Transfer Protocol. xv

HTTPS Hypertext Transfer Protocol Secure. xv

ICT Information and Communications Technology. xv

IETF Internet Engineering Task Force. xv

IoT Internet of Things. xv

LDAP Lightweight Directory Access Protocol. xv

M2M Machine to Machine. xv

MAC Media Access Control. xv

xvii

xviii EM: PKI and IoT Security: How to choose the most secure implementation?

NIST National Institute of Standards and Technology. xv

NSF National Science Foundation. xv

OCSP Online Certification Status Protocol. xv

PGP Pretty Good Privacy. xv

PKI Public Key Infrastructure. xv

RA Registration Authority. xv

RCE Remote Code Execution. xv

RFC Request for Comments. xv

SaaS Software as a Service. xv

SMTP Simple Mail Transfer Protocol. xv

SQL Structured Query Language. xv

SSH Secure Shell. xv

SSL Secure Sockets Layer. xv

TLS Transport Layer Security. xv

Chapter 1

Introduction

During the last decade, there has been an explosive growth of small physical ob-
jects that are equipped with sensors and have the technology to connect and ex-
change data. The area of use for these objects seem limitless as they can be used in
both homes as for instance voice assistants, on body as for instance fitness track-
ers, in vehicles, at work and as components with specific tasks in todays central
infrastructure. These objects are all part of a certain term of network devices which
are called the Internet of Things . The expanding volume of IoT devices both in
numbers and different variations leads to concerns regarding the ability to protect
running applications an data transferred between these products. The Public Key
Infrastructure (PKI) is a possible method for securing these devices, however the
PKI can have different forms of implementation with unique advantages and dis-
advantages for each solution. The establishment of a framework with software,
policies and procedures is included in the Public Key Infrastructure as a part of
establishing security to a system. There are also multiple ways to establish of this
kind of infrastructure.

The variety of IoT devices will also have certain characteristics which can make
one PKI implementation more secure for one type of IoT, while other types of IoT
solutions might be better secured by using another form of PKI implementation.
Due to this, there is a risk that implementing the same PKI solution to different
types of IoT equipment might create vulnerabilities related to the different vari-
ants of IoT devices that are not discovered yet.

1.1 Purpose

The planned contribution of this thesis is to investigate whether how secure PKI
solutions that are used in todays IoT devices, and what are their typical weak-
nesses and vulnerabilities. This will involve practical solutions to be tested in a
lab environment. This also involves exposing IoT devices to Cyber attacks. To en-
sure realistic results, the lab testing should involve relevant IoT devices, relevant
PKI solutions and at last relevant attack vectors to be used in the test.

1

2 EM: PKI and IoT Security: How to choose the most secure implementation?

1.2 User scenario

To better understand both the possible advantages and disadvantages of securing
IoT equipment with PKI, a user scenario will be presented. This scenario is meant
to give the reader an introduction to both IoT and PKI related challenges.

1.3 The case

The user scenario is the following: A hospital is going to invest in new healthcare
equipment which include monitoring devices such as remote patient monitoring
that collects metrics like heart rate, temperature, glucose levels, but also advanced
robots that can be inside a human body and perform complex surgery procedures.
In 2018, Norwegian hospitals had to recover from a massive hacker attack with
loss of sensitive data and a lot of public attention [1]. Having this in mind, the
hospital considers additional security on their new healthcare devices.

If these devices are not properly secured, control over the devices can be lost
to unauthorized users who can steal sensitive patient data or manipulate metrics
or procedures that can result in loss of human lives.

The IT-department is contacted, and some of the employees recommend using
PKI as they have heard that this will enforce the security with encryption of traffic.
The employees in the IT-department have only theoretical experience with PKI and
never implemented or maintained such a system before. They have however heard
that there are several ways to implement such security and are positive to try and
fix this themselves.

The hospital are faced with some major decission points. Should they follow
the advice of the internal IT-department and trust them to fix this, or should they
also contact external experts to validate and improve the security? What should
they consider when there are several ways to implement a PKI solution, how much
will this cost, and is this truly the best way to secure their systems?

1.4 Research Question

The research questions are the following:

• What are the current PKI solutions for securing IoT devices today?
• What are the vulnerabilities related to securing IoT with PKI?
• Can different PKI solutions be recommended to different IoT solutions and

if so, what criteria should be used for this recommendation?

1.5 Methodology

This chapter will present the methodology used in this thesis and how the differ-
ent processes in this thesis relate to the different parts of the methodology. The

Chapter 1: Introduction 3

chosen methodology is the Design Science[2] where the objective is to develop
and evaluate one or more artefacts as a part of the process of solving a specific
problem. The unique artefacts can be a model, a method or a prototype where the
goal is to develop knowledge that can be useful for both the understanding and
solution of the problem.

1.5.1 Problem Definition

In this thesis, one of the artefacts will be the lab for implementing and evaluating
a PKI solution on an IoT device. This lab can be implemented in several ways,
and each implementation will include a threat model and a vulnerability analysis
that also can be considered artefacts. With these artefacts, the method addresses
the unsolved problem of finding the most secure PKI solution for IoT devices. The
enormous growth of IoT devices both in numbers and different variations leads
to concerns regarding the security of these devices. The Public Key Infrastructure
is a possible method for securing these devices, however the PKI can have differ-
ent forms of implementation with unique advantages and disadvantages for each
solution. The variety of IoT devices will also have certain characteristics which
can make one PKI implementation suitable for one type of IoT, while other IoT
devices might favor another form of PKI implementation. Due to this, there is a
risk that implementing the same PKI solution to different types of IoT equipment
might create vulnerabilities related to the different variants of IoT devices that are
not discovered yet.

1.6 Process model

The Design Science methodology was not that often used in research environ-
ments after its publication. Some researchers pointed out that the reason for this
could be because the methodology lacked a conceptual model for how the re-
searchers actually could carry out their design science research in a way that
would be recognized and evaluated by their readers. To mitigate this, a process
model called Design Science Research Process (DSRP) were developed in 2006
[3]. The process model intended to meet the following three objectives:

• To be consistent with prior literature
• To provide a mental model for presenting and appreciating DS research
• To provide a mental model for presenting and appreciating DS research

As shown in figure 1.1, the following six activities are essential in the DSRP model:

A description of both the activities and a how these are applicated to the thesis,
is the following:

4 EM: PKI and IoT Security: How to choose the most secure implementation?

Figure 1.1: DSRP Model [3]

1.6.1 Activity 1: Problem Identification and Motivation

The first activity involves establishing the problem to be addressed and to jus-
tify the research based on the perceived benefits of the resulting artefacts. In this
thesis, the first activity is applied to the methodology through chapter 1, where the
problem is identified as how to find the most secure PKI solution for IoT devices.
In this problem establishment, the fictive case study at the hospital plays an im-
portant role in both identifying the problem as well as motivating for a solution
of the problem.

1.6.2 Activity 2: Objectives of a Solution

This involves creating the a objective of a solution where the researcher is required
to define the objectives which will be based on the problem to be solved. In this
thesis the objectives will be PKI solutions and IoT devices, while the problem to be
solved will be a recommendation of one or more PKI solutions to be implemented
on IoT devices.

1.6.3 Activity 3: Design and Development

The activity involves the creation of the artefacts. In this thesis, the third activity
will be the design and development of a lab for implementing and evaluating PKI
solutions on IoT devices with included threat models and vulnerability analyzis.

1.6.4 Activity 4: Demonstration

This activity includes a demonstration of the artefacts in an appropriate environ-
ment which shows that this solves the stated problem. This activity is applicated
in this thesis by demonstrating that the implemented PKI solution in lab works as
expected.

Chapter 1: Introduction 5

1.6.5 Activity 5: Evaluation

In this activity the performance of the artefact is reviewed with reference to the
one or more stated objectives in activity 2. As figure 1.1 shows, this evaluation
may lead the researcher to consider further design and development of the arte-
fact. The researcher may then go back to activity 3 as part of an iterative and
improvable process. The vulnerability evaluation in this thesis will relate to this
activity, as it is a possibility to implement and evaluate several PKI solutions in
this lab.

1.6.6 Activity 5: Communication

The final activity is to publish the researchers work in order to enhance the body
of knowledge in the related field.

The communication activity in this thesis can however not be completed by the
time of the submission. After the submission there is a possibility of publishing the
thesis in relevant forums. Another aspect is that the thesis is regularily discussed
with both colleagues at work and supervisors at school which also is a part of
enhancing the knowledge in the field.

Chapter 2

Background

In relation to the methodology used in this thesis, this chapter will address activity
2 in DSRP, where the objects in a solution are defined. As earlier mentioned, the
objectives in this thesis will be PKI solutions and IoT devices.

To be able to provide the necessary knowledge and background, a literature
review was conducted. The aim is to present a background on the Internet of
Things followed by the history of the Public Key Infrastructure as well as the pos-
sible forms of implementation. At the end of the chapter there will be an overview
of related work to this thesis as well as challenges with PKI and IoT.

The sources for this literature review have been identified by using open sources
as researchgate.net, scholar.google.com and ieeexplore.ieee.org. To ensure up-
dated research material, most of the relevant publications have been narrowed
down to a publish date after 2018. Some sources have also been identified as
companies with interests of selling own products, which leads to caution and a
need of verifying information from several sources.

The following free-text search terms were used in various combinations and
forms: Public Key Infrastructure, Internet of Things, PKI, IoT, challenges, vulner-
abilities, X.509, Blockchain

2.1 Internet of Things

In 1982, a Coca Cola vending machine received public attention. The reason was
that this machine could actually report its inventory through a network. This is one
of the first traces of objects that fit under the description as an Internet of Thing.
There is however hard to find a specific definition of the technology described as
the Internet of Things. A commonly used description is that IoT is a network of
physical objects equipped with software and sensors with the possibility to connect
and exchange data with other devices over a network. Similar systems used for
describing IoT are Cyber physical systems (CPS), Machine to Machine (M2M),
Industrial Internet, Smart cities, Smart Grids, Smart Homes and other. The US
independent federal agency named National Science Foundation (NSF), says that

7

8 EM: PKI and IoT Security: How to choose the most secure implementation?

Cyber physical systems integrate sensing, computation, control and networking
into physical objects and infrastructure, connecting them to the Internet and each
other [4]. This is a broad generalization which means that a very large range
of products and technologies are included this description. A common factor of
these products is that they consist of an embedded system. An embedded system
is a concept used to describe computer hardware which is built into mechanical
devices to make the devices capable of digital computation [5].

In order to separate IoT devices from devices from other categories like "Per-
sonal Computers" belonging to Information and Communications Technology (ICT),
the following characteristics has been listed up [6]:

Interconnectivity; Anything can be interconnected with the global information
and communications infrastructure, from an IoT point of view. For IoT devices
they do not necessarily need to communicate over IP networks, but also util-
ize serial protocols like MODBUS and DNP3 or low-powered wireless links
with protocols like ZigBee, Bluetooth Low Energy,6LoWPAN and many oth-
ers.

Things-related services; IoT provides things-related services within the constraints
of things. This describes the IoT devices ability to observe and attempt to
control specific variables in the physical world. In order to to this, there is
often satisfactory to use embedded systems with limited resources. These
systems do not need to have an operating system, but can run on only firm-
ware as long as they can perform the tasks they are designed to perform.
These devices are also often Real-Time Systems with time-sensitive compon-
ents and time constraints related to the performance of the device.

Heterogenity; The IoT devices consist of a variety of hardware platforms, firm-
ware, operative systems and network protocols. Due to this diversiness,
there are challenges concerning interoperability and standardisation of IoT
devices.

Dynamic changes; The status of IoT devices can change dynamically when it
comes to being connected or disconnected. The physical location and pur-
pose of such a device can also change several times during its lifetime, due
to both technological developments and changing areas of use.

Enormous scale; The number of IoT devices has exploded during the last decade,
and the predictions are that this market will continue to grow with around
25 percent the next decade. Even though the Covid-19 virus led to supply
chain disruptions in the manufacturing of seminconductors, it also led to
higher demands of IoT devices in the health industry [7].

Chapter 2: Background 9

2.2 Public Key Infrastructure

The development and revelation of the public key cryptography to the public
crowd started in the the decade following 1970. Prior to this, the preferred choice
were symmetric key algorithms which used the same cryptographic keys for both
encryption and decryption. Central in the development of both asymmetric key
algorithms and the concept of private and public keys, were cryptographers like
Diffie, Hellman, Merkle and Rivest. The system consist of pairs of both private and
public keys, where the private key is only known to the owner of the key and the
public key is known to others and can be distributed through insecure channels.
This public key can then be used to provide confidentiality to a message by letting
the sender encrypt it with the use of both the receivers public key and the senders
own private key. The receiver can then decrypt this message with its own private
key. Compared to the use of symmetric keys, this method will unfortunately lead to
a greater computational cost and less data throughput. Because of this, the use of
symmetric keys in cryptographic systems is not totally excluded. Both symmetric
and asymmetric algorithms can coexist in systems where the public key crypto-
graphy is used to exchange symmetric keys, and the symmetric keys are used to
protect large data transfers. To also provide authentication of messages, the public
key cryptography was further developed to let the sender identify himself by en-
crypting only a small portion of the message with a public key. This portion would
then be a digital certificate from the sender and by that prove the senders iden-
tification. The use of public key cryptography is also used to encrypt checksums
of the original message, which provides the integrity protection of an message.
These encrypted checksums are referred to as digital signatures[8].

2.2.1 X.509

The organizations Internet Engineering Task Force (IETF) and National Institute
of Standards and Technology (NIST) then developed a series of Request for Com-
ments (RFC) which resulted in the industrial standard X.509 [9]. This insured
standardisation and reduction of variety to the public key cryptography. The first
version of X.509 was released in 1988. To include further improvements of the
certificate, the second and third version of the standard was released in 1993 and
1996. The standard X.509 is also the basis for protocols like TLS, SSL, HTTPS,
SMTP, LDAP and several more.

Figure 2.1 shows the structure of the X.509 certificate, where the issuer and
subject unique identifiers were added in version 2, while the extensions field were
added in the version 3 and gave the possibility to issue certificates with specific
purposes.

Information about how lists with invalid or revoked certificates should be dis-
tributed in PKI is also defined in the X.509 standard. These certificate revocation
lists (CRL) are then used as a part of the verification process of a presented cer-
tificate. The Online Certification Status Protocol (OCSP) is a later introduced al-

10 EM: PKI and IoT Security: How to choose the most secure implementation?

Figure 2.1: The X.509 Certificate

ternative to the CRLs. OCSP is an internet protocol where revocation messages are
typically transferred via HTTP and it contains less data than CRL. It is not man-
datory to use encryption in OCSP, and it does not send a list over all revocated
certificates, only the status over the specific certificate in questioning.

