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Abstract—This work introduces kernel adaptive graph filters
that operate in the reproducing kernel Hilbert space. We propose
a centralized graph kernel least mean squares (GKLMS) ap-
proach for identifying the nonlinear graph filters. The principles
of coherence-check and random Fourier features (RFF) are
used to reduce the dictionary size. Additionally, we leverage the
graph structure to derive the graph diffusion KLMS (GDKLMS).
The proposed GDKLMS requires only single-hop communication
during successive time instants, making it viable for real-time
network-based applications. In the distributed implementation,
usage of RFF avoids the requirement of a centralized pre-
trained dictionary in the case of coherence-check. Finally, the
performance of the proposed algorithms is demonstrated in
modeling a nonlinear graph filter via numerical examples. The
results show that centralized and distributed implementations
effectively model the nonlinear graph filters, whereas the random-
feature-based solutions are shown to outperform coherence-check
based solutions.

I. INTRODUCTION

Recently, graph signal processing (GSP) has received in-
creased attention due to its wide applicability to model, pro-
cess, and analyze network signals and large data sets [1]–[4].
For instance, in the context of a wireless sensor network, graph
nodes and edges represent sensors and communication links,
respectively. Similar to conventional digital signal processing
(DSP) techniques, the basic building block in GSP is the
graph-shift operation, which captures node interconnections.
In the particular case of linear networks, the graph-shifted
signal on a given node is a linear combination of adjacent
node signals, where the weights relate to the edge values. The
development of tools for GSP has been extensively studied
over the last few years [1]–[9].

A key area of GSP research is to model the unknown
relations between input and output graph signals through a
filter [1], [3], [7], [8], [10]. The application of linear shift-
invariant filter models is widely employed in the literature,
e.g., to design graph spectral filters [7], [10] and model
dynamic graph signals [8], [9]. More recently, several works
deal with adaptive learning of graph filters, see, e.g., [11]–
[15]. However, linear models cannot accurately model many
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real-world systems that exhibit more sophisticated input-output
relations. Prominent examples include the relations between
air pressure and temperature, and wind speed and generated
power in wind turbines [16], [17].

In this work, we introduce the concept of nonlinear adaptive
filtering of graph signals. Adaptive filtering in reproducing
kernel Hilbert spaces (RKHS) has proven to be an effective
method for modeling nonlinear relations [18]–[28]. Therefore,
drawing upon the ideas of kernel methods, we propose graph
kernel adaptive filters that effectively capture the nonlinear
input-output relations of graph signals. We first derive the
centralized graph kernel least mean square (GKLMS) for
nonlinear graph system identification. To tackle the growing
dimension problem in GKLMS, we first consider a coherence-
check approach to construct a fixed-size dictionary. However,
this approach requires a centralized pre-trained dictionary
and, therefore, does not render an efficient distributed im-
plementation. To overcome this issue, using random Fourier
features [29], we propose centralized GKLMS in RFF space.
By extending the concepts of distributed learning over net-
works [12], [25], [30]–[32], we also propose a graph diffusion
KLMS (GDKLMS) using RFF that solely depends on local
information exchange. Furthermore, we establish the condi-
tions for the mean convergence of the proposed RFF based
GDKLMS. Finally, numerical experiments are conducted to
demonstrate the performance of the proposed algorithms.

II. PROBLEM FORMULATION

Consider an undirected graph G = {N , E}, where N =
{1, 2, . . . ,K} is the set of nodes and E is the set of edges
such that (k, l) ∈ E if and only if nodes k and l are
connected. The graph is equipped with the graph shift operator,
defined by a symmetric matrix S ∈ RK×K whose entries
[S]k,l = skl take non-zero values only if (k, l) ∈ E [1],
[2]. The graph Laplacian matrix [1] and the graph adjacency
matrix [2] are the common choices for S. At time-index n, a
graph signal is defined by the mapping x(n) : N → R and
represented by a vector x(n) = [x1(n)x2(n) . . . xK(n)]T,
where xk(n) represents the signal value at the kth node. The
graph shift operation Sx(n) is performed locally at each node
k by linearly combining the samples from neighboring nodes,
namely,

∑
l∈Nk

sklxl(n), where Nk denotes the neighborhood
of node k including k itself.



