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A B S T R A C T

Reliability- and performance-based design of a riser cluster requires an accurate estimation of the extreme
values of the stochastic relative distance between the risers during a given time duration. This study presents
a comprehensive assessment of six methods for estimating the collision probability between two risers with
limited simulation length. A pair of steep-wave risers in tandem arrangement subjected to combined current
and wave loads is modeled. The wake effect generated by the upstream riser acting on the downstream riser
is considered.

Firstly, the critical locations at which collisions during a short duration are likely to occur are identified.
After obtaining nonlinear riser responses, 3-hour short-term extreme relative motions are calculated, which
are used for the collision probability estimation. Several methods for the extreme value analysis, including the
Gumbel probability paper method, the general extreme value method and the average conditional exceedance
rate method are presented. This paper also proposes two methods which offer reliable and satisfactory results
for the extreme value analysis of highly skewed processes.
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
1. Introduction

As the offshore industry moves to deeper water, risers are commonly
arranged as clusters with small spacing due to limited size of the
platform as well as cost considerations. The dynamic response of riser
clusters, induced by waves, currents and platform motions, becomes
complex, and this complexity is increased by the arrangement of risers.
The influence of neighboring risers may lead to hydrodynamic loads on
the individual risers, which are significantly different from the loads
they would experience in isolation. This hydrodynamic interference
may cause large relative motions between risers, resulting in potential
collisions (Rustad et al., 2008). For instance, when a downstream
cylinder is placed within the wake field generated by an upstream
cylinder, the flow around the downstream cylinder will be changed
due to the presence of the upstream one. This change will reduce the
drag force acting on the downstream cylinder, and it also might induce
an additional lift force if the cylinders are in a staggered arrangement.
This wake effect, in turn, reduces the clearance between the cylinders.
A literature review on the topic of wake induced oscillation can be
found in Fu et al. (2015). Furthermore, the differences in excitation
force on neighboring risers may cause relative motions to be large,
resulting in the small clearance between risers. Additionally, the floater
motions also affect the motions of the individual risers. All these factors
may lead to the possibility of riser collision, especially when risers are

∗ Corresponding author.
E-mail address: ping.fu@ntnu.no (P. Fu).

subjected to a severe sea state. However, relatively few studies have
been carried out regarding riser collision considering the wake effect.

Due to the high degree of non-linearity, time domain analysis is re-
quired for the collision assessment problem. However, it is impractical
to simulate collision events because of the limitations of the simulation
time and the complication of the contact problem. Firstly, collision is a
rare event in practice, so for a well-designed riser system extremely
long simulation periods are usually required for such an event to
occur. Secondly, when a clash between risers does occur, the motions
of individual risers will both be changed, which are different from
when ignoring the presence of the other riser. However, simulating
the contact and the motions after contact is still a challenge for most
of the available software (and in general for global dynamic analysis
computer algorithms). Thus, the riser collision process, represented by
the normalized minimum distance between risers is formulated as the
main quantity of interest. Since this is a random process, application of
extreme value analysis is required. Many techniques for estimation of
the extreme value distribution have been proposed including the Gum-
bel probability paper (GPP) method (Gumbel, 1958), the generalized
extreme value (GEV) method, the average conditional exceedance rate
(ACER) method (Næss and Gaidai, 2009; Naess and Karpa, 2013; Karpa
and Naess, 2013) and the method based on the translation process
model (Winterstein, 1987, 1988; Ding and Chen, 2014). The accuracy
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and uncertainty associated with these methods are affected by the
properties of the process and the modeling adequacy of these properties
based on limited data.

The generalized extreme value method requires a number of time
series of equal length, and that the maximum value from each time his-
tory is extracted. With the assumption that these maxima are stochasti-
cally independent and identically distributed, the extreme value con-
verges to one of three general distribution functions, i.e. Gumbel,
Weibull or Frechet distributions (Gumbel, 1958). This method requires
a large number of simulations in order to obtain a result with ac-
ceptable accuracy. Therefore, an alternative method for the estimation
of the extreme value distribution based on a limited number of sim-
ulations is introduced. The ACER method expresses the mean level
up-crossing rate at the upper tail as a function of the level 𝜂. This

akes it possible to avoid the commonly adopted assumption that the
xtreme value data follow an appropriate asymptotic extreme value
istribution (Næss and Gaidai, 2009). The translation process method
eals with non-Gaussian processes. It translates non-Gaussian process
o standard Gaussian process through a monotonic translation function,
o that the traditional extreme theory for the Gaussian process can be
pplied. The translation function can be determined using the statistical
oments of the non-Gaussian process, i.e. the moment-based Hermite
ethod (Duggal and Niedzwecki, 1994). This method was used as the
robabilistic collision model for a pair of top-tension riser for a given
ocation (Duggal and Niedzwecki, 1993). This paper introduces another
pproach to calculate the translation function, by mapping the CDF
f the non-Gaussian process data to a prescribed parent distribution
odel. However, in the literature, few studies have been carried out

or the collision probabilities (He and Low, 2013; Leira et al., 2002),
ut most of them do not focus on the extreme value problem.

The purpose of this paper is to evaluate the performances of the
umbel probability paper method, the generalized extreme value
ethod, the ACER method and two proposed methods in the applica-

ion of the riser collision probability estimation. Particular attention is
iven to a pair of flexible wave-risers in tandem arrangement subjected
o a combined current and waves flow. The wake effect generated by
he upstream riser is considered. The shortest relative distance between
he risers is searched for according to the riser motion for a given time
uration. The collision probability is then estimated with short-term
ime history samples for the different extreme value analysis methods.