PKI is the system for creating, storing and distributing these certificates, and
consist of the following roles [10]:

A certificate authority (CA); The digital certificates are signed, store and issued
by a CA

A registration authority (RA); The identity of the users that requests certificates
from CA need to be verified from a RA before the CA can issue the certific-
ates.

A central directory: The central directory is a safe location where keys can be
stored and indexed.

A certificate management system; The access to stored certificates are managed
by the certificate management system.

A certificate policy; To allow third parties to analyze the PKI trustworthiness of
the PKI, there is a need for a certificate policy which states requirements
and procedures for the specific PKI.

Chapter 2: Background 11

2.2.2 Trust

The certificate policy refers to trustworthiness, where the chain of trust is a concept
that needed to be developed in PKI models to make sure the digital certificates
could be verified as legit. The root CA is the trust anchor for digital certificates,
but there are several digital certificates that cross domains and end up in domains
with a new root CA. This development has led to different types of PKI archi-
tectures, for instance are Single-CA, hierarchical, mesh and hybrid some of the
structures that were developed and used in PKI trust models. The focus in this
models is to establish relations between the different trust anchors without loss
of performance in the system. It is also typical to differentiate trust levels at a
national and governmental level depending on the trust model that is used. These
levels are typically ranged from a low to a very high assurance level[11].

2.2.3 PGP

Alongside the development of PKI, Paul Zimmermann developed the protocol
Pretty Good Privacy (PGP) in 1991. This protocol combines the use of symmetric
and asymmetric keys and is often used for encryption of e-mail messages. Com-
pared to PKI, there is no Central Authority in PGP, and the participants need to
both sign and verify each others keys and build a network of trusted connections
progressively. This network is called the Web of Trust. [12]

2.2.4 Blockchain

The introduction of the cryptocurrency called Bitcoin in 2008, led to a lot of pub-
lic attention to the technology known as Blockchain. Since that, this technology
has proven to have other areas of use, for instance in establishing smart contracts,
securing financial transactions and even as a method to purchase retails in games.
Blockchain technology consist of a distributed ledger that maintains a list of or-
der records. These records are part of so-called blocks that, beside the collected
transaction records at a certain time period, also contains a timestamp and a link
to the previous block. The link to the previous block will also contain a crypto-
graphic hash of the previous block to verify its integrity. In a Blockchain system
there will be both users and miners, where the users are the participants who
creates transactions, while the miners are the participants who verify and create
transaction blocks. The transaction blocks needs to be created in a certain proced-
ure an the miners are often paid each time they make a successfull block. Even
though there are hybrid solutions, the traditional Blockchain systems are divided
into three main groups:

A public, fully decentralized Blockchain system; This system is permissionless,
transparent and without access restrictions. This gives the advantage of be-
ing independent of organizations, but also disadvantages concerning the
speed and scalability of the system.

12 EM: PKI and IoT Security: How to choose the most secure implementation?

A consortium Blockchain system; In this system there are strict rules for how
to select a certain group of miners that can participate. This system tends
to be more scalable and efficient than a public system, but with less trans-
parancy.

A private Blockchain system; This is a centralized system where there are just
one organization that determines the members of the network. This system
is often small with the ability to quickly process transactions. On the other
hand this network might be less secure due to its centralized nature.

A common factor for all of these groups, is that the first block of the ledger is
generated by the creator of the system and is called a genesis block. The following
block will contain a link to its previous block, and this will give a linear history of
activities that is reliable and traceable all the way back to the genesis block.

2.3 Related work

As IoT devices has made their continuous growth and development in the global
market, the research around finding the optimal PKI solution for these devices
have been a similar continuous process. The author could however not find re-
search that focuses on comparing different PKI solutions for IoT with regards
to related vulnerabilities, nor research that recommends different PKI solutions
based on certain characteristics in the IoT solutions.

There has however been published research that focuses on just some of the
characteristics. One example is the constrained resources in IoT devices, where a
more light-weight X.509 implementation is suggested[13][14]. In this implement-
ation the technique called Concise binary object representation (CBOR) is used
instead the standard ASN.1 notation in the certificate profile. In this technique,
there is a fixed asymmetric algorithm based on elliptic curves for all certification
bodies and certificates. In addition, the certificate can be further compressed by
using a DTLS Profile when travelling over constrained networks.

Another example, is the research on decentralization in the PKI structure for
IoT devices. In this context, the Blockchain technology have seemed particularly
interesting because of the possibility to decentralize the PKI structure for IoT
devices with distributed edge devices and nodes. These edge devices and nodes
can prevent the infrastructure to suffer from single point of failures when taking
the role as a distributed CA for the IoT devices. This system is called IoT-PKI.[15].
There was however not found examples of practical implementations of this sys-
tem, or a vulnerability assessment that this thesis also will try to answer.

Practical implementations of Blockchain technology in IoT devices was also
quite difficult to find in research papers. In 2018, Magnusson tried to validate
several Blockchain algorithms in IoT devices, but concluded with a negative an-
swer because of high synchronization times and unstable software[16]. Following
this research, there has also been proposed a Blockchain based PKI that is claimed
to be optimal for IoT devices. This is the BlockQuick protocol, and according to

Chapter 2: Background 13

the author of this research, this protocol will need less data and time to valid-
ate transactions than earlier developed Blockchain technologies[17]. Compared
to this thesis, the research found regarding Blockquick is also without focus on
possible vulnerabilities related to this protocol.

2.4 Challenges for IoT with PKI security

The company Keyfactor lists the following top challenges in IoT Security[18];

• Lack of standards and retrofitted legacy devices
• Weak passwords, authentication, patches and updating regimes
• Unsigned firmware-versions

The same company recommends using PKI in IoT Security with the Software as
a Service (SaaS) model that offers PKI-as-a-service. This is a software distribution
model where a third party provider hosts the actual application. Besides Keyfactor,
there are several other software companies that offers to sell and host PKI services
to their customers. Other challenges related to PKI security are the following:

Trust: A challenge regarding thi PKI-as-a-service model is the trustworthiness of
this external software companies. Can they be trusted, and what criteria
is this trust based on? There has been published research that, due to un-
precise specification documents, some of the trust assumptions used in PKI
can create misunderstandings and possibly misuse of trust within systems
relying on PKI Security[19].

Resources: Another challenge related to PKI security in IoT, is that size and com-
putational cost of a standard X.509 implementation demands too much re-
sources than what is available in several IoT devices.

Management of certificates: The management of certificates in IoT devices also
remains an issue. Several IoT devices may often change state between off-
or on-line, which means that the communication channel to the controlling
authority will not always be present. In these cases, crucial information re-
garding updatet CRL’s will not always be present for the IoT devices. Instead
of placing all the trust in one central certification authority, there has been
published several research where the use of Blockchain-based technology is
proposed as an alternative [13][20].

Blockchains lacking Proof of Concept: Even though the Blockquick protocol has
been developed, there is still uncertainty around the Proof of Concept and
practical implementations of this protocol. There is also uncertainty regard-
ing whether the public, consortium or private group is the best alternative
for securing IoT devices.

The mentioned challenges in this section will all have to be taken into considera-
tion when the next activity in the DSRP is started.

Chapter 3

Design and threat modeling

In relation to the methodology used in this thesis, this chapter will address activity
3 in DSRP, which involves the creation of the artefact. In this thesis, the third
activity will be the design and development of a method for implementing and
evaluating a PKI solution on an IoT device in a lab environment.

As mentioned in the introduction of this thesis, the lab testing should involve
relevant IoT devices, relevant PKI solutions and at last relevant attack vectors to
ensure realistic results.

3.1 IoT Hardware

To find the relevant IoT device for this thesis, the choice was based on both earlier
research described in the related work section, as well as searches online for rel-
evant articles on IoT devices. A device that is mentioned and recommended very
often, is the series of single board mini computers called Raspberry Pi. Several
articles refers to the use this device in IoT solutions[21][22].

The hardware used in this lab is Raspberry Pi 3 Model A+ shown in figure 3.1.
This Raspberry model has the following specifications:

• Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
• 512MB LPDDR2 SDRAM
• 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2/BLE
• Extended 40-pin GPIO header
• Full-size HDMI
• Single USB 2.0 ports
• Micro SD port for loading your operating system and storing data

The Raspberry Pi ran the 32 bit version of the Raspbian OS based on Debian
Buster, which is the primary Raspberry Operative System consisting of a Linux
distribution composed of free and open-source software. The operating system
was downloaded from the official vendor site of Raspberry [23] and installed on
an 16 GB micro-SD card by the use of Raspberry Pi Imager v1.6.1.

15

16 EM: PKI and IoT Security: How to choose the most secure implementation?

Figure 3.1: Raspberry

When freshly installed, the raspberry performance is a CPU idling around 1
percent and having used 206 of 427 Mb memory.

3.2 Lab setup

In order to implement and evaluate relevant PKI solutions, the choice of PKI solu-
tions were based on both the literature review and searches online. There were
established two labs with different PKI technologies; the Blockchain technology
with the BlockQuick protocol and the traditional X.509 CA based technology. In
both labs there will be on web server host running on one of the raspberries, while
the other raspberries will be trying to access this webservice and the data beyond.

3.2.1 Lab 1 Blockchain

The software used for testing the blockchain, was the Diode client written in GO
and available at GitHub [24]. This Diode Client runs the Blockquick algorithm and
a socks server to transmit data through a diodechain mesh network. The following
services can be run with this software[25]:

Website hosting; The client can host secure websites without central services like
DNS.

Remote SSH; The client allows for users to SSH into systems regardless of net-
work topologies inbetween.

Video and data streaming; The client can also publish secure video streams.

The services can be published through the following access levels:

Public; The client can host services from the diode software without being de-
pendant of central services in the Internet like DNS.

Chapter 3: Design and threat modeling 17

Private; For only certain diode clients to access services from the diode software,
the publish option -private to publish it so that only a single specified Diode
address can access it.

Protected; For only diode clients listed in the same Fleet Contract to access ser-
vices from the diode software, the option -protected is used.

To manage several clients, a Fleet Contract can be established in the Diode
Network where clients can be added or removed from different fleets. The admin-
istrator of the fleet will then need to install a crypto wallet in form of an application
called Metamask [26].

3.2.2 Lab 2 X.509

For the X.509 implementation, there are several open source implementations to
choose between online. A tool that is referred in regards to Linux distributions in
several articles[27][28] is the Openssl toolkit, which is a command line tool that
can be used for a variety of things related to X.509 implementations[29]. This
tool has been under continous development from 1999 and seems to be a very
relevant tool for implementing X.509 in this lab.

3.3 Threat model

In order to identify and assess both relevant attack vectors and vulnerabilities
related to a system, it is often recommended to use a threat model which also
includes countermeasures that could be applied. According to Microsoft, a threat
model consist of the following five steps [30]:

Define; First step is the process of defining security requirements to the system

Diagram; The second step is the process of creating applications diagrams of the
system

Identify; The next step is to identify the actual threats

Mitigate; The threats that are identified, the need to be mitigated

Validate; The final step is to validate that the threats actually have been mitigated

The threat model should be used repeatedly throughout the lifetime of a system.
For the practical implementation of a threat model, there are different meth-

odologies with unique strengths and weaknesses that can be used. The choice of
threat methodology often depends on the focus of an organization. Examples of
these methodologies are the following[31]:

18 EM: PKI and IoT Security: How to choose the most secure implementation?

Figure 3.2: Threat modelling

OCTAVE; The Operationally Critical Threat, Asset, and Vulnerability Evaluation
methodology, which was one of the first models to developed and where
the focus is not so technical, but more based on practice and organizational
risks awareness.

Trike; The Trike model uses a risk-based approach where the focus is to ensure
an acceptable level of risk for certain assets in the system

PASTA; The Process for Attack Simulation and Threat Analysis uses a combination
of attacker-centric perspective on potential threats together with risk and
mitigation analysis

VAST; The Visual, Agile, and Simple Threat methodology focuses on the whole
enterprise where there are own application models for the development
teams as well as operational models for the infrastructure teams

STRIDE; This is Microsoft’s threat model which is developer focused and aims
to fulfill the security requirements of the CIA triangle, Confidentiality, In-
tegrity and Availability. The model also focuses on security requirements of
Authorization, Authentication and Non-repudiation.

In 2018, Microsoft developed its own Microsoft Threat Modeling Tool which
was released free of charge to the public[32]. This tool will be used in this thesis as
a part of the threat modeling. This threat model uses STRIDE in its methodology.
STRIDE is also preferred to be used in this thesis because it focuses on security in
a system, and that it is recommended for inexperienced threat modelers due to
its wide perspective and the ability to see threats from the attackers view[33].

3.3.1 STRIDE

The STRIDE methodology is named out of the acronyms from its following threat
categories: [34]:

Chapter 3: Design and threat modeling 19

Spoofing identity; This category violates the confidentiality of a system and in-
volves the use of another user’s authentication information to gain illegal
access. Username and passwords are typical authentication data, but it can
also include MAC, ip adresses and processes performed in the system.

Tampering with data; This category violates the integrity of a system and con-
tains malicious modification of data, which can be altered both during trans-
port over a network, while data is being processed or while data is being
stored in a data storage.

Repudiation; This involves users who perform illegal actions and where these
actions can not be traced or proven afterwards. The system’s ability to avoid
and counter such threats are referred to as nonrepudiation.

Information disclosure; This category violates the confidentiality of a system
and involves the exposure of information to unauthorized users.

Denial of service; This category violates the availability of a system by denying
access for authorized users.

Elevation of privilege; This category can violate both the confidentiality, integ-
rity and availability of a system when priveleged access is gained by an
unpriveleged user who can use this access to exploit the system totally .

3.3.2 Implementing the Threat Model

The implementation of this model is done by following the five steps of figure 3.2

Define

First step is the process of defining security requirements to the system. There are
three basic security requirements to the system;

Confidentiality; That information is not made available or disclosed to unau-
thorized users.

Integrity; That data cannot be modified in an unauthorized or undetected way.

Availability; That the information must be available when it is needed

To fulfill both these basic requirements and the purpose of this thesis, there
is a specific requirement that Public Key Infrastructure is used in the design. The
security object in this system, is the raspberry which hosts the secure website. An-
other specific requirement is that login to this device shall be password protected.

