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Performance of Clustered Multitask Diffusion LMS

Suffering from Inter-Node Communication Delays
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Abstract—This paper studies a clustered multitask diffusion
least mean-square strategy that accounts for communication
delays in the inter- and intra-cluster information exchanges. We
conduct detailed performance analysis and establish convergence
criteria, both in mean and mean-square senses, to investigate the
effect of inter-node communication delays on the stability and
estimation performance. In particular, we derive convergence
conditions and closed-form expressions for transient and steady-
state mean square deviation. The concepts are verified using
simulation examples, which show a precise match between
theoretical and experimental steady-state MSD results.

Index Terms—Distributed estimation, adaptive networks, clus-
tered multitask networks, inter-node communication delays.

I. INTRODUCTION

Initial work on adaptive networks mainly considers a single-

task estimation problem where nodes collaboratively estimate

a common parameter vector [1]–[4]. In contrast to these

single-task networks, multitask adaptive networks consider the

problem of estimating multiple parameter vectors based on

the information available at different agents [5]. For example,

in distributed active noise control, node-specific cooperative

spectrum sensing, and node-specific speech enhancement,

multiple parameter vectors need to be estimated jointly in

a cooperative manner [6]. In clustered multitask networks,

groups of nodes form clusters that estimate different parameter

vectors. However, if parameter vectors in neighboring clusters

are related, the local estimation task’s performance can be

improved through collaboration across clusters [7].

In this regard, a least mean square (LMS) based multitask

diffusion strategy has been presented in [8]. The clustered

multitask diffusion LMS strategy in [8] was later extended

to asynchronous networks [9], which experience several un-

certainties in network links such as topology changes, ran-

dom link failures, and agents turning on and off to reduce

energy consumption. Robust learning approaches under these

scenarios have been proposed in [10]. Separately, using the

robustness of the affine projection algorithm (APA) against

colored input, APA based multitask diffusion schemes were

proposed in [11]–[13]. These above single and multitask

distributed strategies assume no communications delays during

information exchange. However, due to congestion or commu-

nication constraints in the network, neighbor messages may
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arrive at the agent with different time delays. Also, the physical

communication medium between nodes may incur delays. For

example, underwater acoustic networks encounter inter-node

communication delays due to low sound speed. One way

to deal with this situation is synchronous diffusion, i.e., all

nodes in the network wait for the most prolonged message to

complete one cycle of the adaptation and combination process.

However, this method slows down the speed of the estimation

process. Therefore, it is necessary to study the behavior of

distributed strategies under communication delays. Several

interesting recent developments on consensus and diffusion

strategies in the presence of communication delays have been

made [14]–[17]; however, all these strategies deal with single-

task estimation.

The clustered multitask diffusion strategies allow the nodes

to cooperate on two levels, inter- and intra-cluster levels.

Several studies deal with distributed multitask estimation in

the presence of random link failures and changing topology

[9]. However, the issue of inter-node communication delays in

multitask networks has yet to be examined.

In this manuscript, we carry out a detailed analysis of

clustered multitask diffusion LMS (CMDLMS) in the presence

of inter-node communication delays and provide conditions

for its convergence both in the mean and mean-square senses.

One of the main findings of this work is that inter-node com-

munication delays do not affect the convergence conditions

of clustered multitask diffusion strategies. Furthermore, the

simulations indicate that operating on the most recent data

exchanges, although subjected to long delays, can avoid a

significant slowdown in convergence compared to the syn-

chronous CMDLMS.

II. CLUSTERED MULTITASK DIFFUSION LMS WITH

INTER-NODE COMMUNICATION DELAYS

Consider a sensor network with K number of agents that

is modeled as an undirected clustered graph G = {N ,Q, E , },

where N is the agent set, Q = {1, 2, . . . , Q} is the cluster

set, and E is the edge set that represents the bidirectional

links between the agents, i.e., (k, l) ∈ E if nodes k and l are

connected. Furthermore, the set Nk denotes the neighborhood

of node k including itself with cardinality |Nk|. At each time

instant n, every node k has access to the input uk,n and the

observable output dk,n that are related via a linear model [1]:

dk,n = uT
k,nw

∗
k + υk,n, (1)

where w∗
k is the L × 1 optimal parameter vector (also

termed as task) to be estimated at node k, uk,n =
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[uk,n, uk,n−1, · · · , uk,n−L+1]
T is the input regressor at node

k and υk,n is a zero-mean observation noise sequence and

variance σ2
υ,k. In clustered multitask networks, the nodes that

are grouped in the same cluster Cq , q ∈ Q, estimate the same

L×1 coefficient vector w∗
Cq

, implying w∗
k = w∗

Cq
for k ∈ Cq .

