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ABSTRACT The world was unprepared for coronavirus disease 2019 (COVID-19) and
remains ill-equipped for future pandemics. While unprecedented strides have been
made developing vaccines and treatments for COVID-19, there remains a need for highly
effective and widely available regimens for ambulatory use for novel coronaviruses and
other viral pathogens. We posit that a priority is to develop pan-family drug cocktails to
enhance potency, limit toxicity, and avoid drug resistance. We urge cocktail develop-
ment for all viruses with pandemic potential both in the short term (,1 to 2 years) and
longer term with pairs of drugs in advanced clinical testing or repurposed agents
approved for other indications. While significant efforts were launched against severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in vitro and in the clinic, many
studies employed solo drugs and had disappointing results. Here, we review drug com-
bination studies against SARS-CoV-2 and other viruses and introduce a model-driven
approach to assess drug pairs with the highest likelihood of clinical efficacy. Where com-
ponent agents lack sufficient potency, we advocate for synergistic combinations to
achieve therapeutic levels. We also discuss issues that stymied therapeutic progress
against COVID-19, including testing of agents with low likelihood of efficacy late in clini-
cal disease and lack of focus on developing virologic surrogate endpoints. There is a
need to expedite efficient clinical trials testing drug combinations that could be taken at
home by recently infected individuals and exposed contacts as early as possible during
the next pandemic, whether caused by a coronavirus or another viral pathogen. The
approach herein represents a proactive plan for global viral pandemic preparedness.

KEYWORDS SARS-CoV-2, COVID-19, viral pandemic, pandemic preparedness, antiviral
drugs, drug synergy, model-driven approach, prophylaxis, early treatment, category A-C
pathogens, Ebola virus, countermeasures

The nucleotide sequence for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), the virus that sparked the global coronavirus disease 2019 (COVID-19) pandemic, was

released in January 2020. The scientific community rallied with dedication, efficiency, and skill

Editor Vinayaka R. Prasad, Albert Einstein
College of Medicine

Copyright © 2021 White et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Judith M. White,
jw7g@virginia.edu, Joshua T. Schiffer,
jschiffe@fredhutch.org, or Stephen J. Polyak,
polyak@uw.edu.

The authors declare no conflict of interest.

Published

November/December 2021 Volume 12 Issue 6 e03347-21 ® mbio.asm.org 1

MINIREVIEW

21 December 2021

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 0

7 
Fe

br
ua

ry
 2

02
2 

by
 2

00
1:

70
0:

10
0:

40
11

::f
:f

31
9.

https://orcid.org/0000-0002-0532-996X
https://orcid.org/0000-0002-0886-9769
https://orcid.org/0000-0003-0107-0775
https://orcid.org/0000-0001-7475-9827
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://mbio.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/mbio.03347-21&domain=pdf&date_stamp=2021-12-21


such that novel vaccines and therapeutic antibodies demonstrated safety and efficacy in clini-
cal trials and were authorized for administration by December 2020. Nevertheless, and de-
spite the very recent arrival of promising antiviral drugs, the scale of death and illness as well
as economic and social havoc remains unprecedented. The lack of readily available, widely
implemented therapies with utility before the onset of severe complications continues to
contribute to high global mortality. For the present pandemic response, and for future pan-
demics, whether from a coronaviruses or another virus, the scientific community must be
ready with an arsenal of easily self-administered drugs (i.e., oral or inhaled) that can be tested
in rapid, efficient clinical trials immediately after the causative viral agent is identified. We pro-
pose a proactive drug development strategy for high consequence viral pathogens that
focuses on combinatorial approaches.

OVERVIEW: DEVELOPING ANTIVIRAL REGIMENS FOR THE NEXT GLOBAL VIRAL
PANDEMICS

Since it is highly likely that pathogenic viruses will continue to spill over into humans, a
major component of pandemic preparedness should be development of highly effective and
widely available antiviral treatments for nonhospitalized patients. In our opinion, we must de-
velop concurrent plans for two possible scenarios: plan A for the longer term whereby the
next serious viral outbreak does not occur for;5 to 10 years and plan B for the dire possibil-
ity that an epidemic arises within#1 to 2 years, from a new CoV or from a high consequence
virus currently lacking effective self-administered antiviral drugs. Both plans should focus on
drug combinations, but potential input drugs would differ. Plan A would focus on the devel-
opment of new chemical entities (NCEs), in particular directly acting antivirals (DAAs). Plan B
could employ DAAs and host-targeting agents (HTAs), including repurposed drugs and drugs
in advanced clinical testing.

For both scenarios, a successful drug development program would be based on five key
tenets (Fig. 1). The first is to prioritize oral and inhaled drugs that could be taken at home as
postexposure prophylaxis or early during illness to rapidly lower viral loads and subsequent
harmful immune activation. The second is to search for drug combinations to reduce
emergence of drug-resistant mutants and, through multiplicative or synergistic effects,
bring needed drug doses into therapeutic range and mitigate side effects associated
with high doses of single drugs. The third is to prioritize drugs that are approved or in
advanced clinical testing to allow a more rapid regulatory review process. Plan A with
the relative luxury of time would also include drugs currently in preclinical development.
The fourth is to prioritize drugs whose effective concentrations in relevant human tissue
models are considerably below their toxic concentrations and in the range of attainable
levels throughout the dosing interval. The fifth is to employ mathematical modeling at
critical junctures of advancing to animal testing and clinical trial design. The products
would be combinations of drugs that could be deployed widely and early during an out-
break as prophylaxis and early treatment. In conjunction with other nonpharmaceutical
interventions, such in-home use drug cocktails could limit the burden on health care sys-
tems and thwart person-to-person virus spread by lowering viral loads and the virus’ abil-
ity to adapt to the host.

