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Abstract  

In recent years, the amount of data produced in the field of assisted reproduction technology [ART] 

has increased exponentially. The diversity of data is large, ranging from videos to tabular data. At the 

same time, artificial intelligence [AI] is progressively taking place in medical practice and may 

become a promising tool to improve the success rate with ART. AI models may compensate for the 

lack of objectivity in several critical procedures in fertility clinics, especially embryo and sperm 

assessments. Various models have been developed, and even though several of them show 

promising performance, there are still many challenges to overcome. In this review, we present 

recent research on AI in the context of ART. We discuss the strengths and weaknesses of the 

presented methods, especially regarding clinical relevance. We also address the pitfalls hampering 

successful use of AI in the clinic and discuss future possibilities and important aspects to make AI 

truly useful for ART. 
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Introduction  

The number of treatments with assisted reproduction technology [ART] is steadily increasing in 

Europe, and in 2016, over 900 000 treatment cycles were performed (Wyns et al., 2020). Even 

though there have been gradual improvements in the success rate, only one-third of the ART cycles 

result in a live birth, and 5 % of the aspirated oocytes have the competence to develop into a child 

(Lemmen et al., 2016; Wyns et al., 2020). This implies that there is a potential for improvement in 

the crucial steps in ART treatments, such as selection of embryos for transfer and selection of 

spermatozoa for intracytoplasmic sperm injection [ICSI]. Improving the ability to select a single 

embryo with the highest implantation potential could increase live birth rates and time to 
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pregnancy, as well as minimize the chance of multiple pregnancies due to the transfer of multiple 

embryos. Likewise, a more reliable method for sperm selection may increase the success rate of the 

ICSI procedure. Furthermore, the disputable clinical value of semen analysis in male fertility 

investigation and for ART justifies a need for improving the methods for sperm evaluation both for 

diagnostic purposes and for the decision of the fertilization method of the ART treatment. 

Video and image analysis constitutes a major part of ART, and artificial intelligence [AI] methods are 

especially suited for image classification. In addition to videos and images, AI can be used to analyze 

other types of data, like text or tabular data. As in other parts of medicine, AI methods have been 

introduced in the field of ART. They have the advantage of objectivity and have the potential to 

improve ART, which in some parts are based on subjective assessments.  

In this review, we provide an overview of studies found in Embase (Ovid), where AI methods have 

been applied in human reproductive medicine with an emphasis on ART. Furthermore, we discuss 

how to avoid pitfalls and describe the potential use of AI in clinical practice in the future.  

Current challenges in ART 

Highly trained personnel in fertility clinics are faced with important and difficult decisions every day, 

such as deciding which fertilization method to use, which spermatozoon to select for ICSI, and which 

embryo to transfer to the uterus. One of the major challenges in the subjective assessments of 

embryos is the high intra- and inter-operator variability which exists in the evaluation of morphology 

and morphokinetics (Paternot et al., 2009; Sundvall et al., 2013; Storr et al., 2017). With time-lapse 

technology, embryos can be monitored continuously, and the complete embryo development is more 

precisely assessed.  However, there is no evidence that the use of time-lapse technology has improved 

live birth rates after ART (Armstrong et al., 2019).  

While sperm morphology has no definite impact on the outcome after ART, sperm concentration and 

sperm motility are normally assessed for deciding whether IVF or ICSI should be used as a fertilization 
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method (Høst et al., 2001). Strikingly, ICSI is increasingly used irrespective of the male factor infertility 

diagnosis (Boulet et al., 2015; Vander Borght et al., 2018). Among the cycles reported in Europe in 

2016, 28% were IVF and 72% ICSI (Wyns et al., 2020), although the male factor accounts for only 20-

30 % of the diagnoses ofhe infertile couples. This is of increasing concern since performing ICSI instead 

of IVF in couples where the male partner has a defined normal semen sample does not increase the 

live birth rate (Dang et al., 2021).  

Early in the fertility investigation, a standard semen analysis according to WHO guidelines (WHO 2010) 

is usually performed. This analysis might contribute with information essential for deciding whether 

ART should be recommended as a treatment. The method is time-consuming and prone to limited 

reproducibility and high inter-personnel variation (Tomlinson et al., 2016). Several computer-aided 

sperm analyses [CASA] systems are available, but they are still most suitable for assessing spermatozoa 

separated from seminal plasma, and their reliability remains debated (Mortimer et al., 2015).  

