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Abstract

Wave-induced response of a closed floating fish cage consisting of a vertical circular cylinder with an external

toroidal floater is studied theoretically and experimentally. A main purpose was to investigate how the

internal sloshing would influence the global response of the cage, the interior wave elevation and also the

mean drift loads. An ocean basin laboratory was used in order to minimize tank wall effects. An optical

system involving eight markers was used to obtain experimental values for radial elastic deformations of the

cylindrical part. The closer a coupled natural period between body motions and sloshing is to a corresponding

natural sloshing period, the more nonlinear sloshing can be. In the examined case, the highest coupled natural

period between surge, pitch and sloshing is 0.8 times the highest natural sloshing period. Linear potential

flow theory can, in general, explain experimental transfer functions of rigid-body motions and sloshing due

to rigid-body motions obtained by both regular wave and truncated white noise tests. Theoretical second

order mean wave drift forces based on a rigid body and potential flow agree also well with experimental

results. Resonant 3D sloshing was excited due to ovalizing hydroelastic structural modes in both regular

waves and white-noise tests. The closeness between the corresponding structural and sloshing frequencies

caused large response. A linear hydroelastic analysis based on WAMIT and LS-DYNA could partly explain

the response. Parametric resonant pitch response occurred experimentally at large wave periods partially

due to in and out of water motion of portions of the floater and was explained by treating the pitch as

uncoupled motion modeled by the Mathieu equation. The pitch motion predicted by linear potential flow

theory was, in general, unsatisfactory when the floater was partly out of the water occasionally.
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1. Introduction

There exists a variety of floating fish farms with net cages. Since salmon lice and pollution is of major

concern, closed fish farms have recently been proposed to have a better control over the internal water

quality. Depending on the material, closed fish cages can be divided into flexible membrane cages (e.g.

fabric), semiflexible/elastic cages (e.g., GRP), and rigid cages (e.g., concrete or steel). They have typically a5

vertical symmetry axis at rest with a circular shape in the waterplane. Examples on diameters in the water

plane are 40-50m. A pump system is needed for water exchange in the tank, and waste must be removed

from the tank. Typical steady flow velocities caused by the pumping system are 0.2-0.4 m/s. Since the water

inside a closed tank causes statically destabilizing roll and pitch moments, torus-shaped floaters around the

fish cage have been proposed. The hydrodynamic flow associated with closed fish cages differs strongly from10

net cages. Potential flow effects with wave generation caused by the cage dominate for closed fish cages,

while viscous flow is dominant for net cages. This has consequences both for the wave induced response and

mooring system analysis.

Wave-induced sloshing (interior resonant wave motion) becomes an issue in closed fish cages as well

known in many engineering applications (Faltinsen and Timokha, 2009). Lateral tank excitations involving15

the lowest natural sloshing frequency is of primary sloshing concern for a rigid tank. When the lateral tank

motion is prescribed and harmonic, the liquid motion at the lowest natural sloshing frequencies can dependent

on the excitation level be strongly nonlinear. Free-surface nonlinearities can develop three dimensional (3D)

liquid motion. For instance, forced horizontal motion of a vertical circular tank in the vicinity of the lowest

sloshing frequency can cause swirling or irregular chaotic 3D motions that depend on the forcing amplitude20

and the liquid depth. The interior wave motion becomes secondary for larger wavelength-to-diameter ratio.

However, it matters for roll and pitch that the interior free surface will then remain nearly horizontal.

When the tank is part of a structure moving in incident waves, the sloshing behavior differs from that

induced by prescribed tank motion. For instance, if a rigid body with a tank is restrained to only move in

surge, the body amplitude will according to linear theory and steady-state conditions be zero when the wave25

frequency is equal to a natural sloshing frequency ω2i−1, i = 1, 2, .. associated with antisymmetric natural

sloshing modes. The latter is a consequence of that the magnitude of the surge added mass Aslosh11 associated

with sloshing is infinite at the natural sloshing frequencies. In the case of coupled surge-sloshing system, the

maximum response is associated with coupled surge-sloshing natural frequencies ωcoupl,2i−1. The latter are

solutions of the equation Mt+Ml+Aslosh11 (ω) = 0 when the surge restoring force is negligible. Here Mt is the30

sum of the body mass and surge added mass associated with the external flow. Furthermore, Ml is the liquid

mass in the tank. The reason for the coupled surge-sloshing frequencies ωcoupl,2i−1 is the negative values of

Aslosh11 , which can be expressed as an infinite sum where each term is a positive constant times 1/
(
ω2
2i−1 − ω2

)
.

It means that Aslosh11 can be positive or negative depending on the frequency. The consequence is, e.g., that

ωcoupl,1 > ω1. If the coupled natural frequency ωcoupl,1 is very close to the natural sloshing frequency ω1,35

the sloshing response can be violent. Faltinsen and Timokha (2021) studied this problem systematically for
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a body with a rectangular tank in 2D flow conditions and compared with model tests by Rognebakke and

Faltinsen (2003). They introduced the ratio Mt/Ml as a parameter. They found that ωcoupl,1/ω1 increased

with decreasing Mt/Ml and liquid depth-to-tank breadth ratio and that ωcoupl,1/ω1 tended to 1 (without

reaching 1) with increasing Mt/Ml and liquid depth-to-tank breadth ratio. We can generalize these findings40

by studying the response in the vicinity of any natural sloshing frequency and incorporating any relevant

body motions in finding the coupled natural frequency. For a rigid body, this means either surge and pitch

or sway, roll and yaw. Rigid-body heave can not excite sloshing according to linear theory. The fact that a

closed fish cage can be flexible and has a vertical symmetry axis at rest introduces, in particular, concern

for the lowest natural sloshing frequency with an ovalizing radial mode shape.45

While nonlinearities may matter for sloshing, the exterior potential flow can in many cases be based on

linear potential flow theory of incompressible water, for instance by Shen et al. (2020). Corrections due

to viscous flow separation may matter as damping. Wave drift forces are needed for the mooring analysis,

which can be based on a second-order potential flow analysis for the exterior flow problem. The coupled

effect of interior water behavior on the body motions must be accounted for. Current can have a non-50

negligible effect on wave drift forces. Since potential-flow wave drift forces are related to waves generated by

the structure, care is needed in model tests to minimize tank-wall interference. Second-order slowly varying

loads in irregular sea causing resonant surge, sway and yaw must also be considered as it is done for moored

floating offshore structures with spread mooring systems. Neither the latter effect nor the effect of current

are studied in this paper.55

Although studies on sloshing and the coupled motions of ships are highly relevant, for instance those

by Malenica et al. (2003), Rognebakke and Faltinsen (2003), Newman (2005) and Kim et al. (2007), there

are still some differences between a ship and a closed cage. For instance a ship normally possesses larger