20 EM: PKI and IoT Security: How to choose the most secure implementation?

Diagram

The second step is the process of creating applications diagrams of the system.
This is done with the Microsoft Threat Modeling Tool, which is used to draw a
Data Flow Diagram (DFD) of the system. A DFD is a graphical representation of
source, destination and storage of both the incoming and outcoming data flows
in the system. In a DFD, source and destination are described as entities, and
represented as a rectangle in the drawing. If there are any tasks performed on the
data in the system, these are called processes and represented with a circle in the
DFD.

Data storages in the system are represented with a rectangle with missing
sides, which also includes eventual databases in the system. Finally the actual data
flows in the system are represented with arrows. The Microsoft Threat Modeling
Tool also includes Trust Boundaries, where the data changes its trust level and
that is represented with dotted red lines.

Figure 3.3 shows the Data Flow Diagram in lab 1 where the raspberries are
placed inside a Local Area Network, but the dataflows still have to go through the
Diode network and cross several Trust Boundaries in order to get from the client
entity to get to the data store entity behind the web service.

Figure 3.3: Data Flow Diagram Lab 1

Chapter 3: Design and threat modeling 21

Figure 3.3 shows the Data Flow Diagram for lab 2. This Data Flow Diagram is
however a lot less complicated since the data flows goes directly from the client
entity to the data store entity within the Local Area Network.

Figure 3.4: Data Flow Diagram Lab 2

Identify

The next step is to identify the actual threats, which also in this case can be done
with the use of the Microsoft Threat Modeling Tool. By choosing "Analysis view" in
the tool, a list of potential threats to the system is generated based on the inputs
in the DFD. The list will sort all potential threats to the system into the categories
listed in the STRIDE methodology and also associate a description of each threat
as well as a status and modification log.

For Lab 1 the Microsoft Threat Modeling Tool identified a total of 65 potential
threats to the system, and for Lab 2 the tool identified 29. This clearly shows
that the number of potential threats to the system will increase accordingly to the
number of objects in the DFD.

Mitigate

The potential threats that are identified, then need to be mitigated in the design
phase as a part of the process of assessing attack vectors. In the Microsoft Threat
Modeling Tool, each potential threat in the system can have the following states:

Not Started; Which indicates that the potential threat is not assessed yet

Not Applicable; Which indicates that the potential threat is assessed and found
not relevant for this system.

Needs Investigation; Which indicates that the potential threat is found relevant,
but that there is still not found a solution for mitigating the threat.

22 EM: PKI and IoT Security: How to choose the most secure implementation?

Mitigation Implemented; Which indicates that the potential threat is found rel-
evant, and that there is both found and implemented a solution that will
mitigate this threat.

As an example from this lab, the following potential threat is assessed:

Threat ID: 21

Weak Access Control for a Resource; [State: Not Started] [Priority: High]

Category; Information Disclosure

Description; Improper data protection of Generic Data Store Raspberry can al-
low an attacker to read information not intended for disclosure. Review
authorization settings

Justification: No mitigation provided

Short Description: Information disclosure happens when the information can be
read by an unauthorized party.

This threat will be mitigated by implementing authentication mechanisms to
the resource, for instance by adding password protection to the resource in the
design.

When all the potential threats in the system is assessed, it is time to implement
the system and proceed to the next step in the threat model.

Validate

The final step is to validate that the threats actually have been mitigated. This is
typically done with a vulnerability analysis of the system, which can be done in
several ways. If this analysis shows that a threat with the state mitigated is still a
valid threat, the state need to be changed in the Threat Modeling Tool, typically to
"Needs Investigation", which require further implementation and validation steps
to the system.

3.4 Vulnerability analysis

The actual vulnerability analysis will consist of testing that the potential threats
identified in the threat model are really mitigated, or if it is possible to prove a
presence of vulnerabilities that supposedly should have been mitigated, or not yet
discovered in the threat model. This testing will however not prove the absence
of vulnerabilities in the system. The analysing equipment will be placed inside the
local network of a system, but will still appear to be an external attacker with no
knowledge of the system. For each lab, a list of relevant and potential threats from
the threat model will be established as well as list for test cases that are used to
evaluate the threats.

Chapter 3: Design and threat modeling 23

3.4.1 Test activities

The testing activities will typically be done in the following order, but does not
necessarily need to be completed.

Planning and reconnaissance; This involves the planning of goals for the test,
target systems, test method as well as intelligence gathering towards the
system.

Scanning; This involves identifying open ports and services on a system that can
be mapped to ip addresses. It also includes the identification of potential
vulnerabilities related to machine configuration.

Gaining Access; Potential vulnerabilities may be exploited in order to gain access
to the system. This can be done by cracking passwords, using backdoors or
SQL injection.

Maintaining access; Access can further be used to achieve persistent presence
in the system and to cover tracks of the initial exploitation.

Analysis; This should include results from the vulnerability analysis, where the
focus is on which vulnerabilities that could be expoited and what data could
be accessed. It should also include countermeasures that could be used to
avoid the unauthorized access.

The earlier developed threat model used in the design part of a system, can be
used as a part of all these activities, but it will however require that the performers
of this analysis also have access to the original design. As an alternative, a new
threat model can be made based upon findings in the analysis.

3.4.2 Software

For the vulnerability analysis, a laptop with a virtual instance of Kali Linux is
used. Kali Linux is an open source, Debian based platform that was released in
2013 with intents to be a common toolbox used in Security Research, Computer
Forensics and Penetration Testing of systems[35].

The platform contains several hundred penetration testing tools that can be
used for vulnerability analysis. Research online show that some of the most pop-
ular and relevant tools are the following[36][37][38][39]:

ARP Scan Tool and NMAP; These tools are often used to get information on ARP
packets, IP addresses and operating systems used inside a network.

Wireshark; This is a packet analyzing tool with a own GUI to better filter and
organize data which go through the network.

Nessus; This is a remote vulnerability scanner that can scan computers and raise
alerts if typical vulnerabilities are discovered

24 EM: PKI and IoT Security: How to choose the most secure implementation?

Metasploit; This is a framework that can be used to exploit vulnerabilities and
inject code to open backdoors in a system.

Chapter 4

Demonstration and evaluation

In relation to the methodology used in this thesis, this chapter will address both
activity 4 and 5 in DSRP. This involves a demonstration and evaluation of the
artefact that is created. In this thesis, this will mean a demonstration of practical
implementations that shows that the implemented PKI solutions in IoT devices
works as expected in the lab. This part of the thesis also includes the a vulnerability
assessment of various solutions involving PKI and IoT. In addition to activity 4 in
the DSRP methodology, this part will also address step 5 in the threat model,
where the validation of mitigated threats from the design phase is performed.

4.1 Lab 1 Blockchain

4.1.1 The implementation

The Diode client was implemented by running the following command from a
terminal window at the raspberries:

Code listing 4.1: Diode CLI .

// The actual installation of software:
curl -Ssf https://diode.io/install.sh | sh

// Local services on the client can be published with the following commands:
diode publish -public 80:80
diode publish -private 80:80,<authorized address>
diode publish -protected 80:80 -protected 22:22
// The result of a publishment is the following feedback in the terminal window:
pi@raspberrypi:~ $ diode publish -protected 80:80 -protected 22:22
INFO Diode Client version : v0.12.5 24 Aug 2021
INFO Client address : 0x5ca2d0f14dec39aa0500241980b72caa56944d4d
INFO Fleet address : 0x6000000000000000000000000000000000000000
INFO Network is validated, last valid block: 2606228 0x00003f31044cba9ec6ec1..
INFO Port <name> : <extern> <mode> <protocol> <allowlist>
INFO Port localhost:80 : 80 protected any
INFO Port localhost:22 : 22 protected any
// 0x600000000000000000000000000000 is default fleet for new diode clients
// To change the fleet contract for a diode client:
diode config -set fleet=0x75c2bddbae0efa836138b832b915e6a27488e676

25

26 EM: PKI and IoT Security: How to choose the most secure implementation?

The implementation and publishment of a local webserver was tested in sev-
eral ways. The Diode websites suggests the following configuration to publish
static content in a tiny webserver:

Code listing 4.2: Diode Static content .

mkdir project
cd project
echo "Hello␣World" > index.html

diode publish -http
// The result of a publishment is the following feedback in the terminal window:
Diode Client version : v0.12.5 24 Aug 2021
INFO Client address : 0x035a7d47d7989136676a7863fe590ae6d2586a90
INFO Fleet address : 0x6000000000000000000000000000000000000000
INFO Network is validated, last valid block: 2612139
0x000052283c623b480d0c16e7a9466603f636c887fef5160e8c601955d04cf7bf
INFO
INFO HTTP Gateway Enabled :
http://0x035a7d47d7989136676a7863fe590ae6d2586a90.diode.link/
INFO Port <name> : <extern> <mode> <protocol> <allowlist>
INFO Port :8080 : 80 public any

The URL in the result can then be accessed from a web browser from any
client connected to internet. However, the main drawback with this configuration
is that this can not be published at the protected or private access levels where
any attempt results in an error message.

The diode websites also suggest the use of the web hosting platform Ghost,
which also requires the nodejs and npm packages. The installation of this platform
did however fail and the raspberry freezed and needed a hard restart without
completing the installation.

As a third option, the lightweight web server application called NGINX was
installed with the use of the following configuration:

Code listing 4.3: NGINX .

sudo apt-get update
sudo apt-get install nginx
sudo /etc/init.d/nginx start

With this webserver installed, it is possible to publish at also the protected and
private access levels.

A fleet contract is also established by the use of the METAMASK application,
and the diode addresses of the Raspberry clients are added to the fleet via the
diode network as shown in figures 4.1 and 4.2.

Each transfer in and out of the fleet requires a transaction confirmation in the
Metamask and is shown in figure 4.3.

Chapter 4: Demonstration and evaluation 27

Figure 4.1: Diode Fleet Overview

Figure 4.2: Diode Network Overview

SSH is enabled and published on the raspberry with the following commands:

Code listing 4.4: Diode ssh.

//Enable SSH
sudo systemctl enable ssh
systemctl start ssh

// SSH is then published on the diode network with the following command:
diode publish -public 22:22

//This can be accessed through via the Diode network with the following command:
ssh -o "ProxyCommand=nc␣-X␣5␣-x␣diode.link:1080␣%h␣%p"
<user>@<client_address>.diode
// In this lab it will be the follwing
ssh -o "ProxyCommand=nc␣-X␣5␣-x␣diode.link:1080␣%h␣%p"
pi@0x035a7d47d7989136676a7863fe590ae6d2586a90.diode

//The SSH can also be accessed directly between two clients on the network:
Host
diode socksd
diode publish -private 22:22,<authorized_address>
ssh -o "ProxyCommand=nc␣-X␣5␣-x␣localhost:1080␣%h␣%p" <user>@<host_address>.diode

// To change to a different fleet contract:
diode config -set fleet=0xd53336cf8b6afed6371d94ee1697b8b6fad73a8d

The results of the implementation is in table 4.1

28 EM: PKI and IoT Security: How to choose the most secure implementation?

Figure 4.3: METAMASK

Fleet Publishment Result
Default Public OK
Default Protected OK
Default Private Broken pipe
Smart Contract Public OK
Smart Contract Protected Broken pipe
Smart Contract Private Broken pipe

Table 4.1: Results implementing Lab 1

4.1.2 Vulnerability assessment

When referring to the Data Flow Diagram established for Lab 1 in figure 3.3,
the vulnerability assessment focused primarily on the Generic Data Store that is
beyond the Raspberry Web server process. The data flows running to and from
this process are also evaluated. This also means that not all potential listed threats
listed in the threat modeling tool will be evaluated. The potential threats that are
found relevant to evaluate are listed in table 4.2.

Based on this list of potential threats, a set of test cases are established with
the goal of evaluating the potential threats. The first case is however not focusing
on threats itself, but is more focused on verifying that the Data Flow Diagram is
correct. The test cases and the threats they evaluate are listed in table table 4.3,
as well as the test activity or type of attack that is used to evaluate the threat.

Chapter 4: Demonstration and evaluation 29

ID Category Title
2, 12, 57 Information Disclosure Data Flow Sniffing
23, 65 Information Disclosure Weak Access Control for Resource
19, 20 Denial of Service Data Store Inaccessible
11, 22, 58 Denial of Service Process Crash/Stop for Web server
9, 37,50 Elevation Of Privilege Elevation Using Impersonation
8, 18, 61 Elevation Of Privilege Web server may be exposed to RCE

Table 4.2: Relevant Vulnerabilities Lab 1

Test Case Threat Activity
1 The DFD may be incorrect Scanning
2 Web server exposed to RCE Scanning
3 Weak Access control and elevation Gain access
4 Data Flow sniffing Analysing traffic
5 Process crash and inaccessible data store Denial of Service

Table 4.3: Test Cases Lab 1

The test activities listed in section 3.4.1 will be central for each test case, but
all test activities are not necessarily used.

Test case 1: Verify Data Flow Diagram

The verification of DFD started with using NMAP and ARP scan Tools at a Com-
puter with Kali installed on the same Local Area Network as the Diode Clients.

The ARP Scan Tool is an ARP packet scanner that shows every active IPv4
device on the subnet. Since ARP is non-routable, this type of scanner only works
on the local area network. The following hosts were revealed by using this tool:

Code listing 4.5: ARP scan LAB1 .

$ sudo arp-scan --interface=eth0 --localnet

Interface: eth0, type: EN10MB, MAC: 00:0c:29:5b:68:c6, IPv4: 192.168.1.139
Starting arp-scan 1.9.7 with 256 hosts (https://github.com/royhills/arp-scan)
192.168.1.1 30:5a:3a:c9:a9:70 ASUSTek COMPUTER INC.
192.168.1.155 b8:27:eb:06:ce:62 Raspberry Pi Foundation
192.168.1.126 b8:27:eb:53:ea:37 Raspberry Pi Foundation

This scanning has revealed the IP addresses of the raspberries and verified that
there is a router in the network. This test has also verified that the listed entities
in the Data Flow Diagram are the same as the devices listed with this tool. The
tool NMAP is then used to have a closer look at the device with the web server
installed.

30 EM: PKI and IoT Security: How to choose the most secure implementation?

Code listing 4.6: NMAP scan LAB1 .

$ nmap -v -A 192.168.1.155
Starting Nmap 7.91 (https://nmap.org) at 2021-10-21 15:20 EDT
NSE: Loaded 153 scripts for scanning.