A length-L linear shift-invariant (LSI) graph filter linearly
combines these shifted versions of a graph signal and yields
an output y(n) =

∑L−1
i=0 hiS

ix(n− i), for n ≥ L− 1, where
h0, h1, . . . , hL−1 are the coefficients of the graph filter [12].
This model embeds time-evolution and is an alternative to
the initial linear graph filter designs [10]–[12]. By retaining
the samples {xk(n), [Sx(n−1)]k, . . . , [S

L−1x(n−L+1)]k},
only one graph shift operation needs to be performed at each
time-instant n, which makes this model suitable for real-
time applications. For this model, linear graph diffusion LMS
strategies have been proposed in [12] for adaptive graph signal
processing.

However, in many real-world scenarios, the limited ca-
pabilities of linear models fail to represent systems with
more sophisticated input-output relations reasonably [18]. This
limitation on linear models is discussed in many problems such
as channel regression and time-series prediction [18], [26],
[28]. Adopting a nonlinear model proved to be effective when
tackling this class of problems. In this context, at every node k,
we assume a nonlinear relation between the input and output
as given below:

yk(n) = f(rk(n)) + υk(n), (1)

where f : RL → R is a nonlinear function on RL, υk(n) is
the observation-noise at node k, and

rk(n) = [xk(n) [Sx(n− 1)]k . . . [S
L−1x(n− L+ 1)]k]

T.
(2)

Here, the goal is to estimate the function f(·) at each node k
given a set of data pairs {rk(i), yk(i)} for i ∈ {1, 2, . . . , n};
this refers to a nonlinear system identification task. While
a linear filter can be uniquely defined by its coefficients
h0, h1, . . . , hL−1, the characterization of a nonlinear filter ad-
mits a range of approaches. Several methods exist in literature
to estimate the non-linear functions in an adaptive fashion [18],
[28], [33]. Of these, kernel methods take a linear form in high-
dimensional feature space and, thus, gained much popularity in
modeling the nonlinear input-output relations [18]–[25], [27].
Thus, we characterize the nonlinear relations on graphs as
graph kernel adaptive filters.

III. GRAPH KERNEL FILTERS

In order to estimate the nonlinear function f(·) in (1), kernel
methods first map the input regressor rk(i) ∈ RL into a high-
dimensional feature space where f(·) takes a linear form [18],
[26]. This mapping is denoted by κ(·, rk(i)), where κ(·, ·) is
a reproducing kernel. The reproducing kernel κ(·, ·) : RL ×
RL → R satisfies [18]

κ(rk(n), rk(i)) = 〈κ(·, rk(n)), κ(·, rk(i))〉H, (3)

where H is the induced RKHS and 〈·, ·〉H denotes the cor-
responding inner product. In (3), κ(·, rk(i)) is a representer
evaluation at rk(i) [27], [28].

A. Centralized Graph Kernel LMS

In the graph setting, at every time-instant n, K new data
samples are available. Then, at time-instant n, using the
representer theorem [20], the estimate of yl(n) (i.e., ŷl(n)),
given data pairs {rk(i), yk(i)}n−1,Ki=1,k=1

⋃
{rk(n)}Kk=1, can be

expressed as

ŷl(n) = f(rl(n)) =

n∑
i=1

K∑
k=1

αik κ(rl(n), rk(i)). (4)

The model in (4) grows with both time, n, and network
size, K. This is a well-known issue with single-node kernel
methods [19], [26]–[28], [34]–[36], where several solutions
have been proposed that learn a sparse, or fixed-size dictionary.
Of these, the coherence-check (CC) methods use a coherence
metric [19], [28] between a candidate regressor and the current
dictionary to decide whether to include the candidate in the
dictionary. Using coherence-check criterion, ŷl(n) can be
written as

ŷl(n) = f(rl(n)) =
∑

i∈M(n)

∑
k∈K(i)

αik κ
(
rl(n), rk(i)

)
, (5)

where M(n) is a set of time instants in which at least one
input regressor is added to the dictionary until time-index
n, with |M(n)| ≤ n, and K(i) is a set of node indices
of regressors that passed the coherence-check at time-index
i, with |K(i)| ≤ K. Under the coherence-check criterion,
at time-index n, the dictionary D(n) contains |D(n)| =∑
i∈M(n) |K(i)| regressors.

Remark 1. Given reasonable conditions on the coherence-
metric threshold, the maximum number of regressors in the
dictionary is finite, i.e., |D| stops increasing after a certain
time [28].