Furthermore, the neighboring clusters carry out different but

related estimation tasks, implying w⋆
Cq

∼ w⋆
Cr

if clusters Cq

and Cr are connected.

Since similarities exist among the inter-cluster tasks,

inter-cluster cooperation, taking place through a suitable

regularizer, can improve the overall estimation performance

[7], [11]. By using a squared Euclidean-distance regularizer

in the cost function, a clustered multitask diffusion LMS

(CMDLMS) strategy was proposed in [8]. The adapt-then-

combine (ATC) based CMDLMS strategy is given by [8]:

Adaptation:

ψk,n = wk,n−1 + µ uk,n(dk,n − uT
k,nwk,n−1), (2a)

Inter-cluster cooperation:

ψ′
k,n = ψk,n + µ η

∑

l∈Nk\C (k)

ρkl (wl,n−1 −wk,n−1), (2b)

Intra-cluster cooperation:
wk,n =

∑

l∈Nk∩C (k)

alk ψ
′
l,n, (2c)

where µ > 0 is the adaptation step size and η > 0 is the

regularization parameter. The symbol C (k) denotes the cluster

to which the node k belongs and \ represents the set difference

operator. Furthermore, the regularizer coefficients ρkl are non-

negative and the matrix P with [P]k,l = ρkl is an asymmetric

right-stochastic matrix that defines the regularizer strength

among the inter-cluster nodes. The combiner coefficients alk
are non-negative and the matrix A with [A]l,k = alk is a

left-stochastic matrix that defines the combining weights of

intra-cluster nodes.

The CMDLMS strategy (2) assumes the network to be

time-synchronized and that all the intermediate neighbor

estimates arrive to the node k before the next iteration. In

particular, estimates from inter-cluster neighbors, i.e., wl,n−1

for all l ∈ (Nk \ C (k)), and estimates from intra-cluster

neighbors, i.e., ψl,n for all l ∈ (Nk ∩ C (k)), arrive at node

k before the next iteration. However, due to congestion, or,

communication constraints in the network, these estimates

may arrive after large delays. To capture these practical

operating conditions, in this work, we consider the scenario

where significant delays may occur during the inter-node

communication. This implies that each node k has access

to both delayed inter-cluster estimates, i.e., wl,n−1−τkl

and delayed intra-cluster estimates, i.e., ψl,n−τlk
, with

τkl = τlk ≥ 0 denoting the communication delay from node k

to l. After considering the delayed estimates, the ATC based

CMDLMS [8] becomes

Adaptation:

ψk,n = wk,n−1 + µ uk,n(dk,n − uT
k,nwk,n−1), (3a)

Inter-cluster cooperation:

ψ′
k,n = ψk,n + µ η

∑
l∈Nk\C (k)

ρkl (wl,n−1−τkl
−wk,n−1),(3b)

Intra-cluster cooperation:

wk,n =
∑

l∈Nk∩C (k)

alk ψ
′
l,n−τlk

. (3c)

From (3), notice that at time instant n, each node k uses

the delayed estimates from neighbours, i.e., wl,n−1−τkl
and

ψl,n−τlk
.

III. CONVERGENCE ANALYSIS

A. Error Recursion

Denoting the weight error vectors at node k and time

index n as ψ̃k,n = w∗
k − ψk,n and w̃k,n = w∗

k −
wk,n, the network-level weight error vectors are de-

fined as ψ̃n = col{ψ̃1,n, ψ̃2,n, . . . , ψ̃K,n} and w̃n =
col{w̃1,n, w̃2,n, . . . , w̃K,n}. Then, we can introduce the fol-

lowing network-level extended error vectors of size 2LKT×1
with T = τ + 1, where τ = max

k,l∈N
τkl:

ψ̃
e

n , col{ψ̃n, ψ̃n−1 . . . , ψ̃n−τ , w̃n−1, w̃n−2, . . . , w̃n−1−τ},

w̃e
n , col{w̃n, w̃n−1, . . . , w̃n−τ , ψ̃n, ψ̃n−1, . . . , ψ̃n−τ},

w∗
e = col{w∗

1,w
∗
2, . . . ,w

∗
K ,0LK(2T−1)×1}. (4)