Scanning raspberrypi (192.168.1.155) [1000 ports]
Discovered open port 22/tcp on 192.168.1.155
Discovered open port 80/tcp on 192.168.1.155
Completed Connect Scan at 15:20, 2.06s elapsed (1000 total ports)
Initiating Service scan at 15:20
Scanning 2 services on raspberrypi (192.168.1.155)
Completed Service scan at 15:20, 11.12s elapsed (2 services on 1 host)

Nmap scan report for raspberrypi (192.168.1.155)
Host is up (0.0074s latency).
Not shown: 997 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 7.9p1 Raspbian 10+deb10u2+rpt1 (protocol 2.0)
| ssh-hostkey:
| 2048 65:16:5a:59:7b:cb:a8:2e:fb:b2:9a:17:67:3b:48:69 (RSA)
| 256 b6:1f:36:05:a5:5a:0f:48:89:5b:84:20:34:12:00:3a (ECDSA)
|_ 256 49:69:36:6e:47:d5:6f:d8:cd:23:2b:7e:e0:f8:79:67 (ED25519)
80/tcp open http nginx 1.14.2
| http-methods:
|_ Supported Methods: GET HEAD
|_http-server-header: nginx/1.14.2
|_http-title: Welcome to nginx!
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

This portscan verified that the dataflow called TCP/SSH in the DFD only uses port
22 and port 80 which is correct for communication inside the Local Area Network.
The test did however not discover the dataflow to the Diode Network.

Test case 2: Web server exposed to RCE

To test whether the Web server could be exposed to Remote Code executions, the
scanning tool Nessus were used to scan the raspberries. This tool found 1 critical,
1 high and 3 medium vulnerabilities on the raspberries.

Figure 4.4: Nessus Lab 1

The results are listed in table 4.4.

Chapter 4: Demonstration and evaluation 31

Host Severity Service Description
192.168.1.155 Critical Nginx Byte Memory Overwrite RCE
192.168.1.155 High Nginx Multiple Denial of Service vulnerabilities
192.168.1.155 Medium Nginx Information Disclosure

Table 4.4: Vulnerabilities Nessus Lab 1

Vulnerability CVSS Score Access/Metasploit
CVE-2021-23017 6.8 Medium probability/No
CVE-2019-9511/3/5, 7.8 None
CVE-2019-20372 4.3 Low probability/No
CVE-2005-1794 6.4 Low probability/No

Table 4.5: CVE Scores Nessus Lab 1

The host 192.168.1.155 has both critical and high vulnerabilities related to
the Nginx webserver. Searches in vulnerability databases [40] shows the affected
areas and are listed in table 4.5.

According to Nessus, there is a vulnerability to Remote Code Execution related
to the current version of the Web server. Searches in vulnerability databases or the
Metasploit framework did however not reveal how this could be done.

Test case 3: Weak access control and elevation

To evaluate the access control and possible elevation of privileges, the test activity
involving both gaining and maintaining access are used. From the scanning and
reconnaissance activity in Test Case 1, the tool Nmap reported that the SSH service
is open at port 22. The tool ncrack is then used to try a brute force attack at this
service, both at the IP address listed in nmap and the diode address to the client.
The typical default user of raspberry is pi, and with this credential and a text file
with multiple password alternatives the ncrack found the following;

32 EM: PKI and IoT Security: How to choose the most secure implementation?

Code listing 4.7: NCRACK scan LAB1 .

// The IP address
$ ncrack -p 22 --user pi -P 500-worst-passwords.txt 192.168.1.126

Starting Ncrack 0.7 (http://ncrack.org) at 2021-10-22 08:20 EDT

Discovered credentials for ssh on 192.168.1.126 22/tcp:
192.168.1.126 22/tcp ssh: ’pi’ ’raspberry’

Ncrack done: 1 service scanned in 141.01 seconds.

Ncrack finished.

// The Diode address
$ ncrack -p 22 --user pi -P 500-worst-passwords.txt
https://0x035a7d47d7989136676a7863fe590ae6d2586a90.diode.link/

Starting Ncrack 0.7 (http://ncrack.org) at 2021-10-22 08:27 EDT

// Ncrack freezes after this command and never finishes the scan.

This shows that the password to the diode client can be revealed in a brute
force attack and that access can be gained. A login with these credentials also
show that the user has root access, which means privileges can be elevated to
whatever level wanted. It is however the ip address that is available inside a local
network that could be exploited, and not the diode address that is reachable from
the Internet.

Test case 4: Data flow sniffing

To verify that the data flow can not be viewed by unauthorized users, both the
certificates and traffic are analyzed. The TCP/SSH data flows within the Local Area
Network are unencrypted HTTP-traffic where the NMAP tool in Test Case 1 could
identify both the content in the Data Store behind the Web server, as well as the
version of the Web server. The data flows to the Web server via the Diode Network
is however classified as a secure connection with encrypted traffic. HTTPS, short
for Hyper Text Transfer Protocol Secure, appears in the browser when a website is
secured by an SSL or TSL certificate. By clicking on the lock symbol on the browser
bar, the details of the certificate, such as issuing authority and the corporate name
of the website owner, can be viewed. For the Web server in the diode client, the
certificate is shown in figure 4.5.

The encrypted traffic can also be shown by using the tool Wireshark and ap-
plying a ssl filter. Even though the traffic is encrypted, it is, according to figure
4.6,possible to see the ip addresses it communicates with, 172.105.85.69, the
server name, prenet.diode.io and some information about the key exchange.

Chapter 4: Demonstration and evaluation 33

Figure 4.5: Diode Certificate

Test Case 5: Process crash and inaccessible data store

To test whether the Web server can experience process crash leading to inaccess-
ible data store, a combination of Denial of Service attacks as well as spoofing at-
tacks is used. The attacks were performed at the open ports of both the ip address
and the diode address of the raspberries.

Code listing 4.8: Hping LAB1 .

$ sudo hping3 -S --flood -V -p 80 192.168.1.126
--- 192.168.1.126 hping statistic ---
15525135 packets transmitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

$ sudo hping3 -S --flood -V -p 22 192.168.1.126
--- 192.168.1.126 hping statistic ---
14024011 packets transmitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

$ sudo hping3 0x035a7d47d7989136676a7863fe590ae6d2586a90.diode.link
-q -n -d 120 -S -p 80 --flood --rand-source
--- 0x035a7d47d7989136676a7863fe590ae6d2586a90.diode.link hping statistic ---
2603356 packets transmitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

//Spoofing the 192.168.1.155
$ sudo hping3 -1 --flood 192.168.1.126 -a 192.168.1.155

$ sudo hping3 -1 --flood 192.168.1.126 -a
0x035a7d47d7989136676a7863fe590ae6d2586a90.diode.link

The attack at port 80 at the raspberry led to a slower response while attack-
ing port 22 led to a non-responsive Web server and no ping response as well as

34 EM: PKI and IoT Security: How to choose the most secure implementation?

Figure 4.6: Wireshark Lab 1

existing SSH connections were broken. The attack at the diode address led to a
slower reponse from the web server, while ping response as well as existing SSH
connections were nonresponsive or broken.

The spoofing attack led to the target ip being nonresponsive, while the spoofed
ip had around 50 percent packet loss. The attack could be performed with both
the ip address and the diode address.

Chapter 4: Demonstration and evaluation 35

Test Case Threat LAN Internet
1 Incorrect DFD
2 Exposed Web Server (X) (X)
3 Weak Access Control X
4 Data Flow sniffing X
5 Process crash X X

Table 4.6: Results Lab 1

Vulnerability summary

The results of the various vulnerability test cases can be summarized in table 4.6.
There has been various results depending on whether tests were done inside the
Local Area Network towards the ip address, or from the Internet towards the diode
address. Table 4.6 shows where the potential threat was verified as a real threat
with the mark X. A comment to this table is that in Test Case 2 the potential threat
could only be partially verified, marked with (X), as the Nessus scan tool reported
this vulnerability without referring to vulnerability databases where a possible
exploitation method and CVSS rating could be found.

The main difference between LAN and Internet results come from the fact that
the open SSH port was vulnerable from a brute force password attack from inside
the LAN which gave full privileges to an attacker.

As a part of the threat model methodology it is now important to go back to
step 3, Identify, and update the threat model with the discovered vulnerabilities.
If an already listed threat with the state mitigated is still a valid threat, the state
need to be changed in the Threat Modeling Tool, typically to "Needs Investigation",
or if the threat is not yet listed, this will need to be added manually. Remember
the example in section 3.3.6, where the threat with ID 21 and description "Weak
Access Control for a Resource" was mitigated by implementing a password? This
vulnerability evaluation shows that the Access Control is still too weak which re-
quire further implementation and validation steps to the system. Implementing
Access Control with multifactor authentication could be the next mitigation step,
but this would also have to be evaluated after the implementation.

4.2 Lab 2 CA X.509

The implementation of a PKI Lab is based on on a traditional CA structure with
X.509 certificates. Due to various results a number of potential solutions were
tested.

4.2.1 X.509 implementation with root CA

The first implementation included creating an own Root Certificate Authority as
well as Sub CA designed to sign server and user certificates. The certificates were

36 EM: PKI and IoT Security: How to choose the most secure implementation?

based on openssl listed in Appendix and created on an freshly installed Kali im-
age and then exported to the raspberries. [41]. Details of the implementation are
shown in section 4.2.4

Verifying certificate from web browser

The user certificate is also implemented to the users of the webservice, but the
results is not promising as the web browsers report the certificate to the web site
to not be valid because the issuer of the certificate is not found.

Figure 4.7: X.509 rootsigned certificate part 1

Figure 4.8: X.509 rootsigned certificate part 2

Chapter 4: Demonstration and evaluation 37

4.2.2 X.509 implementation with self signed certificate

The second implementation involved creating a self signed certificate on the rasp-
berry which was then implemented in the web server Bloggerbrothers [42]. This
implementation was also based on the openssh toolkit.

Creating and implementing certificates

Code listing 4.9: CA X.509 self-signed implementation

//Generating self signed certificate and key
pi@raspberrypi:~$ sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout
/etc/ssl/private/nginx-selfsigned.key -out /etc/ssl/certs/nginx-selfsigned.crt
Generating a RSA private key
...............+++++
..............+++++
writing new private key to ’/etc/ssl/private/nginx-selfsigned.key’

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:NO
State or Province Name (full name) [Some-State]:Oslo
Locality Name (eg, city) []:oslo
Organization Name (eg, company) [Internet Widgits Pty Ltd]:NTNU
Organizational Unit Name (eg, section) []:Test
Common Name (e.g. server FQDN or YOUR name) []:192.168.1.155
Email Address []:
pi@raspberrypi:~$ sudo openssl dhparam -out /etc/ssl/certs/dhparam.pem 2048
Generating DH parameters, 2048 bit long safe prime, generator 2
This is going to take a long time
..................................
//Updating the Nginx server
pi@raspberrypi:/etc/nginx/snippets$ sudo vi self-signed.conf
ssl_certificate /etc/ssl/certs/nginx-selfsigned.crt;
ssl_certificate_key /etc/ssl/private/nginx-selfsigned.key;

pi@raspberrypi:/etc/nginx/snippets$ sudo vi ssl-params.conf
add: openssl_dhparam /etc/ssl/certs/dhparam.pem;

pi@raspberrypi:/etc/nginx$ sudo nginx -t
pi@raspberrypi:~$ sudo nginx -t
nginx: [warn] "ssl_stapling" ignored, issuer certificate not found for certificate
"/etc/ssl/certs/nginx-selfsigned.crt"
nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful
pi@raspberrypi:~$ sudo systemctl restart nginx
pi@raspberrypi:~$

38 EM: PKI and IoT Security: How to choose the most secure implementation?

Verifying certificate from web browser

This implementation of a self signed certificate changed the web browsers report.
The new certificate is now valid, however it is not trusted since it is not stored in
the web site.

Figure 4.9: X.509 selfsigned certificate

The certificate was then exported to the user and imported to the web browser
as a root certificate.

Code listing 4.10: CA X.509 self-signed verification

sudo openssl pkcs12 -export -in certs/nginx-selfsigned.crt -inkey
private/nginx-selfsigned.key \
-out selfsigned.pfx -name "Selfsigned␣Certificate"
pi@raspberrypi:/etc/ssl$ sudo openssl pkcs12 -export -in certs/nginx-selfsigned.crt
-inkey private/nginx-selfsigned.key \
> -out selfsigned.pfx -name "Selfsigned␣Certificate"
Enter Export Password:
Verifying - Enter Export Password:
pi@raspberrypi:/etc/ssl$

The import of this certificate finally made the browser report this as a valid
certificate.

Chapter 4: Demonstration and evaluation 39

Figure 4.10: X.509 valid selfsigned certificate

4.2.3 X.509 implementation with automated certificate authority

The third implementation involved using an automated and open source tool
called Certbot to generate a certificate from the certificate authority named Let’s
Encrypt [43].This implementation can also be classified as a free of charge PKI-
as-a-Service installation.

Code listing 4.11: CA X.509 automated certificate authority

root@raspberrypi:/etc/ssl# sudo apt-get install certbot
Leser pakkelister ... Ferdig
Skaper oversikt over avhengighetsforhold
Leser tilstandsinformasjon ... Ferdig
certbot is already the newest version (0.31.0-1+deb10u1).
Følgende pakker ble automatisk installert og er ikke lenger påkrevet:
gyp libc-ares2 libjs-inherits libjs-is-typedarray libssl-dev libuv1
libuv1-dev nodejs-doc python-colorzero

Use ’sudo␣apt␣autoremove’ to remove them.
0 oppgraderte, 0 nylig installerte, 0 å fjerne og 0 ikke oppgradert.
root@raspberrypi:/etc/ssl# sudo certbot --nginx
Saving debug log to /var/log/letsencrypt/letsencrypt.log
Plugins selected: Authenticator nginx, Installer nginx
No names were found in your configuration files. Please enter in your domain
name(s) (comma and/or space separated) (Enter ’c’ to cancel): donothaveadomain.com
Obtaining a new certificate
Performing the following challenges:
http-01 challenge for donothaveadomain.com

Failed authorization procedure. donothaveadomain.com (http-01):
urn:ietf:params:acme:error:dns ::
DNS problem: NXDOMAIN looking up A for donothaveadomain.com -
check that a DNS record exists for this domain

IMPORTANT NOTES:
- The following errors were reported by the server:

40 EM: PKI and IoT Security: How to choose the most secure implementation?

Domain: donothaveadomain.com
Type: None
Detail: DNS problem: NXDOMAIN looking up A for donothaveadomain.com
- check that a DNS record exists for this domain

root@raspberrypi:/etc/ssl#

Since the web server was set up without a domain name visible from the In-
ternet, this implementation did not work.

