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Abstract—This paper develops a fully distributed differentially-
private learning algorithm based on the alternating direction
method of multipliers (ADMM) to solve nonsmooth optimization
problems. We employ an approximation of the augmented La-
grangian to handle nonsmooth objective functions. Furthermore,
we perturb the primal update at each agent with a time-
varying Gaussian noise with decreasing variance to provide zero-
concentrated differential privacy. The developed algorithm has
competitive privacy-accuracy trade-off and applies to nonsmooth
and non necessarily strongly convex problems. Convergence and
privacy-preserving properties are confirmed via both theoretical
analysis and simulations.

I. INTRODUCTION

Distributed machine learning algorithms have garnered sig-
nificant research attention recently because of their capacity
to process massive amounts of data over a network of agents
[1], [2]. These methods have various applications including,
monitoring of smart grids [3], statistical data analysis [4], and
wireless sensor networks [5].

In many applications, the data treated by the agents
is sensitive, and adversaries may try to extract private
information from the network. It is, therefore, necessary
to implement privacy mechanisms [6]. In this context,
differential privacy provides a mechanism that protects each
individual’s privacy by ensuring minimal changes in the
algorithm’s output, whether the individual’s information is
present or not in the database [7], [8]. Introducing this type
of privacy has the advantage of protecting from honest-but-
curious agents unaffected by standard encryption techniques
[6], [9]. Many interesting objectives can not be accurately
modeled as strongly convex and smooth; for example, the
least absolute deviation and generalized LASSO objectives
[10], [11]. Therefore, it is necessary to develop algorithms
applicable to these more challenging functions [12], [13].

In privacy-preserving learning, it is desirable to achieve
good accuracy while providing high privacy guarantees. For
this purpose, the idea of zero-concentrated differential privacy
(zCDP) was introduced in [8] as an alternative to the standard
(ε, δ)-differential privacy (DP). A comparison between the
DP and zCDP metrics can be found in [7], [14], [15]. The
zCDP has received much attention as it allows for better
accuracy than DP while maintaining the same privacy level
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[6], [14], [16], [17].

Several privacy-preserving distributed information
processing techniques have been introduced in recent
years [?], [18]–[26]. The algorithms in [22], [23] aim to limit
an agent’s privacy leakage at a single iteration. The work
[24] extends the privacy leakage analysis to encompass the
computation’s whole length. The common assumption in these
works is that the objective functions are smooth and strongly
convex. In [?], [20], [21], smooth and non-strongly convex
objectives are treated. In [19], the regularizer function can
be nonsmooth, but the loss function is assumed smooth. All
the above algorithms only offer solutions for problems with
convex, smooth loss functions. In [27], the objective functions
are not assumed to be smooth; however, the presented
algorithm is not fully distributed since a central coordinator is
required, and this algorithm uses an all-to-all communication
protocol. Therefore, a fully distributed privacy-preserving
signal processing technique that can accommodate nonsmooth
and non-strongly convex loss functions is still lacking.

This paper proposes a fully distributed privacy-preserving
algorithm that solves optimization problems with nonsmooth,
not necessarily strongly convex, objective functions when
data is distributed over a multi-agent network. The agents
will use their local data-set and the received information to
compute and update a local estimate of the solution. They
will not share their private data but instead a noisy version
of their estimate. We perturb the primal variable by adding
Gaussian noise with a decreasing variance to ensure zero-
concentrated differential privacy. Also, we bound the total
privacy leakage of the agents throughout all the iterations. We
use an approximation of the augmented Lagrangian with an
l2-norm prox-function to adapt our algorithm to the objective
function’s nonsmooth nature.

II. PROBLEM STATEMENT

We consider a connected network of K ∈ N agents
modeled as an undirected graph G(K, E) where the vertex set
K = {1, . . . ,K} corresponds to the agents and the edge set
E contains the |E| = E communication links. In the fully
distributed setting, an agent k ∈ K can only communicate with
its neighbors whose indexes are in the set Nk with cardinality
|Nk|.



Each agent k ∈ K has a private data set Dk :=
{(Xk,yk) : Xk = [xk,1, . . . ,xk,Mk

]T ∈ RMk×P , yk =
[yk,1, . . . , yk,Mk

]T ∈ RMk}, where Mk is the number of data
samples at agent k and P is the number of features in the
data.