. Extreme value analysis

.1. Generalized extreme value distribution

The largest maximum for each time history is the highest value
mong all the local maxima,

𝑒 = max{𝑋𝑚1
, 𝑋𝑚2

,… , 𝑋𝑚𝑛
}. (1)

here 𝑋𝑒 and 𝑋𝑚𝑖
, 𝑖 = 1...𝑛 represent the largest maximum and

the individual local maxima from a given time series, respectively. By
assuming that all the individual maxima are stochastically independent
and identically distributed with a common distribution function 𝐹𝑋𝑚

(𝑥),
the distribution of 𝑋𝑒 is given as (Bury, 1975):

𝐹𝑋𝑒
(𝑥) = 𝑃 {𝑋𝑒 ≤ 𝑥} = [𝐹𝑋𝑚

(𝑥)]𝑛 (2)

It is proven that this equation will normally converge towards one
of three types of extreme value distributions as 𝑛 → ∞, i.e. Gumbel,
Weibull or Frechet (Bury, 1975). These three types of extreme value
distributions have a common form, i.e. the generalized extreme value
(GEV) distribution, given as:

𝐹𝑋𝑒(𝑥) = exp
{

−1 + 𝛾(
𝑥 − 𝜇
𝜎

)−
1
𝛾

}

(3)

where 𝜇 is the location parameter, 𝜎 is the scale parameter, and 𝛾 is
the shape parameter. The shape parameter strictly affects the shape of
 i
the distribution, and governs the tail of each distribution. The shape
parameter is derived from the skewness, as it represents where the ma-
jority of the data lies. Here 𝛾 > 0 corresponds to the Frechet distribution
and 𝛾 < 0 corresponds to the reversed Weibull distribution. Note that
the reversed Weibull distribution is the only type of the extreme value
distribution with a finite upper limit. Furthermore, 𝛾 = 0 is the limiting
case when 𝛾 → 0, which leads to the Gumbel distribution. In general, a
istribution with a larger number of fitting parameters will be able to
odel the input data more accurately than a distribution with a smaller
umber of parameters. However, the Gumbel distribution is efficient for
mall sample sizes. If the size is greater than 50, GEV shows a better
verall performance (Cunnane, 1989).

.2. Gumbel probability paper method

The Gumbel model is the most commonly used distribution model
or marine structures. The cumulative distribution function (CDF) of
he Gumbel model is given as

𝑋𝑒
(𝑥) = exp {− exp {−𝛼(𝑥 − 𝜇)}} (4)

here 𝛼 is the scale parameter, and 𝜇 is the location parameter. The
arameters can be determined by fitting a straight line to the data in
Gumbel probability paper (GPP). Details can be found by Naess and
oan (2012).

By taking the logarithm of both the left and right hand side of this
quation twice, the following equation is obtained:

ln[− ln(𝐹𝑋𝑒
(𝑥))] = 𝛼(𝑥 − 𝜇) (5)

urther, by introducing 𝑦 = − ln[− ln(𝐹𝑋𝑒
(𝑥))] a linear function, i.e. 𝑦 =

(𝑥 − 𝜇) is obtained, which implies that in a x–y axis system, the
umulative distribution becomes a straight line. Then, the parameters
and 𝜇 can be estimated by least-square fitting of the samples to the

traight line.

.3. Average conditional exceedance rate

Unlike the above mentioned methods based on the parametric
istribution functions, the ACER method estimates the extreme value
istribution by constructing a sequence of non-parametric distribution
unctions, i.e. the ACER functions (Naess and Gaidai, 2008; Næss and
aidai, 2009; Karpa and Naess, 2013; Gaidai et al., 2016, 2018; Chai
t al., 2018). Here the basic idea of the ACER method is summarized
s following.

Based on the time series of the individual maxima, the extreme
alue can be expressed as:

𝑋𝑒
(𝑥) ≈ 𝑃𝑘(𝑥) ≈ exp {−(𝑛 − 𝑘 + 1)𝜖(𝑥)} (6)

here 𝑛 is the counted number of maxima during a given time duration
0; 𝑘 is the order of the ACER function; 𝑃𝑘 is the approximation of the
xtreme value distribution based on the 𝑘th order ACER function, and
𝜖(𝑥) is the empirical ACER function of order 𝑘, which can be determined
y applying the existing time series. As k increases (more complex
odel), the bias of Eq. (6) will generally reduce, but variance will

ncrease.
In order to predict the extreme value distribution in the upper tail

egion, an extrapolation scheme is applied. Specifically, in the upper
ail region (e.g. for 𝑥 ≥ 𝑥𝑚0, where 𝑥 ≥ 𝑥𝑚0 is an appropriately chosen
ail marker), the ACER function behaves similarly to the function
xp{−𝑎(𝑥 − 𝑏)𝑐}, where 𝑎 > 0, 𝑏 ≤ 𝑥𝑚0 and 𝑐 > 0 are suitable constants.
he empirical ACER function is assumed to have the form:

𝜖𝑘(𝑥) = 𝑞𝑘 exp
{

−𝑎𝑘(𝑥 − 𝑏𝑘)𝑐𝑘
}

; 𝑥 ≥ 𝑥𝑚0 (7)

here 𝑎𝑘, 𝑏𝑘, 𝑐𝑘 and 𝑞𝑘 are suitable constants which depend on the order
. It should be noted that Eq. (7) is applicable in the upper tail region,

.e., 𝑥 ≥ 𝑥𝑚0. By comparing the empirical 𝜖𝑘(𝑥) for different values 116
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of 𝑘, an appropriate value of 𝑘 is selected to capture the dependence
structure of the time series.