4.2.4 Detailed implementation with root CA

Creating a self signed root certificate

Code listing 4.12: CA X.509 root

// creates a key for the certificate
$ sudo openssl rand -out private/.randRootCA 8192
$ sudo openssl genrsa -out rootca.key -rand private/.randRootCA
Generating RSA private key, 2048 bit long modulus (2 primes)

// Create the actual certificate
$ sudo openssl req -new -x509 -days 3650 -key cakey.pem -out cacert.pem

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:NO
State or Province Name (full name) [Some-State]:oslo
Locality Name (eg, city) []:oslo
Organization Name (eg, company) [Internet Widgits Pty Ltd]:NTNU
Organizational Unit Name (eg, section) []:test
Common Name (e.g. server FQDN or YOUR name) []:emil
Email Address []:

// To show the certificate
openssl x509 -text -in cacert.pem
Certificate:

Data:
Version: 3 (0x2)
Serial Number:

7e:2a:7f:92:cc:79:be:cc:ba:9b:d7:fa:25:e6:8d:cf:5a:97:20:56
Signature Algorithm: sha256WithRSAEncryption
Issuer: C = NO, ST = oslo, L = oslo, O = NTNU, OU = test, CN = Emil
Validity

Not Before: Oct 30 12:11:27 2021 GMT
Not After : Oct 28 12:11:27 2031 GMT

Subject: C = NO, ST = oslo, L = oslo, O = NTNU, OU = test, CN = Emil
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public-Key: (2048 bit)

Chapter 4: Demonstration and evaluation 41

Create a sub ca certificate signed by the root ca

Code listing 4.13: CA X.509 sub

// creates a key for the certificate
$ sudo openssl rand -out .randSubCA 8192
$ sudo openssl genrsa -out private/subca.key -aes256 -rand .randSubCA 2048

Enter pass phrase for private/subca.key:
Verifying - Enter pass phrase for private/subca.key:

// Create the actual certificate
$ sudo openssl req -new -key private/subca.key -out subca.csr -config openssl.cnf
Enter pass phrase for private/subca.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:NO
State or Province Name (full name) [Some-State]:Oslo
Locality Name (eg, city) []:NTNU
Organization Name (eg, company) [Internet Widgits Pty Ltd]:NTNU
Organizational Unit Name (eg, section) []:emil
Common Name (e.g. server FQDN or YOUR name) []:test
Email Address []:

Please enter the following ’extra’ attributes
to be sent with your certificate request
A challenge password []:123456
An optional company name []:

// Signs the actual certificate
$ sudo openssl ca -name CA_default -in subca.csr -out certs/subca.crt \
-config openssl.cnf

Using configuration from openssl.cnf
Check that the request matches the signature
Signature ok
Certificate Details:

Serial Number: 1 (0x1)
Validity

Not Before: Oct 31 16:37:08 2021 GMT
Not After : Oct 31 16:37:08 2022 GMT

Certificate is to be certified until Oct 31 16:37:08 2022 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

42 EM: PKI and IoT Security: How to choose the most secure implementation?

Creating a server certificate signed by sub ca

Code listing 4.14: CA X.509 server

// creates a key for the certificate

$ sudo openssl rand -out .randServer 8192
[sudo] password for kali:

$ sudo openssl genrsa -out private/server.key -aes256 -rand .randServer 2048
Generating RSA private key, 2048 bit long modulus (2 primes)
.................................+++++
...+++++
e is 65537 (0x010001)
Enter pass phrase for private/server.key:
Verifying - Enter pass phrase for private/server.key:

// Create the actual certificate
$ sudo openssl req -new -key private/server.key -out server.csr -config openssl.cnf
Enter pass phrase for private/server.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

Country Name (2 letter code) [AU]:NO
State or Province Name (full name) [Some-State]:Oslo
Locality Name (eg, city) []:oslo
Organization Name (eg, company) [Internet Widgits Pty Ltd]:NTNU
Organizational Unit Name (eg, section) []:emil
Common Name (e.g. server FQDN or YOUR name) []:test
Email Address []:

Please enter the following ’extra’ attributes
to be sent with your certificate request
A challenge password []:123456
An optional company name []:

// Signs the actual certificate with the SubCa
sudo openssl ca -name CA_SubCA -in server.csr -out certs/server.crt
-extensions server_cert -config openssl.cnf
Using configuration from /usr/lib/ssl/openssl.cnf
Enter pass phrase for ./private/subca.key:
Error Loading extension section user_cert
140212158022976:error:0E06D06C:configuration file routines:NCONF_get_string:
no value:../crypto/conf/conf_lib.c:273:group=CA_SubCA name=email_in_dn
140212158022976:error:0E06D06C:configuration file routines:NCONF_get_string:
no value:../crypto/conf/conf_lib.c:273:group=CA_SubCA name=rand_serial
-extensions: command not found

// ERROR, tries to sign with root CA instead

sudo openssl ca -name CA_default -in server.csr -out certs/server.crt \
-config openssl.cnf

Using configuration from openssl.cnf
Check that the request matches the signature
Signature ok

Chapter 4: Demonstration and evaluation 43

Certificate Details:
Serial Number: 2 (0x2)
Validity

Not Before: Oct 31 20:28:17 2021 GMT
Not After : Oct 31 20:28:17 2022 GMT

Subject:
countryName = NO
stateOrProvinceName = Oslo
organizationName = NTNU
organizationalUnitName = emil
commonName = test

X509v3 extensions:
X509v3 Basic Constraints:

CA:FALSE
Netscape Comment:

OpenSSL Generated Certificate
X509v3 Subject Key Identifier:

E3:FE:78:37:B1:BA:8B:E2:6C:80:9B:F2:83:F8:A2:31:87:12:F4:D7
X509v3 Authority Key Identifier:

keyid:13:56:71:0D:1A:C7:B8:E3:43:F8:89:E3:E3:53:4D:9F:82:0C:38:ED

Certificate is to be certified until Oct 31 20:28:17 2022 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

Creating a user certificate signed by sub ca

Code listing 4.15: CA X.509 user

// creates a key for the certificate

$ sudo openssl rand -out .randServer 8192

$ sudo openssl genrsa -out private/user.key -aes256 -rand .randServer 2048
Generating RSA private key, 2048 bit long modulus (2 primes)
.................................+++++
...+++++
e is 65537 (0x010001)
Enter pass phrase for private/user.key:
Verifying - Enter pass phrase for private/user.key:

// Create the actual certificate
$ sudo openssl req -new -key private/user.key -out user.csr -extensions usr_cert \
-config openssl.cnf
Enter pass phrase for private/user.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ’.’, the field will be left blank.

44 EM: PKI and IoT Security: How to choose the most secure implementation?

Country Name (2 letter code) [AU]:NO
State or Province Name (full name) [Some-State]:Oslo
Locality Name (eg, city) []:oslo
Organization Name (eg, company) [Internet Widgits Pty Ltd]:NTNU
Organizational Unit Name (eg, section) []:emil
Common Name (e.g. server FQDN or YOUR name) []:test2
Email Address []:

Please enter the following ’extra’ attributes
to be sent with your certificate request
A challenge password []:123456
An optional company name []:

// Signs the actual certificate with the RootCa (instead of SubCa)

sudo openssl ca -name CA_default -in user.csr -out certs/user.crt \
-extensions usr_cert -config openssl.cnf
Using configuration from openssl.cnf
Check that the request matches the signature
Signature ok
Certificate Details:

Serial Number: 3 (0x3)
Validity

Not Before: Oct 31 20:48:31 2021 GMT
Not After : Oct 31 20:48:31 2022 GMT

Subject:
countryName = NO
stateOrProvinceName = Oslo
organizationName = NTNU
organizationalUnitName = emil
commonName = test2

X509v3 extensions:
X509v3 Basic Constraints:

CA:FALSE
Netscape Comment:

OpenSSL Generated Certificate
X509v3 Subject Key Identifier:

04:17:D1:13:D2:00:31:F5:DC:64:74:9C:97:76:E4:0E:E2:00:64:06
X509v3 Authority Key Identifier:

keyid:13:56:71:0D:1A:C7:B8:E3:43:F8:89:E3:E3:53:4D:9F:82:0C:38:ED

Certificate is to be certified until Oct 31 20:48:31 2022 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

Chapter 4: Demonstration and evaluation 45

Export certificate to users

Code listing 4.16: CA X.509 export

// Change server and user certificate to PKCS#12 format
$ sudo openssl pkcs12 -export -in certs/user.crt -inkey private/user.key \
-out user.pfx -name "User␣Certificate"
Enter pass phrase for private/user.key:
Enter Export Password:
Verifying - Enter Export Password:

$ sudo openssl pkcs12 -export -in certs/server.crt -inkey private/server.key \
-out server.pfx -name "Server␣Certificate"
[sudo] password for kali:
Enter pass phrase for private/server.key:
Enter Export Password:
Verifying - Enter Export Password:

sudo openssl pkcs12 -export -in cacert.pem -inkey cakey.pem \
-out Root.pfx -name "Root␣Certificate"
[sudo] password for kali:
Enter Export Password:
Verifying - Enter Export Password:

// Transfer certificates to raspberries by using ssh/scp
$ sudo scp server.pfx pi@192.168.1.155:/home/pi
pi@192.168.1.155s password:
server.pfx 100% 2666 403.8KB/s 00:00

$ sudo scp user.pfx pi@192.168.1.126:/home/pi
pi@192.168.1.126s password:
user.pfx 100% 2662 52.4KB/s 00:00
sudo scp user.pfx pi@192.168.1.126

sudo scp Root.pfx pi@192.168.1.155:/home/pi
pi@192.168.1.155s password:
Root.pfx 100% 2694 47.2KB/s 00:00

// Export and implement server certificates in raspberries

pi@raspberrypi:~$ openssl pkcs12 -in server.pfx -nocerts -out server.key -nodes
Enter Import Password:
pi@raspberrypi:~$ openssl pkcs12 -in server.pfx -nokeys -out server.crt -nodes
Enter Import Password:
pi@raspberrypi:~$
pi@raspberrypi:~$ sudo openssl pkcs12 -in Root.pfx -nocerts -out Root.crt -nodes
Enter Import Password:
pi@raspberrypi:~$ sudo cp Root.crt /usr/local/share/ca-certificates/Root.crt

pi@raspberrypi:~$ sudo cp server.crt /usr/local/share/ca-certificates/server.crt
pi@raspberrypi:~$ sudo update-ca-certificates
Updating certificates in /etc/ssl/certs...
2 added, 0 removed; done.
Running hooks in /etc/ca-certificates/update.d...
done.

46 EM: PKI and IoT Security: How to choose the most secure implementation?

Implement certificate and key in the NGINX web server

Code listing 4.17: CA X.509 implementation

// Generating two new files in the directory /etc/nginx/snippets
pi@raspberrypi:~$ sudo vi /etc/nginx/snippets/self-signed.conf
ssl_certificate /usr/local/share/ca-certificates/server.crt;
ssl_certificate_key /etc/ssl/private/server.key;
pi@raspberrypi:~$ sudo vi /etc/nginx/snippets/ssl-params.conf
ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
ssl_prefer_server_ciphers on;
ssl_ciphers "EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH";
ssl_ecdh_curve secp384r1;
ssl_session_cache shared:SSL:10m;
ssl_session_tickets off;
ssl_stapling on;
ssl_stapling_verify on;
resolver 8.8.8.8 8.8.4.4 valid=300s;
resolver_timeout 5s;
// Editing the configuration file of NGINX by adding the following
pi@raspberrypi:~$ sudo /etc/nginx/nginx.conf
http
server
SSL configuration
listen 443 ssl http2 default_server;
listen :443 ssl http2 default_server;
include snippets/self-signed.conf;
include snippets/ssl-params.conf;

// Checking configuration file and restarting service
root@raspberrypi:/etc/nginx# nginx -t
nginx: warn "ssl_stapling" ignored, issuer certificate not found for certificate
"/usr/local/share/ca-certificates/server.crt"
nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is successful
pi@raspberrypi:/etc/nginx# sudo systemctl restart nginx

Chapter 4: Demonstration and evaluation 47

ID Category Title
2, 12 Information Disclosure Data Flow Sniffing
23 Information Disclosure Weak Access Control for Resource
19, 20 Denial of Service Data Store Inaccessible
11, 22 Denial of Service Process Crash/Stop for Web server
9 Elevation Of Privilege Elevation Using Impersonation
8, 18 Elevation Of Privilege Web server may be exposed to RCE

Table 4.7: Relevant Vulnerabilities Lab 2

4.2.5 Vulnerability assessment

When referring to the Data Flow Diagram established for Lab 2 in figure 3.4, this
vulnerability assessment also focused primarily on the Generic Data Store that is
beyond the Raspberry Web server process, as well as the connected data flows.

Two of the implementations could not provide a valid certificate to the web
server, which made the second implementation with the self signed certificate a
natural candidate for the vulnerability assessment.

Even though the threat modeling tool listed fewer potential threats in Lab 2
versus Lab 1, the potential threats that were found relevant to evaluate were the
same as in Lab 1 and listet in table 4.7. The difference was that there were fewer
ID’s connected to each threat.

Based on this list of potential threats, the same list of test cases as in Lab 1
were used.

Test case 1: Verify Data Flow Diagram

The verification of DFD were performed by the use of NMAP and ARP scan tools
The ARP Scan Tool gave the same results as in lab 1, but the NMAP revealed

that in addition to the open ports in lab 1, one could now see that port 443 is
open. NMAP also revealed information about the certificate that is used on the
raspberry with web server.

