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Summary

In this work, we propose a new approach to model large, irregularly distributed spatio-

temporal global data via a locally diffusive Stochastic Partial Differential Equation (SPDE).

The proposed model assumes a local deformation of the SPDE with nonlinear dependence

on the covariates through a neural network. The proposed model can be fit in a computa-

tionally efficient manner using a triangulation over the sphere and sparsity of the precision

matrix, as shown in an application with a large data set of simulated multi-decadal monthly

sea surface temperature.
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1 INTRODUCTION

Just as the majority of areas in science, engineering and beyond, environmental science has seen an exponential increase in volume, velocity and
variety of data over the past decades. Globally monitored data have been particularly impacted by the ‘Big Data’ revolution, with improvement in
satellite technology and Earth system model simulation which now allow multi-decadal simulations such as the Coupled Model Intercomparison
Phase 6 (CMIP6, Eyring et al. (2016)) at 50km spatial resolution. Such enhanced data products are critical to improve our understanding of multi-
decadal processes such as the El-Niño Southern Oscillation, as well as to assess the local impact of future climate.

The wide availability of global data calls for the development of appropriate statistical models on the spherical domain. The formulation of
theoretically valid and practical models on a global scale represents a substantial challenge, as models on the Euclidean space cannot be directly
applied to a spherical domain, see Gneiting (2013) for a detailed discussion on this topic. Additionally, for spherical data the simplifying assumption
of an isotropic random field is not even approximately true (except for applications with very limited number of locations), as global variables could
show change in spatial structure across latitude and longitude, as well as large geographical descriptors such as land and ocean, see Jeong, Jun,
and Genton (2017) and Porcu, Alegría, and Furrer (2018) for a comprehensive review of the recent methodological developments.

Several approaches have been proposed in recent years to model non-isotropic global data. Jun and Stein (2007 2008) proposed a partial
derivative approach to isotropic global data to achieve longitudinal stationarity (axial symmetry, Jones (1963)), and later Jun (2011) extended the
approach to the multivariate setting. Castruccio (2016); Castruccio and Stein (2013) proposed a spectral approach to model large global gridded
data with an axially symmetric model, and later work has extended this model to longitudinally non-stationary models with evolutionary spectrum
approaches (Castruccio & Guinness 2017; Jeong, Castruccio, Crippa, & Genton 2018), three dimensional variables (Castruccio & Genton 2016),
nonparametric coherence (Castruccio & Genton 2014) and in the multivariate setting (Edwards, Castruccio, & Hammerling 2019).

More recently, global models based on the use of Stochastic Partial Differential Equations (SPDEs) have been proposed. Such methods revolve
around the assumption that the (Gaussian) process we aim to model is a solution of a global diffusive SPDE, which under some conditions can
be approximated by a finite volumes solution whose weighting scheme has a spatial dependence informed by a Gaussian Markov Random Field
(Lindgren, Rue, & Lindström 2011), thereby allowing fast likelihood evaluation. In particular, Guinness andHammerling (2018) proposed a stationary
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global SPDE in the spectral domain for compressing climate model output, Ingebrigtsen, Lindgren, and Steinsland (2014); Ingebrigtsen, Lindgren,
Steinsland, and Martino (2015) considered the effect of covariates, Fuglstad, Simpson, Lindgren, and Rue (2015) propose spline penalties, and
Bolin and Lindgren (2011) formulated a model predicated on nested SPDE operators. More recently, Fuglstad and Castruccio (2020) proposed a
nonstationary model based on the idea of locally diffusive SPDEs (Fuglstad, Simpson, Lindgren, & Rue 2019) with a changing dependence structure
across land and ocean. The use of SPDEs for modeling global data has proven a very flexible tool, as this approach is not bound to any sampling
geometry, and modifications of the differential operator naturally induce a controlled level of nonstationary while automatically preserving the
theoretical validity of the process. The SPDE approach (at least in its original formulation) does not allow for a natural incorporation of covariates,
whose influence in the variable we aim at modeling may be also nonlinear.