We consider the regularized empirical risk minimization
(ERM) problem that is expressed as

min
β

K∑
k=1

( 1

Mk

Mk∑
j=1

`(xk,j ,yk,j ;β) +
λ

K
R(β)

)
, (1)

where ` : RMk×P × RMk × RP → R is the loss function,
R : RP → R is the regularizer function, and λ > 0 is the
regularization parameter. We consider the learning problem
where `(·) and R(·) are convex, but not necessarily strongly
convex, and neither are they necessarily smooth.

To obtain a fully distributed solution for (1), we recast
the above optimization problem as the following constrained
minimization problem

min
{βk}

K∑
k=1

( 1

Mk

Mk∑
j=1

`(xk,j ,yk,j ;βk) +
λ

K
R(βk)

)
s.t. βk = zlk, βl = zlk, l ∈ Nk, ∀k ∈ K,

(2)

where the primal variables V := {βk}Kk=1 represent local
copies of β at the agents, and the equality constraints en-
force consensus. The auxiliary variables Z := {zlk}l∈Nk

are
only used to derive the local recursions, and are eventually
eliminated.

III. DISTRIBUTED LEARNING WITH NONSMOOTH
OBJECTIVES

This section introduces the proposed algorithm’s core
components and the necessary modifications to deal with
nonsmooth objective functions.

To solve the minimization problem (2) with the ADMM
in a distributed manner, we need to form the augmented
Lagrangian, given by

Lρ(V,M,Z) =

K∑
k=1

`(Xk,yk;βk)

Mk
+
λR(βk)

K

+

K∑
k=1

∑
l∈Nk

[
µlTk (βk − zlk) + γlTk (βl − zlk)

]
(3)

+
ρ

2

K∑
k=1

∑
l∈Nk

(
||βk − zlk||2 + ||βl − zlk||2

)
where ρ > 0 is a penalty parameter and
M := {{µlk}l∈Nk

, {γlk}l∈Nk
}Kk=1 are the Lagrange

multipliers associated with the constraints in (2).

Given that the Lagrange multipliers M are initialized to
zero, by using the Karush-Kuhn-Tucker conditions of optimal-
ity for (2) and setting γtk = 2

∑
l∈Nk

(γlk)t, it can be shown
that the Lagrange multipliers {µlk}l∈Nk

and the auxiliary

variables Z are eliminated [2], [28]. The resulting ADMM
algorithm reduces to the following iterative updates at agent
k

βt+1
k = arg min

βk

[
fk(βk) + βTk γ

t
k + ρ

∑
l∈Nk

∥∥∥∥βk − βtk + βtl
2

∥∥∥∥2
]

γt+1
k = γtk+ρ

∑
l∈Nk

(
βt+1
k −β

t+1
l

)
(4)

with

fk(βk) =
`(Xk,yk;βk)

Mk
+
λR(βk)

K
(5)

To handle nonsmooth `(·) and R(·) functions, we take the
first-order approximation of fk with an l2-norm prox function,
denoted as f̂k. Similarly, as in [27], such an approximation is
given by

f̂k(βk;Vt) =
`(Xk,yk;βtk)

Mk
+
λR(βtk)

K
+

∥∥βk − βtk
∥∥2

2ηt+1
k

(6)

+
(
βk − βtk

)T (`′(Xk,yk;βtk)

Mk
+
λR′(βtk)

K

)
where Vt = {βtk, k ∈ K}, ηtk is a time-varying step-size,
and `′(·) and R′(·) denote the subgradients of `(·) and R(·),
respectively.

Finally, the steps of the algorithm at agent k are given by
• Primal update :

βt+1
k = arg minβk

[
f̂k(βk;Vt) + βTk γ

t
k

+ρ
∑
l∈Nk

∥∥∥∥βk − βt
k+βt

l

2

∥∥∥∥2]
• Dual update :

γt+1
k = γtk+ρ

∑
l∈Nk

(
βt+1
k −β

t+1
l

)
Taking the first-order approximation of fk leads to an

inexact update at a given iteration; however, the algorithm
does not need to solve the problem with high precision at
each iteration to guarantee overall accuracy [27]. In the end,
considering L̂ρ instead of Lρ in the primal update makes
the algorithm capable of solving nonsmooth objectives with
a minimal impact on overall accuracy.

IV. PRIVACY-PRESERVING DISTRIBUTED LEARNING

This section introduces the privacy-preserving aspect of our
algorithm and contains privacy and convergence analysis.