CURRENT STATE OF SARS-CoV-2 THERAPEUTICS

Early during the current pandemic, there were no therapeutics against SARS-CoV-2,
and slight improvements in clinical outcomes were linked solely to advances in sup-
portive care. Then, in May 2020, remdesivir (RDV), a SARS-CoV-2 polymerase inhibitor
(1, 2), received an emergency use authorization (EUA) (3–8) for intravenous (IV) admin-
istration in hospitalized patients, with significant benefits noted in recent reports (3, 8).
A very recent trial of IV RDV showed an 80% reduction in hospitalization (9), highlight-
ing that treatment soon after infection is likely to be more efficacious than treatment later
in the course of illness during hospitalization. Dexamethasone, an immunosuppressant
without antiviral effects, also received EUA for clinical benefit in severe or critically ill
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hospitalized patients (10). Another set of drugs with an EUA for IV administration is RDV
plus baricitinib (see below).

In November 2020, the first two monoclonal antibodies (MAbs), which target the
SARS-CoV-2 spike glycoprotein, received an EUA after showing reductions in hospitalization
and severe illness when dosed in clinical trials during early illness (11–15). MAbs are now
available in limited settings for early use in high-risk patients, but their requirement for par-
enteral administration has precluded widespread implementation early during infection
when therapy is most likely to be effective (16) Other limitations of MAbs include cost, man-
ufacturing capacity, and emergence of antibody-resistant variants (17), which has already
eliminated the utility of one promising MAb.

An exciting step forward is therefore the arrival of two oral SARS-CoV-2 drugs: the oral
polymerase inhibitor molnupiravir (MPV, EUA approved in Europe and pending in the United
States [18–21]), and the oral protease inhibitor Paxlovid (22) (PF-07321332/ritonavir; EUA pend-
ing). MPV elicited a 30% reduction in hospitalizations and death in infected high-risk people
diagnosed and treated within 5 days of symptom onset (https://www.merck.com/news/merck
-and-ridgeback-statement-on-positive-fda-advisory-committee-vote-for-investigational-oral
-antiviral-molnupiravir-for-treatment-of-mild-to-moderate-covid-19-in-high-risk-adults/), while
Paxlovid reduced hospitalizations and death by 89% when administered within 3 days of
symptom onset and showed similar benefit if given within 5 days. Many other oral/inhaled
anti-SARS-CoV-2 drugs are in the pipeline. Nevertheless, these pivotal strides are occurring

FIG 1 A model-driven approach to develop highly potent drug combinations for global viral pandemic preparedness. The same pipeline can be used to
prepare for the long term (plan A [5 to 10 years to the next outbreak]) or short term (plan B [,1 to 2 years to the next outbreak]). (Step 1) Select drugs
that can be delivered orally or, for respiratory viruses, via inhalation that (i) are approved or in advanced clinical trials for plan B, with drugs in
development additionally included for plan A, (ii) are active in relevant human cells, (iii) are ideally DAAs, but HTAs can also be considered, (iv) have
relatively high selectivity indices (SI) (CC50/EC50), and (v) have relatively high Cmax/EC50 or maximum target tissue concentration/EC50. (Step 2) Test pairs of
priority drugs (drug A and drug B) for combination effects (e.g., multiplicative or synergistic) in relevant human cells using checkerboard assays. For
respiratory viruses, this should include lung cell models such as Calu3 as well as a three-dimensional (3D) culture such as lung organoids or primary human
airway epithelial cells at an air-liquid interface. Drug combinations should then be prioritized for advancement based on the following: (i) drug levels
needed for virus inhibition; (ii) SI; (iii) effectiveness over the entire dose-response matrix, including whether the drugs act synergistically; (iv) differing
targets; (v) resistance map profiles; and (vi) other PK parameters (e.g., drug-drug interactions, side effects, half-lives, protein binding). (Step 3) Model the
potential for top combinations to be potent in humans based on known PK and PD. (Step 4) Test most promising pairs of oral (and/or inhaled) drugs in
small animal models. (Step 5 [concurrently with step 4]) Design clinical study. (Step 6) Conduct phase 1 trial of the drug combination. The deliverables
(Step 7) will be pan-virus family oral/inhaled drug cocktails that can be stockpiled and ready for use very early following identification of the family of a pandemic-
causing virus. The predesigned clinical study can be immediately implemented in the face of an on-going pandemic. The name VORTEC (Viral Outbreak Readiness
Through Effective Combinations) has been suggested for the approach. The image in Step 1 (right) is from https://clinicalinfo.hiv.gov/en/glossary/pharmacokinetics.
The image in Step 3 is reprinted from reference 16 with permission (© The Authors, some rights reserved; exclusive licensee AAAS. Distributed under a CC BY-NC 4.0
license [http://creativecommons.org/licenses/by-nc/4.0/]). Other images are from https://commons.wikimedia.org/wiki/Main_Page.
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almost 2 years into the pandemic and after 5 million people have died. During the next pan-
demic, be it of a novel CoV or another virus, a major priority must be to discover and widely
distribute effective outpatient treatment regimens within weeks rather than years.

SCREENS FOR DRUGS TO THWART SARS-CoV-2 INFECTIONS

In the early days of the pandemic, work on small molecule antiviral drugs suffered
from lack of a centralized research structure and strategic plan designed to keep pace
with a rapidly expanding pandemic (23, 24). Many screens were conducted to identify
drugs with activity against SARS-CoV-2 (25–32), and at least 216 small molecules approved
by the Food and Drug Administration (FDA) have been reported to block SARS-CoV-2 in
cell cultures. Yet most were identified in a convenient and nonrepresentative cell line
(Vero E6 kidney) and later shown to have limited potency in lung epithelial cells (28, 33),
the relevant cell type for SARS-CoV-2 infection and pathogenesis (34–36): SARS-CoV-2
enters Vero E6 cells by fusion in endosomes, whereas it enters lung cells by fusion at the
cell surface following activation of the spike glycoprotein by the host cell surface serine
protease TMPRSS2 (34–41). Many of the Vero E6 drug hits affect endosomes and were
therefore not expected to block entry of SARS-CoV-2 into lung epithelial cells (38, 42). In
addition, many had not completed safety and efficacy trials or are available only for IV
use, making rapid widespread implementation infeasible. Many hits were also insuffi-
ciently potent against SARS-CoV-2 in lung cells in vitro at nontoxic doses; either their
selective indices (SI), the ratio of half maximal efficacy to half lethal concentrations (EC50/
CC50) were too low, or they would not achieve sufficient peak concentrations (Cmax) follow-
ing standard dosing, reflected in a low Cmax/EC50 ratio.