This work proposes a generalization of the local deformation approach in Fuglstad and Castruccio (2020) by allowing the covariates to control
the degree of deformation of the locally diffusive SPDE. In order to model the dependence, we propose a feedforward, shallow neural network
which allows a higher degree of flexibility than a linear model. We present an application to modeling Sea Surface Temperature (SST) as a function
of surface wind from climate model simulations.

The work proceeds as follows. Section 2 describes the data set. Section 3 introduces our model and details the inferential approach. Section 4
presents the results. Section 5 concludeswith a discussion. The code for thiswork can be found in the followingGitHub repository: github.com/Env-
an-Stat-group/21.Hu.Stat.

2 DATA

We rely on the Community Earth System Model Large Ensemble (LENS, Kay et al. (2015)). A single model simulation from 1920 to 2005 is run
under historical greenhouse gases concentrations, and on Jan 1st, 2006 35 small perturbations are applied to the atmospheric component of the
model, resulting in a plume of 35 future projections until 2100 under the same scenario (Representative Concentration Pathway 8.5, van Vuuren
et al. (2011), assuming a radiative forcing of 8.5Wm−2 by 2100) and physics, but differing initial conditions. Throughout this work we only fit the
statistical model with R randomly chosen simulations. The ultimate aim is to show that the proposed statistical model, trained with this reduced
training set, can reproduce the uncertainty generated from all the 35 runs, hence acting as a stochastic approximation of the climate model which
can generate fast surrogates. A small training size R would yield unstable parameter estimates, an overly large R would defeat the purpose of an
effective stochastic approximation of the original ensemble. In this work we set R = 5, as this was shown to be the smallest training size achieving
stable parameter estimates in previous work (Fuglstad & Castruccio 2020; Hu & Castruccio 2021).

In this work, we aim at characterizing the global spatio-temporal structure of the SST using wind as an explanatory variable. Both wind and
temperature are considered at monthly resolution between 2006 to 2100, hence for a total of T = 95 years and T× 12 = 1, 140 months. SST is
obtained from the ocean component of the climate model over an irregular grid covering the oceans comprising of a total of S = 86, 212 spatial
locations, see Figure 1a for a map the SST annual anomaly between 2100 and 2006. Surface wind is instead originally resolved in the atmospheric
module of the climate model and later interpolated in the same grid as temperature. In total, each variable comprise of S×T× ≈ 491 million data
points.

FIGURE 1 (a) Annual 2100-2006 SST anomaly averaged across ensemble members (in degrees Celsius); (b) Triangulation chosen for this work,
along with the four regions (with names, SP=South Pacific, AT=Atlantic, IN=Indian Ocean, NP=North Pacific) chosen in the correlation comparison
in Figure 3 and the cross-validation study in Table 2. The two black crosses in AT and IN represent the two locations referred to in Figure 2.
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Throughout this work, we denote with y
(r)
t = (y

(r)
t (s1), . . . , y

(r)
t (sN)) the vector of SSTs at locations s1, . . . , sN on the sphere for months

t = 1, . . . , 12T and realizations r = 1, . . . ,R. The mean temperature is similarly denoted by µ = (µ1, . . . ,µ12T), where µt = E
(
y
(r)
t

)
.

3 MODEL AND INFERENCE

We assume that the R simulations of the climate model are independent realizations of a Gaussian random field (GRF), which is a combination of
a temporally evolving mean µt and zero mean GRF η(r)

t , i.e., y(r)
t = µt + η

(r)
t , t = 1, . . . , 12T and r = 1, . . . ,R. This assumption is ultimately

justified by the chaotic nature of the primitive equation of the climate model (Lorenz 1963), which can be assumed to be independent (conditional
on the mean) after a few days from the perturbation generating the ensemble.