Replacing (3) into (4), the recursion for the network-level

extended error vector w̃e
n is obtained as

w̃e
n = Bnw̃

e
n−1 − µAesen + re, (5)

with

Bn = Ae
(
Ie − µUe

n − µηQe
)
, (6)

re = µηAeQew∗
e , (7)

where

Ie =




ILK 0LK×LK(2T−1)

0LKτ×LKT ILKτ 0LKτ×LK

ILKT 0LKT×LKT


 ,

Ue
n =

[
Un 0LK×LK(2T−1)

0LK(2T−1)×LKT 0LK(2T−1)×LKT

]
,

(8)

Ae =




AT
0 AT

1 . . . AT
τ 0LK×LKT

0LKτ×LKT ILKτ 0LKτ×LK

ILKT 0LKT×LKT


 , (9)

Qe = Ie
′

−Pe

= Ie
′

−

[
P0 P1 . . . Pτ 0LK×LKT

0LK(2T−1)×LKT 0LK(2T−1)×LKT

]
,

(10)

sen = col{u1,nυ1,n,u2,nυ2,n, . . . ,uK,nυK,n,0LK(2T−1)×1},
(11)

with

Un = blockdiag{u1,nu
T
1,n, . . . ,uK,nu

T
K,n}

while At = At ⊗ IL for t = 0, 1, . . . , τ , so that [At]l,k =
[A]l,k if τl,k = t, otherwise At = 0. Similarly, Pt = Pt⊗ IL
for t = 0, 1, . . . , τ , where [Pt]k,l = [P]k,l if τk,l = t,
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otherwise Pt = 0. The symbol ⊗ denotes the Kronecker

product. Finally, the matrix Ie
′

is given by

Ie
′

=

[
ILK 0LK×LK(2T−1)

0LK(2T−1)×LKT 0LK(2T−1)×LKT

]
. (12)

In the following, we study the convergence behavior of the

CMDLMS with inter-node communication delays governed by

(5). In this regard, the following assumptions are made:

A1: Given a node k ∈ N , the input regressor uk,n is

drawn from a wide-sense stationary multivariate random

sequence with correlation matrix Ru,k = E[uk,nu
T
k,n].

In addition, the input regressors uk,n and ul,m are taken

to be independent, for all k 6= l and m 6= n.

A2: The observation noise υk,n is a zero-mean Gaussian

random sequence with variance σ2
υ,k. In addition, υk,n

is taken to be independent of any other random signals

in the model.

A3: The step size µ is sufficiently small so that the terms

involving higher-order powers of µ can be neglected.

B. First-order Convergence Analysis

Theorem 1. Let A1-A2 hold. Then, the CMDLMS with inter-

node communication delays converges in mean provided

0 < µ <
2

max
∀k∈N

{
max
∀i

{λi( Ru,k)}
}
+ 2 η

, (13)

where λi(·) denotes the ith eigenvalue of its argument matrix.

Proof. Taking the statistical expectations E[·] on both sides of

(5) yields

E[w̃e
n] = B E[w̃e

n−1] + re, (14)

where B = E[Bn] = Ae (Ie − µ Re − µ η Qe) with Re =
E[Ue

n] = blockdiag{E[Un], . . . ,0} = blockdiag{R, . . . ,0}
and re = µηAeQew∗

e .

From (14), it can be induced that lim
n→∞

E[w̃e
n] attains a finite

value if and only if ‖B‖ < 1, where ‖ · ‖ denotes any matrix

norm. To derive a convergence condition, we consider the

block maximum norm []of the matrix B (i.e., ‖B‖b,∞). From

the properties of the block maximum norm [1], we have

‖B‖b,∞ = ‖Ae (Ie − µ Re − µ η Qe)‖b,∞

≤ ‖Ae‖b,∞ ‖Ie − µ Re − µ η Qe‖b,∞

= ‖Ie − µ Re − µ η Qe‖b,∞ . (15)

From the definition of block maximum norm, it follows that

‖Ae‖b,∞ = 1, which was used in (15). Substituting (10) in

(15) and using the block maximum norm properties, we have

‖B‖b,∞ ≤ ‖Ie − µηIe
′

− µ Re + µ η Pe‖b,∞

≤ ‖Ie − µηIe
′

− µ Re‖b,∞ + µ η ‖Pe‖b,∞

= ‖Ie − µηIe
′

− µ Re‖b,∞ + µ η. (16)

Similar to (15), using the definition of block maximum norm,

it is straightforward to prove that ‖Pe‖b,∞ = 1. Therefore, a

sufficient condition for E[w̃e
n] to converge in mean is ρ

(
Ie −

µηIe
′

− µ Re
)
+ µη < 1, or, equivalently, ρ

(
(1− µη)ILK −

µ R
)
+µη < 1; which leads to −1+µη < 1−µλi(R) < 1−µ

for i = 1, 2, . . . , LK. Thus, a sufficient condition for mean

convergence is 0 < µ < 2
max

i=1,··· ,LK
λi(R)+2η , which concludes

the proof.