A. Distributed Algorithm with Primal Variable Perturbation

To prevent the leakage of private information of the par-
ticipants, we introduce privacy in our algorithm via primal
variable perturbation. That is, before sharing their local esti-
mate βtk with their neighbors, the agents will perturb it with
zero-mean Gaussian noise. The perturbed estimate of agent k



at iteration t will be denoted β̃
t

k. Consequently, the local steps
of the algorithm, for agent k at iteration t, are as follows:

βt+1
k = arg min

βk

[
f̂k(βk; Ṽt) + βTk γ

t
k (7)

+ ρ
∑
l∈Nk

∥∥∥∥βk − β̃
t

k + β̃
t

l

2

∥∥∥∥2
]

β̃
t+1

k = βt+1
k +N (0, σ2

k,t+1IP ) (8)

γt+1
k = γtk+ρ

∑
l∈Nk

(
β̃
t+1

k −β̃
t+1

l

)
(9)

where Ṽt = {β̃
t

k, k ∈ K} is composed of the perturbed
primal variables, β̃

t

k, and every step can be implemented
in a fully distributed manner as they only involve variables
available within the agent’s neighborhood.

We may consider different perturbation strategies to
choose the value of the noise perturbation’s variance in (8).
Regardless of the chosen perturbation, the more messages are
exchanged amongst agents, the easier it is for an adversary to
extract information by aggregating the stalked messages [27].
Therefore, the total privacy of the algorithm decreases with
the number of iterations.

Suppose the value of the noise perturbation’s variance in
(8) decreases slowly, at a rate of 1/

√
t, t being the iteration

index. In that case, the resulting algorithm can be seen
as a fully distributed version of the DP-ADMM algorithm
introduced in [27]. Both DP-ADMM and its distributed
version, which we denote DDP-ADMM, use conventional
(ε, δ)-differential privacy. In (ε, δ)-differential privacy, the
privacy guarantee at each iteration decreases very slowly,
most of the loss in privacy is due to the number of messages.

In contrast, if the noise perturbation’s variance decreases
at a linear rate R < 1 throughout the iterations, i.e.,
σ2
k,t = Rσ2

k,t−1, then we implement the novel dynamic
zero-concentrated differential privacy. We denote this
fully distributed algorithm implementing dynamic zero-
concentrated differential privacy CDP-ADMM (concentrated
DP-ADMM). In CDP-ADMM, the privacy loss due to the
number of messages is of the same order as the privacy loss
due to the decreasing variance. This method achieves better
accuracy than (ε, δ)-differential privacy with the same level
of privacy [14], [18].

The CDP-ADMM and DDP-ADMM algorithms are
described in Algorithm 1 and solve (2) in a fully distributed
fashion. They differ only in the variance of the noise added in
(8). DP-ADMM solves (1) directly. In the simulation section,
we will compare the performances of these three algorithms.

Algorithm 1 CDP-ADMM & DDP-ADMM

1: At all agents k ∈ K, initialize β0
k = 0, γ0

k = 0,
And run locally:

2: for k = 1, 2, . . . do
3: Update primal variable βtk as in (7)
4: Perturb βtk into β̃

t

k as in (8)
5: Share β̃

t

k with agents in Nk
6: Update dual variable γtk as in (9)
7: end for

B. Privacy Analysis

To analyze the privacy guarantee of CDP-ADMM in terms
of differential privacy, we first need to measure the impact
of an individual’s absence in the database. This is done by
computing the l2-norm sensitivity. Then we can calibrate
the magnitude of the noise added to βtk to achieve dynamic
zero-concentrated differential privacy.

Definition I. We define the l2-norm sensitivity by

∆k,2 = max
Dk,D′k

∥∥∥βtk,Dk
− βtk,D′k

∥∥∥ (10)

where βtk,Dk
and βtk,D′k denote the local primal variable

updates from two neighboring data sets Dk and D′k differing
in only one data sample (x′k,Mk

, y′k,Mk
).

Two parameters govern the dynamic zero-concentrated
differential privacy metric. The first one is the previously
mentioned decrease rate of the variance, R. The second one,
denoted ϕtk, represents the privacy ensured for agent k at
iteration t. A low value of ϕtk ensures more privacy.

As in [27], we make the following necessary assumption.

Assumption 1. There exists a constant c1 such that
||`′(·)|| 6 c1.