3.1 The mean and temporal model

We assume that the mean structure is

µt(si) =

J∑
j=0

tj

{
αi,j +

H∑
h=1

δi,j,h cos

(
2πht

12

)
+ δ′i,j,h sin

(
2πht

12

)}
, (1)

where αi,j, δi,j,h, δ
′
i,j,h are parameters controlling the polynomial annual trend and the interannual behavior. This model allows different temporal

evolution at each spatial location. The parameter vector for the mean θmean comprises of N vectors of (J + 1)(2H + 1) site-specific parameters.
If the parameter vector for location i is denoted θmean,i, the parameter vector of all locations is θ>mean = (θ>mean,i; i = 1 . . . ,N), with θ>mean,i =

(αi,j, δj,i,h, δ
′
j,i,h; j = 0, . . . , J; i = 1, . . . ,N; h = 1, . . . ,H), for a total of N(J + 1)(2H + 1) elements in θmean. From diagnostics (not shown) and

previous work (Fuglstad & Castruccio 2020), we choose J = 2 and H = 6.
The stochastic temporal evolution around the expected value is modeled through a vector autoregressive process of order P (VAR(P)),

η
(r)
t =

P∑
j=1

Ajη
(r)
t−j + Sε

(r)
t , t = P + 1, . . . , 12T, r = 1, . . . , R. (2)

The N × N matrix S is diagonal with elements σi > 0, i = 1, . . . ,N, and for lag j, Aj is an N × N diagonal matrix with diagonal elements aj,i

for i = 1, . . . ,N. The innovations ε(r)
t ∼ N (0,C) are independent and identically distributed both across r and t, where C = C(θspace) is a

N × N correlation matrix describing the spatial dependence structure of the innovations, as detailed in the next section. Let θ>time = (θ>time,i; i =

1, . . . ,N), where location i has P + 1 site-specific parameters θ>time,i = (a1,i, . . . , aP,i, σi). There are then (P + 1)N elements in θtime, and a total of
N{(J + 1)(2H + 1) + P + 1} parameters are needed to describe the mean and temporal structure.

3.2 The spatial model

3.2.1 A locally diffusive SPDE

We now focus on the innovations ε(r)
t in Equation (2), and since they are independent and identically distributed in time and realization, for

simplicity of notation we drop subscript and superscript. The spatial structure of ε is assumed to be Gaussian with a N × N correlation matrix
controlled by parameters θspace with N2 = 122, 8802 ≈ 1.5 · 1010 elements for the SST dataset presented in Section 2. Likelihood evaluation with
such a large amount of spatial data would imply storing and operating with a matrix C(θspace) of 900 Gigabytes, a task practically impossible for
current computers. To circumvent this issue, in this work we rely on the SPDE approach introduced by Lindgren et al. (2011), which is based on
the fact that a GRF with (a subclass of) one of the most popular covariance function (Matérn, Stein (1999)) is also a solution of a reaction diffusion
SPDE (Whittle 1954). By solving the SPDE with finite volumes (hence reducing the dimensionality of the problem) and by virtue of an ‘explicit link’
between a discretized solution and a Gaussian Markov Random Field (Lindgren et al. 2011), inference can be achieved with sparse linear algebra.
In the same work, Lindgren et al. (2011) also proposed to specify GRFs ε with Matérn-like covariance structures on the sphere S2 by solving a
reaction diffusion equation

(κ2 −∆S2 )ε(s) =W(s), s ∈ S2, (3)

where κ2 > 0 is a parameter,W is a spatial standard Gaussian white noise, and ∆S2 is the Laplacian (Laplace-Beltrami operator) on S2. The resulting
covariance is close to the Matérn if the effective spatial range is small compared to the diameter of the sphere, although there is not a closed-form
expression.

While solving (3) leads to fast and theoretically justified inference, the underlying model assumes the same local effect of the SPDE operator,
and hence limits the analysis to stationary, isotropic models. In order to build more flexible models, the SPDE operator (3) can be used as a building
block for more sophisticated approaches. Indeed, Fuglstad et al. (2019) proposed a local change of coordinates via a metric tensors to induce a
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non-stationary model. In this work we provide the basic details, a comprehensive and formal explanation with proofs can be found in Fuglstad
and Castruccio (2020). Consider spherical coordinates s = (L, `), where L is latitude and ` is longitude. We assume the length of a line element
ds = (dL, d`)> is described through ‖ds‖ =