Mt/Ml than the closed cage. Also, a closed cage can be more flexible and hydroelasticity may matter, with

more modes relevant than those typically important for ships. An experimental study on the wave induced60

responses of a closed flexible structure was performed by Lader et al. (2017). Linear response of a 2D closed

flexible fish cage in waves was investigated numerically by Strand and Faltinsen (2019). The motion of the

membrane was represented as the sum of rigid body motions and Fourier series with zero displacement at

the attachment to the floater. Linear frequency-domain potential flow theory of incompressible water was

used both for the interior and external flows. Strong coupling between elastic modes and rigid-body motions65

was observed. The approach was extended to investigate linear wave-induced dynamic structural stress of

a 2D semi-flexible closed fish cage by Strand and Faltinsen (2020). They compared a quasi-static analysis

with a fully coupled hydroelastic analysis to examine the soundness of assuming that the stresses in the

structure are quasi-static and concluded that whether a hydroelastic analysis is necessary depending to the

stiffness of the structure. Kristiansen et al. (2018) presented scaled physical experiments of a floating rigid70

closed-cage model in waves. Two model configurations were tested to investigate the coupling effects of the

contained water on the rigid body motions: one with the model filled with water and one with the contained
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water replaced by fixed weights. The results showed that the influence of sloshing on the rigid body motion

was significant. Mean wave loads were also affected by sloshing. The tests were performed in a towing tank

and wave reflections from the side tank walls were found to have large influence on the mean wave drift75

force. This phenomenon was also illustrated by Zhao et al. (1988) who presented experimental results and

theoretical analysis for a hemisphere in a conventional towing tank at zero and small forward speed.

In the present paper, we present results from model tests of a Froude-scaled closed cage in regular and

truncated white noise waves. The tests were conducted in a large ocean basin to minimize the disturbances

from side-wall reflections and served as a follow up of the experiments performed by Kristiansen et al.80

(2018). The paper is organized as follows. A description of the experimental set up is given at first. Next,

the technique to post-process the experimental data, including extracting rigid body motions and elastic

deformations is explained. In the last part, relevant experimental results are given and analyzed. The

focus is on the transfer functions of rigid body motions, radial elastic deformations, internal sloshing and

mean wave drift forces. Numerical results from a linear potential flow solver WAMIT are also provided85

for comparison. The effect of hydroelasticity is studied by coupling WAMIT with the structural analysis

software LS-DYNA (Hallquist, 2007). Furthermore, parametric pitch resonance is discussed.

2. Experimental setup

Model tests were performed in the Ocean Basin Laboratory at the Marine Technology Center in Trond-

heim. The basin has an overall length of 80 m and width of 50 m. The depth can vary between 0-10 m by90

an adjustable floor and was set to 5 m. All values presented hereafter are in model scale unless otherwise

noted.

The physical model used in the experiments included a vertical cylindrical closed cage moored by four

horizontal mooring lines, as shown in Figure 1. A model test scale ratio of 1:27 and Froude scaling with

geometric similarity was in mind. Two Cartesian right-handed coordinate systems were implemented in the95

model tests, one global system Oxyz referred to the basin and one local system fixed to the model. The

origin of the former is in the plane of undisturbed free surface with vertical z-axis positive upwards through

the center of the cage in calm water and positive x towards the wavemaker. The center of the model was

located at the basin center when at rest. The local body-fixed coordinate system coincides with the global

coordinate system in still water. Details of the system, including the cage model, the mooring lines, and the100

arrangement of the various measurement instruments are introduced below.

2.1. Cage model description

Photo of the cage model from the front camera is presented in the left of Figure 1. A sketch of the model

and detailed dimensions are illustrated in Figure 2. The model contained a vertical circular cylinder with

draft h =0.75 m and outer diameter D = 2R = 1.5 m. The side wall of the cylindrical cage was made of105

polycarbonate resin (Lexan) with thickness tc= 5 mm. The resulting diameter of the internal tank becomes
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Figure 1: Left: front-camera photo of the physical set-up. Right: sketch of the instrumentation setup from top view. Blue

circles: internal and external wave probes. Sky-blue circles: optical positioning markers. Yellow circles: accelerometers. Red

circles: force transducers.

Dt = 2Rt = 1.49 m. The tank bottom contains two layers, a round PVC disk on top to prevent leakage of

internal fluid and an Divynicell plate below to add buoyancy, both having a thickness of 10 mm, leading to

a tank depth ht = 0.73 m. A semi-submerged torus shaped floating collar was attached to the outside of the

cylindrical cage, providing additional static stability and buoyancy. The floating collar was made of plastic110

electrical tube with cross-sectional diameter df = 0.05 m. Two massive aluminum rings were added above

and below the floating collar to reduce the flexibility of the cage, each with a cross-sectional diameter of 20

mm. Three groups of vertical aluminum plates (both inside and outside of the tank) were used to connect

the polycarbonate plate, with 120 degrees between each. Two perpendicular steel square tubes were installed

exterior to the cage bottom to reduce the deformation of the bottom plates. The positions of the vertical115

aluminum plates and bottom steel tubes relative to the incident wave are illustrated in Figure 3, showing

an asymmetry of the model with respect to the x − z plane. The freeboard of the model was increased to

hu=0.35 m to prevent spilling of water in high pitch/roll motions by gluing two polycarbonate plates with an

horizontal curved aluminum plate. The main particulars of the model are given in Table 1. The metacentric

height given in the table is defined as GM = C55/ (ρg∇), with C55, ρ, g, ∇ the restoring coefficient for pitch120

motion, density of fresh water, gravitational acceleration and water displacement of the model, respectively.

C55 is evaluated (see Faltinsen and Timokha (2009)) as

C55 = ρg∇zb −Mgzg −Mlgzg,l

+ ρg

∫
AW,c

x2ds+ ρg

∫
AW,f

x2ds− ρg
∫

AW,l

x2ds
(1)

where M is the mass of the dry model (dry cage + floating collar), zg and zb are the corresponding center of

gravity (COG) and center of buoyancy (COB), respectively. Ml is the mass of internal water and zg,l = −ht/2
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is the corresponding center of gravity. AW,c, AW,f and AW,l are the waterplane area of the dry cage, floating125

collar and internal water, respectively. The main reason for positive C55 comes from the second last term,

i.e., the restoring provided by the floating collar. The sum of the other terms equals approximately zero,

indicating that the model is not statically stable without the floating collar.

Figure 2: Left: simplified cage model as used in FEM, including the aluminum rings, bottom steel tubes and aluminum plates.

Right: photo of the dry cage model.