These limitations contributed to the failure of many solo agents tested in clinical tri-
als, including the highly publicized agents hydroxychloroquine (5, 30, 31) and ivermectin
(43). While oral drugs to lower the risk of COVID-19-associated hospitalization and death are
imminently available (18, 22) (see below), we urge the development of drug combinations
to prevent the emergence of SARS-CoV-2 drug-resistant mutants (44, 45) and to potentially
increase potency and breadth of coverage, and to reduce side effects.

HIGHLY EFFECTIVE DRUG COMBINATIONS AGAINST OTHER VIRUSES

We advocate for developing combinations of oral, intranasal, and inhaled drugs to pre-
pare for emerging and reemerging viral pandemics (46–48) based on precedent with other
viral infections. Treatments for chronic illnesses caused by human immunodeficiency virus
(HIV) and hepatitis C virus (HCV) (49–51) are composed of two to four oral DAAs that target
multiple steps in the viral life cycles, thereby inducing multiplicative or synergistic antiviral
effects (50–53). The combinations reduce doses of the individual drugs needed (50), thus
lowering toxic side effects. (Certain small molecules may not provide synergy but instead
enhance levels of other active agents. For HIV, cobicistat and ritonavir are coformulated
with integrase inhibitors and protease inhibitors, respectively, to limit metabolization of
the primary agent allowing lower doses [54, 55] [also see NCT04960202].) In addition, by
targeting separate steps with distinct escape mutations, successful combination regimens
eliminate selection of drug-resistant viruses (56–59). While emergence of drug resistance is
less certain for acute viral infections, which are usually eliminated by the acquired
immune response (16), SARS-CoV-2 and influenza infections in immunocompro-
mised hosts are notable for prolonged viral persistence at high viral loads with con-
siderable ongoing viral mutagenesis (60–65). Thus, developing combination thera-
pies for acute viral infections is justified, and efforts are under way for influenza
virus (66), Ebola virus (47, 48, 67, 68), arenaviruses (69), and SARS-CoV-2. For Ebola
virus, computational modeling (48) has suggested that combinations would provide
superior in vivo activity to their single agent components.

CURRENT PROGRESS ON DRUG COMBINATIONS AGAINST SARS-CoV-2

There have been at least 34 reports of small molecule drug combinations against
SARS-CoV-2, comprising a total of 77 unique drug pairs (26, 70–100, 197–199). Many were
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identified in Vero E6 cells, while others were found in Calu3 lung epithelial cells. Sixty-two
pairs include RDV (101), with the partner drug being arbidol, BAY-2402234, brequinar, bude-
sonide, camostat, cepharanthine, cilostazol, clobetasol, clofazimine, cobicistat, conivaptan,
dabrafenib, diltiazem, drosiprenone, emetine, ezetimibe, interferon alpha, imino sugars,
IQ-1S, ivermectin, ivosidenib, lapatinib, lenvatinib, linoleic acid, mefloquine, meprednisone,
MU-UNMC-2, nelfinavir, nifedipine, nimodipine, nitazoxanide, omeprazole, omipalisib, piogli-
tazone, quinapril, raloxifene, reserpine, rifaximin, sangivamycin, selexipag, stenoparib, sulfora-
phane, telmisartan, tetrandrine, tipifarnib, valdecoxib, and zafirlukast.

RDV has also been reported to synergize with six oral HCV drugs (elbasvir, grazoprevir, pari-
taprevir, simeprevir, vaniprevir, and velpatasvir) as well as the HCV oral combination drugs
Epclusa (velpatasvir plus sofosbuvir) and Zepatier (elbasvir plus grazoprevir) (75, 79, 89). These
drugs block the HCV nonstructural serine protease (HCV NS3/4A), the HCV replication-associ-
ated protein NS5A, or the HCV polymerase (NS5B). The HCV drugs likely inhibit related func-
tions of SARS-CoV-2 proteases and replication machinery, albeit at significantly lower potency.
Four HCV protease inhibitors that synergized with RDV in Vero E6 cells (simeprevir, vaniprevir,
paritaprevir, and grazoprevir) block the SARS-CoV-2 papain-like protease (PLpro), a cysteine pro-
tease encoded by nsp3 of SARS-CoV-2 (75). Two HCV protease inhibitors (boceprevir and nar-
laprevir) that blocked the SARS-CoV-2 C-like protease (3CLpro or Mpro, a cysteine protease
encoded by SARS-CoV-2 nsp5), were inhibitory on their own (EC50 for boceprevir, 20 to
40 mM; EC50 for narlaprevir, 8 to 37 mM, in Vero E6 cells) (75, 89, 102) but did not synergize
with RDV (102). Experimental drugs, including brilacidin (88), a 3CLpro inhibitor (81), a RAD51
inhibitor (87), the natural product angeloylgomisin O (95), and a vitamin E derivative (97) have
also been shown to synergize with RDV.

Synergistic drug pairs that do not involve a polymerase inhibitor have also been identi-
fied in Vero E6 cells, including nelfinavir plus amodiaquine (71), arbidol plus nitazoxanide
(73), nitazoxanide plus emetine (73), and nelfinavir plus cepharanthine (78). Additional
non-polymerase-targeted pairs found synergistic in Calu3 cells were interferon alpha plus
camostat (86), interferon alpha plus nafamostat (96), and apilimod plus camostat (103).
Interferon alpha plus nafamostat reduced viral loads in hamsters to a greater extent than
the individual component drugs (96).