The constants 𝑎𝑘, 𝑏𝑘, 𝑐𝑘 and 𝑞𝑘 can be determined by minimizing
he following mean-square-error function:

(𝑞𝑘, 𝑎𝑘, 𝑏𝑘, 𝑐𝑘) =
𝑁
∑

𝑖=1
𝜌𝑗 | ln 𝜖𝑘(𝑥𝑚𝑖) − ln 𝑞 + 𝑎(𝑥𝑚𝑖 − 𝑏)𝑐 |2 (8)

where 𝑥𝑚𝑖, 𝑖 = 1,… , 𝑛 are levels at which the ACER functions have been
empirically estimated. The weight factor 𝜌𝑗 is given by the relationship
𝜌𝑗 = (ln𝐶𝐼+(𝑥𝑚𝑖) − ln𝐶𝐼−(𝑥𝑚𝑖))−2, where 𝐶𝐼 represents the 95%
confidence interval, which can be approximately expressed as:

𝐶𝐼±(𝑥𝑚𝑖) = 𝜖𝑘(𝑥𝑚𝑖){1 ±
1.96

√

(𝑛 − 𝑘 + 1)𝜖𝑘(𝑥𝑚𝑖)
} (9)

Therefore, it is seen in Eqs. (8) and (9) that the weight factor 𝜌𝑗 de-
creases as the level 𝑥𝑚𝑖 increases, which implies that the extrapolation
scheme puts more emphasis on the more reliable data points. Moreover,
it should be noted that there is a level 𝑥𝑚𝑖 beyond which the weight
factor 𝜌𝑗 is no longer defined since the 𝐶𝐼− estimated by Eq. (9) would
be negative as the levels exceed 𝑥𝑚𝑖.

2.4. Proposed method 1: Gumbel parameters based on Weibull tail fitting
of maxima

The requirement related to a large number of simulations for the
GPP and the GEV methods has led to the development of alternative
methods for the estimation of the extreme value distribution from a
small number of simulations, so that the individual maxima from the
limited time history can be used for the extreme value estimation.
One possible model is that, if the individual maxima follow the 3-
parameter Weibull distribution, the extreme value which is followed
by the Gumbel distribution can be determined based on the distribution
parameters of the Weibull model.

The 3-parameter Weibull distribution function commonly used as a
model for individual response maxima is given as

𝐹𝑋𝑚
(𝑥) = 1 − exp

{

−
(𝑥 − 𝜇

𝜎

)𝜆
}

(10)

here 𝜇, 𝜎 and 𝜆 are the location, scale and shape parameters, respec-
ively. As recommended, those three parameters are determined by the
oment method (Farnes and Moan, 1993). It is also recommended that

nly the global maxima, i.e. the largest maxima between positive slope
p-crossings of the threshold should be selected. This method reduces
he potential correlation between selected maxima and eliminates the
ajority of smaller amplitude extremes that are less significant for

stimation of extreme values distribution. Fig. 1 illustrates the global
axima which are marked by red color, i.e. 𝑋𝑚.

After obtaining the Weibull parameters, the extreme value which is
ssumed to follow the Gumbel distribution has the approximated scale
nd location parameters (Bury, 1975):

𝜇𝑥𝑒 +
0.57722
𝛼𝑥𝑒

= 𝑢 + 𝜎
{

(ln 𝑛)
1
𝜆 + 0.57722

𝜇
(ln 𝑛)

1−𝜆
𝜆

}

𝛼𝑥𝑒 =
𝜆
𝜎
(ln 𝑛)

1−𝜆
𝜆

(11)

where 𝑛 is the number of global maxima for a given time duration;
𝜇𝑥𝑒 and 𝛼𝑥𝑒 are the location and scale parameters of the Gumbel
distribution function, respectively; 𝜇, 𝜎 and 𝜆 are Weibull distribution
parameters, as given in Eq. (10).

Since the aim of the fitting is to obtain a Weibull model to be used
for estimation of extremes, it is important that the fitting procedure
gives a good fit to the upper tail data. Therefore, a threshold value
is used so that the effect of the lower tail data (below the threshold)
can be neglected. The idea of only considering observations above a
threshold value for estimation of parameters in a proposed distribution
model has been applied for extreme value prediction of the response of
 3
Fig. 1. Definition of global maxima. 𝑋𝑚: individual global maxima. X(t): realization of
stochastic process. (For interpretation of the references to color in this figure legend,

he reader is referred to the web version of this article.)

single flexible riser (Sodahl, 1991). In the present study, the Weibull
ail fitting method will be used.

The choice of threshold is based on experience. In this paper,
he method for determining the threshold is based on the mean and
tandard deviation of the original time series. For instance, for a given
-h simulation, the smallest threshold is set to be the mean value,
.g. 𝑥0 = 𝜇𝑥, and largest threshold is to be the 1.4 times the standard
eviation, e.g. 𝑥0 = 𝜇𝑥 + 1.4𝑆𝑇𝐷, based on the recommendations
y Moriarty et al. (2004). Other threshold values are inserted for
efinement; totally, five threshold values are applied, i.e. 𝑥0 = 𝜇𝑥 + 𝜂𝑥,
here 𝜂𝑥 = [0, 0.5, 1, 1.2, 1.4] ∗ 𝑆𝑇𝐷.