When selecting spermatozoa to inject for ICSI, the procedure is performed by visually evaluating the 

morphology and motility of spermatozoa with an ICSI microscope. This selection process is prone to 

error while it is based on a qualitative evaluation of the operator and not on objective sperm 

characteristics.   

The potential of AI in ART 

New technologies, such as better cameras and data capturing systems, are rapidly becoming an 

integrated part of the fertility clinic and result in a vast amount of stored data, including patient data, 

embryo time-lapse videos, and sperm videos. In recent years, AI has proved to be a valuable tool in 

medicine by analyzing large amounts of data (Hosny et al., 2018; Yang and Bang, 2019). A typical 

approach for using AI models in ART can be seen in Figure 1. In particular, machine learning [ML], a 

subfield within AI, refers to algorithms that automatically learn from data without being explicitly 

programmed.  



  5 
 

   

 

An overview of common AI methods used in ART is given in Figure 2. Supervised and unsupervised 

learning are subgroups of ML. Supervised learning refers to methods that learn from datasets where 

the answer (the label) is given for each observation. An observation within a dataset could be data 

from an ART cycle, like an embryo image, and the label whether the embryo resulted in a pregnancy 

or not. The algorithm will learn from the dataset, and the resulting ML model can be used to predict 

pregnancy or not for data from another ART cycle with unknown labels. Unsupervised learning refers 

to methods that search for patterns in unlabeled data, for example, automatically grouping blastocyst 

images based on visual features that may correlate with morphological characteristics. Artificial neural 

networks [ANNs] are a class of supervised learning, and deep neural networks [DNNs], or deep 

learning [DL], refers to especially large and complex ANNs. DL methods have the ability to learn from 

unstructured data such as images or text. Details of studies discussed in this review can be found in 

Table I for embryo related articles and in Table II for sperm related articles. 

AI in embryo assessment  

Most articles about embryo assessment and selection for transfer address the prediction of embryo 

quality, grading and ranking, and compare the performance of the AI model with an evaluation done 

by embryologists (Kanakasabapathy et al., 2019; Khosravi et al., 2019; Raudonis et al., 2019; 

Dirvanauskas et al., 2019; Fukunaga et al., 2020; Bormann et al., 2020a; Bormann et al., 2020b; Rad 

et al., 2020; Zhao et al., 2021).  To make an automatic grading system, the model must learn to 

locate the embryo in the dish, segment important features, and then assess and grade the embryo 

from manually annotated data.  Manual annotations provided by embryologists are time-consuming 

to create, leading to small and sparsely annotated datasets.  Therefore, most studies of AI methods 

and resulting models in ART can be considered preliminary. With the development of time-lapse 

technology, access to image and video data has become more available, making it possible to utilize 

this data to build new AI models. Dirvanauskas et al. (2019) predicted embryo development stages 

by time-lapse videos using features extracted from a Convolutional Neural Network [CNN]. In one 

study, an automated system was established to detect pronuclei in time-lapse images with the 
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precision almost equivalent to highly skilled embryologists (Fukunaga et al., 2020). In another study, 

zona pellucida [ZP] and the cytoplasm and pronucleus in zygotes were detected by developing an 

algorithm using DL image segmentation technology (Zhao et al., 2021). One group reported the 

possibility of identifying human embryo development stages (Raudonis et al., 2019). First, the 

location of an embryo in the image was detected by employing a visual image feature-based 

classifier.  Then, a multi-class prediction model was developed to predict the cell stage of the 

embryo using DL. Others reported a system to detect and assess blastocyst quality by using DL to 

detect the ZP area (Rad et al., 2018).  

Data augmentation techniques, like cropping and resizing which are usually used to increase dataset 

size or variation, were applied  to embryo assessment to compensate for the lack of data for training 

the DL models (Rad et al., 2020). Augmented images were proven to be effective in filling the 

generalization gap when available data is limited. Experimental results confirmed that the proposed 

models were capable of segmenting trophectoderm [TE] regions.  