√
ds>G(s)ds, where G(·) is a spatially varying positive definite 2 × 2 matrix. The spatially varying

matrixG(·) is generally called a metric tensor, and under the resulting changes in distance, we can write the SPDE in Equation (3) as

{|G(s)|1/2 −∇ · |G(s)|1/2G(s)−1∇}ε(s) = |G(s)|1/4W(s), s ∈ S2, (4)

where∇ = ( ∂
∂L
, ∂
∂`

). In practice, we solve the SPDE on a triangulation of the sphere in local coordinates and there are no singularities at the poles.
The solution of the SPDE in equation (3) is a non-stationary GRF, whose spatial structure is controlled by the deformation of the differential

operator. We use a spatially varying vector field v(·) = (v1(·), v2(·))> and a positive-valued function ρ(·), and write the inverse metric tensor as

G(s)−1 = ρ(s)2
I2 + v(s)v(s)>√

1 + ||v(s)||2
, s ∈ S2. (5)

This implies that, at location s, the original infinitesimal distance is multiplied by 1/ρ(s) and {I2 + v(s)v(s)>}/
√

1 + ‖v(s)‖2 adds anisotropy.
One can show that locally the effective range in the direction of v(s) is ρ(s){1 + ||v(s)||2}1/4 and the effective range in the direction orthogonal
to v(s) is ρ(s)/{1 + ||v(s)||2}1/4. This implies that the geometric average of the range in the direction of v(s) and its orthogonal direction is
ρ(s). Therefore, the spatially varying ρ(·) controls the geometric average of the strength of dependence in the two principal directions and v(·)
determines the direction and strength of the anisotropy.

We ensure separation between correlation structure and marginal variance exactly at each location s by considering the standardized process
ε̃(s) = ε(s)/σscale(s), where σscale(s) is calculated as the marginal standard deviations resulting from the choice of metric tensor.

3.2.2 Parametrization of the metric tensor

We aim to describe the spatially varying metric tensor G(·) through a combination of general functions and spatial covariates. For a generic sea
location s, we have

log{ρ(s)} =

L∑
l=0

l∑
m=−l

αmlY
m
l (s), (6a)

v(s) =f(x(s′), s′ ∈ ∂s) +

L∑
l=1

l∑
m=−l

{
E
(1)
lm ∇Yl

m(s) + E
(2)
lm r̂(s)×∇Yl

m(s)
}
, (6b)

whereL is a non-negative integers,αml are real-valued coefficients andYm
l (·) are Laplace’s spherical harmonic of degree l and orderm. Additionally,

r̂ is the unit vector in the positive radial direction, and E
(1)
lm and E

(2)
lm are real coefficients. The covariates x(·) are assumed to be spatially varying

and it is assumed that their contribution to the vector field v(s) is modulated by a function f , which could also include covariates in the neighbor
∂s (by convention, in this set we also include the location s itself). Compared to a model with no covariates (Fuglstad & Castruccio 2020), the term
f allows incorporate external information about the local variation not captured by the large scale general basis functions. Since the model needs
to be defined for every point on the sphere S2, for a location s on land we use log(ρ(s)) = α0 and v(s) = 0.

We consider two choices of f:

1. linear covariates at the same site s. We assume a linear function with respect to a k-dimensional vector βLIN

f(x(s′), s′ ∈ ∂s) = f(x(s)) =

k∑
i=1

βi;LINx
(i)(s),

where {x(i)}k
i=1 is the collection of the covariates (in our application k = 2 are the horizontal and vertical components of the surface wind

field).

2. non-linear contributions of the covariates in the neighbor ∂s through a neural network. If we denote byX(s) = {x(s′), s′ ∈ ∂s} the |∂s|k-
dimensional vector comprising of the covariates observed in the neighborhood ∂s, the function f is assumed to be a one layer (shallow)
neural network

f(x(s′), s′ ∈ ∂s) = g(X(s)>W)βNN,

where g is the activation function, a nonlinear function which could have different shapes, and in this work is a hypertangent (Goodfellow,
Bengio, & Courville 2016). W is a nh × |∂|k matrix of unknown entries, and βNN is a nh-dimensional vector, where |∂| is the cardinality of
∂s (assumed constant in space). The choice is flexible and allows to capture non-linearity, but is also considerably more computationally
expensive.
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TABLE 1Models considered in this work. The second and third column refer to the parameters in equations (6a) and (6b).