Lemma I. Under Assumption 1, the l2-norm sensitivity in zero-
concentrated differential privacy is given by

∆k,2 = max
D,D′
||βtk,D − βtk,D′ || =

2c1

Mk(2ρ|Nk|+ 1
ηt )

(11)

Proof. The proof follows from considering the explicit ex-
pressions of βtk,D and βtk,D′ , obtained via (6). The equality is
obtained by upper-bounding the norm of their difference via
the triangle inequality and the use of Assumption 1.

Theorem I. Under Assumption 1, the algorithm satisfies ϕk,t-
CDP with the relation between ϕk,t and σ2

k,t is given by

σ2
k,t =

∆2
k,2

2ϕk,t
. (12)

Proof. We begin the proof by using [14, Lemma 2.5] on
the distributions obtained for βtk,D and βtk,D′ to obtain the
α-Rényi divergence, necessary to establish zCDP. We then



apply Lemma I to the obtained α-Rényi divergence, replacing
the distance between local estimates with its upper bound.
Finally, we consider the probability of a given output in two
neighboring datasets, and establish the formula by computing
the ratio of these probabilities.

Corollary. For any R ∈ (0, 1) and δ ∈ (0, 1), CDP-ADMM
guarantees (ε, δ)-differential privacy with ε = max0<k<K εk,
where εk = ϕk,∞ + 2

√
ρ∞k log

1
δ and ϕk,∞ = ϕk,1

1−RT

RT−1−RT .

Proof. We use [14, Lemma 1.7] and Theorem I to prove the
privacy guarantee of CDP-ADMM in the (ε, δ)-DP metric for
a given agent, and then use [14, Prop 1.3] to obtain the total
privacy guarantee of the algorithm in the (ε, δ)-DP metric.

Remark. Thanks to the result of the corollary, we can
enforce all three algorithms to provide the same conventional
(ε, δ)-differential privacy guarantees in the simulations.

C. Convergence Analysis

Under the basic assumption that the objective function is
convex, the CDP-ADMM algorithm converges to the optimal
solution for any R ∈ (0, 1). We give only the main ideas of
the proof. We define

f̂(β̄;Vt) =

K∑
k=1

f̂k(βk;Vt) (13)

where β̄ = [βT1 ,β
T
2 , ...,β

T
K ]T and f̂k(·) is the function defined

in (6). Then, convergence follows from employing [29, Lemma
1,2,3] and [29, Th. 1] with f̂ in place of the objective used in
[29], and employing Jensen’s inequality.

V. SIMULATIONS

To illustrate the performance of the CDP-ADMM
algorithm, we consider the Lasso objective, i.e., we have
`(Xk,yk;βk) = ||Xkβk − yk||2 and R(βk) = ||βk||1.
Further, we consider a network of K = 50 agents, each
with 50 local observations of the unknown parameter
β of dimension P = 8. The observations of agent k
are stored using the couple of matrices (Xk,yk). Xk’s
entries are i.i.d. zero-mean unit-variance Gaussian random
variables, and yk contains the corresponding response vector
obtained with y = Xθ + w, with θ ∈ RP and w ∈ RMk

chosen as random vectors with distribution N (0, IP ) and
N (0, 0.1IMk

), respectively. The regularization parameter λ
is set to 0.001||XTy||∞ as in [30] and the penalty parameter
ρ is set to 4.

Figure 1 shows the normalized error, defined as∑K
k=1 ||β

t
k − βc||2/||β

c||2, versus iteration index t, βc
being the centralized solution obtained by the CVX toolbox
[31]. The algorithms are tuned to provide the same total
privacy guarantee. The initial faster convergence of DP-
ADMM is due to its broadcast nature while the fully
distributed algorithms converge at the same speed initially.
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Fig. 1. Normalized error vs. iterations.
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Fig. 2. Privacy-accuracy trade-off.

We notice that, after about 125 iterations, the convergence of
DDP-ADMM drastically slows down, we can conjecture that
the high level of noise does not allow better convergence.
CDP-ADMM, however, continues to reach higher accuracy at
each iteration and eventually reaches a higher accuracy than
DP-ADMM just before 200 iterations. We observe that the
use of zero-concentrated differential privacy allows for better
accuracy given the same privacy constraints.