Inner cell mass [ICM] has been assessed by a computer-based and semi-automatic grading of human 

blastocysts (Santos Filho et al., 2012). A CNN was able to predict ICM and TE grades from a single 

frame (a frame is an image extracted from a video), and a recurrent neural network was applied on 

top to incorporate temporal information of the expanding blastocysts from multiple frames. 

Furthermore, when evaluating implantation rates for embryos grouped by morphology grades, a 

CNN provided a slightly higher correlation between predicted embryo quality and implantability than 

human embryologists (Kragh et al., 2019). The use of a CNN trained to assess an embryo’s 

implantation potential directly by using euploid embryos capable of implantation outperformed 15 

trained embryologists (Bormann et al., 2020a).  

In a retrospective analysis of time-lapse videos and clinical outcomes of 10 000 embryos from eight 

different IVF clinics across four different countries, a DL model was built with a high level of 

predictability regarding the embryo implantation likelihood (Tran et al., 2019). A prospective double-
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blinded study using retrospective data addressed the variability between embryologists to select 

embryos for biopsy and cryopreservation (Bormann et al., 2020b). It was found that the application 

of a DNN could improve the reliability and perform high consistency during the process of embryo 

selection, thereby potentially improving outcomes. 

A DL-based system called Life Whisperer showed a sensitivity of 70 % for viable embryos while 

maintaining a specificity of 61 % for non-viable embryos across three independent blind test sets 

from different clinics (Ver Milyea et al., 2020). The model demonstrated a 25 % increase over 

embryologists’ accuracy and ranking comparison demonstrated an improvement of 42 % over 

embryologists. One embryo ranking model increased the success of ART treatments in oocyte 

donation programs (Alegre et al., 2021). The multicentre nature of the study supported its 

applicability at different clinics, standardizing the interpretation of embryo development. 

Embryo assessment, ranking, and selection are procedures normally based on evaluations at 

different time points in the embryo development and in several focal planes to get a view of the 

whole embryo. There are numerous studies where only static images, usually in one single focal 

plane, are used for the AI analysis, which do not mirror the clinical practice (Rad et al., 2018; 

Kanakasabapathy et al., 2019; Khosravi et al., 2019; Bormann et al., 2020a; Bormann et al., 2020b; 

Chavez-Badiola et al., 2020a; Chavez-Badiola et al., 2020b; Bori et al., 2021). In these models, well-

curated, high-quality data is crucial. For example, non-selection of a large number of images 

representative of the diversity, inconsistent image treatment, or inaccurate labeling of images can 

lead to poor performing models (Tsipras et al., 2020). Models involving time-lapse videos might also 

raise problems since the definition of the important morphokinetic markers may vary between 

different laboratories and still requires an automated and unbiased process (Milewski et al., 2017; 

Tran et al., 2019; Dirvanauskas et al., 2019; Bori et al., 2020; Alegre et al., 2021). 

AI methods should incorporate patient data that may impact the outcome, such as maternal age. A 

framework (STORK) based on a large collection of human embryo time-lapse images used a CNN to 
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automatically predict blastocyst quality depending on patient age (Khosravi et al., 2019). Milewski et 

al., (2017) extracted several time points and specific relative cleavage times together with 

fragmentation levels, presence of multinucleation, evenness of blastomeres, and woman's age. An 

ANN was trained to predict embryo implantation from the extracted features. Another study that 

included 82 features of patient data found that follicle stimulating hormone/human menopausal 

gonadotropin dosage was the strongest predictor of embryo implantation (Raef et al., 2020).  

 

AI in prediction of outcome before treatment 

In several publications, AI was used to build models that predict the possibility of a successful 

treatment based on a patient’s medical record. The result may be of value for patient counseling 

about the potential results of the treatment. Goyal et al. (2020) used the dataset provided by Human 

Fertilisation and Embryology Authority [HFEA] which included 30 different features such as age, 

number of previous ART cycles, number of previous pregnancies, number of inseminated oocytes, 

number of embryos transferred, and diagnosis for a total of 140 000 patients. Several ML- 

techniques were evaluated to predict live-birth occurrence. They concluded that both male and 

female traits and living conditions were factors that influenced the outcome of the treatment. A 

well-known ML technique called XGBoost has been used to predict live birth from features such as 

age, anti-Mullerian hormone, BMI, and patient anamnesis (Qiu et al., 2019). Similarly, an ANN was 

trained to predict live birth using a collection of features such as the age of the female, the total 

dose of gonadotrophins administered, endometrial thickness, and the number of top-quality 

embryos (Vogiatzi et al., 2019). 