Figure 3: Positions of the vertical aluminum plates and bottom steel tubes relative to the incident wave (bottom view). The

blue filled rectangles are the cross sections of the vertical aluminum plates.
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Table 1: Parameters of the cage model.

Parameter Symbol Dimension Unit

Diameter D 1.5 m

Draft h 0.75 m

Freeboard hu 0.35 m

Mass M 69.0 kg

Center of gravity (COG) zg -0.360 m

Center of buoyancy (COB) zb -0.374 m

Moment of inertia x-axis Ixx 25.86 kgm2

Moment of inertia y-axis Iyy 25.86 kgm2

Moment of inertia z-axis Izz 31.98 kgm2

Metacentric height GM 0.054 m

2.2. Mooring system description

The cage model was moored with four mooring lines in the horizontal plane, evenly distributed with 90o130

between each, see Figure 1. Each of the four mooring lines was attached far away directly to horizontal

free-hanging coil springs. The far away ends of the front two mooring lines (L1 and L4 in Figure 1) were

elevated 1 m above the calm water surface while the aft two lines (L2 and L3 in Figure 1) were elevated

to 0.6 m to avoid contact with water and disturbance of waves during the tests. The stiffness of each coil

spring was 60 N/m, yielding an equivalent stiffness ks = 169.7 N/m in x and in y directions for the system.135

Tension in each mooring line was measured by an uni-axial load-cell that connected the mooring line to the

cage. A pretension of Fpre = 45 N was applied to all mooring lines to avoid them going slack during testing.

Since the mooring lines considered are quite long, approximately 33 m each, the small height difference in

the far away ends will cause a negligible static pitch. The pretension in the mooring lines nevertheless will

provide an additional equivalent pitch restoring coefficient C55,p, expressed as C55,p = Fpre ·D. The restoring140

coefficient for pitch in Equation 1 is corrected by accounting for also the contribution of the mooring lines.

The natural periods caused by the mooring system in surge and sway are much larger than our examined

wave period range and have, therefore, negligible effect on our studied steady-state response in regular waves.

2.3. Instrumentation

The parameters of interest were global body motions, internal sloshing and mooring loads. The motions145

were measured using an optical positioning system (Qualisys Oqus) where the position of markers mounted

on the model was tracked from camera images. Eight markers (Pos1-8 in Figure 1) were installed along

the perimeter of the cage model at freeboard level, i.e., hu=0.35 m, such that also eventual flexible radial

deformations of the cage could be detected. The accuracy of the motion measured by each individual marker
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was 0.2 mm. This means a relative error of 0.02 in the experimental transfer functions when the incident150

wave amplitude is 1 cm. The marker positions with respect to the positive x-axis are provided in the left

subtable of Table 2. A set of three markers was also installed for 6 degree-of-freedom rigid-body motions

tracking, see the white box installed at the freeboard of the cage in the left of Figure 1. The rigid body

motions measured with the three markers may be biased if the cage experiences elastic vibrations, as the

setup can not distinguish the rigid motions from elastic vibrations. Wave induced accelerations of the model155

were measured by three accelerometers mounted on the cage side wall and could serve as a benchmark check

of the measured motions from the markers. Detailed arrangement of the markers and accelerometers is

illustrated in the right of Figure 1.

Table 2: Marker positions (left) and wave gauge positions (right) θ with respect to positive x-axis and anticlock-wise positive,

as defined in Figure 1.

Name Position θ[o]

Marker 1 327.9

Marker 2 301.4

Marker 3 233.9

Marker 4 216.4

Marker 5 167.0

Marker 6 118.7

Marker 7 54.6

Marker 8 32.2

Name Position θ[o]

RW1, RW9 338.3

RW2, RW10 293.3

RW3, RW11 248.3

RW4, RW12 203.3

RW5, RW13 158.3

RW6, RW14 113.3

RW7, RW15 68.3

RW8, RW16 23.3

The model was also fitted with pairs of internal and external conventional wave probes, distributed

radially at eight positions along the side wall with a radial distance 0.05R from the cage wall. This means160

that the local wave elevation at the tank was measured in the body-fixed reference frame. Sloshing of the

contained water inside the cage model was measured by the internal eight wave probes (RW1-8) while the

wave elevation outside was captured by the external eight wave probes (RW9-16). The wave gauge positions

with respect to the positive x-axis are provided in the right subtable of Table 2. Two more wave probes

were installed 5 m away from the model to measure the front and side wave field, named Wave1 and Wave3165

in Figure 1. Prior to testing, the wave field was calibrated without the presence of the model and an

additional wave probe denoted Wave2 was intalled at the center position of the model. All data acquisition

was performed with a sampling frequency of 200 Hz. Filtering of measured data was performed using an

anti-aliasing filter at 50 Hz. Tests were recorded by three video cameras (front, top and side) above the

water surface and one camera under the water surface.170
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2.4. Test conditions

The model was tested in regular waves and truncated white-noise waves. The regular wave tests were

performed at a fixed wave steepness H/λ = 1/60, with H as the wave height and λ as the wave length.

In total 24 wave periods were considered varying from 0.6 s and 1.7 s. It means that the corresponding

wavelength-to-diameter ratio λ/D changes from 0.38 to 3.0. The full scale wave height was within 0.25 m175

- 2.03 m, covering the sea conditions from small exposure to heavy exposure, according to the Norwegian

aquaculture site classification shown in Table 3. One more test with T = 2.5 s and H = 0.163 m was

also conducted to examine the response of the cage in high exposure sea state. A series of additional tests

were performed at higher wave steepness H/λ = 1/45. The regular wave tests were performed to obtain

approximately 2.3 minutes (12 minutes full-scale) data.180

In addition, two series of truncated white-noise tests were executed to obtain continuous transfer functions

within a given frequency region. The term truncated white noise is used to describe a band limited white

noise spectrum, i.e. a square spectrum with nearly equal energy for all frequencies within the upper and

lower bounds, and with zero energy outside the bounds. In the tests, the lower and upper period region

were 0.577 s (3 s full-scale) and 3.85 s (20 s full-scale) and two significant wave heights were considered, in185

particular Hs = 0.037 m (1 m full-scale) and 0.074 m (2 m full-scale). Hereafter the truncated white-noise

tests will be mentioned as white-noise tests. The white-noise tests were conducted to obtain a 34.6 minutes

(3 hours full-scale) realization of the spectrum.

Table 3: Norwegian aquaculture site classification for waves and current (StandardNorge, 2009). Hs: significant wave height;

Tp: peak period; U∞: current velocity. It is assumed irregular waves for each wave class. If regular wave is considered, the

standard says that the corresponding wave height H can be assumed to be 1.9 times the significant wave height.