Viral polymerases are clearly good targets for DAAs, and 43 drugs have been reported to
synergize with the polymerase inhibitors MPV and/or RDV. Given the goal of developing a
regimen for outpatient use, we highlight in Table 1 oral and inhaled drugs that synergisti-
cally impede SARS-CoV-2 in Calu3 epithelial cells in conjunction with MPV, the oral polymer-
ase inhibitor (18–21): three orally available drugs, the pyrimidine biosynthesis inhibitors BAY-
2402234 and brequinar (77) and the HIV (aspartic) protease inhibitor nelfinavir (80), and the
inhaled drug interferon alpha. We also list in Table 1 drugs reported to synergize in Calu3
cells with RDV. Although not a certainty, these drugs may also synergize with MPV, as both
drugs target the SARS-CoV-2 RNA-dependent RNA polymerase (2, 104), albeit with different
biochemical mechanisms (19, 105). Indeed, similar synergistic activity of RDV and MPV drug
pairs was reported in two studies (77, 86). Of the 14 drugs listed, 9 are approved by the FDA,
and 2 are used in Japan. Nine of the approved drugs are formulated for oral use; interferon
alpha and ciclesonide are inhaled therapeutics. Two other agents appeared to synergize
with RDV in Calu3 cells but were tested only at two doses: the approved oral drug meflo-
quine (98) and the investigational drug brilacidin (88). Of the pairs in Table 1, only the combi-
nation of MPV plus brequinar has been tested in an animal model, where it reduced viral
loads and lung pathology favorably compared to either drug alone (77). Brequinar has dem-
onstrated synergy against HCV in combination with sofosbuvir, an orally available HCV poly-
merase inhibitor (80).

Two drugs are registered in clinical trials in combination with RDV: camostat
(NCT04713176) and the Janus kinase inhibitor, baricitinib (NCT04401579 and NCT04693026).
Although baricitinib has not been shown to synergize with RDV in vitro, it provided
moderate clinical benefit when added to RDV therapy (106), supporting its EUA for hos-
pitalized COVID-19 patients. On the basis of the results of in vitro studies, baricitinib is
hypothesized to provide benefit by both antiviral and anticytokine effects (107), and its
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efficacy in clinical use may be independent of RDV coadministration (108). In another
clinical trial (109), administration of two oral HIV protease inhibitors (lopinavir and ritona-
vir), an oral broad-spectrum viral replication inhibitor (ribavirin), and an injected anti-
inflammatory (interferon beta-1b) reduced viral loads and improved symptoms in hospi-
talized patients compared to lopinavir/ritonavir alone. While these studies highlight that
combinations of DAAs and immunomodulatory medicines might have a therapeutic
role, their need for parenteral administration precludes easy use during early infection
when DAAs have the highest potential to limit disease severity.

DESIGNING EFFECTIVE DRUG COMBINATIONS

As for oral drug combinations for patients with HIV and HCV, an ideal cocktail would con-
tain multiple agents targeting CoV proteins, i.e., multiple DAAs. A theoretical cocktail might tar-
get the spike glycoprotein, the polymerase, and either or both viral proteases. We contend
that HTAs should also be considered (47, 48, 69), perhaps to bolster pairs of DAAs. The combi-
nation of a protease inhibitor (HTA, aprotinin, given IV) targeting the host enzyme TMPRSS2,
plus oral favipiravir (DAA, polymerase inhibitor) has been tested in COVID-19 patients, but the
study was too small to assess clinical efficacy (110). In murine models of infection, combina-
tions of two anti-Spike MAbs plus RDV provided benefit over single agents in some measures
of COVID-19 disease (111), supporting the concept of combined targeting of virus entry and
viral polymerase activity.

A current priority is to develop an organized structure to assess pairs of agents com-
prehensively and strategically. As shown above, there are many possible agents to con-
sider for this purpose (112, 113). Below we propose criteria for prioritizing

TABLE 1 Drugs reported to synergize with remdesivir or molnupiravir to inhibit SARS-CoV-2 infection of Calu3 lung cellsa

Drug A Drug B
Drug B:
FDA statusb

Drug B
CoV CTb

Drug B
oral Drug B targetc

Drug B:
step blockedc Reference(s)d

Remdesivir (approved for intravenous
use for COVID-19)

Nelfinavir HIV Ph2e Yes M-Prof Cleavage 80, 94
Velpatasvir HCV Ph2g Yes Pol complexf Replication 79
Elbasvir HCV No Yes Pol complexf Replication 79
Grazoprevir HCV No Yes PL-Prof Cleavage 79
Dabrafenib Cancer No Yes B-Raf kinase NDh 79
Cilostazol Leg pain No Yes PDE III ND 79
Nimodipine Aneurysm No Yes Ca channelsi ND 79
Interferon alpha HBV, HCV Ph3 No ISGs Replicationj 86
B02 Preclin. No NA RAD51 ND 87
Camostat Preclin.k Ph3 Yes TMPRSS2 Fusion 94
Cepharanthine Preclin.k No Yes Multiple NDk 94
Ciclesonide Rhinitis Ph3 No nsp3/4l, GlucR Replicationl 94
Brequinar Ph2 (AML) Ph2 Yes DHODHm Replication 77
BAY-2402234 Ph1 (MM)n No Yes DHODH Replication 77

Molnupiravir (EUA in Europe/pending in
U.S. for oral use for COVID-19)

Nelfinavir HIV Ph2e Yes M-Prof Cleavage 80
Interferon alpha HBV, HCV Ph3 No ISGs Replicationj 86
Brequinar Ph2 (AML) Ph2 Yes DHODH Replication 77
BAY-2402234 Ph1 (MM)n No Yes DHODH Replication 77

aAbbreviations: AML, acute myeloid leukemia; CT, clinical trial; DHODH, dihydroorotate dehydrogenase; FDA, Food and Drug Administration; GlucR, glucocorticoid receptor;
HBV, hepatitis B virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; ISGs, interferon-stimulated genes; MM, multiple myeloma; NA, not available; ND, not
determined; PDE, phosphodiesterase; Ph, phase; Pol, polymerase; preclin., preclinical.