.5. Proposed method 2: Translation process method based on CDF mapping

The basic idea of the translation process method is to translate the
on-Gaussian process to a standard Gaussian process, so that the ex-
reme value distribution of the non-Gaussian process can be estimated
rom that of the standard Gaussian process. The translation function is
iven by,

𝐹𝑋 (𝑥) = 𝛷(𝑢)

𝑥 = 𝑔(𝑢) = 𝐹−1
𝑋 [𝛷(𝑢)]

(12)

here 𝑢 is the standard Gaussian process; 𝛷(𝑢) is the corresponding
DF; 𝑔(⋅) is the translation function from the X-space to the U-space,
nd 𝐹−1

𝑋 is the inverse function of 𝐹𝑋 . The extreme value distribution
s then calculated via the Gaussian extreme value theory,

𝐹𝑋𝑒
(𝑥) ≈ exp

{

−𝜈+(𝑥)𝑇
}

≈ exp
{

−𝜈+0 𝑇 exp
{

−
𝑔−1(𝑥)2

2

}} (13)

where 𝜈+(𝑥) is the up-crossing rate at a threshold level 𝑥, which is
dentical to the mean up-crossing rate in the U-space at level 𝑢 =
−1(𝑥) = 𝛷−1{𝐹𝑋 (𝑥)

}

since the translation function is monotonic; 𝜈0 is
he zero up-crossing rate; 𝑇 is the time duration and 𝑔−1(𝑥) = 𝛷−1𝐹𝑋 (𝑥)
s the inverse translation function.

Therefore, an appropriate distribution model 𝐹𝑋 (𝑥) which is able
o capture the upper tail well is essential. In this section, a combined
istribution model is used so that the behavior of the upper tails can
e captured. The idea of using a combined distribution model for CDF
apping has been applied by, e.g., Peng et al. (2014). In this section,
different combined distribution model for the upper tail fitting is

resented.
An empirical distribution based on the measured data, i.e. a kernel

ampling density, is applied in the lower tail probability region, and a
-parameter Weibull distribution is applied in the upper tail. The details
 92
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Table 1
Riser and buoyancy element properties.

Unit Bare Buoyancy
riser modules

Outside diameter [m] 0.25 0.63
Inside diameter [m] 0.05 0.05
Mass density [kg/m] 100 100
EI [kNm2] 104 104
Content density [kg∕m3] 1000 1000
Length [m] 110 50

of the kernel sampling density is not given here since this paper is
focused on analysis of the extreme value distribution which is governed
by the upper tail. The expression of the CDF of the upper tail data larger
than the tail marker 𝑥0 followed by the Weibull distribution is given as:

𝐹3𝑤𝑏(𝑋 ≤ 𝑥|𝑋 ≥ 𝑥0) =
𝐹𝑋 (𝑥) − 𝐹𝑋 (𝑥0)

1 − 𝐹𝑋 (𝑥0)
(14)

where 𝐹3𝑤𝑏 is the CDF of 3-parameter Weibull distribution, as given in
Eq. (10), and 𝑥0 is the tail marker(or threshold), and corresponds to the
location parameter 𝜇 in Eq. (10). The CDF of the maxima in the upper
tail is then calculated by,

𝐹𝑋 (𝑥) = 𝐹𝑋𝑘𝑒𝑙
(𝑥0) + (1 − 𝐹𝑋𝑘𝑒𝑙

(𝑥0))𝐹3𝑤𝑏(𝑥), 𝑥 ≥ 𝑥0 (15)

where 𝐹𝑋𝑘𝑒𝑙
(𝑥) is the CDF of the kernel sampling distribution which

is applied for the data smaller than the tail marker 𝑥0. Moreover,
𝐹𝑋 (𝑥0) = 𝐹𝑋𝑘𝑒𝑙

(𝑥0), ensuring that the CDF is continuous at 𝑥 = 𝑥0. After
determining the distribution model 𝐹𝑋 (𝑥), the translation function is
established by CDF mapping, i.e. Eq. (12).

3. Riser system modeling

Before further assessment, it is necessary to address some challenges
related to conducting the riser collision analysis. Firstly, the wake effect
significantly influences the relative distance between risers. However,
application of the wake models in the finite element software is still
a challenge. Secondly, even though there are many existing methods
for extreme value estimation, it is still a challenge to find a suitable
definition of a random variable to describe the stochastic properties
of the riser collision problem. In this section, these aspects will be
addressed by examining a pair of risers in a steep-wave configuration
subjected to combined current plus waves.

Time domain simulation is necessary for calculating the non-linear
riser response under combined current and wave loads. Especially, the
non-linearity is increased when the wake effect is taken into account.
The wake effect is considered by combining the finite element soft-
ware Riflex (1987) along with the Blevins wake model (Blevins, 2005).
The Riflex is specially designed to handle static and dynamic analyses of
slender marine structures. The Blevins wake model expresses the drag
and lift forces on the downstream riser as a function of the relative
distance between risers.

3.1. Description of riser system

The semi-submersible floater is modeled as a rigid body, and the
motion of the floater is specified through the linear motion transfer
functions in 6 degrees-of-freedom (DOFs). Amplitudes and phase angles
at the center of gravity are presented in Fig. 2 for the surge motion.

The risers in the steep-wave configuration are illustrated in Fig. 3.
Each of the risers have a total length of 160 m with a diameter of 0.25
m. The buoyancy elements are attached along the riser over a length of
50 m with a diameter of 0.63 m starting 10 m from the lower end. The
main riser properties are summarized in Table 1. The initial relative
distance between the top-ends of riser is 𝐿0 = 10 m. The water depth

is 100 m. o
Fig. 2. First order motion transfer function amplitude and phase angle for surge.

Fig. 3. Riser configuration.

3.2. Environmental conditions

The wave condition is described by a JONSWAP wave spectrum
ith a peak factor of 𝜂 = 3.3, a significant wave height 𝐻𝑠 = 14 m
nd a peak period 𝑇𝑝 = 18 s. In addition, a linearly decreasing current
ith surface velocity 𝑉𝑐 = 1 m∕s and seabed velocity 𝑉𝑐 = 0.8 m∕s has
een included. Both waves and current are perpendicular to the risers.