Wave Hs(m) Tp(s) Exposure Current U∞(m/s) Exposure

A 0.0 - 0.5 0.0 - 2.0 Small a 0.0 - 0.3 Small

B 0.5 - 1.0 1.6 - 3.2 Moderate b 0.3 - 0.5 Moderate

C 1.0 - 2.0 2.5 - 5.1 Heavy c 0.5 - 1.0 Heavy

D 2.0 - 3.0 4.0 - 6.7 High d 1.0 - 1.5 High

E >3.0 5.3 - 18.0 Extreme e >1.5 Extreme

2.5. Decay tests

Free decay tests were carried out in surge, heave and pitch to estimate the damping ratios and natural190

periods of these free motions. The tests were started by giving the model an initial perturbation from

equilibrium in the considered mode of motion, trying to minimize the coupling with other modes. From

the free decays, the natural period of surge, heave and pitch are Tn,1 = 22.4 s (116.4 s full-scale), Tn,3 =

2.12 s (11 s full-scale), Tn,5 = 2.76 s (14.36 s full-scale), respectively. The free surface inside the tank can

be approximated as horizontal at these frequencies and surge and pitch can as a first approximation be195
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considered as uncoupled. Because it takes a long transient phase with given forcing frequency to develop

steady-state interior waves (sloshing), these tests do not provide information about coupled natural period

between surge, pitch and sloshing to be discussed below.

2.6. Resonance conditions for internal sloshing

In order to analyze the effects of sloshing phenomena inside the cage, we need to identify the occurrence200

and features of internal-water resonance and, therefore, the sloshing natural frequencies and modes. Natural

modes are nontrivial solutions to the linear boundary-value problem for the water in the partially-filled cage

without external cage excitation. According to Faltinsen and Timokha (2009), the velocity potential of liquid

motion inside an upright circular cylindrical tank can be expressed in a cylindrical coordinate system Orθz

as205

ϕm,n (r, θ, z) = Jm (km,nr)
cosh [km,n (z + ht)]

cosh (km,nht)
{

cosmθ

sinmθ
(2)

where Jm is the Bessel function of the first kind of order m and ht is the tank water depth. Furthermore, θ is

defined in the right of Figure 1. km,n = lm,n/Rt with Rt the tank radius and lm,n the non-dimensional roots

of the equation J
′

m(lm,n) = 0 (symbol prime indicates derivative of the function) and m = 0, 1, 2, ..., n =

1, 2, 3.... Both cosmθ and sinmθ modes can be excited. Given km,n, the natural periods Tm,n corresponding

to the different sloshing modes can be determined as210

Tm,n = 2π/
√
gkm,n tanh (km,nht) (3)

The surface wave patterns of the normal modes can be found as fm,n(r, θ) = ϕm,n(r, θ, 0) and the sloshing

mode shapes for m = 0, 1, 2, 3 and n = 1, 2, eight modes, are presented in Figure 4.

3. Signal processing

In this section, we will first introduce the approach to extract rigid body motions and radial elastic

deformations from the measured translatory displacements of eight markers installed at the freeboard of215

the cage. Then, the procedure to identify excitation of the sloshing modes from the internal eight wave

probes is explained. In regular waves, steady-state responses are of interest and the method to estimate the

steady-state amplitude and phase from the measured time-series is also illustrated. In the last part, a brief

explanation is given concerning the evaluation of transfer functions from the white-noise tests.

3.1. Motion measurement220

As mentioned in Section 2.3, two approaches were implemented to capture the motions of the cage, i.e.,

using eight markers along the cage wall and using a three-markers system. The three-markers system can

be used to track the 6 DOF linear rigid body motions for cases with negligible cage deformations. While

by manipulating the translatory motions of eight markers, we can obtain both the rigid body motions and

radial elastic deformations. Detailed explanation of the approach is given below.225
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Figure 4: Surface wave pattern of sloshing modes (cosmθ, m = 0, 1, 2, 3, n = 1, 2 ) and corresponding natural periods Tm,n in

a vertical circular tank with radius Rt = 0.745 m and water depth ht = 0.73 m.

According to linear theory, the translatory motions ~si of the ith marker can be related to the body

motions of the cage model as

~s = ~η1−3 + ~η4−6 × ~r + d~r (4)

where ~η1−3 and ~η4−6 are the three dimensional vectors of translatory and rotational rigid-body modes of

motion, respectively, while ~r is the position vector of the marker relative to the origin when at rest. The

additional term d~r is included to account for possible deformations of the cage. For the markers installed230

along the perimeter of the cage model with a given elevation Z, we will also operate with a cylindrical

coordinate system Orθz where x = r cos θ, y = r sin θ, z = Z. Equation 4 can be further expressed as

~s = s1~i+ s2~j + s3~k

= (η1 + zη5 − yη6)~i+ (η2 − zη4 + xη6)~j + (η3 + yη4 − xη5)~k + d~r

= (η1 + Zη5 − r sin θη6)~i+ (η2 − Zη4 + r cos θη6)~j + (η3 + r sin θη4 − r cos θη5)~k + d~r

(5)

To account for the deformation in the radial direction, at a given vertical position Z and radial distance

r = R, alternatively, we can express the radial displacements as the following Fourier series in θ

ηr (Z, t) = ~s · ~n

=
∑∞

m=0
ηr,1,m cosmθ +

∑∞

m=1
ηr,2,m sinmθ

(6)

where ~n = (cos θ, sin θ, 0) and t is time. This second approach will be pursued in the following. In Equation235

6, ηr,1,1 cos θ and ηr,2,1 sin θ are local normal component due to rigid-body surge and sway at level Z,
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respectively. This can be expressed as (η1 + Zη5) cos θ and (η2 − Zη4) sin θ, respectively. This leads to ηr,1,1

= η1 + Zη5 and ηr,2,1 = η2 − Zη4. The contributions ηr,1,2 cos 2θ and ηr,2,2 sin 2θ are radial elastic ovalizing

modes at level Z, as illustrated in Figure 5. Actually, the displacements in vertical direction along the cage

can also be expressed as a Fourier series, similar as done in radial direction but the deformations in vertical240

direction are expected to be small. Therefore, to reduce complexity, we just consider rigid body motions and

the vertical translatory motion is expressed as

ηz (Z, t) = s3

= η3 +R sin θη4 −R cos θη5

(7)

We will first show the procedure to obtain η3 and η5. Equation 7 is projected along cosnθ. It means that

both sides are multiplied by cos(nθ), n=0,1,2,etc. Then, it is integrated in θ between 0 and 2π. This gives

2π∫
0

s3 cosnθdθ =

2π∫
0

[(η3 +R sin θη4 −R cos θη5) cosnθdθ (8)

s3 is translatory motion in z direction and is a function of θ. It can be obtained by implementing cubic245

spline interpolation in θ from the measured vertical displacements of the eight markers. Using the property

of orthogonal functions, the right side of the Equation 8 equals 2πη3 when n = 0; if n = 1, the value

becomes −πRη5. Similarly, projecting Equation 6 along cos(nθ), n=0,1,2,etc, we can estimate coefficients

ηr,1,m for cosmθ modes. Known ηr,1,1 and η5, the rigid-body surge motion can be readily obtained. The

same procedure is followed to obtain the sinmθ-related terms.250

Figure 5: Illustration of the radial ovalizing modes. Black solid line: initial radial shape as a circle with radius R. Red dashed

line: shape with radial deformation 0.1R · cos 2θ. Blue dash-dotted line: shape with radial deformation 0.1R · sin 2θ.