bUnless specified, drugs are FDA approved for the indicated conditions. Drugs in phase 1 (Ph1) for COVID-19 (CoV), e.g., reference 97, are not listed.
cKnown or inferred target. Cleavage denotes polyprotein cleavage.
dReferences are for reported synergies. Reference 79 reports 15 additional remdesivir synergies, but the cell type analyzed was not specified.
eThe https://biorender.com/covid-vaccine-tracker website lists a phase 2 (Ph2) study, but this was not in https://clinicaltrials.gov/.
fSee text and references 75, 78, and 79 for targets of nelfinavir, velpatasvir, elbasvir, and grazoprevir.
gA trial (IRCT20130812014333N145) of Epclusa (sofosbuvir/velpatasvir) deemed it safe but of no apparent benefit.
hDabrafenib inhibits lymphocytic choriomeningitis virus replication (32).
iL-type Ca channels.
jProposed in reference 86.
kCamostat and cepharanthine are used in Japan for pancreatitis and multiple ailments, respectively (196).
lCiclesonide is an anti-inflammatory, but reference 144 supports additional action versus SARS-CoV-2 nsp3 and nsp4.
mDHODH is a host enzyme required for pyrimidine biosynthesis.
nThe trial in patients with advanced myeloid malignancies (NCT03404726) was terminated due to lack of clinical benefit.
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combinations, noting that new drugs should be incorporated into this schema as they
become available.

Identify drug pairs with enhanced combinatorial potency. Most drug combina-
tion studies involve a checkerboard assay in which various doses of drugs A and B are
set in a matrix, and these defined dose mixtures (36 for a 6 � 6 matrix) are tested for in-
hibition of SARS-CoV-2 infection (step 2, Fig. 1). These assays assess whether drug inter-
actions are antagonistic, neutral, additive, multiplicative, or synergistic, in increasing
order of desirability. While synergy is always in theory preferable, its highest potential is
in the context of single agents that have insufficient potency on their own, as may be
the case for repurposed agents. Antagonistic pairs should generally be excluded from
further consideration. For interstudy comparisons, it would be ideal if future studies
were coordinated to employ the same virus strains, target cells, infection protocol, assay
readout, reference drug pairs, and synergy scoring methodology. While many DAAs
should function independently of cell type, testing in lung cell systems (e.g., Calu3 cells,
human airway epithelial cells cultured at the air-liquid interface, or lung organoids [34,
114, 115]) will be especially important for drugs that target entry, which varies by cell
type (28, 33–36). Promising combinations should also be tested against the most rele-
vant emerging SARS-CoV-2 variants of concern (VOCs, e.g., omicron) and other CoVs.

SynergyFinder (https://synergyfinder.fimm.fi/) is a publicly available web tool (116)
that can be used to assess whether a drug pair tested in a checkerboard assay is con-
sidered synergistic. The program can assess synergy according to Bliss independence,
zero interaction potential (ZIP) or Loewe additivity mathematical models. Synergy
occurs when observed potency exceeds that of the expected combination effect based
on the selected synergy model. In the strictest sense, synergy denotes observed po-
tency exceeding that predicted by a Bliss independence mathematical model, which
assumes multiplicative effects of paired drugs (50). With SynergyFinder, synergy scores
are calculated over the full dose matrix as well as its maximum synergistic area (MSA);
scores of .10 are generally considered synergistic (69, 116, 117). MSA ZIP scores for
the HCV drugs listed in Table 1 combined with either RDV or MPV, based on assays
that monitored virus-induced cytopathic effect in Calu3 cells, ranged from 50 to 85,
with reported MSA ZIP scores for other pairs ranging from 22 to 52 (not given for brila-
cidin or the pairs with pyrimidine biosynthesis inhibitors). Thus, there now exist effec-
tive methods and freely available tools to identify synergistic drug combinations.

Consider the molecular target of the drug and how the drug impinges on the
SARS-CoV-2 life cycle. A useful cocktail would contain two (or three) DAAs that target
distinct CoV proteins. These may encompass drugs targeting the spike protein to block
receptor binding or fusion or the enzymatic activities of its polymerase or proteases.
The justification for this conclusion is based on comprehensive combinatorial testing
of all licensed HIV antivirals (50). Compounds that target the same viral protein tend to
have only additive effects in which the second agent adds little to overall potency.
Molecules that distinctly target HIV reverse transcriptase, integrase, or protease usually
have either multiplicative or synergistic effects and bypass resistance (59), though
mechanisms that predict synergy rather than simply multiplicative effects are less clear
from these data sets. HTAs that limit viral replication (31, 118–120) may enhance syn-
ergy of a set of DAAs and should be considered in the testing matrices.

Consider the human exposure potential of the drugs. To leverage pairwise syn-
ergy for potential therapeutic use, the pharmacokinetic (PK) profiles of component
drugs are critical. Of importance are peak and trough drug concentrations, which are
determined by tissue clearance kinetics. Ideally, both drugs achieve levels that allow
Bliss independence or synergy throughout the dosing interval. If there are only brief
time windows of drug synergy, then synergy may have limited beneficial effects for
infections such as SARS-CoV-2 that are defined by rapid replication and spread dynam-
ics (16). For example, we demonstrated that acyclovir only partially lowers genital her-
pes simplex virus 2 (HSV-2) shedding rates because 6-h windows of subtherapeutic
drug levels prior to redosing are sufficient for breakthrough viral replication (121).
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It is important to note that synergy may provide limited added benefit in situations
where a given concentration of a single agent already eliminates nearly 100% of new cell
infections. This possibility highlights the need to factor in projected peak and trough con-
centrations of both relevant drugs relative to their EC50s to assess whether multiplicative or
synergistic pharmacodynamics (PD) provides meaningful additional benefit.

For MPV, the Cmax at the dose of 800 mg given twice daily is 14 mM, while its EC50

against SARS-CoV-2 in Calu3 cells is 0.08 mM (19). This gives a Cmax/EC50 ratio of 175,
meaning that a serum concentration well above its in vitro EC50 against SARS-CoV-2 is
expected. Indeed, recent trial results indicate that MPV can achieve sufficient levels to
lower viral replication (18), though drug synergy may further enhance its in vivo po-
tency. As a note of caution, we have demonstrated that in vitro EC50 values often over-
estimate antiviral potency in vivo such that in order to suppress virus in people, 5 to 10
times higher drug levels are required than predicted by cell culture assays (122). It is
also critical to consider each drug’s binding to protein in vitro and in vivo, as this can
greatly influence the amount of drug available (123, 124).