 

AI in analysis of sperm   

Most studies using an AI approach for semen analyses have been performed for morphology 

assessments. The morphological classification is usually performed on stained spermatozoa and 

implies both distinguishing abnormal spermatozoon from normal as well as identifying various 
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defects of the cell (WHO 2010). Some of the developed AI models have been trained only to predict 

the morphology of sperm heads (Chang et al., 2014; Chang et al.; 2017; Shaker et al., 2017; Riordon 

et al., 2019), whereas other studies describe the recognition of various parts of the whole sperm 

(Movahed et al., 2019; Ilhan et al., 2020).  These differences in the approaches make it difficult to 

compare results and possible implications for clinical practice even if the overall goal is similar. This 

is also fortified by the fact that the data used is usually very limited, with only a small number of 

spermatozoa or patients. Training and evaluating complex methods, for example DL, with a small-

sized dataset most probably leads to a model that memorized the data (overfitting) without being 

generalizable.  

Annotation of the dataset/sperm images must be done manually and with high accuracy to obtain 

well-performing models. For recognizing and interpreting images of spermatozoa at the pixel level, 

segmentation is the common approach, in which the spermatozoon is divided into parts, each 

consisting of a set of pixels. Some studies demonstrate high classification accuracy for morphological 

characteristics, and most of the studies have both trained and validated the models on freely 

available datasets, which makes them easier to compare (HuSHeM in Shaker et al. (2017), SCIAN in 

Chang et al. (2017), and a smaller dataset of 264 spermatozoa in Chang et al. (2014)). 

 Furthermore, the model performance is compared with existing AI models, and even though this is 

common practice in the field of AI, it reveals little knowledge about the clinical usability of the 

model. Regarding sperm morphology, as far as we know, there are no studies comparing the 

performance of the models with manual assessment according to the WHO guidelines or in relation 

to fertility outcomes. 

 

For prediction of sperm motility, only one study compared AI-based sperm motility classification 

against sperm motility that was manually assessed following WHO guidelines (Hicks et al., 2019), 

while others were mainly focused on comparing various models or exploring the sperm kinematics 

(Goodson et al., 2017;  Valiuškaitė et al., 2021). Studies related to motility and/or morphology also 
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come with the challenge of small datasets, and for both of them, the evaluation procedures are 

often not clear. Cross validation is sometimes used to compensate for small datasets (Goodson et al., 

2017; Shaker et al., 2017). However, even though cross validation is acceptable for testing model 

performance and comparing it to other models on the same dataset, it does not test the 

generalizability of the results.  In a clinical setting, an independent test set evaluation should be 

performed, optimally across different clinics (Abbasi et al., 2021). 

 

 Automatic systems for diagnostic purposes have been developed. One such system based on an 

automatic segmentation step and a classification of normal/abnormal spermatozoa has recently 

been described (Ilhan et al., 2020). The authors reported an accuracy of 87 %. However, the method 

was just compared with other ML methods and not evaluated for its clinical value. In addition, 

accuracy alone is not a sufficient metric to determine the possible clinical performance of a method, 

especially if only a small dataset is used. Another automatic system for analysis of sperm 

concentration, morphology, and motility used AI optical microscopic technology, for which the 

performance was compared with manual assessment (Agarwal et al., 2019; Agarwal et al., 2021).  

Nonetheless, the morphology values did not correlate with manual morphology results, and 

unfortunately, there are no details provided on the construction and annotation of the dataset.  