C. Second-order Convergence Analysis

Defining the weighted squared-norm of w̃e
n as ‖w̃e

n‖
2
Σ

=
(w̃e

n)
TΣw̃e

n, where Σ is an arbitrary positive semi-definite

matrix and under the assumptions A1−A2, from (5), we have

E[‖w̃e
n‖

2
Σ
] =E[‖w̃e

n−1‖
2
Σ′ ] + µ2E[(Aesen)

TΣAesen]

+ ‖re‖2
Σ
+ E[(Bnw̃

e
n−1)

TΣre]

+ E[(re)TΣ Bn w̃e
n−1].

(17)

The weighted matrix Σ′ is given by

Σ′ = E[BT
n Σ Bn]. (18)

Using the block Kronecker product ⊗b and block vectorization

operator bvec{·} [18], we can relate the vectors σ = bvec{Σ}
and σ′ = bvec{Σ′} as

σ′ = FT σ, (19)

with
Fn = E[Bn ⊗b Bn] =

(
Ae ⊗b A

e
)

H, (20)

where

H ≈(Ie ⊗b I
e)− µ

(
Ie ⊗b R

e
)
− µ

(
Re ⊗b I

e
)

− µη
(
Ie ⊗b Q

e
)
− µη

(
Qe ⊗b I

e
)
.

(21)

Under A3, the terms involving higher-order powers of µ in

(21) become sufficiently small to be non-influential. Hence,

the analysis will be continued with this approximation.

The second term on the RHS of (17) can be rewrit-

ten as E
[
(Aesen)

TΣAesen
]
= E[Tr((sen)

T(Ae)TΣAesen)] =
Tr(AeE[sen(s

e
n)

T](Ae)TΣ). Using the assumption A2, one can

then obtain

Tr(AeE[sen(s
e
n)

T](Ae)TΣ) = γTσ, (22)

where

γ = bvec{Φ} = bvec{Ae Se(Ae)T}, (23)

with Se = E[sen(s
e
n)

T] = blockdiag{S,0, . . . ,0}. The quan-

tity S = blockdiag{σ2
ν,1Ru,1, σ

2
ν,2Ru,2, . . . , σ

2
ν,KRu,K}.

The last three terms on the RHS of (17) are evaluated in

the following. First,

‖re‖2
Σ
= µ2η2 Tr(AeQew⋆

e(w
⋆
e)

T(Qe)T(Ae)TΣ)

= µ2η2αTσ,
(24)

where

α = bvec{∆T} =bvec{AeQew⋆
e(w

⋆
e)

T(Qe)T(Ae)T} (25)

=(Ae ⊗b A
e)(Qe ⊗b Q

e)bvec{w⋆
e(w

⋆
e)

T}.

Next, the term E[(Bnw̃
e
n−1)

TΣre] is evaluated as

E[(Bnw̃
e
n−1)

TΣre] = E[bvec{(Bnw̃
e
n−1)

TΣre}]

= E
[
re ⊗b Bnw̃

e
n−1

]T
σ

=
(
(re ⊗b B)(1⊗b E[w̃e

n−1])
)T
σ

= E[(w̃e
n−1)

T]ΘTσ,

(26)
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where Θ = re ⊗b B = (Ae ⊗b Ae)
(
µη(Qew⋆

e ⊗b Ie) −
µ2η(Qew⋆

e⊗bR
e)−µ2η2(Qe⊗bQ

e)(w⋆
e⊗bI

e)
)
≈ µη(Ae⊗b

Ae)(Qew⋆
e ⊗b Ie) (i.e., after neglecting the terms having

higher order powers of µ).

Finally, the last term, viz., E[(re)TΣBnw̃
e
n−1] is easily

seen to be the same as the previous term, E[(Bnw̃
e
n−1)

TΣre]
evaluated in (26).