Of the 11 oral drugs listed in Table 1 for which sufficient data are available, only 3
have Cmax/EC50 ratios approaching or greater than 1, which could be considered a mini-
mal criterion for consideration due to the pharmacologic factors described above.
They are camostat, nelfinavir, and brequinar, with Cmax/EC50 values of ;1, 7, and 33,
respectively. Conversely, while they are synergistic with RDV, the Cmax/EC50 ratios for
the HCV drugs against SARS-2-CoV are ,0.1. (These drugs are more potent against
HCV.) The reported synergies of the HCV drugs with RDV do demonstrate the potential
utility of combinations targeting the SARS-CoV-2 polymerase and its proteases with
DAAs (e.g., MPV plus Paxlovid [18, 22]). Other new oral CoV protease inhibitors (22,
112, 113, 125–127) and polymerase inhibitors (97, 128, 129) should also be considered
if they have suitable Cmax/EC50 ratios. Similarly, new TMPRSS2 inhibitors being explored
(130–134) may have more suitable PK properties than camostat.

Evaluate the half-life, selective index, drug-drug interactions, and side effects
of the drug. Drug toxicity as a function of drug concentration, for example as detected
with SynToxProfiler (135), should be considered, as it could limit the effectiveness of a
combination found to be synergistic in vitro and otherwise suitable for human trials. In
addition to known associations with end organ damage, potential positive or negative
adjunct effects, such as suppression of cytokine storms and inflammation associated
with serious disease, should also be considered. Expedited FDA consideration of two
previously approved drugs in combination for an investigational new drug (IND) appli-
cation requires preclinical evidence of lack of drug-drug interaction, favorable PK/PD,
and lack of presumed overlapping toxicities.

Animalmodel testing.Once a list of drug combinations is prioritized, promising cock-
tails should be tested in a small animal model. The model should approximate human
studies in which an agent might be given as postexposure prophylaxis or as early treat-
ment several days after viral inoculation given that efficacy may differ for these two indi-
cations for a given regimen. Readouts in animal studies should always include frequent vi-
ral load testing in addition to clinical and pathological scores such that early attempts at
establishing mechanistic correlates of efficacy can be made.

Mathematical modeling for regimen optimization. Mathematical modeling can
be used throughout the development of combination antiviral regimens to maximize
the likelihood of successful drug, dose, and dosing interval selection, as well as critical features
of study design. Mathematical models are predicated on the concept that PK/PD equations
are necessary but not sufficient for forecasting trial outcomes. Of equal importance are equa-
tions that capture viral and immune dynamics in the absence of therapy (136).

Several principles illustrate the importance of this approach. First, the timing of
therapy may predict its effectiveness. In the case of SARS-CoV-2, we determined that
intense innate immune responses severely limit the extent of viral replication after the
first 5 days of infection (16). Therefore, agents started during the presymptomatic
phase of infection, which would parallel postexposure prophylaxis in clinical practice,
require higher potency to induce viral clearance than those given later when immune
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mechanisms assist in clearance of infected cells. Yet, because the majority of viral repli-
cation occurs early during infection and is linked to downstream aberrant inflamma-
tion, treatment given soon after development of symptoms is critical toward prevent-
ing severe outcomes. This model prediction was subsequently validated in treatment
trials with MAbs, demonstrating that administration is more effective prior to hospitali-
zation (11–13, 137).

Second, as described above, in vitro assessments of potency may overestimate a
drug’s antiviral effect in people by 5- to 10-fold (122). Serial viral load measurements in
animal models or in human clinical trials, coupled with mathematical modeling are vital
to link plasma drug concentrations with viral kinetic outcomes. The goal is to identify the
in vivo EC50, or plasma concentration of drug that eliminates 50% of cellular infection
events in vivo.

Third, modeling provides necessary context for the potential benefits of combina-
tion effects that are additive, multiplicative, or synergistic. By accounting for nonlinear
drug levels over time, modeling can capture the proportion of time during which levels
of both drugs allow potent inhibition of cellular infection, either by virtue of single
drug potency or synergy. This is vital because it can identify scenarios in which addi-
tion of a second drug is required to achieve adequate viral suppression and those in
which a second agent may be unnecessary and confer unnecessary toxicity.

Finally, modeling can capture possible differential impacts of therapies in various
hosts. Whereas most infected people, even those with critical illness, appear to elimi-
nate high grade viral replication within 1 to 2 weeks (138), immunocompromised hosts
can shed infectious SARS-CoV-2 at high viral loads for months (60–65), taking on a phe-
notype more consistent with chronic, persistent viruses like HIV. Here, the virus under-
goes considerable mutation and is more likely to become resistant to small molecule
DAA or MAb therapy. Immunocompromised hosts are a possible source for VOCs that
have dramatically extended the duration and overall lethality of the epidemic (60).
Modeling is well poised to capture the added potency required from synergistic agents
in this specific clinical context.

Modeling is ideally linked to all steps in the drug development process. PD models
are used to identify whether drug pairs have antagonistic, additive, multiplicative, or
synergistic antiviral activity at given concentrations and to precisely recapitulate the
degree of viral inhibition across all possible ranges of dual drug concentrations (48). PK
models recapitulate drug levels over time in relevant animal models or humans.
Models can then project the percentage of cell infection events prevented with a given
regimen at a given dose. While these calculations allow for an initial estimate of in vivo
benefits of synergistic or multiplicative effects, the accuracy of forecasts is limited if in
vitro assays overestimate in vivo potency. We therefore fit our models to detailed viro-
logic data from animal studies or early human clinical trials and solve for the in vivo
EC50 (121, 122). We can leverage this information to synthesize PK/PD models with viral
dynamics models to arrive at lowest doses and dose frequencies of drug pairs that are
likely to have suppressive antiviral efficacy in human trials.