.3. Hydrodynamic forces

In Riflex, the hydrodynamic forces are calculated based on two-
imensional strip theory. The wave-induced excitation forces (Froude–
rylov and diffraction forces) are computed by a long wavelength
pproximation which involves added mass and potential damping of
he actual cross section together with the wave kinematics. For a
lender structure, the main component of the hydrodynamic forces is
he viscous drag force. The viscous load is computed using the drag
erm in the modified Morison equation, taking into account the relative
otion between the riser and the fluid flow. The Morison equation per
nit length is expressed as:

𝐹 (𝑡) = 1
2
𝐶𝐷𝐷(𝑣(𝑡) − �̇�(𝑡))|𝑣(𝑡) − �̇�(𝑡)|

+ 𝜌𝐶𝑀
𝜋
4
𝐷2�̇�(𝑡) − 𝜌(𝐶𝑀 − 1)𝜋

4
𝐷2�̈�(𝑡)

(16)

here 𝜌 is the water density; 𝐶𝐷 and 𝐶𝑀 are the drag and inertia
oefficients, respectively; 𝑣 and �̇� are the water fluid velocity and ac-
eleration, respectively; �̇� and ẍ are the riser velocity and acceleration,
espectively. For current plus wave flow, 𝑣 is given as a superposition
f current and wave orbital velocities.
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3.4. Wake model

The wake effect generated by the upstream riser needs to be ac-
counted for. Usually, the wake effect is translated into a reduced flow
velocity over the downstream riser. In this study, the wake model
developed by Blevins (2005) is used, by which the reduction of the
local flow velocity over the downstream cylinder is transformed to the
reduction of the drag coefficient. The formula is given as,

𝐶𝐷(𝐿, 𝑇 ) = 𝐶𝐷0

⎧

⎪

⎨

⎪

⎩

1 − 𝑘1
⎛

⎜

⎜

⎝

√

𝐶𝐷0
𝐷𝑢

𝐿

⎞

⎟

⎟

⎠

exp

(

−𝑘2𝑇 2

𝐶𝐷0
𝐷𝑢𝐿

)⎫

⎪

⎬

⎪

⎭

2

(17)

where (𝐿, 𝑇 ) is the longitude and transverse locations of the down-
stream cylinder with respect to the upstream cylinder; 𝐶𝐷 is the down-
stream cylinder drag coefficient based on the local flow velocity; 𝐶𝐷0 is
the reference drag coefficient based on the undisturbed flow velocity;
𝐷𝑢 is the diameter of the upstream cylinder; the parameters 𝑘1 = 1
and 𝑘2 = 4.5 are constants, and determined by fitting curve to the
experimental data at 𝐿∕𝐷 = 3, 5, 9 and 20.3 using the least-squares
method (Price and Paidoussis, 1984). However, more data is required
in order to validate this model.

The Blevins model also comprises an inward lift force on the down-
stream cylinder, towards the wake center-line. The lift force is propor-
tional to the transverse gradient of the drag force, according to the
Rawlins’ postulate. In the present study, however, the downstream riser
is placed at the wake center-line so that the lift force caused by the
asymmetry flow can be neglected. Actually, the Blevins model is valid
for a relative distance between the centers of cylinders larger than 2–3
times the diameter of the upstream cylinder. At distances less than this
value, the interference becomes more complex with a negative suction
force involved. More details about the lift force induced by the wake
effect are given in Blevins (2005).

For the inertia force, a typical value of 2 is used for the inertia
coefficient, and it is considered independent of the relative distance.
The upstream riser is considered as a single and isolated cylinder, and
the hydrodynamic force is also considered to be independent of the
relative distance.

3.5. Time domain simulation

The time domain simulations are conducted by using the commer-
cial finite element analysis software Riflex, where each riser is modeled
by means of line elements. Riflex is specially designed to handle static
and dynamic analyses of flexible risers and other slender structures.
The static analysis methods comprise catenary analysis, available for
a limited range of systems. The dynamic analysis methods comprise
linear and nonlinear time domain analysis.

The wake effect in steady current is firstly considered in the static
analysis. Since the drag force acting on the downstream riser depends
on the response, i.e. the relative distance between risers, an iteration
procedure is necessary for determining the final static equilibrium
deflection. However, Riflex does not have the functionality to give a
varying 𝐶𝐷(𝑥) as input, and therefore such a representation is achieved
by combining Riflex with an automatic workflow developed by the
author. Firstly, Riflex runs a static analysis based on the initial distance
and calculates the relative distance between two segments. Then the
shortest relative distance 𝑥 and the associated 𝐶𝐷(𝑥) is computed. The
workflow generates new input files and automatically calls Riflex for a
new analysis. This procedure is repeated until a converge is achieved.
The risers’ equilibrium static position is then determined. More details
about the implementation of the wake model in the static analysis can
be found in Fu et al. (2017).

The 3-h dynamic responses of the risers have been simulated 50
times with different random seeds for generating time series of waves.
When computing the dynamic response of interacting risers, the calcu-
lated 𝐶𝐷 for the downstream riser obtained from the static analysis is

applied in the dynamic analysis. m
Fig. 4. Time series of the process 𝑋 and minimum relative distance 𝐿. (For interpre-
ation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

able 2
tatistics of the process 𝑋.

S1 S2 S3

mean CoV mean CoV mean CoV

Mean −15.53 0.20% −13.80 0.26% −15.55 0.21%
STD 2.88 1.00% 2.30 0.97% 3.46 1.07%
Skewness −1.10 3.61% −0.87 3.63% −0.73 3.79%
Kurtosis 4.22 3.67% 3.46 2.82% 3.16 2.60%

3.6. Definition of random process

The relative distance is essential for estimating the riser collision
robability. The basic principle for calculating the relative distance is
hat each riser is modeled as a line represented by a series of line
egments, according to their properties and geometries. Each segment
omprises a series of beam elements. For each pair of segments, the
inimum distance can be checked element-by-element at each time

tep. This check is carried out for all combinations of elements until
he point with the smallest distance is detected within the segments.