In regular waves, the linear steady state responses oscillating with incident wave frequency ω are of
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interest. For instance, the steady state radial displacements are expressed as

ηr,s (Z, t) =
∑∞

m=0
ηra,1,m cos (ωt− εra,1,m) cosmθ +

∑∞

m=0
ηra,2,m cos (ωt− εra,2,m) sinmθ (9)

Here ηr,s is the linear steady state part of ηr. ηra,j,m and εra,j,m, with j = 1, 2 are the corresponding

amplitude and phase of cosmθ and sinmθ contributions, respectively. The phases are relative to the incident

waves, which are described by255

ζ = ζa cos (ωt+ kx) (10)

where ζa is the incident wave amplitude and k is the wave number. For all examined tests, k satisfies the

deep-water dispersion relationship, i.e. k = ω2/g.

3.2. Internal wave elevation

The wave elevations are measured relative to the tank-fixed coordinate system. To relate the internal

wave with the natural sloshing modes, Fourier modes in θ for the internal waves are extracted, based on the260

measurements from eight internal wave probes RW1-8. The free surface level inside the container at a given

radial distance r = 0.95R is expressed as

ζint (t) =
∑∞

m=0
ζ1,m cosmθ +

∑∞

m=1
ζ2,m sinmθ (11)

Employing the same strategy as done in Section 3.1, we can have the coefficients ζ1,m and ζ2,m for cosmθ

and sinmθ modes, respectively. In regular waves, the corresponding steady-state linear free surface level is

expressed as265

ζint,s (t) =
∑∞

m=0
ζa,1,m cos (ωt− εa,1,m) cosmθ +

∑∞

m=1
ζa,2,m cos (ωt− εa,2,m) sinmθ (12)

Here ζint,s is the linear steady state part of ζint. ζa,j,m and εa,j,m, with j = 1, 2 are the corresponding

amplitude and phase of cosmθ and sinmθ modes, respectively.

3.3. Transfer function in regular waves

The incident waves can be considered as deep-water waves. For illustration, a typical time history of

surge motion in regular wave is shown in the left plot of Figure 6. The considered incident-wave period and270

height are, respectively, T = 1.02 s and H = 0.027 m. There is clearly a beating component with period

of about 22.4 s. This is the natural surge period of the system consisting of mooring lines and the cage.

Longer time is needed to damp out this slowly varying component due to the small associated damping. To

estimate the steady-state response and phase, a time interval is extracted where the system is considered to

have reached steady state. The start time of this window is evaluated as ts = tp+ tramp. Here tp = Ld/Cp is275

the time needed by the wave front for the consided regular wave to travel from the wavemaker to the model

center position, by asssuming linear wave theory. Ld is the distance between the wavemaker and the model
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and Cp is the wave group velocity. tramp = 35T is used to remove the start-up transient stage, as illustrated

in the right of Figure 6. The end time is chosen as 0.95ttot with ttot the length of the measured time series.

Two strategies are adopted to evaluate the corresponding amplitude and phase of the response variable of280

interest. The first is applying the Fast Fourier transform (FFT) for the considered steady-state interval.

Then the amplitude and phase for the first harmonic component can be easily obtained. The time series is

tapered at both ends by means of a Bingham window (Harris, 1978) to reduce end-effects of the extracted

time interval. The main shortcoming of this method is the unavailability of error bar of the amplitude, which

may serve as an indication of whether steady state is achieved. Alternatively, we attempt to extract the285

response component oscillating with ω using band-pass filtering. Only signal with frequency equal to ω is

kept. A Gaussian mask (Hansen, 2014) is multiplied to the signal frequency spectrum obtained by Fourier

transform (FFT). The derived time history and the related envelope are shown in the right plot of Figure 6.

Similar as in the first method, a steady-state time window is chosen and the Hilbert transform (Oppenheim

et al., 2001) is used for calculating instantaneous properties of the resulting time series. Eventually, the290

mean values, representing the amplitude of the measurements, and the standard deviations of the envelope

curves are obtained. The phase relative to the incident wave can be easily obtained by calculating the time

offset δt of zero up-crossing between the two time series ( the response and the incident-wave signals) and

estimated as 2πδt/T . The latter method is used for further analysis of transfer functions of the measured

variables.295
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Figure 6: Left: example of time history of the surge motion of the cage for T = 1.02 s and H = 0.027 m. Right: time history

of the first harmonic component of the signal shown in the left.

3.4. Transfer function in irregular waves

For white noise tests, transfer functions can be estimated in two ways, using power spectral density

(PSD) and cross power spectral density (CPSD) of the incident wave and the measured variables (Bendat

and Piersol, 2011). To evaluate the relevant spectra, the signal is chopped into time windows. In each of

them a Fourier transform is applied to determine its frequency components. The predictions made in these300
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time windows are then averaged to produce the estimated spectra (Welch, 1967). As an example, the transfer

function of surge motion is given as

|Hη1η1 | =
√
Sη1η1/Sζζ or

Hη1ζ = Sη1ζ/Sζζ

(13)

where |Hη1η1 | is the response amplitude operator for surge from PSD, Sη1η1 is the power spectrum of surge

motion and Sζζ the power spectrum of incident wave; Hη1ζ is the complex response operator for surge from

CPSD, including both amplitude and phase information, Sη1ζ is the cross power spectrum between surge305

motion and incident wave and is a complex variable. A comparison of the response amplitude operator of

surge motion from the two methods is presented in Figure 7 versus incident wavelength-to-diameter ratio

λ/D. The two methods yield similar results for shorter waves where the system is expected to behave more

like a linear system. Larger difference is observed for longer waves, i.e. involving periods larger than the

relevant sloshing natural periods. This suggests more pronounced nonlinear effects in surge as a consequence310

of its coupling with pitch. In fact, longer waves can induce stronger nonlinearities in pitch due to possible in

and out of water on the floating collar. This explanation is supported by later Figure 13, where the linear

potential-flow solver WAMIT provides a poor prediction for pitch in longer waves. Since both the amplitude

and phase information are of interest, the method based on CPSD will be further adopted to calculate the

transfer functions for the measured variables.315
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Figure 7: Response amplitude operator of surge motion (transfer function) η1a/ζa versus relative wavelength λ/D obtained

from a truncated white-noise test with significant wave height Hs = 0.037 m. PSD = power spectral density. CPSD = cross

power spectral density.