NEW DRUGS TO CONSIDER FOR COMBINATION TESTING AGAINST CoVs

While approved drugs have the advantage that FDA guidance on the development
of drug combinations allows for more rapid development (https://www.fda.gov/media/
80100), drugs that have passed human safety trials should also be considered as infor-
mation about them becomes available. In this respect, it will be important to follow the
development of AT-527 (128), other potential oral SARS-CoV-2 polymerase inhibitors (97,
129) including oral forms of RDV (139–141, 200) as well as the oral protease inhibitor GC-
376 (102, 125). As new oral/inhaled drugs with the same targets but better efficacy
and PK become available, they should be analyzed as substitutes in previously characterized
drug synergies. Other drugs for future combination tests could be oral/inhaled variants of
effective drugs currently only suitable for injection (142) and drugs of interest in other coun-
tries (https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/
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coronavirus-disease-covid-19/treatments-vaccines/covid-19-treatments). Inhaled drugs
currently under consideration for SARS-CoV-2 include budesonide (143), ciclesonide (144),
interferon alpha (86, 96), interferon beta (145), nafamostat (146), and niclosamide (147), as well
as small inhalable biologics, including minibinders (148), nanobodies (149), and peptide fusion
inhibitors (150). Many other potential anti-CoV drugs are also being uncovered through in
silico protein docking, transcriptional profiling, and protein-protein interaction network anal-
yses. An outpatient therapeutic regimen that combines inhaled and oral drugs is plausible.
Lastly, future drug combinations could include immune boosters such as STING (stimulator
of interferon genes) activators (151, 152) and may be composed of three or more drugs
(49–51, 68), if enhanced synergy or PK benefit is projected. As new drug combinations
are explored to combat CoVs, a unified set of mathematical equations could allow rapid
updates such that new potential regimens are ranked according to their likely potency,
as has been done for HIV (50).

CLINICAL CONSIDERATIONS

Executing high-quality clinical trials during both the early and mature phases of a
pandemic presents challenges related to testing of drug combinations, especially for
drugs with easily accessible routes of delivery. In the initial phases of an epidemic, ten-
sion between conducting research and providing clinical care when resources are con-
strained means that experimental therapies are often given in uncontrolled studies or
as expanded access, although such use “often undermines fair access to experimental
agents, [and] compromises the collection of robust data to determine the safety and
efficacy of interventions” (153). During the 2014–2017 Ebola epidemic, an advisory panel
to the WHO provided a seven-point list to guide conditions of investigational agent use,
which urged minimal interference with the conduct of high quality clinical investigations
(https://www.who.int/ebola/drc-2018/notes-for-the-record-meuri-ebola.pdf). During the
COVID-19 pandemic, widespread clinical use, including through nonprescribed access,
and uncontrolled studies has operationally precluded high-quality clinical trials for sev-
eral repurposed agents, including hydroxycholorquine, ivermectin, and fluvoxamine
(154, 155) (NCT04668950, NCT 04885530, and NCT 04510194, but see reference 156 for
fluvoxamine). Numerous other small studies used various doses and combinations of
proposed synergistic drugs, with each underpowered to meaningfully assess efficacy. It
was difficult to meaningfully compare efficacy across disparate study regimens for
pooled analysis. Lower regulatory burden improves the speed and cost at which studies
on previously approved drugs can be done, but in many cases during 2020, the rapid
conduct of such trials impeded progress toward interpretable data.

Presently, at the more mature stage of the pandemic, new hurdles are hampering
development of oral/inhaled treatments for SARS-CoV-2. The logical positioning of
combination oral drug trials is for early treatment of nonhospitalized patients with either
mild symptomatic or asymptomatic infection to maximize clinical effect and prevent hospi-
talizations. Such potential trials now have an added hurdle because MAbs with EUA are
now considered standard of care for people at moderate/high risk for hospitalization, which
includes the larger share of unvaccinated adults (https://www.covid19treatmentguidelines
.nih.gov/). As such, trials of oral/inhaled drug combinations can no longer ethically be pla-
cebo controlled (if conducted where MAbs are available). Because participation in clinical
trials requires trust in scientific and medical institutions, persons who remain unvaccinated
in places with widespread access to COVID-19 vaccines may be less likely to participate in
treatment trials, although careful attention to community engagement has shown incredi-
ble success with vulnerable communities (157).

Moreover, these therapies were tested in clinical trials and authorized based on efficacy
at reducing hospitalization and death. As SARS-Cov-2 vaccinations increase, an increasing
proportion of infections are in vaccinated persons, who remain overwhelmingly protected
from severe COVID-19 outcomes. However, ongoing studies of non-high-risk patients (vac-
cinated and/or without significant comorbidities) need to be evaluated for benefit in
symptom reduction and/or viral shedding because hospitalizations are too uncommon an
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outcome to rapidly conduct studies with adequate statistical power, particularly when the
comparator group includes the standard of care. For multiple other viruses, including HIV,
HCV, cytomegalovirus (CMV), and HSV-2, establishment of virologic surrogate endpoints
has dramatically decreased the number of people and the cost and time associated with
licensure trials (158–161). As of this publication, there is no accepted definition for success
in reduction of SARS-CoV-2 shedding or transmissible virus, nor are there accepted defini-
tions for change in symptom burden or duration. Both symptoms and viral shedding are
also blunted in most infections following vaccination, which additionally limits power to
detect a treatment effect. In future pandemics, early trials should be designed to allow
establishment of virologic surrogate endpoints. To meet this goal requires that studies
include daily virologic sampling and detailed daily symptom surveys. This method will
allow trialists to evaluate which viral kinetic feature (peak viral load, duration of shedding
or viral area under the curve [158]) or constellation of early symptoms may be most predic-
tive of hospitalization or death. Even if this is achieved, changes in incubation period, viral
kinetics, and symptoms with different emerging VOCs may necessitate updating of these
surrogate outcomes.