 

Parameters that are not part of standard semen analysis have also been used in AI models. For 

example, sperm intracellular pH was shown to be a stable marker for fertilization outcome 

(Gunderson et al., 2019), and sperm DNA integrity could be predicted from brightfield sperm images 

at a single cell level through supervised training (McCallum et al., 2019). These studies show how AI 

can be used to automate sperm sorting and selection tasks. However, big datasets from multicentre 

cohorts are needed to evaluate if the results are generalizable before these AI models can be used in 

the clinic, and not only for research related purposes. In addition to the conventional semen 

variables, image features may detect sperm characteristics that are too complex to be recognized by 
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humans, for example, motility patterns or morphological shapes.  Nonetheless, from a diagnostic 

perspective, the clinical value of novel traits must be investigated in epidemiological studies. 

 

The selection of spermatozoa for ICSI is based on a cursory assessment of motility and morphology 

in real-time, which is especially a challenge for morphology evaluation. The procedure has a 

potential for improvement by the use of AI to obtain a more objective selection based on the 

simultaneous monitoring of morphology and motility pattern. Attempts have been made to develop 

DL models for morphological assessment based on images of unstained spermatozoa (Javadi and 

Mirroshandel, 2019; Abbasi et al., 2021). Both algorithms are able to analyze fresh human sperm in 

real-time with a magnification between 400x and 600x.  

The AI methods used in sperm related studies are mostly based on simple algorithms that are 

standard implementation in most ML frameworks (Table II). The development of more domain-

specific methods and models related to ART will in the long run lead to better results compared to 

using out-of-the-box methods from existing generic frameworks. 

 

Pitfalls 

The AI algorithms are only as good as the data they are based on. There may also be limitations 

regarding generalizability due to difficulties with the standardization of the ML methods. Variation in 

patient demographics, clinical and laboratory practices may cause data bias. When an AI model is 

based on training in one clinic, the AI model should be validated in independent cohorts (Tran et al., 

2019; Bormann et al., 2020b). Furthermore, the models should not be limited to strict inclusion 

criteria, and optimally the datasets should contain data from different clinics where testing data 

should be from a different site than the training and validation data (Alegre et al., 2021; Bori et al., 

2020).  

Another important issue is that patient data and treatment information are not easily obtained for 

research due to data privacy and ethical considerations. This naturally limits the amount of patient 
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related data to use for training the AI model. DL-methods, which are especially suited for image and 

video classification, require a large amount of diverse data to be generalizable. Another weakness for 

some studies is that the data used for training is not connected to any treatment outcome, leading to 

overly complex models that might only detect irrelevant correlations  (Kanakasabapathy et al., 2019; 

Khosravi et al., 2019; Raudonis et al., 2019;  Dirvanauskas et al., 2019; Bormann et al., 2020a; Bormann 

et al., 2020b; Rad et al., 2020; Fukunaga et al., 2020; Zhao et al., 2021; Alegre et al., 2021). This can 

raise concerns like, for example, whether the prediction is related to the embryo implantation 

potential. Moreover, most articles resort to positive heartbeat at ultrasound control or even positive 

urine hCG test as their outcome, but the most important outcome in ART is the birth of a living, healthy 

child (Vogiatzi et al., 2019; Bori et al., 2021). 

AI models are usually evaluated using different metrics such as accuracy, precision, and sensitivity. 

Often only a small subset or even just a single metric is used to decide if the model performs well. This 

is not sufficient, and to make a proper estimation about the performance, a set of metrics needs to be 

taken into account. It might even be necessary to develop task specific performance measurements. 

The future symbiosis between AI and ART 

AI methods may be a supporting tool in predicting the patient's individual chance of achieving a 

healthy child based on available patient data. Adjustments of treatment and prediction of risk and 

possibilities for complications during pregnancy may be other tasks guided by AI. In ART, AI models 

may assist in selecting methods, selecting the embryo for transfer, and selecting the spermatozoon 

for ICSI. 

As far as we know, no published studies have performed AI-guided sperm selection for ICSI. Detailed 

real-time assessment of both motility and morphology simultaneously is a challenge in the present 

routine. By analyzing video recordings of sperm selections by ML methods that consider both the 

spatial and temporal domains, it may be possible to detect patterns or unknown characteristics that 



  13 
 

   

 

can be related to ICSI outcomes. Similarly, until now unrecognized features of importance for embryo 

quality might also be detected by analyzing images and videos of embryos. 