The coefficients of the function expansion in (5) are ob-
tained through the following minimization problem

min
αik

K∑
l=1

E
[(
yl(n)−

∑
i∈M(n)

∑
k∈K(i)

αik κ
(
rl(n), rk(i)

))2]
= min
α∈R|D(n)|

E
[
‖y(n)−K(n)α‖22

]
, (6)

where α , [αT
1 α

T
2 . . . αT

|M(n)|]
T, with αT

i = [αi1 αi2 . . .

αi|K(i)|] ∈ R|K(i)| and K(n) = [K1(n)K2(n) . . . K|M(n)|] ∈
RK×|D(n)|, with [Ki(n)]lk = κ(rl(n), rk(i)), for l ∈ N and
k ∈ K(i).

Considering the growing nature of the dictionary, access
to second-order statistics is impractical. Therefore, we use a
stochastic-gradient approach and minimize the instantaneous
value of (6) recursively. The update equation for the graph
KLMS (GKLMS) is given by

α(n+ 1) = α(n) + µ KT(n)
(
y(n)−K(n)α(n)

)
, (7)

where µ is a positive adaptation step size.

Remark 2. If coherence-check is employed in an online
fashion, two events must be considered for each candidate



regressor: if the regressor does not satisfy the coherence-check
criteria, the dictionary remains the same. Otherwise, K(n) gets
one new column and a zero-valued entry must be appended to
α(n) [28]. At every time instant i, |K(i)| regressors are added
to D. Hence, |K(i)| zeros must be appended to α(n).

B. Centralized GKLMS using RFF

An alternative to sparsification methods is provided by
random Fourier features (RFF) [29]. RFF are used to approxi-
mate the evaluation of a shift-invariant kernel κ(r(n), r(i)) =
κ(r(n)− r(i)) as an inner-product in the D-dimensional RFF
space. This turns the problem into a finite-dimension linear
problem while removing the need to evaluate kernel func-
tions [29]. Let zk(n) be the mapping of rk(n) into the RFF
space RD. Then, the kernel evaluation can be approximated
as κ(rl(n), rk(i)) ≈ zTk (i)zl(n), and the estimate ŷl(n) in (4)
can be approximated by

ŷl(n) ≈
( n∑
i=1

K∑
k=1

αik zk(i)
)T

zl(n) = hTzl(n), (8)

where h ∈ RD is the representation of the function f(·) in the
RFF space. Let the matrix Z(n) = [z1(n) z2(n) . . . zK(n)]
describe the RFF mapping of all input vectors at time n. Now,
the optimization problem becomes

h∗(n) = arg min
h∈RD

E
[
‖y(n)− ZT(n)h‖22

]
. (9)

Similar to (7), approximating the solution through stochastic
gradient descent iterations yields the update rule

h(n+ 1) = h(n) + µZ(n)e(n), (10)

where e(n) , y(n)− ZT(n)h(n).

The estimates α in (7) and h in (10) require knowledge
of the input of the entire graph, which can be impractical in
applications without a centralized processing unit. Therefore,
we consider now a distributed implementation of the GKLMS,
named graph diffusion KLMS (GDKLMS).

C. GDKLMS using RFF

The global optimization problem (9) can be rewritten as the
following separable problem

(ψ∗1(n), . . . ,ψ
∗
K(n))= argmin

ψ1,...,ψK∈RD

K∑
k=1

E[(yk(n)−zTk (n)ψk)2],

(11)
where ψk is the local estimate of h at node k. Prob-
lem (11) is solved in a distributed fashion by minimizing
E
[
(yk(n)− zTk (n)ψk)

2
]

at each node. Similar to the central-
ized case, denoting ek(n) = yk(n)− zTk (n)ψk(n), the update
rule for ψk is given by

ψk(n+ 1) = ψk(n) + µ ek(n)zk(n). (12)

We now adopt the adapt-then-combine (ATC) strategy to
improve individual estimates via graph diffusion [11], [12],
[19], [30], [32]. The parameter update of hk(n) at node

k is obtained by combining the local estimates from its
neighborhood. The ATC update rule for the GDKLMS using
RFF is given by