Model L, L f(x(·))
STAT (0,0) No
NSTAT-LIN (0,0) Linear
NSTAT-H (4,4) No
NSTAT-H-LIN (4,4) Linear
NSTAT-H-NN (4,4) Neural Network

We compare a total of five models: 1) a stationary model without covariates (STAT); 2) a non-stationary model with linear covariates (NSTAT-
LIN); 3) a non-stationary model with harmonics (NSTAT-H); 4) a non-stationary model with harmonics and linear covariates (NSTAT-H-LIN); 5) A
non-stationary model with harmonics and covariates modeled through a neural network (NSTAT-H-NN). These models are summarized in Table 1.

3.2.3 Micro-scale variability and model summary

The spatial field will be assumed to be piece-wise constant on a triangulation of the sphere shown in Figure 1b. Since the triangulation is of coarser
resolution than the distance among data locations, small-scale variation cannot be captured, and we include a nugget effect to absorb the data
variability within each triangle when estimating the spatial structure. This gives one extra parameter, τ2 denoting the nugget variance. Let nCov

denote the number of parameters needed to describe the contribution of the covariates, which depends on the choice of linear (nCov = k) or
neural network (nCov = (|∂|k + 1)nh) functional form for f in (6b).

The covariance matrix of ε is therefore described through the parameters in the (3(L+ 1)2 + 2 + nCov)-dimensional vector,

θspace =
(
{α0}, {αml, E

(1)
lm , E

(2)
lm | l = 0, . . . ,L,m = −l, . . . , l}}, {τ2}, {βLIN}

)
,

in the linear case, and
θspace =

(
{α0}, {αml, E

(1)
lm , E

(2)
lm | l = 0, . . . ,L,m = −l, . . . , l}}, {τ2}, {W}, {βNN}

)
,

in the neural network case, where E
(1,j)
0,m = E

(2,j)
0,m = 0 for m = 0, but are included for convenience of notation.

3.3 Inference

Inference is performed sequentially and conditionally in three steps, in which we estimate 1) θtime, 2) θmean conditionally on θ̂time, and 3) θspace
conditionally on θ̂mean, θ̂time. The stepwise approach is asympotically consistent (Edwards et al. 2019), and uncertainty and bias propagation have
been shown not to play a significant role in the final estimates for similar models (Castruccio & Guinness 2017). Since there is no interaction
between locations in either the mean or the temporal structure, as apparent from equations (1) and (2), the estimation of these two parts can be
performed independently by multiple cores of a computer. We describe the two steps for a generic location i with spatial coordinate si, and use
the notation ȳt(si) = 1

R

∑R
r=1 y

(r)
t (si), t = 1, . . . , 12T.

Step 1: time

We use P = 6 in equation (2), and for each location si we independently use a restricted log-likelihood (technical details and proofs can be
found in Castruccio and Stein (2013)). LetQ(θtime,i) be the precision matrix arising from the autoregressive process of order P, then the restricted
log-likelihood is

`(θtime,i | D(1)(si), . . . ,D
(R)(si)) = const + (R− 1) log |Q(θtime,i)| −

R∑
r=1

D(r)(si)
>Q(θtime,i)D

(r)(si), (7)

whereD(r)(si) = (y
(r)
1 (si)−ȳ1(si), . . . , y

(r)
12T(si)−ȳ12T(si)), and const is a constant.Wemaximize Equation (7) to find estimates âj,i, for j = 1, . . . ,P,

and σ̂i in equation (2).

Step 2: mean

For each location si, we assume a mean with month-specific polynomials as described in equation (1). Let X be the design matrix generated by
the basis functions. We perform inference conditionally to θ̂time,i, so that the precision matrix for the time series Q̂ = Q(θ̂time,i) is assumed to be
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fixed, and the mean is obtained via generalized least squares

θ̂mean,i = (X>Q̂X)−1X>Q̂ȳ(si).