Code listing 4.18: NMAP scan LAB2

$ nmap -v -A 192.168.1.155
Starting Nmap 7.91 (https://nmap.org) at 2021-11-13 06:57 EST

Initiating Connect Scan at 06:57
Scanning raspberrypi (192.168.1.155) [1000 ports]
Discovered open port 22/tcp on 192.168.1.155
Discovered open port 443/tcp on 192.168.1.155
Discovered open port 80/tcp on 192.168.1.155
Completed Connect Scan at 06:57, 0.18s elapsed (1000 total ports)
Initiating Service scan at 06:57
Scanning 3 services on raspberrypi (192.168.1.155)
Completed Service scan at 06:57, 12.32s elapsed (3 services on 1 host)

PORT STATE SERVICE VERSION

48 EM: PKI and IoT Security: How to choose the most secure implementation?

22/tcp open ssh OpenSSH 7.9p1 Raspbian 10+deb10u2+rpt1 (protocol 2.0)
| ssh-hostkey:
| 2048 65:16:5a:59:7b:cb:a8:2e:fb:b2:9a:17:67:3b:48:69 (RSA)
| 256 b6:1f:36:05:a5:5a:0f:48:89:5b:84:20:34:12:00:3a (ECDSA)
|_ 256 49:69:36:6e:47:d5:6f:d8:cd:23:2b:7e:e0:f8:79:67 (ED25519)
80/tcp open http nginx 1.14.2
| http-methods:
|_ Supported Methods: GET HEAD
|_http-server-header: nginx/1.14.2
|_http-title: Welcome to nginx!
443/tcp open ssl/http nginx 1.14.2
| http-methods:
|_ Supported Methods: GET HEAD
|_http-server-header: nginx/1.14.2
|_http-title: Welcome to nginx!
| ssl-cert: Subject: commonName=192.168.1.155/organizationName=
NTNU/stateOrProvinceName=Oslo/countryName=NO
| Issuer: commonName=192.168.1.155/organizationName=
NTNU/stateOrProvinceName=Oslo/countryName=NO
| Public Key type: rsa
| Public Key bits: 2048
| Signature Algorithm: sha256WithRSAEncryption
| Not valid before: 2021-11-06T20:05:01
| Not valid after: 2022-11-06T20:05:01
| MD5: 0a01 26b7 9a92 b096 351f a745 3440 9c28
|_SHA-1: 349d e769 69a9 2f9a 128a ca59 647b 1544 0f49 5e31
|_ssl-date: TLS randomness does not represent time
| tls-alpn:
| h2
|_ http/1.1
| tls-nextprotoneg:
| h2
|_ http/1.1
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel

This portscan verified that the data flow called HTTPS/SSH in the DFD uses
port 22, 80 and 443. This means that the data flow also uses HTTP, which is not
in correspondance for the Data Flow Diagram for this lab.

Test case 2: Web server exposed to RCE

In the same way as Lab 1, the scanning tool Nessus were used to test whether the
Web server could be exposed to Remote Code executions

This tool now found 2 critical, 2 high and 11 medium vulnerabilities on the
raspberries.

The results are listed in table 4.8.

Even though more vulnerabilities were reported in lab 2, there is still the same
affected areas as in lab 1 that can be found in a vulnerability databases [40]. This
means that the result of this test case regarding the Remote Code Execution will
be the same as Lab 1.

Chapter 4: Demonstration and evaluation 49

Figure 4.11: Nessus Lab 2

Host Severity Service Description
192.168.1.155 Critical x2 Nginx Byte Memory Overwrite RCE
192.168.1.155 High x2 Nginx Multiple Denial of Service vuln
192.168.1.155 Medium Nginx Information Disclosure
192.168.1.155 Medium SSL Certificate cannot be trusted
192.168.1.155 Medium SSL Self-Signed Certificate
192.168.1.155 Medium TLS Version 1.0 Protocol Detection

Table 4.8: Vulnerabilities Nessus Lab 2

Test case 3: Weak access control and elevation

In order to gain access, the method from lab 1 with brute force attacking SSH is
still a valid method to both gaining access and maintaining access.

Test case 4: Data flow sniffing

To verify that also the data flows in this lab can not be viewed by unauthorized
users, both the certificates and traffic are analyzed.

The connection to the webserver with the selfsigned certificate is classified as
a secure connection from some web browsers, like Internet Explorer, while other
browsers, like Chrome, still reports this site as not secure due to missing Subject
Alternative Names in the certificate.

This traffic can also be shown by using the tool Wireshark and applying a ssl
filter. In this lab it is also possible to see information about the certificate and key
exchange.

In Test case 1 the NMAP tool showed that the data flow also uses HTTP, which
was not in correspondance for the Data Flow Diagram for this lab. This also means
that it is possible for unauthorized users within the local network to view parts of
the data flow.

50 EM: PKI and IoT Security: How to choose the most secure implementation?

Figure 4.12: Wireshark Lab 2

Test Case 5: Process crash and inaccessible data store

To test whether the Web server in this lab also can experience process crash leading
to inaccessible data store, the same combination of Denial of Service attacks as
well as spoofing atacks were used. The tool hping3 is also used in this lab to test
whether the web server can withstand denial of service attacks. The attack were
now performed at the new open port 443 of the raspberry.

Code listing 4.19: Hping LAB2

$ sudo hping3 -S --flood -V -p 443 192.168.1.155
[sudo] password for emyre:
using eth0, addr: 192.168.1.139, MTU: 1500
HPING 192.168.1.155 (eth0 192.168.1.155): S set, 40 headers + 0 data bytes
hping in flood mode, no replies will be shown

$ sudo hping3 -S --flood -V -p 80 192.168.1.155
[sudo] password for emyre:
using eth0, addr: 192.168.1.139, MTU: 1500
HPING 192.168.1.155 (eth0 192.168.1.155): S set, 40 headers + 0 data bytes
hping in flood mode, no replies will be shown

$ sudo hping3 -S --flood -V -p 22 192.168.1.155
[sudo] password for emyre:
using eth0, addr: 192.168.1.139, MTU: 1500
HPING 192.168.1.155 (eth0 192.168.1.155): S set, 40 headers + 0 data bytes
hping in flood mode, no replies will be shown

//Spoofing the 192.168.1.155
$ sudo hping3 -1 --flood 192.168.1.126 -a 192.168.1.155
HPING 192.168.1.126 (eth0 192.168.1.126): icmp mode set, 28 headers + 0 data bytes
hping in flood mode, no replies will be shown

The attack to port 443, 80 and 22 at the raspberry led to a slower response
where figure 4.13 shows that the ping time went from typical 3 milliseconds to
around 3 seconds.

The spoofing attack also led to the target ip being non-responsive to ping,
while the spoofed ip had around 50 percent packet loss.

Chapter 4: Demonstration and evaluation 51

Figure 4.13: Denial of Service Lab 2

Test Case Threat LAN Internet
1 Incorrect DFD X
2 Exposed Web Server (X)
3 Weak Access Control X
4 Data Flow sniffing X
5 Process crash X

Table 4.9: Results Lab 2

Vulnerability summary

The results of the various vulnerability tests can also in this lab be summarized
in a table. The difference from lab 1 is that all test have been done inside the
Local Area Network and that there has not been possible to do the tests from the
Internet.

Table 4.9 shows where the potential threat was verified as a real threat with
the mark X.

Also in this lab the open SSH port was vulnerable from a brute force password
attack from inside the LAN which gave full privileges to an attacker.

As a part of the threat model methodology, it is also for this lab important
to go back to step 3, Identify, and update the threat model with the discovered
vulnerabilities.

Chapter 5

Discussion

This chapter continues on activity 5 in the DSRP with a continued evaluation of the
artefact. The chapter will also address the final activity, which is communication.

The chapter start by evaluating aspects of both the implementation and vul-
nerability assessment of the artefact in the thesis. There will also be an evaluation
of the trust levels needed for each implementation, followed by a presentation of
limitations that might have affected the result of the thesis.

At the end of the chapter, there will be an attempt to answer the research
questions to this thesis, as well as relating these to the earlier presented user
scenario. This will address the related topics from the introducion of the thesis,
and be essential in the activity of communicating the presented work to the public.

5.1 Aspects of the implementation method

The implementation in lab 1 was the blockchain technology called Diode. The
diode client was easy to install in the raspberries where just a few command
lines were needed to install software and certificates and to publish services world
wide over the Internet without administrating proxy or firewall settings at routers
between the Local Area Network and Internet. There is also no need to buy domain
names in order to publish the services. The services could easily be accessed at the
public access level, where especially the SSH service was easy to verify from other
clients. Web services on the other hand, proved a bit more difficult to verify as the
raspberry slows down and sometimes freezes when opening its web browser. The
secure connections were also broken from time to time when running the software
where the diode system reported that it could not verify transaction blocks.

To use the private and protected access levels, it is a bit more complicated
when it comes to installing the Metamask application and generate fleet accounts.
There is often a need for several attempts to move a client from the default account
to the fleet account, and if more than one account is generated, the client, from
the diode network perspective, seem to be added to all the accounts when it is
only attempted to do this at only one. It also seems that the fleet accounts are

53

54 EM: PKI and IoT Security: How to choose the most secure implementation?

in a different server, US1, than the defalt account, EU1, and it does not seem
to be a way for the fleet account administrator to choose which server to use.
This might affect the outcome of the result when the attempts to publish web
services at these access levels failed. The Diode Client also need to use socks proxy
server to communicate at these access levels, and this service slows down the
raspberry. Another disadvantage with this implementation is that it can not be
installed without the clients having access to the Internet.

While the implementation in lab 1 was quite easy to install, the implement-
ations in lab 2 were far more complicated. Creating keys and certificates were
highly dependant on the configuration and settings in the Openssl config file.
This configuration file also seems to be lacking standardization, as it will have
different content depending on the operating system and its version and system
policies installed. The error messages received when trying to sign with CA Sub
were not intuitive, and made it difficult to correct. In addition, the Nginx server
needed several manual changes in the configuration settings to include server cer-
tificates. The export and implementation of user certificates also needed a lot of
manual installation steps. The advantage with this solution is that it can be imple-
mented in a network without access to Internet, and that the local administrators
will have full access to every configuration setting in the system. The PKI-as-a-
service alternative with Certbot and Lets Encrypt could be an alternative that is
quite easier to install, however it is also depending on Internet access and domain
details.

5.2 Aspects of the vulnerability results

The vulnerability assessments in both lab implementations have common factors.
In both implementations an attacker could gain full access and exploit the web
server and data store of the raspberry with the open SSH port and weak password
protection. This shows the importance of not believing a system is secure as soon
as it is secured with PKI. One has to consider all weaknesses and continuously
evaluate the system to keep it as secure as possible. Another common factor for
both labs is the outdated Nginx installation with several vulnerability issues. Even
though the Raspberry updated all apt packages, the newest installation of Nginx
has to be installed manually. Another vulnerability that is not shown in the results,
is the lack of secure storage for the keys. Neither the raspberries nor the local
root certificate server in lab 2 use Trusted Platform Modules and this makes the
keys in the PKI vulnerable for exposure and exploitation to an attacker. For the
implementation in lab 1 the installation of Metamask is also dependant on secure
storage, and it is uncertain how the Diode Network secures the needed keys.

What separates the results in the labs is that in Lab 1 it is possible to attack
the system from outside the Local Area Network. A comparison on results from
the test cases listed in table 5.1 shows that in Lab 2 the DFD was incorrect since
it could still go unprotected HTTP traffic via port 80 that was not described in the
DFD. Having an implementation that deviates from the design introduces a great

Chapter 5: Discussion 55

Test Case Threat Lab 1 Lab2
1 Incorrect DFD X
2 Exposed Web Server (X) (X)
3 Weak Access Control X X
4 Data Flow sniffing X X
5 Process crash X X

Table 5.1: Results comparison

risk of not being able to identify the all the correct potential vulnerabilities with
the threat modelling tool.

In lab 2 there is also an extra vulnerability associated to an outdated version
of the TLS certificate which again is depending on which openssl version the cer-
tificate was generated with. There are also issues with the self signed certificate
where some web browsers report this as an security issue, while other browsers
validates the certificate as safe.

5.3 Trust

An important aspect to consider when implementing PKI is the level of trust
needed for the system. Blockchain implementations need a consensus of miners
to generate trust, where the public blockchain system with several miners might
lead to a slow network with little scalability. As a contrast to this, the smaller
the networks are, the more vulnerable they will be to both centralization and 51
percent attacks [44] where a majority of rogue miners can compromise the trust
mechanism.

PKI-as-a-service also introduces a third party provider that need to be trusted.
How do a customer of this service decide the level of trust that this provider should
have, and how can a customer control that the trust level is maintained.

As a contrast, a customer can have full control over the network and PKI sys-
tem when implementing its own Certification Authority. This will however depend
on hiring resources with the right competence to implement this. Without this
competence, the result can be a trusted system with lots of flaws and vulnerabil-
ities.

5.4 Limitations

This thesis had some limitations that made research, testing and validation chal-
lenging. The freezing of raspberries in lab 1 indicated that the chosen hardware
were too constrained to fully test and validate all the functions in the blockchain
implementation. The lack of standardization in the Openssl configuration in lab
2 also made testing and validation difficult. To compensate for this, three differ-
ent implementation methods with the same purpose were used. A function that

56 EM: PKI and IoT Security: How to choose the most secure implementation?

could not be tested in the lab implementations, due to both hardware restrictions
and necessary time, is how the certificate revocation lists would behave in the lab
environment, and if there are vulnerabilities related to the distribution of these
lists. This is very unfortunate, especially since recent studies suggests that almost
one third of the organizations that implement PKI, does not include technology
to revoke certain certificates[45].

Another limitation is that some of the research information is retrieved from
web sites and blogs which are community driven without official authors. This is
typical for open source driven technologies with releases in software repositories
like Github [45]. Some of the sources have also been identified as companies with
interests of selling own product, which can be challenging for validating the the
credibility of the sources. As a compensation, the information have often been
verified at several sources to enhance the credibility.

5.5 The case

It is time to take a look at the user scenario presented in the introduction of the
thesis. The hospital were faced with some major decission points regarding the
choice of PKI solution and whether this should be implemented by internal IT-
department or external experts. Based on suggested criterias, the following as-
sessments can be done:

Availability to Internet There was not mentioned whether the health devices
would be installed in a private network without access to the Internet, or
if they would be accessible from Internet. To lower the attack surface, it is
recommended that these devices are on a private network. This also means
the only current alternative is to use the standard and lightweight X.509
certificates with a central Certification Authority installed inside the Net-
work.

Size The internal resources of the health devices were also not specified in the
case. Considering the fact that blockchain solutions in some settings deman-
ded too much resources from the raspberries in the lab also favours the use
of lightweight certificate.

Numbers The amount of health devices to be installed in the hospital were also
not specified. It is assumed that for just one hospital, there will not be several
thousand devices, which also mean that the scalability advantages offered
through PKI-as-a-service or blockchain are not that necessary.