This calculated minimum relative distance is taken as the ran-
om process, which can be used further for extreme value analysis.
owever, it is convenient to transform the extreme minimum value
roblem to the non-dimensional extreme maximum value problem by
ntroducing the following process:

(𝑡) = −𝐿(𝑡)∕𝐷 (18)

here 𝐿(𝑡) is the minimum center-to-center distance between two crit-
cal segments at time 𝑡. In this case, 𝑋(𝑡) < 0, and the risers physically
ollide when 𝑋(𝑡) = −1. Fig. 4 compares the time history of 𝑋(𝑡) with
he corresponding maxima and 𝐿(𝑡) with the corresponding minima.

.7. Identification of critical segments

As mentioned, the shortest distance between each pair of segments
s checked element-by-element at each time step. This check is carried
ut for all combinations of elements until the point of smallest distance
s detected within the segments, which is very time consuming, espe-
ially if the simulation duration is long and the number of elements
s large. This procedure also implies that the exact location of shortest
istance might change at each time step. However, it should be noted
hat some element combinations may not be relevant for calculation
f the shortest distance. Therefore, some critical segments where the
ollisions are likely to occur can initially be identified.

A 10-min simulation is preformed in order to find the critical
egments along the risers. The minimum distance is checked element-
y-element in Riflex (SINTEF, 2017). The locations where the mini-

um distance occurs are recorded, as illustrated in Fig. 5. The blue 95



P. Fu et al.

1
2
3
4
5
6
7

8

9
10
11
12
13
Fig. 5. Identification of critical segments. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
Statistics of the global maxima 𝑋𝑚.

S1 mean CoV STD CoV skewness CoV kurtosis CoV

mean −11.87 0.46% 1.57 3.85% 0.48 37.25% 3.43 15.45%
mean+0.5STD −11.74 0.45% 1.44 4.03% 0.84 20.68% 3.61 19.40%
mean+1.0STD −10.79 0.86% 1.15 7.17% 1.22 19.91% 4.50 27.11%
mean+1.2STD −10.29 1.01% 1.03 9.63% 1.38 20.29% 4.95 29.26%
mean+1.4STD −9.76 1.24% 0.93 13.49% 1.50 22.57% 5.31 32.82%

S2 mean CoV STD CoV skewness CoV kurtosis CoV

mean −10.46 0.47% 1.32 4.20% 0.37 67.99% 3.84 21.23%
mean+0.5STD −10.40 0.48% 1.19 4.57% 0.87 27.89% 4.13 27.25%
mean+1.0STD −9.67 0.77% 0.96 8.57% 1.40 23.60% 5.53 35.20%
mean+1.2STD −9.21 1.05% 0.90 11.94% 1.51 24.95% 5.83 38.91%
mean+1.4STD −8.69 1.52% 0.85 16.02% 1.50 28.66% 5.64 43.09%

S3 mean CoV STD CoV skewness CoV kurtosis CoV

mean −12.45 0.36% 1.22 3.15% 0.18 77.60% 3.40 9.58%
mean+0.5STD −12.42 0.31% 1.06 2.94% 0.82 17.74% 3.65 14.63%
mean+1.0STD −11.65 0.54% 0.84 5.89% 1.24 15.55% 4.56 20.86%
mean+1.2STD −11.18 0.74% 0.76 8.17% 1.26 18.74% 4.65 26.21%
mean+1.4STD −10.69 1.01% 0.69 10.94% 1.30 24.95% 4.74 34.40%
14
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S 27
and orange circles are the critical dynamic locations of the upstream
and downstream risers, respectively. The static equilibrium deflection
shapes are plotted in the same figure, and the buoyancy modules are
presented by the green lines. It is found from the figure that there are
three segments which have high risk of collision, indicated as 𝑆1, 𝑆2
and 𝑆3. More details for identification of critical segments can be found
in Fu et al. (2017).

4. Comparison of different methods

The assessment of the different methods for estimation of the ex-
treme values will be done based on the data obtained from the 50 3-h
simulations conducted in Section 3. Table 2 summarizes the first four
moments of the random process 𝑋 (defined in Eq. (18)) for different

critical segments, i.e. the mean, standard deviation (STD), skewness g
and kurtosis. The coefficients of variations (CoVs) of these statistical
moments are also shown in the same table. The CoV is defined as
the ratio between the STD and the mean value, denoting the variation
of estimation from each short-term simulation. Generally, the higher
statistical moments present larger variations. It should be noted that
the skewness of 𝑋 is negative, indicating that the lower tail of the
istribution X is longer. From the table it also appears that the smallest
ean value is found for S2, indicating a higher probability of collision

t S2. It is also found that even though the segment S3 has the largest
ean value, it gives the largest STD, indicating a high risk of collision.

The statistics of the global maxima from the 50 3-h simulations,
.e. 𝑋𝑚 are summarized in Table 3, including the first four moments
nd the associated CoVs for different thresholds. The mean value and
TD of the extreme value, i.e. 𝑋𝑒 estimated from 50 3-h simulations are

iven in Table 4. 28
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Table 4
Statistics of the extreme values 𝑋𝑒.

S1 S2 S3

Mean STD Mean STD Mean STD

𝑋𝑒 −8.20 0.648 −5.36 1.129 −6.15 0.990

Table 5
Collision probabilities estimated based on the GEV method.

Location 𝜇 𝜎 𝛾 𝑃𝑓3ℎ

S1 −8.50 0.48 0.03 3.06 × 10−6

S2 −5.88 0.83 0.05 5.59 × 10−3

S3 −6.60 0.75 0.02 9.94 × 10−4

Table 6
Collision probabilities estimated based on the Gumbel
paper method.