From (18)–(26), the expression in (17) can be alternatively

formulated as

E[‖w̃e
n‖

2
bvec−1{σ}] = E[‖w̃e

n−1‖
2
bvec−1{FT

σ}]

+ µ2γTσ + f
(
E[w̃e

n−1],σ
)
,

(27)

where f
(
E[w̃e

n−1],σ
)
= µ2η2αTσ+2E[(w̃e

n−1)
T]ΘTσ. Note

that the operator bvec−1{·} rearranges the argument vector

of size 4L2K2T 2 × 1 into a 2LKT × 2LKT matrix, i.e.,

Σ = bvec−1{σ}.

Theorem 2. Let A1-A3 hold and that (27) describes the

dynamics of the weight MSD. Then, the CMDLMS with

inter-node communication delays exhibits stable MSD

performance provided

0 < µ <
1

max
∀k∈N

{
max
∀i

{λi( Ru,k)}
}
+ 2 η

. (28)

Proof. Iterating (27), backwards down to n = 0, we get

E[‖w̃e
n‖

2
bvec−1{σ}] = E[‖w̃e

−1‖
2
bvec−1{(FT)n+1

σ}]

+ µ2 γT
(
I4L2K2T 2 +

n∑

j=1

(FT)j
)
σ + f(E[w̃e

n−1],σ)

+
n∑

j=1

f(E[w̃e
n−1−j ], (F

T)jσ),

(29)

where w̃e
−1 = w∗

e −we
−1. Under ρ

(
FT

)
< 1, in the steady-

state, the first and second terms in the RHS of (29) con-

verge to zero and a finite value, respectively. Since E[w̃e
n−1)]

is bounded, the term f(E[w̃n−1−j ], (F
T)jσ) attains a finite

value iff the spectral radius of the matrix F , i.e., ρ
(
FT

)
is

less than one. Therefore, the convergence of E[‖w̃e
n‖

2
Σ
] =

E[‖w̃e
n‖

2
bvec−1{σ}] requires ρ

(
F
)
= ρ

(
FT

)
< 1. From the

properties of block maximum norm, we can write

ρ
(
F
)
≤

∥∥(Ae ⊗b A
e
)
H‖b,∞ ≤ ‖Ae ⊗b A

e‖b,∞
∥∥H

∥∥
b,∞

.

(30)

From the definition of the block maximum norm, it can be

easily shown ‖Ae ⊗b Ae‖b,∞ = 1. Using this result and

substituting H as given in (21) where Qe is given by (10),

we have

ρ
(
F
)
≤ ‖X‖b,∞ + µη ‖(P ⊗ Ie) + (Ie ⊗P)‖b,∞
≤ ‖X‖b,∞ + 2µη,

(31)

where X = (Ie ⊗b I
e)− µη(Ie ⊗b I

e′)− µη(Ie
′

⊗b I
e)

− µ(Ie ⊗b R
e)− µ(Re ⊗b I

e). Similar to the above, from the

definition of block maximum norm, it can be easily shown

‖P ⊗ Ie‖b,∞ = ‖Ie ⊗ P‖b,∞ = 1. Therefore, it is seen that

the convergence of E[‖w̃e
n‖

2
Σ
] requires ρ

(
X
)
+ 2µη < 1, or,

equivalently, ρ
(
(1 − 2µη)IL2K2 − µ(ILK ⊗b R) − µ(R ⊗b

ILK)
)
+ 2µη < 1; which leads to −1 + 2µη < (1 − 2µη) −

µ(λi(R) + λj(R)) < 1 − 2µη, i, j = 1, 2, · · · , LK. Thus,

a sufficient condition for convergence is given by 0 < µ <
2

4η+2 max
i=1,··· ,LK

λi(R) , which proves (28).

Remark 1. The convergence conditions of the CMDLMS with

inter-node communication delays are the same as that of the

conventional CMDLMS [8] (i.e., with ideal communications).

D. Transient and Steady-State Mean Square Deviation

Using (29), E[‖w̃e
n‖

2
bvec−1{σ}] and E[‖w̃e

n−1‖
2
bvec−1{σ}] can

be related as

E[‖w̃e
n‖

2
bvec−1{σ}] = E[‖w̃e

n−1‖
2
bvec−1{σ}] + µ2γT(FT)n σ

+E
[
‖w̃e

−1‖
2
bvec−1{(FT−I

4L2K2T2 )(FT)nσ}

]
+ µ2η2αT(FT)nσ

+2E[(w̃e
n−1)

T]ΘTσ + 2E[(w̃e
n−2)

T]ΘT(FT − I4L2K2T 2)σ

+2

n−1∑

j=1

E[(w̃e
n−2−j)