Importance The healthcare devices are however considered very important, since
failure or misuse can lead to loss of sensitive pasient data or in worst case
loss of life. For these important devices there need to determined a high
level of trust where all variables of the PKI implementation are controlled.

Chapter 5: Discussion 57

So far, all recommendations point to implementing a standard or lightweight
X.509 certificates with a central Certification Authority at the hospital. This thesis
has however shown that such an installation can be very complex which demands
specific expert knowledge. The high level of trust that is needed, combined with
the assumption that this hospital is not the only hospital that considers imple-
menting the same kind of health devices, leads to the following recommandation:

The hospital should reach out to its neighboring hospitals and also to the ad-
ministration levels above, which might be all the way up to the national Ministry
of Health and Care Services. This Ministry will probably have access to more re-
sources and can establish a task group with expert knowledge that can be used to
develop a national implementation method with the right level of trust. With this
method, all of the hospitals in the nation can get help to secure their health devices
with the same methodology. It is also expected that this national task group will
be well educated in the use of threat modeling tools, and that they can help and
train the local IT departments at the hospitals with how to use these tools at the
most efficient way.

The disadvantage with this recommendation is however that the implement-
ation will have a centralized form of nature which introduces the possibility for
single points of failures. The more hospitals this task group supports, the larger the
need for scalability will be. When all the hospitals in a nation is secured with the
same solution, this could be a possibility for introducing blockchain technology
that will work inside a private network and where there could be decentralization
in for of a consortium system with one miner, or trusted validating member, for
each hospital.

5.6 Research Questions

The aim of this thesis is to answer three research questions involving PKI solutions
for IoT devices. The two first questions are what the current PKI solution for se-
curing IoT devices today are, and what the vulnerabilities for these solutions are.
The answer to these two questions can be found from a combination of extracted
research literature as well as findings in lab results.

Standard and Lightweight X.509 Certificates This is the most common and im-
plemented PKI solution where infrastructure is dependant on a hierarchical
CA structure. The perhaps greatest vulnerability with these solutions is that
the system depends on one CA which introduces single points of failures
that can be exposed to Denial of Service Attacks. Another vulnerability can
be related to the complexity and diversity of various implementations, es-
pecially if there are less experienced personell that do the implementation.

PKI-as-a-service There are several companies that offer to host PKI services on
constrained devices to customers all over the world. Allthough this solution
probably ensures qualified personell to implement and maintain the secur-
ity of the IoT devices, there is still a considerable risk and vulnerability in

58 EM: PKI and IoT Security: How to choose the most secure implementation?

placing the trust of the system to an external company. This solution often
demands that the IoT device have to be accessible from outside the Local
Area Network, which can introduce a higher probability of being attacked.

Decentralized PKI like blockchain This is a relatively new solution with advant-
ages like scalability and not being dependant of single point of failures. The
trust is in the consensus of several miners, which introduces the vulnerab-
ility of being exposed to a 51 Percent attack. The current implementations
in the lab in this thesis also demands that the IoT device have to be access-
ible from outside the Local Area Network, and that this, similar to PKI-as-a-
service introduces a larger attack surface.

There are also some common vulnerabilities that exist for all PKI solutions.
The most dangerous vulnerability is perhaps to not implement and follow a threat
model methodology, which can lead to the misconception of believing the IoT
device is secure as soon as a PKI solution is implemented. The vulnerability is
then to ignore or neglect other basic security mechanisms as changing password
or implementing multifactor-authentication, not updating to the latest software
patches or to skip antivirus solutions. These are all threat mitigations that could
have been discovered when following the steps of a threat model methodology.

Another vulnerability related to the PKI solutions is to store keys on devices
without investing in secure storage devices and by that introduce the risk of losing
keys with following security breaches. There are also vulnerabilities related to
PKI security and the availability of the IoT devices. Implementing too resource
demanding PKI solutions can lead to lower performance from the IoT devices, or
in worst case make them non-responsive similar to a successful Denial of Service
attack.

For the third question of the thesis, which is if different PKI solutions can be
recommended to different IoT solutions, the answer is yes. The heterogenity and
various areas of use makes it unlikely to recommend just one solution that should
cover everyones need. When it comes to the different criterias that should be used
for this recommendation, the author of the thesis suggests the following:

Availability to Internet A large portion of todays IoT devices are installed in
private networks without any connection to Internet. For these devices, the
only current alternative seem to be standard and lightweight X.509 certific-
ates with a central Certification Authority installed inside the Network.

Size The internal resources of a IoT device will determine what PKI solution it
should use. Findings from the lab showed that blockchain solutions in some
settings demanded too much resources from the raspberries and slowed
down the performance considerably. A typical lightweight certificate would
be preferred in these settings.

Numbers The amount of PKI devices to be included in a PKI solution is very
relevant. For a large amount of several thousand devices one will prefer

Chapter 5: Discussion 59

a solution that is scalable without too much administration of the unique
devices. Blockchain and PKI-as-a-Service are preferred in these settings.

Importance Some IoT devices are more important than others. For instance can
failure or misuse of IoT devices in a hospital or power plant result in loss
of life or significant damages related to environment. Other IoT devices are
however only meant to be low cost and used for entertainment where failure
or misuse leads to minimal consequences. For the more important devices
one will need to determine a high level of trust and possibly control all
variables by implementing a internal Certification Authority which favours
the a standard X.509 implementation.

Chapter 6

Conclusion

This thesis have focused on PKI solutions that can secure IoT devices, with both
theoretical research and practical implementations with following vulnerability
assessments. There are several ways to implement PKI solutions in IoT devices and
the security of these solutions will depend on the individual characteristics and the
purpose and criticality of each IoT device. Even though this thesis has presented
and evaluated some of the current PKI solutions that exist for IoT devices today,
these solutions are continuously developing. It is especially interesting to see the
development of the blockchain technology, which earlier has seemed promising,
but have had implementation challenges related to synchronization time and stor-
age. It now seems like a lot of these challenges have been overcome, but also that
there remains some challenges to be solved. This thesis has also tried to make
a recommendation for how a decision maker should choose the most secure PKI
solution for his IoT devices. This recommendation should be based on a certain
set of criterias for the IoT devices. The thesis also shows that in order to have a
secure system, a threat modeling methodology to identify and mitigate all poten-
tial vulnerabilities in a system, should be implemented and used during the whole
lifetime of the system.

6.1 Future work

To mitigate the vulnerabilites related to a centralized Certificate Authority which
can end up as a single point of failure, the decentralized infrastructure of block-
chain should be further researched. A big disadvantage with the Diode Network
that was implemented in this thesis, is the dependancy to Internet. To also make
this a realistic solution for IoT devices that are not connected to the Internet, there
could be research on how to make smaller and autonomous versions that could
be installed inside a local network. The users of these versions could also determ-
ine themselves who should be trusted miners to further mitigate the consensus
challenge with the related 51 percent vulnerability.

61

Bibliography

[1] Digi.no, Datainnbruddet hos helse sør-øst: Web Page, Last accessed 11 Novem-
ber 2021. [Online]. Available: https://www.digi.no/artikler/datainnbruddet-
hos- helse- sor- ost- jaktet- pa- pasientjournaler- og- militaer-
informasjon/426197.

[2] M. Hevner Salvatore and Park, Design science in information systems re-
search, 2004.

[3] G. Peffers Tuunanen and R. et al, The design science research process: A model
for producing and presenting information systems research, 2006.

[4] NSF, Cyber-physical systems, Web Page, Last accessed 11 November 2021,
2020. [Online]. Available: https://www.nsf.gov/news/special_reports/
cyber-physical/.

[5] B. Group, Embedded systems glossary, Web Page, Last accessed 11 Novem-
ber 2021. [Online]. Available: https://barrgroup.%20com/Embedded-
Systems/Glossary.

[6] Y. K. M Sain and H. Lee, Survey on security in internet of things: State of the
art and challenges, 2017.

[7] F. B. insights, Internet of things (iot) market, Web Page, Last accessed 11
November 2021, 2020. [Online]. Available: https://www.fortunebusinessinsights.
com/industry-reports/internet-of-things-iot-market-100307.

[8] Keyfactor, Know the difference of a digital signature vs. digital certificate, Web
Page, Last accessed 11 November 2021, 2020. [Online]. Available: https:
//blog.keyfactor.com/digital-signature-vs-digital-certificate.

[9] IETF, Rfc 5280 - internet x.509 public key infrastructure certificate and cer-
tificate revocation list (crl) profile, Web Page, Last accessed 11 November
2021, 2008. [Online]. Available: https://tools.ietf.org/html/rfc5280.

[10] J. Vaccha, Public key infrastructure: Buildingtrusted applications and web
services, 2004.

[11] D. o. d. Australian Government, Public key infrastructure defence public key
infrastructure levels of assurance requirements certificate policy object identi-
fiers (oids), 2016.

63

https://www.digi.no/artikler/datainnbruddet-hos-helse-sor-ost-jaktet-pa-pasientjournaler-og-militaer-informasjon/426197
https://www.digi.no/artikler/datainnbruddet-hos-helse-sor-ost-jaktet-pa-pasientjournaler-og-militaer-informasjon/426197
https://www.digi.no/artikler/datainnbruddet-hos-helse-sor-ost-jaktet-pa-pasientjournaler-og-militaer-informasjon/426197
https://www.nsf.gov/news/special_reports/cyber-physical/
https://www.nsf.gov/news/special_reports/cyber-physical/
https://barrgroup.%20com/Embedded-Systems/Glossary
https://barrgroup.%20com/Embedded-Systems/Glossary
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://www.fortunebusinessinsights.com/industry-reports/internet-of-things-iot-market-100307
https://blog.keyfactor.com/digital-signature-vs-digital-certificate
https://blog.keyfactor.com/digital-signature-vs-digital-certificate
https://tools.ietf.org/html/rfc5280

64 EM: PKI and IoT Security: How to choose the most secure implementation?

[12] H. Z. Z Li X Yin Z Geng P Li Y Sun and L. Li, Research on pki-like protocol
for internet of things, 2013.

[13] M. V. T. U. Z. M. Simic and M. Stankovic, Entity identification and security
solutions in iot based on pki and blockchain technology, 2020.

[14] M. P. D Vranics and Z. Bottyanl, Electronic administration of unmanned avi-
ation with public key infrastructure, 2019.

[15] E. B. J Won A Singla and G. Bollella, Decentralized public key infrastructure
for internet-of-things, 2018.

[16] S. Magnusson, Evaluation of decentralized alternatives to pki for iot devices,
2018.

[17] D. Letz, Blockquick: Super-light client protocol for blockchain validation on
constrained devices, 2019.

[18] Keyfactor, Iot device security, Web Page, Last accessed 11 November 2021,
2020. [Online]. Available: https://info.keyfactor.com/iot-device-
security.

[19] J. Huang and D. Nicol, An anatomy of trust in public key infrastructure,
2017.

[20] A. Singla and E. Bertino, Blockchain-based pki solutions for iot, 2018.

[21] 2004.

[22] K. S, Why is raspberry pi 4 a good choice for your iot project? Web Page, Last
accessed 11 November 2021. [Online]. Available: https://rootsaid.com/
raspberry-pi-iot/.

[23] T. R. P. Foundation, Raspberry pi documentation, Web Page, Last accessed
11 November 2021. [Online]. Available: https://www.raspberrypi.org/
documentation/computers.

[24] Github, Diode, Web Page, Last accessed 11 November 2021. [Online]. Avail-
able: https://github.com/diodechain/diode_client.

[25] Diode, Web Page, Last accessed 11 November 2021. [Online]. Available:
https://diode.io/products/diode-cli/.

[26] Metamask, Metamask, Web Page, Last accessed 11 November 2021. [On-
line]. Available: https://metamask.io/.

[27] O. S. GmbH, Generating x.509 certificates, Web Page, Last accessed 11 Novem-
ber 2021. [Online]. Available: http://www.ipsec-howto.org/x595.html.

[28] J. Woods, Understanding public key infrastructure and x.509 certificates, Web
Page, Last accessed 11 November 2021. [Online]. Available: https://www.
linuxjournal.com/content/understanding-public-key-infrastructure-
and-x509-certificates.

[29] T. O. P. Authors, Welcome to openssl! Web Page, Last accessed 11 November
2021. [Online]. Available: https://www.openssl.org/.

https://info.keyfactor.com/iot-device-security
https://info.keyfactor.com/iot-device-security
https://rootsaid.com/raspberry-pi-iot/
https://rootsaid.com/raspberry-pi-iot/
https://www.raspberrypi.org/documentation/computers
https://www.raspberrypi.org/documentation/computers
https://github.com/diodechain/diode_client
https://diode.io/products/diode-cli/
https://metamask.io/
http://www.ipsec-howto.org/x595.html
https://www.linuxjournal.com/content/understanding-public-key-infrastructure-and-x509-certificates
https://www.linuxjournal.com/content/understanding-public-key-infrastructure-and-x509-certificates
https://www.linuxjournal.com/content/understanding-public-key-infrastructure-and-x509-certificates
https://www.openssl.org/

Bibliography 65

[30] Microsoft, Threat modeling, Web Page, Last accessed 11 November 2021.
[Online]. Available: https://www.microsoft.com/en-us/securityengineering/
sdl/threatmodeling.

[31] Threatmodeler, Which threat modeling methodology is right for your or-
ganization? Web Page, Last accessed 11 November 2021. [Online]. Avail-
able: https://threatmodeler.com/threat-modeling-methodologies-
overview-for-your-business/.

[32] Microsoft, Getting started with the threat modeling tool, Web Page, Last ac-
cessed 11 November 2021. [Online]. Available: https://docs.microsoft.
com/nb-no/azure/security/develop/threat-modeling-tool-getting-
started.

[33] K. Poniatowski, Is stride still relevant for threat modeling? Web Page, Last ac-
cessed 11 November 2021. [Online]. Available: https://blog.securityinnovation.
com/stride.

[34] Microsoft, The stride threat model, Web Page, Last accessed 11 Novem-
ber 2021. [Online]. Available: https://docs.microsoft.com/en- us/
previous-versions/commerce-server/ee823878(v=cs.20).

[35] O. S. L. 2021, The most advanced penetration testing distribution, Web Page,
Last accessed 11 November 2021. [Online]. Available: https://www.kali.
org/.

[36] SoftwareTestingHelp, Top 10 most popular ethical hacking tools (2021 rank-
ings), Web Page, Last accessed 11 November 2021. [Online]. Available:
https://www.softwaretestinghelp.com/ethical-hacking-tools/.