4. Experimental results and discussions

In this section, we show and discuss selected results from the model tests for the closed cage. Firstly,

the experimental accuracy in the generation of prescribed (regular and white noise) waves is assessed. Then

transfer functions of the measured variables are shown. Finally, the mean wave drift forces acting on the cage
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are examined. Results from the linear potential flow solver WAMIT (Lee, 1995) are also provided, assuming320

a rigid structure. The sloshing part was verified by comparing with analytical expressions for surge and

pitch added mass presented by Faltinsen and Timokha (2009). Hydroelasticity was studied by combining

WAMIT with LS-DYNA (Hallquist, 2007).

4.1. Incident waves

In order to quantify the experimental reliability in generating the prescribed waves, preliminary wave-325

propagation tests were performed with no model present in the wave basin. An example of incident regular-

wave time history is given in the left plot of Figure 8 with prescribed period and height, respectively, T =

1.02 s and H = 0.027 m. To estimate the actual incident wave height, the strategy described in Section 3.3

is implemented and only the first harmonic component is considered. The averaged wave height becomes

0.0246 m, about 9% smaller than the precribed value. A more detailed comparison between the experimental330

and theoretical wave heights is shown in the right of Figure 8. The generated incident waves at the model

location were found to be in good agreement with the prescribed regular wave parameters for shorter waves,

but larger deviations were observed for longer waves.
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Figure 8: Left: example of incident regular-wave time history for prescribed period T = 1.02 s and height H = 0.027 m. Right:

comparison of the regular wave heights from the experiments (mean values and standard deviation) and from the linear wave

theory versus λ/D. Two wave steepnesses H/λ = 1/60 and 1/45 are considered.

Tests with incident waves generated according to the truncated white noise spectrum with and without

the model were also performed. An example of incident white-noise wave time history is provided in the left335

of Figure 9. The prescribed significant wave height is Hs = 0.037 m and the frequency region with energy is

between 0.208Hz and 1.732Hz, the corresponding λ/D changes between 0.346 and 15.42. Theoretically, the

waves should have equal energy within the prescribed frequency region, as shown by the red dashed line in

the right of the plot of the figure.

The actual spectral density varies but with mean value close to the theoretical value. The actual measured340

incident-wave parameters will be used when evaluating the transfer functions. However, for convenience the

prescribed incident-wave parameters will be used in the figures captions and in the main text.
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Figure 9: Left: time history of incident wave from truncated white noise spectrum with prescribed significant wave height Hs

= 0.037 m. Right: comparison of wave spectral density from the experiment with the theoretically desired value.

4.2. Transfer function of rigid cage motions

As mentioned in Section 2.3, the motions of the cage were measured with two methods, either using

the eight markers along the cage wall or obtained directly from the three-markers system. The former can345

provide both rigid motions and radial elastic deformations of the cage, while the latter can provide 6 DOF

rigid body motions directly and is only applicable for bodies acting as fully rigid. Figure 10 shows the time

histories of the surge, heave and pitch motions obtained from the two methods for the case with T = 2.5

s, H= 0.163 m and H/λ = 1/60, corresponding to λ/D = 6.5. The cage is expected to have negligible

deformations for the examined case as it will tend to follow the waves, so the three-markers system could350

provide reliable rigid body motions. The figure confirms that the two measurement techniques give consistent

results, showing the reliability of extracting the rigid and elastic body motions from the eight markers.
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Figure 10: Time histories of the surge (left), heave (middle) and pitch (right) motions of the closed cage. Solid black line: from

the three-markers system. Dashed red line: from the distributed eight markers at the freeboard. T = 2.5 s, H = 0.163 m and

λ/D = 6.5. R = D/2 is the outer radius of the closed cage.

Things change when the wavelength is not large compared to the cage diameter. This is shown by the

case with T = 1.02 s, H= 0.027 m and H/λ = 1/60, corresponding to λ/D = 1.08. The time histories of

the rigid body motions are shown in Figure 11. The two measurements provide similar results at the initial355

stage, but after about 70 periods, larger difference is observed when the waves inside the cage become high
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in time and large ovalizing structural modes are excited. The main reason for the difference is that the three-

markers system in principle cannot be applied for tests with non-negligible body deformations as the rigid

body motions can not be separated from the elastic deformations. A more detailed comparison of the rigid

body motions from the two measurements for different wave periods is shown in Figure 12. From the figure,360

the two approaches provide consistent results for surge and heave motions in long waves (λ/D > 1.6). Larger

differences are observed for all the three examined motions in short waves (λ/D < 1.5), especially for wave

periods close to the sloshing natural period T21 where the cage experiences large ovalization deformations.

The rigid body motions from the eight markers will be used for further analysis.
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Figure 11: Same as in Figure 10, but for T = 1.02 s, H = 0.027 m and λ/D = 1.08.
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Figure 12: Comparison of transfer functions of surge, heave and pitch from the two measurements in regular waves versus

nondimensional wave length λ/D. Wave steepness H/λ = 1/60. Tij = natural sloshing periods.

Figures 13 shows the comparisons for surge, heave and pitch in a frequency range of primary importance365

for local wind generated waves. Experimental data from both regular waves and the two white noise tests

are given. Results from the linear potential-flow solver WAMIT are also provided. Motion amplitudes from

regular waves in general agree nicely with those from the white noise tests, especially when the latter is with

smaller significant wave height, i.e., Hs = 1/27 m. The wave periods examined are far from the relevant

rigid-body natural periods without coupling to sloshing. Results from the two white noise tests match well370

for shorter waves (λ/D < 1.5), but larger differences are observed for longer waves where the system is

characterized by stronger nonlinearities, as discussed later. These may involve in general both potential-

flow and viscous-flow effects, with the latter connected with flow separation. However, calculations with an

equivalent linearized damping corresponding to 10% of the critical damping were also performed by WAMIT
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(not shown here) to check the effect of viscous damping and small influence was observed for λ/D <4. As a375

note, the ”longer waves” examined here correspond to periods still far from the natural pitch period.
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Figure 13: Transfer functions of surge, heave and pitch versus relative wavelength λ/D. λ is the wave length and D = 2R is

the cylinder diameter. ζa is incident wave amplitude. Black solid lines are from WAMIT calculations. Other data are based on

experiments in either regular or truncated white noise waves. Tij = natural sloshing periods.