At present, most of the publications are of retrospective nature and there is a lack of prospective 

studies. The latter should preferably be performed as randomized controlled trials, in which the 

performance of the AI model included in one arm is compared to decisions routinely performed at a 

fertility clinic in the other arm, and the outcome is defined as live births. Most studies using AI for 

embryo assessment or selection rely on manually extracted features from embryo images or videos. 

However, over the last couple of years, there has been a rapid increase in the use of DL techniques 

where features are automatically learned. There are also a few studies using image segmentation 

techniques to improve automatic embryo assessment (Rad et al., 2020) or to streamline manual 

assessment (Zhao et al., 2021). The impact of these methods in clinical practice is however limited 

and standardization, explainable methods, and transparency are keys to improve it.  

Standardization is essential for the development of an applicable and reliable AI model. It requires 

close interdisciplinary collaboration from the planning of the initial study to the clinical evaluation. 

In particular, for the successful implementation of AI in the field of ART, a close collaboration 

between computer science, clinical experience, and biological knowledge, which also agree on a 

common standard, is crucial.  

Most algorithms used in all the aforementioned articles, especially DL-based, are black boxes. 

Ongoing research tries to increase the understanding of these black boxes (Arrieta et al., 2020; 

Holzinger et al., 2019). In ART, methods for better understanding of black boxes are still in their 

infantile, focusing on simple visualization methods (Abbasi et al., 2021; Liu et al., 2020). However, 

the whole pipeline of an AI system should be transparent (Saito and Rehmsmeier, 2015), including 

the evaluation method and metrics that need to be described clearly like in (Javadi and Mirroshandel, 

2019; Bori et al., 2020). Increased transparency of AI in ART will also be beneficial for discussions of 

legal and ethical implications across countries, which often have different regulations. 
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Furthermore, we need a common way of benchmarking and comparing different systems. In computer 

science, this is often done using open benchmarking datasets collected and curated by the scientific 

community. If the hardware changes, like data collected at higher resolutions, the systems will have 

to be evaluated on the data collected from these new devices. This means we need these community-

wide benchmarking datasets to be continuously tested before, during, and after clinical trials to verify 

the performance of AI models.  

The datasets also need to be continuously updated following technological advances and new findings. 

There are a few open datasets for sperm and embryo (Haugen et al., 2019; Shaker et al., 2017; Saeedi 

et al., 2017; Ilhan et al., 2020; Javadi and Mirroshandel, 2019). For sperm, datasets such as VISEM 

(Haugen et al., 2019) and HuSHeM (Shaker et al., 2017) are commonly used for the evaluation of sperm 

characteristics. For embryos, even fewer public datasets exist, where the data published by Saeedi et 

al. (Saeedi et al., 2017) has been used for blastocyst evaluation. Ideally, one publicly available dataset 

should be used for developing algorithms and a hidden test dataset can be tested on hardware 

provided by, for example, the European Society of Human Reproduction and Embryology or the 

American Society for Reproductive Medicine. This would ensure a common standard for training and 

testing to provide reproducible and comparable results necessary to make AI in ART clinically relevant.  

 

 

Conclusion 

Several studies have applied ML in ART, some of them focusing on clinical relevance, while others 

concern AI methodological aspects. Limitations are often small datasets and the use of AI algorithms 

not specifically designed for the fertility clinic. Large open datasets and methods specifically 

developed tailored for the use in context with ART could lead to better results and understanding.  

For AI to significantly impact ART, the model must be developed in the context of clinical practice. 

Critical steps are proper evaluation and testing of AI systems in relation to outcomes and regulations, 

a better understanding of the technical aspects, and how to determine the performance of AI models 
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of practical value in the clinic. In addition, it is important to standardize the use of AI in ART to enable 

more transparent, comparable, and reproducible   results.  

To succeed with implementing AI as a valuable tool in the fertility clinic, a strong interdisciplinary 

collaboration is required between researchers in ART and AI as well as the clinical staff. In addition, 

there is a need for largescale randomized controlled trials where several clinics are involved in testing 

the external validity of the algorithms before defining AI systems that are sufficiently robust for safe 

clinical implementation. 
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