Location 𝜇 𝛼 𝑃𝑓3ℎ

S1 −8.50 1.78 1.59 × 10−6

S2 −5.88 1.03 6.43 × 10−3

S3 −6.60 1.75 1.37 × 10−4

4.1. GPP and GEV method

The extreme values, extracted from the 50 3-h simulations, are
assumed to be GEV distributed. The distribution parameters are de-
termined by using the maximum likelihood estimates (Anderson and
Mathématicien, 1958). In order to compare with the Gumbel model,
the results for segments 𝑆1, 𝑆2 and 𝑆3 obtained from the GEV model
are plotted in the Gumbel probability paper in Fig. 6. The associated
distribution parameters and the 3-h collision probabilities, i.e. 𝑃𝑓3ℎ =
1 − 𝐹𝑋𝑒3ℎ, are summarized in Table 5. From the results it is found that
the fitted curves are nearly straight lines, and the shape parameter
𝛾 is quite close to zero, which is desired for practical application of
the 2-parameter Gumbel distribution instead of the 3-parameter GEV
distribution. Therefore, in the following sections, the GPP method will
be used as a reference method for benchmarking the results of the other
ones.

Fig. 7 presents the fitted Gumbel distributions in the Gumbel prob-
ability paper by applying the least-square-fitting method. Table 6 lists
the associated distribution parameters and the calculated 3-h collision
probabilities. The results show that collision most likely occurs for S2,
and the probability to have a collision at S1 is much lower.

4.2. Threshold and tail marker

Proposed method 1(PM1)
As mentioned previously, five different thresholds are investigated

in this section, i.e. 𝑥0 = 𝜇𝑥 +[0, 0.5, 1, 1.2, 1.4] ∗ 𝑆𝑇𝐷. Fig. 8 presents an
example of the selected global maxima with threshold 𝑥0 = 𝜇𝑥 + 𝑆𝑇𝐷,
which are identified from one 3-h time history sample. Fig. 9 shows
the estimated maxima and extreme distributions of one 3-h time history
for different threshold values in terms of the probability of exceedance,
i.e. 𝑃𝑓3ℎ = 1 − 𝐹𝑋𝑒3ℎ. The estimated Weibull distributions of the global
maxima are illustrated in Fig. 9(a). The estimated Gumbel distributions
of the extreme values are presented in Fig. 9(b). The empirical extremes
extracted from 50 3-h simulations are plotted in the same figure. From
Fig. 9 it appears that the choice of threshold has a significant effect
on the statistics and the shape of the distribution. The lower threshold
values, i.e. 𝜂 = 0 and 𝜂 = 0.5𝑆𝑇𝐷, preserve the largest number
of maxima from the time series. However, the distribution is heavily
weighted to lower values, and the fitted distribution does not agree well
for the upper tail data. As the threshold value increases, i.e. 𝜂 = 1.2𝑆𝑇𝐷
and 𝜂 = 1.4𝑆𝑇𝐷, the weight of the upper tail data becomes important,
but the amount of data is reduced. From the results it is found that
 e
Fig. 6. Gumbel paper plot of the simulated 50 3-h extremes and fitted GEV
distributions for three critical locations.

Fig. 7. Gumbel paper plot of the simulated 50 3-h extremes and fitted Gumbel
distributions for three critical segments.

𝜂 = 𝑆𝑇𝐷 captures most numbers of the extreme value data for the
present study. Therefore, the threshold 𝜂 = 𝑆𝑇𝐷 will be adopted when
the Weibull tail fitting method (PM1) is applied.

Proposed method 2(PM2)
For the translation process method based on CFD mapping of a

ombined parent distribution (PM2), the tail marker is also important.
ig. 10(a) shows the translation functions of the PM2 with different
ail markers, i.e. 𝜂 = [0, 0.5, 1.0, 1.2, 1.4] ∗ 𝑆𝑇𝐷. Generally, it is observed
rom the figure that, for this highly skewed non-Gaussian processes, the
M2 method can give a reliable estimation in the upper tail region. The
DF mapping gives acceptable estimates as the upper tail behavior is
ell captured. From Fig. 10(b) it appears that there are more extremes

o be captured as the tail marker increasing. However, the increase
f 𝜂 from 𝜂 = 𝑆𝑇𝐷 to a higher value does not change the results
ignificantly, thus 𝜂 = 𝑆𝑇𝐷 is considered to be adequate for extreme
stimation.

CER
Regarding the ACER methods, the empirical ACER functions 𝜖𝑘(𝑥)

or different orders of 𝑘 are given in Fig. 11(a), which are based on the
ata from the 50 3-h histories. It appears that, for the lower range of
he individual maxima, there is a noticeable variation of the empirical
CER functions for different orders of 𝑘, which implies a significant
ffect of dependence between the data points. However, the result is
lmost not affected by a further increase of 𝑘 when 𝑘 ≥ 2 in the upper
ange, which means that there is no dependence effects that need to
e accounted for. Thus, 𝑘 = 2 is considered to be adequate for the
stimation of extremes. The advantage of the case with the second
 67
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Fig. 8. Global maxima with threshold 𝜂 = 𝜎 of a three hour simulation NO. 20 at S2. (a): Time history and global maxima over threshold. (b): Probability density function. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Maxima and extreme values distribution of a three hour simulation NO. 20 for different thresholds at S2. (a): Weibull distribution of maxima. (b): Gumbel distribution
of extremes. PM1: Proposed method 1-Gumbel method based on Weibull tail fitting of maxima. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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order empirical ACER function is that the result is the most accurately
estimated one because most data are available for its estimation.