Important sloshing natural periods T11 = 1.313s, T21 = 0.996s and T12 = 0.753s in model scale are

denoted with vertical dashed lines in the figure. Surface wave pattern of the three sloshing modes are

exemplified in Figure 4. We should note that nearly zero surge is happening at λ/D = 1.794 (corresponding

to T = T11), which is consistent with linear sloshing theory when surge is uncoupled from pitch. A coupled380

sloshing-surge-pitch natural period occurs according to linear theory at λ/D = 1.162, where we see a clear

peak in theoretical and experimental results of surge and pitch. It should be pointed out that λ/D = 1.03

corresponds to T = T21. The latter fact and closeness to the peak value at λ/D = 1.162 together with

the fact that violent sloshing occurs must not be misinterpreted as sloshing resonance associated with T21.

Resonant oscillations associated with T21 cannot be excited according to linear theory for a rigid structure.385

There is overall a good comparison between WAMIT and the experimental surge, heave and pitch transfer

functions. However, we note some differences for pitch for λ/D >1.4. One reason can be large relative

vertical motions at the floating collar causing nonlinearities of more importance for pitch than for surge and

heave. This can be directly seen by examining the restoring coefficients and the Froude-Kriloff excitation

loads, which partly can be associated with the relative vertical wave elevation at the floater.390

The measured relative wave elevation outside the cage is shown in Figure 14 for the regular wave cases

with steepness H/λ = 1/60. Peaks and absolute values of troughs of the wave elevations from the three wave

probes RW9, RW11 and RW13 (defined in Figure 1) are included. The values are made nondimensional by

the cross-sectional radius of the floating collar rf . The figure shows that the relative wave height in the

front wave probe RW9 is apparently larger than in the side (RW11) and back (RW13) probes. For cases395

with λ/D > 1.4, the nondimensional relative wave amplitude is larger than 1, implying that the front part

of the floating collar will go in and out of the water. This coincides with the region where WAMIT provides

poor prediction of the pitch motion. The large relative vertical motions suggest that flow separations occur.

We can make the analogy of ambient one-dimensional oscillating flow past a 2D circular cylinder in infinite

fluid and introduce the Keulegan-Carpenter number KC = πζrel,a/rf . The flow separates from the analogue400
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cylinder when KC>∼2.
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Figure 14: Non-dimensional relative wave amplitude ζrel,a/rf from the three outside wave probes RW9, RW11 and RW13 (see

Table 2). This is expressed both as crest value and as absolute value of the trough. rf is the cross-sectional radius of the

floating collar. Presented versus relative wave length λ/D for H/λ = 1/60.

Comparisons of the phase of the motions from the experiments and from WAMIT calculations are pre-

sented in Figure 15. The values from the regular wave tests and white noise tests are consistent, which

demonstrates the feasibility of performing white noise tests to obtain the transfer functions. Also, reason-

able good agreement between the numerical and experimental results is obtained. This is consistent with405

the discussion in Section 1 concerning the fact that the sloshing response can be mild if the coupled natural

frequency ωcoupl,1 is not close to the natural sloshing frequency ω1. In fact in this case ωcoupl,1/ω1=1.25

and a linear potential solver can provide reasonable predictions. One needs to point out that the results

from the regular wave tests show a jump in the surge from value close to -180o to approximately 180o near

λ/D=1 (see left of Figure 15). This is connected with the analysis used to estimate the phase angle defined410

between -180o and 180o. We could manually change the sign of the phase in order to avoid the jump but

we preferred to leave the results as obtained from the analysis, in any case this does not affect the actual

complex transfer function.

0.5 1 1.5 2 2.5 3 3.5

-200

-100

0

100

200

0.5 1 1.5 2 2.5 3 3.5

-200

-100

0

100

200

0.5 1 1.5 2 2.5 3 3.5

-200

-100

0

100

200

Figure 15: Same as in Figure 13, but for phase angles.

Response amplitude operators for λ/D > 3.7 are also presented to examine the behavior of the system
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Figure 16: Same as in Figure 13, but for larger wave lengths. Tn,3 and Tn,5 are uncoupled natural periods in heave and pitch,

respectively.

in long waves, see Figure 16. WAMIT predicts a coupled surge-pitch natural period corresponding to λ/D415

= 7.6. Since the wave-radiation damping is very small, large resonant values are predicted. The white-noise

tests with lower wave amplitude indicate mild peaks in surge and pitch at slightly larger λ/D, while the

tests at larger wave amplitude do not document clear peaks in this wavelength region. This suggests an

importance of nonlinear, viscous and potential-flow, effects in the tests. Since these nonlinearities are not

so important, for instance, for the heave restoring coefficient, WAMIT documents a reasonable agreement420

with experimental resonant heave values. To understand better the wave-body interaction close to the

resonance zone, we can examine the corresponding regular-wave case. A regular wave test with T = 2.5 s,

corresponding to λ/D = 6.5, was performed with H = 0.163 m and the time histories of motions are shown

in Figure 10. The heave motion transfer function from regular wave test matches with the white-noise value

but this is not the case for the surge and pitch, especially for the pitch. A so-called Mathieu-type instability425

occurred for the pitch motion for the regular-wave case due to in and out of water of the floating collar as

a consequence of large heave motion and heave-pitch coupling, see snapshots shown in Figure 17. Mathieu-

type of instability is well-known for parametric roll of ship (Ghamari et al., 2020) and for buoys (Haslum

and Faltinsen, 1999). The pitch motion comprises two harmonic components, oscillating with T and 2T ,

respectively. The corresponding time histories are shown in the left plot of Figure 18. The subharmonic 2T430

is the one connected with the pitch instability, becoming dominant as time goes on, and can not be predicted

by linear potential theory.

The metacentric height GM = C55/ρg∇ with C55 given in Equation 1 is modified by a quasistatic

formulation where the effect of heave and incident wave is accounted for. It means that ρg
∫

AW,f

x2ds is

modified by considering measured relative vertical elevations at the floating collar as presented in Figure 14.435

Furthermore, ρg∇zb is modified by accounting for the relative vertical motions. The time history of GM

is shown in the right of Figure 18. From the figure, we note that GM has a constant term GMm plus a

time-dependent term. The dominant component of the latter follows δGM cos(ωGMt+εGM) with δGM, ωGM

and εGM the corresponding oscillation amplitude, frequency and phase, respectively. The pitch behavior can

be explained by introducing Mathieu equation. The Mathieu equation follows by setting up the uncoupled440
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Figure 17: Snapshots of the cage model from the camera above the water surface for T = 2.5 s, H = 0.163 m and λ/D = 6.5.