T]ΘT(FT − I4L2K2T 2) (FT)j σ. (32)

Let σ = bvec{blockdiag{ILK ,0, . . . ,0}}, approximating

F ≈ B⊗bB, the network-level mean square deviation (MSD)

at time index n ζn = 1
K
E[‖w̃n‖

2] = 1
K
E[‖w̃e

n‖
2
bvec−1{σ}]

evolves as

ζn = ζn−1 + µ2Tr(Φ(B
T
)nΣBn)

+ Tr(w̃e
−1(w̃

e
−1)

T(B
T
)n+1ΣBn+1)

− Tr(w̃e
−1(w̃

e
−1)

T(B
T
)nΣBn) + µ2η2Tr(∆(B

T
)nΣBn)

+ 2Tr(reE[(w̃e
n−1)

T]BTσ) + 2Tr(reE[(w̃e
n−2)

T](B2)TΣB)
− 2Tr(reE[(w̃e

n−2)
T]BTσ)

+ 2
n−1∑

j=1

Tr(reE[(w̃e
n−2−j)

T](Bj+2)TΣBj+1)

+ 2

n−1∑

j=1

Tr(reE[(w̃e
n−2−j)

T](Bj+1)TΣBj).

Under (28), letting n → ∞ on both sides of (27), we obtain

lim
n→∞

E[‖w̃e
n‖

2
bvec−1{(I

4L2K2T2−FT)σ}] = µ2γTσ + f (E[w̃e
∞],σ) ,

(33)

where E[w̃e
∞] = lim

n→∞
E[w̃e

n]. By substituting σ = 1
K

(I4L2K2T 2 −FT
δ)

−1 bvec{blockdiag{ILK ,0, . . . ,0}} in (33),

the network-level steady-state MSD can be obtained.

IV. SIMULATION RESULTS

This section validates the analytical results and studies the

impact of inter-node communication delays on the CMDLMS.

For this purpose, we consider a clustered multitask network

consisting of N = 30 nodes that are grouped in to 4 clusters

with the topology shown in Fig. 1(a). These clusters aim to

estimate their respective 10-tap parameter vectors in a collab-

orative fashion which are chosen as w∗
Cq

= w0 + δCq
wC (k)

for q = 1, 2, 3, 4 with δC1
= 0, δC2

= −0.03, δC3
= 0.05

and δC4
= −0.05. The vectors w0 and wC(k) were generated

from a zero-mean, unit variance Gaussian distribution. The

input signal uk,n and the noise signal υk,n at each node are

white Gaussian with node-dependent variances σ2
u,k and σ2

υ,k,

respectively. The coefficients ρkl and alk are set similar to [8].
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Fig. 1: (a). Network. (b)-(c). MSD comparison.

The inter-node communication delays are proportional to the

distances among nodes.

For comparative assessment, the same identification exercise

was also carried out by synchronous CMDLMS (in which all

nodes wait for the most delayed communication to complete

one cycle of adaptation and combination process). Figs. 1(b)-

1(c) show the network-level MSD (in dB) against the iter-

ation index n, obtained by averaging over 500 independent

experiments. The resulting plots are shown in Figs. 1(b)

and 1(c). We see that the CMDLMS with delays exhibited

a faster convergence rate and lower steady-state MSD than

the synchronous CMDLMS, as it completes the inter-cluster

and intra-cluster cooperations with the available information

without waiting for the prolonged messages. Moreover, it is

well known that the performance of CMDLMS is strongly

dependent on the value of η [11], i.e., after a certain value of

η the performance of CMDLMS starts deteriorating, which can

be observed in the case of synchronous CMDLMS shown in

Fig. 1(c). However, in the case of CMDLMS with inter-node

communication delays, since the inter-cluster cooperation is

running on delayed estimates, the effect of high η values on the

network-level MSD is reduced. Hence, CMDLMS with delays

shows robustness against the η value as evident in Fig. 1(c).

The simulation results precisely match the theoretical steady-

state MSD results. Numerous simulations for different step

sizes obeying A4, not shown here, corroborate the preciseness

of (13),(28), and (32).

V. CONCLUSIONS

Distributed adaptive estimation over clustered multitask net-

works in the presence of inter-node communication delays has

been considered. The performance of the clustered multitask

diffusion LMS with delayed estimate exchanges was analyzed,

and convergence conditions in the mean and mean-square

senses were established. Closed-form expressions have been

obtained for both network-level transient and steady-state

mean square deviation. Simulation results have shown good

agreement with theoretical findings.
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