ψk(n+ 1) = hk(n) + µ ek(n)zk(n), (13a)

hk(n+ 1) =
∑
l∈Nk

alk ψl(n+ 1), (13b)

where combination coefficients alk are non-negative and sat-
isfy the condition

∑
l∈Nk

alk = 1 [32].
We note that if coherence-check is implemented for indi-

vidual nodes, it can lead to unequal dictionaries across the
graph, making it challenging to implement the algorithm in
a distributed fashion [28]. As an alternative, we consider
the construction of a pre-trained centralized dictionary [19].
The ATC approach using coherence-check proposed in [19]
can be generalized for graph kernel filters, such that each
node k updates its coefficient vector αk by combining the
local estimates from its neighborhood. The dictionary can be
obtained in a centralized way and broadcasted to the entire
network or by a single dedicated node that shares its dictionary
with all nodes. Moreover, the pre-training of the dictionary
depends on available training data. Therefore, we note that
RFF offer more flexibility for distributed implementations than
the coherence-check approach, as the dimension of the RFF
space can be set equally for all nodes.

IV. MEAN CONVERGENCE ANALYSIS

In this section, we study the mean convergence of the
GDKLMS using RFF. For this, at network-level, we define
the filter coefficient vector in RFF space hg = 1K ⊗
h, the estimated filter coefficient vector in RFF space
hg(n) = [hT

1 (n)h
T
2 (n) . . . h

T
K(n)]T, and the input data

matrix Z(n) = blockdiag
{
z1(n), z2(n), . . . , zK(n)

}
, where

blockdiag{·} denotes the block-diagonal-stacking operator.
The symbol 1K is a column vector of size K × 1 with every
element taking the value one and ⊗ denotes the right Kro-
necker product operator. Combination coefficients are gathered
into a stochastic matrix A such that [A]k,l = akl. From these
definitions, the network-level data model is given by y(n) =
ZT(n)hg + υ(n), where υ(n) = [υ1(n) υ2(n) . . . υK(n)]T.
Using these definitions, the network-level update recursion of
the GD-KLMS using RFF can be stated as

hg(n+ 1) = A (hg(n) + µZ(n)e(n)) , (14)

where A = AT ⊗ ID. Denoting the global weight deviation
vector of the proposed GDKLMS using RFF at time index
n as h̃g(n) = hg − hg(n), and considering that Ahg = hg
(since the matrix A is left stochastic), from (14), the recursion
for h̃g(n) can then be obtained as

h̃g(n+ 1) = B(n)h̃g(n)− µ AZ(n)υ(n), (15)

where B(n) = A
(
IDK − µZ(n)ZT(n)

)
.

Taking the statistical expectation on both sides of (15),
assuming statistical independence between hk(n) and zk(n),
∀k ∈ N [31], and considering that the observation noise υk(n)
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Fig. 1. Learning curves (network-level MSE vs iteration index) for the proposed algorithms.

is a zero mean i.i.d. random sequence, which is taken to be
independent of any other signal, we obtain

E[h̃g(n+ 1)] = B E[h̃g(n)], (16)

where B = E[B(n)] = A
(
IDK − µRz

)
with Rz =

E[Z(n)ZT(n)] = blockdiag(Rz,1,Rz,2, . . . ,Rz,K), with
Rz,k = E[zk(n)zT

k(n)]. Note that the vector zk(n) is the
representation of rk(n) in the RFF space. So the input vectors
zk(n), for k ∈ N , may not satisfy both zero-mean and
Gaussian distribution conditions [24]. However, if the basis of
the RFF space is generated in a way such that the basis vectors
vi 6= vj for any i 6= j, the autocorrelation matrix Rz,k, for
k ∈ N will be strictly positive definite [24]. Therefore, from
(16), it is easily seen that limn→∞ E

[
h̃g(n)

]
attains a finite

value if and only if ‖B‖ < 1, where ‖ · ‖ denotes any matrix
norm. We derive a convergence condition in terms of µ, by
constraining the block maximum norm of the matrix B (i.e.,
‖B‖b,∞). Using the properties of block maximum norm [32],
we can write

‖B‖b,∞ ≤ ‖A‖b,∞‖IDK − µRz‖b,∞. (17)

Using [32, Lemma D. 3(a), D. 5], a sufficient condition for
E[h̃g(n)] to converge asymptotically in mean is given by
ρ(IDK − µRz) < 1, or, equivalently, |1− µλj(Rz))| < 1 for
j ∈ {1, 2, . . . , DK}, where ρ(·) denotes the spectral radius of
the argument matrix and λj(Rz) denotes the jth eigenvalue
of Rz . After solving this, we obtain the following condition
on µ:

0 < µ <
2

max
∀k∈N

{
max
∀i
{λi( Rz,k)}

} . (18)

V. NUMERICAL RESULTS

We validate the performance of the proposed algorithms
on a connected Erdös-Renyi graph consisting of 20 nodes
with edge probability equal to 0.2. The shift matrix S is
constructed as follows: first, the existing edges, according to
the previously constructed graph, receive a weight value drawn
from the uniform distribution in the interval (0, 1]; each entry
skl receives the value of the corresponding edge weight or
zero if the edge does not exist; the eigenvalues {λk}Kk=1 of S

are normalized by the largest eigenvalue such that |λk| ≤ 1.
Input signal x(n) and observation noise υ(n) are drawn
from zero-mean normal distributions with covariance matrices
Rx = diag{σ2

x,k} and Rυ = diag{σ2
υ,k}, respectively, where

σ2
x,k are drawn from the uniform distribution in [1, 1.5] and
σ2
υ,k from [0.1, 0.15]. For distributed implementations, the

combination coefficients akl are computed according to the
Metropolis rule [32]. We used a Gaussian kernel with σ2 = 1.
For a filter of length L = 4, we aim at estimating the nonlinear
function given by

f(rk(n)) =
√
rk,1(n)2 + sin2(rk,4(n)π)

+ (0.8− 0.5 exp(−rk,2(n)2)rk,3(n)
(19)

The network-level MSE given by MSE(n) =
1
K

∑N
k=1 e

2
k(n) was considered as the performance metric,

and results are displayed by plotting the MSE versus iteration
index n, averaging over 1000 independent experiments.
In order to compare coherence-check-based approaches
with RFF-based approaches, the adaptation step size µ was
adjusted so that the learning curves achieve similar steady
network-level MSE. A centralized training dataset was used
for the coherence-check simulations to pre-train the dictionary
and broadcast it to all nodes before the learning iterations.
The number of training samples used in the pre-training is not
considered in the results. Moreover, we note that the linear
approaches, namely the graph LMS and the graph diffusion
LMS [12], could not model the target function reasonably.

Fig. 1a shows the learning curves for centralized solutions.
Specifically, we compare the GKLMS without dictionary
sparsification with µ = 0.1 to the solutions using RFF and
coherence-check. The value D ∈ {16, 32} represents both the
dimension of the RFF space and the size of the pre-trained
dictionary for the coherence-check approach. Results show
that the GKLMS without dictionary sparsification, coherence-
check, and RFF based algorithms can effectively represent the
target function. Fig. 1a also shows that, for the same D and
similar values of steady-state network-level MSE, the RFF
based algorithm converges faster than the coherence-check-
based one. Moreover, comparing the plots for D = 32 to the
GKLMS plot shows that both the coherence-check and RFF



based algorithms can approximate the graph KLMS without
sparsification as D increases.

Fig. 1b shows the results for the distributed GDKLMS
using coherence-check and RFF. Similar to the centralized
case, the plots show that the coherence-check and RFF-
based approaches can effectively represent the target function,
achieving network-level MSE of approximately −10 dB for
D = 16 and −14 dB for D = 32. Again, the RFF-based
solution exhibits faster convergence for both values of D when
the steady-state network-level MSE is matched.

VI. CONCLUSIONS

This paper introduced nonlinear graph filters that operate
in the reproducing kernel Hilbert space. To this end, a cen-
tralized graph kernel LMS (GKLMS) algorithm was derived.
To overcome the growing dimension problem encountered
in the centralized GKLMS algorithm, coherence-check based
dictionary-sparsification and random Fourier feature (RFF)
based approaches were proposed. Furthermore, diffusion-
based distributed implementations of coherence-check and
RFF-based graph KLMS algorithms were developed to update
filter parameters through local communications and in-network
processing. Mean convergence conditions on the adaptation
step size were established for the proposed GDKLMS using
RFF. Numerical simulations were conducted to demonstrate
the performance of the proposed algorithms. Although the
coherence-check and RFF-based approaches effectively es-
timate the nonlinear graph filter, the RFF-based approach
exhibits a faster convergence rate than the coherence-check
based approach.
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