Figure 2 shows the normalized error obtained by the al-
gorithms after 200 iterations versus their total privacy loss.
We recognize the values obtained in Fig. 1 for a total privacy
loss equal to 10. We consider a total privacy loss between
1 and 14 because it corresponds with an ε between 0 and
1 in (ε, δ)-differential privacy. We can see that the privacy-
accuracy trade-off of both algorithms is very similar except
that the one for CDP-ADMM is consistently lower than the
one for DDP-ADMM. This means that for a given privacy
guarantee, CDP-ADMM can achieve higher accuracy in 200
iterations.



VI. CONCLUSION

We developed a fully distributed differentially private learn-
ing algorithm based on the alternating direction method of
multipliers to solve nonsmooth optimization problems. Our
algorithm does not rely on any centralized processing and
can handle nonsmooth loss and regularizer functions thanks
to the first-order approximation of the objective functions.
Furthermore, the application of zero-concentrated differential
privacy via primal variable perturbation allows us to achieve
a competitive privacy-accuracy trade-off.

REFERENCES

[1] B. Ying, K. Yuan, and A. H. Sayed, “Supervised learning under
distributed features,” IEEE Trans. Signal Process., vol. 67, no. 4, pp.
977–992, Feb. 2019.

[2] G. B. Giannakis, Q. Ling, G. Mateos, and I. D. Schizas, “Splitting
Methods in Communication, Imaging, Science, and Engineering,” in
Scientific Computation. Springer Int. Publishing, 2016, pp. 461–497.

[3] S. Nabavi, J. Zhang, and A. Chakrabortty, “Distributed optimization
algorithms for wide-area oscillation monitoring in power systems using
interregional PMU-PDC architectures,” IEEE Trans. Smart Grid, vol. 6,
no. 5, pp. 2529–2538, Mar. 2015.

[4] D. Froelicher, J. R. Troncoso-Pastoriza, J. S. Sousa, and J.-P. Hubaux,
“Drynx: Decentralized, secure, verifiable system for statistical queries
and machine learning on distributed datasets,” IEEE Trans. Inf. Forensics
and Secur., vol. 15, pp. 3035–3050, 2020.

[5] P. A. Forero, A. Cano, and G. B. Giannakis, “Distributed Clustering
Using Wireless Sensor Networks,” IEEE J. Sel. Topics Signal Process.,
vol. 5, no. 4, pp. 707–724, 2011.

[6] C. Dwork and A. Roth, “The Algorithmic Foundations of Differential
Privacy,” Found. Trends Theor. Comput. Sci., vol. 9, pp. 211–407, Aug.
2014.

[7] C. Dwork, N. Kohli, and D. Mulligan, “Differential Privacy in Practice:
Expose your Epsilons!” J. Privacy and Confidentiality, vol. 9, no. 2,
Oct. 2019.

[8] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Proc. Conf. Theory Cryptography,
2006, pp. 265–284.

[9] A. Paverd, A. Martin, and I. Brown, “Modelling and automatically
analysing privacy properties for honest-but-curious adversaries,” Tech.
Rep., Oct. 2014.

[10] J. E. Gentle, “Least absolute values estimation: An introduction,” Com-
mun. Statist.-Simul. Comput., vol. 6, no. 4, pp. 313–328, Jan. 1977.

[11] V. Roth, “The Generalized LASSO,” IEEE Trans. Neural Netw., vol. 15,
no. 1, pp. 16–28, Feb. 2004.

[12] F. H. Clarke, “Optimization and nonsmooth analysis.” SIAM, 1990.
[13] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, and P. R. Wolenski, “Nonsmooth

Analysis and Control Theory,” vol. 178. Springer Science & Business
Media, 2008.

[14] M. Bun and T. Steinke, “Concentrated Differential Privacy: Simplifica-
tions, Extensions, and Lower Bounds,” in Theory of Cryptography Conf.
Springer, 2016, pp. 635–658.

[15] B. Jayaraman and D. Evans, “Evaluating differentially private machine
learning in practice,” in 28th USENIX Secur. Symp., 2019, pp. 1895–
1912.

[16] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating Noise
to Sensitivity in Private Data Analysis,” in Theory of Cryptography.
Springer Berlin Heidelberg, 2006, pp. 265–284.

[17] C. Dwork and G. N. Rothblum, “Concentrated differential privacy,”
arXiv preprint arXiv:1603.01887, 2016.

[18] J. Ding, Y. Gong, M. Pan, and Z. Han, “Optimal differentially private
ADMM for distributed machine learning,” Available at http://arxiv.org/
abs/1901.02094, Feb. 2019.
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