The estimation of ACER functions requires a better fitting of 𝜖𝑘(𝑥) at
higher thresholds, and the estimation is not sensitive to the initial tail
marker. Therefore, the tail marker 𝜂 = 𝜎 is chosen, which is consistent
with the selection for the previous tail fitting method. Fig. 11(b)
presents the empirical function 𝜖2(𝑥) and its 95% CI obtained from
the time series, as well as the estimated ACER function in the upper
tail region and the corresponding estimated 95% CI provided by the
extrapolation scheme.

4.3. Comparison of different methods

Due to the statistical uncertainties which are inherent in the stochas-
tic response process, repeated simulations are required in order to
obtain a reliable estimation. When the methods PM1 and PM2 are
applied, the distribution of the extreme value is determined based on
the averages of the expected value and the standard deviation for each
simulation, given by

𝐸[𝑋𝑒] =
1
𝑁

𝑁
∑

𝑖=1
𝐸𝑖[𝑋𝑒]

𝑆𝑇𝐷[𝑋𝑒] = { 1
𝑁 − 1

𝑁
∑

𝑖=1
| 𝐸𝑖[𝑋𝑒] − 𝐸[𝑋𝑒]|}

1
2

(19)

where 𝑁 is the number of the time histories provided by the simula-
tions and 𝐸𝑖[𝑋𝑒] is the expected value for simulation number 𝑖.

As mentioned previously, the purpose of this paper is to estimate the
extreme value distribution by using limited data. Fig. 12 illustrates the
collision probability for the different methods at S2 versus the number
of simulations 𝑁 . The threshold value for the ACER, the PM1 and
he PM2 methods is chosen as 𝜂 = 𝑆𝑇𝐷 according to the previous

discussion. Generally, it appears that the GPP and GEV methods give
slightly higher collision probabilities compared with the other methods
due to the fact that the results are estimated by fitting to the largest
maxima. Regarding the convergence, it appears that the results ob-
tained by applying the PM2, the ACER and the GPP are almost not
affected by a further increase of 𝑁 when 𝑁 ≥ 20. When the data is
limited, e.g. 𝑁 ≤ 15, the accuracy of the GPP method is significantly
influenced by the number of simulations, while the PM2 and the ACER
methods are able to give an acceptable result when the data is limited.

Finally, the estimated extreme value distributions in terms of prob-
ability of exceedance for the three critical segments are shown in
Fig. 13. The extracted 50 extreme samples are plotted in the same
figure. From the figure it also appears that all the methods are able to
capture most of the largest maxima for all three segments. For segment
S1, it appears that the risk of collision is significantly lower, and the
extreme samples are not good enough to predict the collision events.
The collision probabilities for different methods are given in Table 7.

As expected, both segments S2 and S3 give higher risk of collision
due to the smallest mean value or the largest STD of relative distance,
respectively. Fig. 13(c) shows that the collision probabilities obtained
from PM1 and PM2 agree well with the results obtained from GPP and
GEV for the segment S3, which indicates the potential applicability of
the proposed methods. However, Fig. 13(b) illustrates that the methods
PM1 and PM2 result in lower collision probabilities compared with the
methods GPP and GEV. This is partly due to the dependence between
 50
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Fig. 10. Extreme values distribution based on translation function at S2. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 11. ACER function at S2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Convergence study on the number of simulations for different methods. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

the selected maxima. Compared with segment S3, the relative distance
for segment S2 shows a stronger non-Gaussian behavior. Even when
the global maxima are used, the dependence between the maxima,
especially the small maxima, decreases the weighting of the larger
maxima, leading to a lower collision probability.

Unfortunately, the ACER method fails to give a satisfactory esti-
mation because it is not able to capture the largest extreme values. A
possible reason is that the weighting of the smaller maxima is too high.
The results also emphasize the importance of the tail marker.
 i
Table 7
Collision probabilities estimated from different extreme value analysis methods.

Methods GPP GEV ACER PM1 PM2

𝑃𝑓−3ℎ,𝑆1 – − – − –

𝑃𝑓−3ℎ,𝑆2 6.43 × 10−3 5.60 × 10−3 1.4 × 10−3 1.50 × 10−3 1.20 × 10−3

𝑃𝑓−3ℎ,𝑆3 1.51 × 10−3 1.08 × 10−3 3.34 × 10−5 1.10 × 10−3 7.32 × 10−4

5. Conclusions

This paper evaluated the performance of different methods for the
hort-term extreme value analysis for the riser collision problem. A pair
f tandem arrangement risers in a steep-wave configuration, subjected
o combined current and wave loads are modeled. The Blevins wake
odel is used to calculate the reduced drag force caused by the wake

ffect. The minimum relative distance between the risers is computed at
ach time step. The random process is obtained by changing the sign of
he minimum distance in order to deal with the maxima extreme value
roblem.

The performance of the Gumbel probability paper method, the
eneralized extreme value method, the average conditional exceedance
ate method and the two proposed methods, i.e. the Gumbel method
ased on Weibull tail fitting of maxima and the translation process
ethod based on a combined parent distribution, are evaluated. The

esults show that the Gumbel distribution is a good model for the
stimation of the riser collision probability when a large number of
imulations are available. However, the proposed method PM2 (which
s based on the CDF mapping of the combined distribution) gave a
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atisfactory estimation when the amount of data is limited. The pro-
osed method 1 (PM1) also resulted in a good prediction with limited
ata in the present study. The potential weaknesses and strengths of
he proposed methods are given. However, a wider range of collision
cenarios need to be studied in order to further validate the methods.
t should be noted that the selection of an appropriate threshold value
as a significant effect on the Weibull tail fitting. The performance of
he ACER method is somewhat unstable for the present study.
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