The vector of estimated means for all time points is then given by µ̂i = Xθ̂mean,i. Henceforth, we denote with µ̂t,i the t-th element of Xθ̂mean,i,
and µ̂t = (µ̂t,1, . . . , µ̂t,N). In Figure 2 we show the fitted mean along with the R SST time series for two locations as indicated in Figure 1b, one
in the Atlantic and one in the Pacific Ocean, between 2030 to 2036. It is readily apparent how the fitted mean is able to capture the interannual
variability of SST for these two points.

FIGURE 2 LENS simulations (in grey) and estimated mean according to the functional form in equation (1) (in red). The two locations are indicated
by the blue crosses in Figure 1b, namely (a) Atlantic and (b) Indian Ocean.

Step 3: space

Conditionally on θ̂mean, θ̂time, we can estimate the innovations by inverting equation (2). If we denote by η̂(r)
t = y

(r)
t − µ̂t, we have:

ε̂
(r)
t = Ŝ−1/2

η̂(r)
t −

P∑
j=1

Âj η̂
(r)
t−j

 , t = P + 1, . . . , 12T. (8)

We estimate θspace through maximum likelihood based on the independent realizations of the innovations ε̂(1)
1 , . . . , ε̂

(R)
12T

iid∼ N (0,C(θspace)).
Inference can be performed efficiently by solving the locally diffusive SPDE (4) with a finite volume approach, assuming constant values on each
triangle (Fuglstad & Castruccio 2020). The triangulation on the sphere used in this work, comprising of 15,392 triangles, is shown in Figure 1b. It
can be shown that the corresponding precision matrix is sparse, similarly to the stationary SPDE case (Lindgren et al. 2011). We do not repeat the
proofs here, which are identical to the model with no covariates and can be found in Fuglstad and Castruccio (2020).

4 RESULTS

In this section, we evaluate the performance of the proposed models against a stationary SPDE model. Throughout this section, the covariate field
x(s) in equation (6b) is assumed to be the two dimensional wind field as introduced in Section 2.

Figure 3 shows the contour plot of the correlation function for the decorrelated residuals in time from (8), for the four reference regions
highlighted in Figure 1b. Panel (a) of Figure 3 shows the empirical correlation across all times and realizations of the ensemble, which is regarded as
the "true" correlation. Panels (b) and (c) show the correlation implied by the stationary (STAT) and non-stationary model with covariates expressed
though neural networks (NSTAT-H-NN), respectively. It can be easily seen that STAT fails to capture the directional effects due to Ocean circulation
in IN, AT and especially SP, as this model by construction assumes a unchanged dependence structure in space. The model NSTAT-H-NN, instead,
is flexible enough to able to capture these patterns with harmonic basis functions and especially wind fields.

A more formal comparison among the models introduced in Table 1 is performed via cross-validation. Data from the four regions in Figure 1b are
removed, and the models’ different predictive ability in terms of both Root Mean Squared Error (RMSE) and Continuous Ranked Probability Score
(CRPS) is shown in Table 2. Unsurprisingly, the stationary model has considerably worse predictive performance (both in terms of RMSE and CRPS)
than any other model, given its inability to articulate a spatially varying dependence structure. Once non-stationarity is assumed, either through
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FIGURE 3Correlation between reference points (marked with blue crosses, center of the squares in Figure 1) and all nearby locations. The empirical
estimates from LENS (panel (a)) are compared with the models (b) STAT and (c) NSTAT-H-NN as described in Table 1. All locations are shown in the
same plot and negative values have been set to 0 for the ease of visualization.

TABLE 2 RMSE (CRSP) for hold-out an entire area The unit is 10−1. Areas are shown in Figure 1b.