[37] P. at Edureka, Top 10 ethical hacking tools in 2021, Web Page, Last accessed
11 November 2021. [Online]. Available: https://www.edureka.co/blog/
ethical-hacking-tools/.

[38] T. Blake, Best hacking tools of 2017: Nessus vulnerability scanner, Web Page,
Last accessed 11 November 2021. [Online]. Available: https://seniordba.
wordpress.com/2017/06/26/best-hacking-tools-of-2017-nessus-
vulnerability-scanner/.

[39] K. May, Metasploit, nessus, nmap more: The hacking tools it pros need to
know about, Web Page, Last accessed 11 November 2021. [Online]. Avail-
able: https://www.comptia.org/blog/metasploit-nessus-nmap-more-
the-hacking-tools-it-pros-need-to-know-about.

[40] M. Corporation, Cve details, Web Page, Last accessed 11 November 2021.
[Online]. Available: https://www.cvedetails.com/.

[41] b. a. w. funkym0nk3y blogger at wordpress.com, How to create your own
pki with openssl, Web Page, Last accessed 11 November 2021. [Online].
Available: https://evilshit.wordpress.com/2013/06/19/how- to-
create-your-own-pki-with-openssl/.

https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://threatmodeler.com/threat-modeling-methodologies-overview-for-your-business/
https://threatmodeler.com/threat-modeling-methodologies-overview-for-your-business/
https://docs.microsoft.com/nb-no/azure/security/develop/threat-modeling-tool-getting-started
https://docs.microsoft.com/nb-no/azure/security/develop/threat-modeling-tool-getting-started
https://docs.microsoft.com/nb-no/azure/security/develop/threat-modeling-tool-getting-started
https://blog.securityinnovation.com/stride
https://blog.securityinnovation.com/stride
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://www.kali.org/
https://www.kali.org/
https://www.softwaretestinghelp.com/ethical-hacking-tools/
https://www.edureka.co/blog/ethical-hacking-tools/
https://www.edureka.co/blog/ethical-hacking-tools/
https://seniordba.wordpress.com/2017/06/26/best-hacking-tools-of-2017-nessus-vulnerability-scanner/
https://seniordba.wordpress.com/2017/06/26/best-hacking-tools-of-2017-nessus-vulnerability-scanner/
https://seniordba.wordpress.com/2017/06/26/best-hacking-tools-of-2017-nessus-vulnerability-scanner/
https://www.comptia.org/blog/metasploit-nessus-nmap-more-the-hacking-tools-it-pros-need-to-know-about
https://www.comptia.org/blog/metasploit-nessus-nmap-more-the-hacking-tools-it-pros-need-to-know-about
https://www.cvedetails.com/
https://evilshit.wordpress.com/2013/06/19/how-to-create-your-own-pki-with-openssl/
https://evilshit.wordpress.com/2013/06/19/how-to-create-your-own-pki-with-openssl/

66 EM: PKI and IoT Security: How to choose the most secure implementation?

[42] Bloggerbrothers, Nginx on a raspeberry pi, Web Page, Last accessed 11 Novem-
ber 2021. [Online]. Available: https://bloggerbrothers.com/2019/03/
10/nginx-on-a-raspberry-pi/.

[43] I. S. R. Group, Let’s encrypt, Web Page, Last accessed 11 November 2021.
[Online]. Available: https://letsencrypt.org/.

[44] C. blog, How blockchain can be hacked, Web Page, Last accessed 11 Novem-
ber 2021. [Online]. Available: https://cipher.com/blog/how-blockchain-
can-be-hacked-the-51-rule-and-more/.

[45] Github, Github, Web Page, Last accessed 11 November 2021. [Online].
Available: https://github.com/.

https://bloggerbrothers.com/2019/03/10/nginx-on-a-raspberry-pi/
https://bloggerbrothers.com/2019/03/10/nginx-on-a-raspberry-pi/
https://letsencrypt.org/
https://cipher.com/blog/how-blockchain-can-be-hacked-the-51-rule-and-more/
https://cipher.com/blog/how-blockchain-can-be-hacked-the-51-rule-and-more/
https://github.com/

Appendix A

Additional Material

67

OPENSSL FOR LAB 2.1

OpenSSL example configuration file.

This is mostly being used for generation of certificate requests.

Note that you can include other files from the main configuration

file using the .include directive.

#.include filename

This definition stops the following lines choking if HOME isn't

defined.

HOME = .

Extra OBJECT IDENTIFIER info:

#oid_file = $ENV::HOME/.oid

oid_section = new_oids

System default

openssl_conf = default_conf

To use this configuration file with the "-extfile" option of the

"openssl x509" utility, name here the section containing the

X.509v3 extensions to use:

extensions =

(Alternatively, use a configuration file that has only

X.509v3 extensions in its main [= default] section.)

[new_oids]

We can add new OIDs in here for use by 'ca', 'req' and 'ts'.

Add a simple OID like this:

testoid1=1.2.3.4

Or use config file substitution like this:

testoid2=${testoid1}.5.6

Policies used by the TSA examples.

tsa_policy1 = 1.2.3.4.1

tsa_policy2 = 1.2.3.4.5.6

tsa_policy3 = 1.2.3.4.5.7

[ca]

default_ca = CA_default # The default ca section

[CA_default]

dir = . # Where everything is kept

certs = $dir/certs # Where the issued certs are kept

crl_dir = $dir/crl # Where the issued crl are kept

database = $dir/index.txt # database index file.

#unique_subject = no # Set to 'no' to allow creation of

 # several certs with same subject.

new_certs_dir = $dir/certs # default place for new certs.

certificate = $dir/cacert.pem # The CA certificate

serial = $dir/serial # The current serial number

crlnumber = $dir/crlnumber # the current crl number

 # must be commented out to leave a V1 CRL

crl = $dir/crl.pem # The current CRL

private_key = $dir/cakey.pem# The private key

x509_extensions = usr_cert # The extensions to add to the cert

Comment out the following two lines for the "traditional"

(and highly broken) format.

name_opt = ca_default # Subject Name options

cert_opt = ca_default # Certificate field options

Extension copying option: use with caution.

copy_extensions = copy

Extensions to add to a CRL. Note: Netscape communicator chokes on V2 CRLs

so this is commented out by default to leave a V1 CRL.

crlnumber must also be commented out to leave a V1 CRL.

crl_extensions = crl_ext

default_days = 365 # how long to certify for

default_crl_days= 30 # how long before next CRL

default_md = default # use public key default MD

preserve = no # keep passed DN ordering

A few difference way of specifying how similar the request should look

For type CA, the listed attributes must be the same, and the optional

and supplied fields are just that :-)

policy = policy_match

For the CA policy

[policy_match]

countryName = match

stateOrProvinceName = match

organizationName = match

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

For the 'anything' policy

At this point in time, you must list all acceptable 'object'

types.

[policy_anything]

countryName = optional

stateOrProvinceName = optional

localityName = optional

organizationName = optional

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

[req]

default_bits = 2048

default_keyfile = privkey.pem

distinguished_name = req_distinguished_name

attributes = req_attributes

x509_extensions = v3_ca # The extensions to add to the self signed cert

Passwords for private keys if not present they will be prompted for

input_password = secret

output_password = secret

This sets a mask for permitted string types. There are several options.

default: PrintableString, T61String, BMPString.

pkix : PrintableString, BMPString (PKIX recommendation before 2004)

utf8only: only UTF8Strings (PKIX recommendation after 2004).

nombstr : PrintableString, T61String (no BMPStrings or UTF8Strings).

MASK:XXXX a literal mask value.

WARNING: ancient versions of Netscape crash on BMPStrings or UTF8Strings.

string_mask = utf8only

req_extensions = v3_req # The extensions to add to a certificate request

[req_distinguished_name]

countryName = Country Name (2 letter code)

countryName_default = AU

countryName_min = 2

countryName_max = 2

stateOrProvinceName = State or Province Name (full name)

stateOrProvinceName_default = Some-State

localityName = Locality Name (eg, city)

0.organizationName = Organization Name (eg, company)

0.organizationName_default = Internet Widgits Pty Ltd

we can do this but it is not needed normally :-)

#1.organizationName = Second Organization Name (eg, company)

#1.organizationName_default = World Wide Web Pty Ltd

organizationalUnitName = Organizational Unit Name (eg, section)

#organizationalUnitName_default =

commonName = Common Name (e.g. server FQDN or YOUR name)

commonName_max = 64

emailAddress = Email Address

emailAddress_max = 64

SET-ex3 = SET extension number 3

[req_attributes]

challengePassword = A challenge password

challengePassword_min = 4

challengePassword_max = 20

unstructuredName = An optional company name

[usr_cert]

These extensions are added when 'ca' signs a request.

This goes against PKIX guidelines but some CAs do it and some software

requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

Here are some examples of the usage of nsCertType. If it is omitted

the certificate can be used for anything *except* object signing.

This is OK for an SSL server.

nsCertType = server

For an object signing certificate this would be used.

nsCertType = objsign

For normal client use this is typical

nsCertType = client, email

and for everything including object signing:

nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.

nsComment = "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid,issuer

This stuff is for subjectAltName and issuerAltname.

Import the email address.

subjectAltName=email:copy

An alternative to produce certificates that aren't

deprecated according to PKIX.

subjectAltName=email:move

Copy subject details

issuerAltName=issuer:copy

#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem

#nsBaseUrl

#nsRevocationUrl

#nsRenewalUrl

#nsCaPolicyUrl

#nsSslServerName

This is required for TSA certificates.

extendedKeyUsage = critical,timeStamping

[v3_req]

Extensions to add to a certificate request

basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

[v3_ca]

Extensions for a typical CA

PKIX recommendation.

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid:always,issuer

basicConstraints = critical,CA:true

Key usage: this is typical for a CA certificate. However since it will

prevent it being used as an test self-signed certificate it is best

left out by default.

keyUsage = cRLSign, keyCertSign

Some might want this also

nsCertType = sslCA, emailCA

Include email address in subject alt name: another PKIX recommendation

subjectAltName=email:copy

Copy issuer details

issuerAltName=issuer:copy

DER hex encoding of an extension: beware experts only!

obj=DER:02:03

Where 'obj' is a standard or added object

You can even override a supported extension:

basicConstraints= critical, DER:30:03:01:01:FF

[crl_ext]

CRL extensions.

Only issuerAltName and authorityKeyIdentifier make any sense in a CRL.

issuerAltName=issuer:copy

authorityKeyIdentifier=keyid:always

[proxy_cert_ext]

These extensions should be added when creating a proxy certificate

This goes against PKIX guidelines but some CAs do it and some software

requires this to avoid interpreting an end user certificate as a CA.

basicConstraints=CA:FALSE

Here are some examples of the usage of nsCertType. If it is omitted

the certificate can be used for anything *except* object signing.

This is OK for an SSL server.

nsCertType = server

For an object signing certificate this would be used.

nsCertType = objsign

For normal client use this is typical

nsCertType = client, email

and for everything including object signing:

nsCertType = client, email, objsign

This is typical in keyUsage for a client certificate.

keyUsage = nonRepudiation, digitalSignature, keyEncipherment

This will be displayed in Netscape's comment listbox.

nsComment = "OpenSSL Generated Certificate"

PKIX recommendations harmless if included in all certificates.

subjectKeyIdentifier=hash

authorityKeyIdentifier=keyid,issuer

This stuff is for subjectAltName and issuerAltname.

Import the email address.

subjectAltName=email:copy

An alternative to produce certificates that aren't

deprecated according to PKIX.

subjectAltName=email:move

Copy subject details

issuerAltName=issuer:copy

#nsCaRevocationUrl = http://www.domain.dom/ca-crl.pem

#nsBaseUrl

#nsRevocationUrl

#nsRenewalUrl

#nsCaPolicyUrl

#nsSslServerName

This really needs to be in place for it to be a proxy certificate.

proxyCertInfo=critical,language:id-ppl-anyLanguage,pathlen:3,policy:foo

[CA_SubCA]

dir = . # Where everything is kept

certs = $dir/certs # Where the issued certs are kept

crl_dir = $dir/crl # Where the issued crl are kept

database = $dir/index.txt # database index file.

new_certs_dir = $dir/newcerts # default place for new certs.

certificate = $dir/certs/subca.crt # The CA certificate

serial = $dir/serial # The current serial number

crlnumber = $dir/crlnumber # the current crl number

 # must be commented out to leave a V1 CRL

crl = $dir/crl.pem # The current CRL

private_key = $dir/private/subca.key # The private key

RANDFILE = $dir/private/.subca.rand # private random number file

x509_extensions = user_cert # The extentions to add to the cert

name_opt = ca_default # Subject Name options

cert_opt = ca_default # Certificate field options

default_days = 3650 # how long to certify for

default_crl_days= 30 # how long before next CRL

default_md = sha512 # use public key default MD

preserve = no # keep passed DN ordering

policy = policy_match

[tsa]

default_tsa = tsa_config1 # the default TSA section

[tsa_config1]

These are used by the TSA reply generation only.

dir = ./demoCA # TSA root directory

serial = $dir/tsaserial # The current serial number (mandatory)

crypto_device = builtin # OpenSSL engine to use for signing

signer_cert = $dir/tsacert.pem # The TSA signing certificate

 # (optional)

certs = $dir/cacert.pem # Certificate chain to include in reply

 # (optional)

signer_key = $dir/private/tsakey.pem # The TSA private key (optional)

signer_digest = sha256 # Signing digest to use. (Optional)

default_policy = tsa_policy1 # Policy if request did not specify it

 # (optional)

other_policies = tsa_policy2, tsa_policy3 # acceptable policies (optional)

digests = sha1, sha256, sha384, sha512 # Acceptable message digests (mandatory)

accuracy = secs:1, millisecs:500, microsecs:100 # (optional)

clock_precision_digits = 0 # number of digits after dot. (optional)

ordering = yes # Is ordering defined for timestamps?

 # (optional, default: no)

tsa_name = yes # Must the TSA name be included in the reply?

 # (optional, default: no)

ess_cert_id_chain = no # Must the ESS cert id chain be included?

 # (optional, default: no)

ess_cert_id_alg = sha1 # algorithm to compute certificate

 # identifier (optional, default: sha1)

[default_conf]

ssl_conf = ssl_sect

[ssl_sect]

system_default = system_default_sect

[system_default_sect]

MinProtocol = TLSv1.2

CipherString = DEFAULT@SECLEVEL=2