Finally, lack of a path toward EUA for novel drugs, or package relabeling for already
approved drugs, based on potentially acceptable surrogate outcomes hampers industry-spon-
sored drug investigation. Drugs without efficacy as monotherapy in phase 2 studies may not
progress to combination trials, despite preclinical data that would suggest potential success
and may have predicted lack of success of the single agent. Significant alteration in regulatory
procedures during a highly lethal pandemic is another necessary step forward.

PREPARING FOR OTHER EMERGING VIRUSES

Members of 11 virus families are considered of potential high consequence, and it
is important to develop oral (and inhaled, for respiratory viruses), thermally stable,
inexpensive, pan-family, drug cocktails to combat all of them (118) (Fig. 1). Common
features of these category A to C (category A-C) pathogens (https://www.niaid.nih
.gov/research/emerging-infectious-diseases-pathogens) can be exploited in thera-
peutic cocktail design. All families of concern contain single-stranded RNA and are inhib-
ited by one or more of the following polymerase inhibitors: RDV, MPV, favipiravir, or gali-
desivir (BCX4430). The members of nine of these families, including coronaviruses, are
enveloped and hence deliver their genomes into the cytoplasm to initiate replication by
a stereotypical membrane fusion process mediated by a fusion glycoprotein (GP) (37, 38).
Many of these (e.g., the hemagglutinins [HAs] of influenza viruses and the GPs of arenavi-
ruses) also bind particles to the host cell surface, whereas other viruses contain a separate
attachment/receptor binding protein. Both virus attachment and virus fusion are good targets
for small molecule intervention (72, 162–166). As polymerase complexes are clearly excellent
therapeutic targets (19, 49, 51), a “starter” pan-family cocktail could include a drug targeting a
viral attachment or fusion glycoprotein and a drug targeting the viral polymerase. Flaviviruses
and togaviruses also encode proteases that, like the SARS-CoV-2 proteases, process their poly-
proteins during virus maturation (167, 168). Proteases therefore represent additional targets
for a subset of category A-C viral pathogens.

The members of 9 of the 11 category A-C virus families (arena-, bunya-, calci-, filo-, flavi-,
orthomyxo-, picorna-, rhabdo-, and togaviruses) enter cells through endosomes (38), and
hence, the endosomal pathway is a target for their therapeutic intervention (169, 170). Indeed,
many drug screens have uncovered endosome-targeting drugs against these pathogens.
Endosomal features that can be targeted are virus particle internalization (e.g., via clathrin or
macropinocytosis) as well as endosome trafficking, maturation, and composition, including
low pH, cathepsin proteases, Ca21 and other ions, and specific lipids (171–173). Even Nipah vi-
rus and Hendra virus, which are category C paramyxoviruses that fuse at the plasma mem-
brane, require a low-pH-activated endosomal cathepsin to process their fusion glycoproteins
and form infectious particles (174). Furthermore, endosome-targeted drugs could inhibit
infections by CoVs in tissues outside the lung (34–36).
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While DAAs are considered ideal based on their generally higher potency and selective
indices, we posit that targeting host proteins critically involved in the viral life cycle, includ-
ing drugs that target endosomes for most category A-C viruses, should be considered in
combination therapies, especially if we are preparing for the short-term (plan B) for endo-
some-entering viruses. From a screen of 78 unique pairs, we identified several demonstrat-
ing clear synergistic activity against Ebola virus in cell cultures (47). Based on PK and other
considerations, two pairs (bepridil plus sertraline and sertraline plus toremifene) were further
evaluated for eventual testing in an oral formulation in mice against a lethal Ebola virus chal-
lenge (48). The components of these pairs are approved, endosome-affecting drugs; each
had previously been shown to protect mice (50 to 100%) in a lethal challenge model when
given intraperitoneally (46, 175). In the same study (48), we showed, through mathematical
modeling of PK, PD and Ebola viral dynamics, that compared to their individual constituents,
both synergistic drug pairs have superior potential to reduce viral loads in humans (48). It
will be interesting to see how these drug pairs function compared to their individual compo-
nents when given orally to mice infected with Ebola virus. Moreover, all three compounds in
these drug pairs have also been shown to bind to a pocket in the Ebola virus GP, thereby
affecting its stability (176). Hence, some endosome-targeting drugs may also act directly on
viral glycoproteins (69, 176–179), i.e., be both HTAs and DAAs. Other host factors to consider
for targeting include host proteases that prime viral glycoproteins for fusion (37, 38, 119,
120), other host proteins involved in virus entry (180), host cell kinases (181–184), and host
proteins involved in viral RNA production (185, 186), nuclear export (187, 188), and virus as-
sembly and egress (189, 190). Given common viral infection strategies, the possibility exists
for cross-family drug cocktails.

While investigators are tailoring novel drugs to specific viral proteins, we urge that
concurrent work proceed to develop cocktails against all category A-C viruses, which
might comprise approved (repurposed) drugs or combinations of advanced clinical
stage and repurposed drugs. If a new pandemic emerges in the next few years or if re-
sistant VOCs emerge during the current pandemic, individual suboptimal agents with
good projected efficacy based on mathematical modeling assessment of synergy and
projected drug levels could be tested rapidly, in combinations, in clinical trials. Even a
cocktail with incomplete suppression of viral replication could have a clinical benefit:
for Ebola virus (191, 192) and SARS-CoV-2 (193), a 1-log-unit-lower viral load has been
associated with survival. Reductions in viral loads may also have public health benefits
by reducing transmission rates and the opportunity for new variants.

CONCLUSIONS

SARS-CoV-2 is projected to remain in circulation in the human population, and
novel CoVs may spill over from animals to humans (194, 195). An urgent goal is to de-
velop inexpensive oral and/or inhaled regimens to test at the inception of the next
outbreak. Drug combinations should be considered in this pursuit to limit drug resist-
ance and enhance potency (Fig. 1). Moreover, the entire antiviral drug arsenal requires
significant boosting for global viral pandemic preparedness. It is our opinion that this
effort could be significantly augmented by carefully designed drug combination stud-
ies, at both the preclinical and clinical stages.
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