Model AT IN SP NP

STAT 4.24 (2.37) 4.63 (2.58) 5.46 (3.04) 4.76 (2.68)
NSTAT-LIN 3.45 (1.94) 3.93 (2.18) 4.83 (2.66) 4.11 (2.30)
NSTAT-H 3.46 (1.92) 3.81 (2.11) 4.87 (2.66) 4.12 (2.31)
NSTAT-H-LIN 3.39 (1.89) 3.79 (2.10) 4.86 (2.66) 3.95 (2.22)
NSTAT-H-NN 3.34 (1.88) 3.78 (2.10) 4.85 (2.65) 3.95 (2.22)

harmonics or with the wind vector as covariate, the results are substantially improved. For three regions (AT, IN and NP) out of four, the model
with neural network dependence shows improved predictive ability against all other models, hence underlying the added value in considering a
nonlinear of SST with the neighboring wind field. In SP, the neural network model is the best in terms of CRPS, and very close to the best result
for RMSE.

Once properly validated against the other statistical models, surrogate simulations from NSTAT-H-NN (which we recall has been trained with
only five LENS members, see Section 2) are compared with simulations from the entire LENS. The goal is to assess whether the statistical model
is able to produce surrogate SST simulations that resemble the LENS, and hence is able to approximate the LENS uncertainty using only a fraction
of the simulations as training set. If that is the case, then the statistical model can be regarded as a good stochastic approximation (a stochastic
generator, SG (Castruccio, Hu, Sanderson, Karspeck, & Hammerling 2019; Hu & Castruccio 2021)) of the LENS, which would only require a small
number of simulations and hence would save computational time and storage space.

Figure 4(a-b) compared one SST simulation from the SG and one from a LENS simulation (not in the training set) for July 2030. It is readily
apparent how the two maps are similar, with physical patterns such as colder temperatures near the poles, and warmer temperatures at low to
mid latitudes, and sensibly higher temperatures in the northern hemisphere as expected by the Boreal summer. While this comparison confirms
the SG’s ability to provide physically consistent realizations, a comparison of individual simulations cannot asses the SG’s ability to approximate
the LENS uncertainty. To this end, Figure 4(c-d) compares the uncertainty in the monthly temperature anomaly from 2006-2030 from all thirty-
five LENS simulations against thirty-five SG simulations for the Atlantic and Indian locations, as indicated in Figure 1b. Across both locations, the
SG is able to capture not just the expected interannual variability, with warmer temperatures in the Boreal summer, but also the relatively small
uncertainty around the point estimates, uniformly across months.

5 CONCLUSION

In this workwe have introduced a locally diffusive SPDEmodel for global data, with covariates controlling the level of deformation of the differential
operator via neural networks, and we have shown how this model can be solved with finite volumes by providing the weighting scheme of the
basis function with a GMRF which implies sparsity in the precision matrix, thereby dramatically reducing the computation burden and allowing
inference for data sets of hundred of millions of data points.
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FIGURE 4 (a-b) Comparison of SST maps in in July 2030 from (a) one LENS member (not in the training set) (a) and one statistical model (SG)
simulation. (c-d) Comparison of the internal variability for the monthly temperature anomaly from 2006-2030 for all thirty-five LENS and thirty five
SG simulations, expressed as blue and red boxplots, respectively. Two locations are chosen: AT and IN in panels c) and d), respectively, as indicated
by the blue crosses in Figure 1b.

While showing improvement against previous models, the flexibility in the use of neural networks necessarily implies an increase in the number
of parameters and hence nontrivial computations. If evenmore flexiblemodels such as deep neural networks are sought, the use of efficient iterative
methods for gradient calculation (backpropagation, Goodfellow et al. (2016)) would need to be embedded in our maximum likelihood algorithm.
Alternatively, stochastic approximation of neural networks via random weight matrices could be considered to reduce the parameter space (Bonas
& Castruccio 2021; Huang, Castruccio, & Genton 2021). More recent and sophisticated neural networks are also possible to use, such as spiking
neural networks, a biologically-inspired approach which would translate the covariates into spike trains and provide a network for them (Maass
1997). In terms of the SPDE, possible extensions range from the use of non-Gaussian models for high-resolution global variables, possibly (but not
necessarily) within the latent Gaussian model framework as well as multivariate SPDE to model data and covariates jointly instead of conditionally
such as in this work.
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