The local free-surface profiles are outlined by green lines.
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Figure 18: Left: time histories of the T and 2T components extracted from the pitch motion for the regular-wave case with

T = 2.5 s, H = 0.163 m and λ/D = 6.5. Right: time history of the corresponding non-dimensional metacentric height GM.

GMm,0 is the inital metacentric height in calm water.
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pitch equation with zero excitation and is given as

(I55 +A55) η̈5 + ρg∇GMm

[
1 +

δGM

GMm

cos (ωGMt+ εGM)

]
η5 = 0 (14)

Here I55 and A55 are the inertia moment and added mass for the pitch motion, respectively. The undamped

natural frequency for pitch is expressed as ωn,5 =
√
ρg∇GMm/ (I55 +A55). From Figure 18, the new

mean metacentric height GMm = 0.32 · GMm,0 with GMm,0 the inital metacentric height in calm water.

This leads to the change of ωn,5 from 0.427 rad/s to 0.244 rad/s. The time-dependent term oscillates with445

frequency ωGM = ω = 0.483rad/s and amplitude δGM = 5.37 ·GMm. Figure 19 shows the stability diagram

for Mathieu equation from Klotter (2013). For the examined case, ωn,5/ω = 0.5 and δGM/GMm = 5.37,

corresponding to the red circle in the figure. Because in our case ξωn/ω = 0.0178 with ξ as the damping

ratio between pitch radiation damping and the critcal damping, the Mathieu instability will then be excited.

Similar phenomenon was observed in an irregular wave test (not discussed in detail in the present paper)450

with peak wave period Tp = 1.924 s and significant wave height Hs = 0.11 m, corresponding in full scale to

the extreme sea state defined in Table 3. The relevant power spectra for the incident wave, heave and pitch

motions are shown in Figure 20. The peak pitch response occurs at wave period close to 2Tn,3 instead of at

the natural pitch period Tn,5 due to large resonant heave motion at Tn,3.

Since our focus is on wave conditions associated with local wind generated waves, more detailed discussions455

for the system in long waves and about the importance of accounting for system nonlinearity are left for

future work.

High harmonic components of the rigid body motions from the regular waves tests are also analyzed and

are generally moderate compared with the first harmonic value, i.e., less than 10%.

4.3. Transfer function of radial elastic deformations460

As explained in Section 3.1, we can extract both rigid body motions and radial elastic deformations from

the measurements of eight markers installed at the freeboard of the cage. Figure 21 presents the transfer

functions of the ovalizing modes cos 2θ and sin 2θ of the fish cage at z = 0.35 m from both the regular

wave tests and white noise tests. The fact that the ovalizing mode sin 2θ occurs is partly a consequence of

structural asymmetry. The peak deformation occurs at λ/D = 1.078 (T = 1.018 s) for both modes, close to465

the corresponding sloshing natural period T21=0.996 s. We should note that the value is different from the

coupled sloshing-surge-pitch natural period and is a consequence of coupling between structural ovalizing

modes and corresponding sloshing modes. Results from the regular wave tests are in general consistent with

those from the white-noise tests, except near the resonant zone. The difference between the two white-noise

tests at the resonant frequency indicates the occurrence of free-surface nonlinearities. Similar difference was470

observed between the results from the white-noise tests and irregular wave tests (not presented in the paper).

Time histories of the ovalization modes from the regular wave test at the resonant period are shown

in Figure 22. Two extra elastic modes are included. The figure shows that the ovalizing modes dominate
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Figure 19: Stability diagram for the Mathieu equation applied to cage pitch motion without damping, adopted from Klotter

(2013). There are also lines shown with values at ξωn/ω = 10−4, 10−3, 10−2, 5 · 10−2 and 10−1, where ξ is the ratio between

pitch damping and the critical damping. These lines are boundaries between stable and unstable domains. The labels for the

x and y axes are slightly modified. The red circle corresponds to the examined case with T = 2.5 s, H = 0.163 m and λ/D =

6.5.
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Figure 20: Power spectra for incident wave, heave and pitch motions from an irregular wave test with peak wave period Tp =

1.924 s and significant wave height Hs = 0.11 m (Tp = 10 s and Hs = 3 m full-scale). Tn,3 = natural heave period. Tn,5 =

natural pitch period.
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Figure 21: Transfer function of the radial deformation of the ovalizing modes cos(2θ) and sin(2θ) of the fish cage measured at

the freeboard level versus nondimensional wave length λ/D. A zoomed view at the resonant zone is also provided. T21 and T22

= natural sloshing periods for ovalizing modes.

over other modes and due to small damping do not reach steady state within the time duration of the test.

The build-up of the sin 2θ-mode is initially slower than for the cos 2θ-mode. Later on the values of the two475

ovalizing modes become similar in magnitude. One reason may be coupling with nonlinear sloshing and

associated transfer of energy as detailed studied by Faltinsen and Timokha (2009) for prescribed horizontal

motion of a rigid vertical tank near the highest sloshing period. Due to unrealistic large error bar associated,

the corresponding regular-wave values are not presented in Figure 21. The fact that the sin 2θ-component

is clearly smaller than the cos 2θ-component outside resonance is qualitatively consistent with the structural480

asymmetry introduced by the construction of the vertical cylinder and the cross-bar exterior to the tank

bottom (see Figure 2). The transfer functions of other elastic modes are small, i.e., less than 2%, so are not

presented here.
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Figure 22: Measured time histories of radial deformation modes of the cage at z = 0.35 m. Only the first three elastic modes

are included for T = 1.02 s, H = 0.027 m and λ/D = 1.08. Left: cosmθ modes. Right: sinmθ modes.

The ratio between the wet and dry natural periods of the ovalizing modes is 9. A major reason is the
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Figure 23: Modal shapes computed in LS-DYNA for the first two orthogonal modes from the eigen-value analysis with dry

model. Upper: mode with eigen-frequency 9.02 Hz. Lower: mode with eigen-frequency 9.19 Hz. Left: top view. Middle: front

view. Right: deformation mode for the bottom of the cage.

influence of sloshing on the corresponding generalized added mass. A numerical analysis of the ovalizing485

modes has been attempted by combining a FEM software LS-DYNA (Hallquist, 2007) with WAMIT. The

implemented FEM structural model is based on the left of Figure 2, with only shell elements used. The

aluminum rings with D=20 mm are approximated with plane shell elements of 15.5 mm to hit the first

two experimentally obtained dry natural frequencies. The presence of the thin plastic floater is neglected

in the FEM model. The influence of the H60 Divinicell is neglected as it’s tensile/compressive modulus is490

significantly smaller than that of PVC.

The numerical model includes the hydroelastic response by including the structural modes calculated by

eigen value analysis in absence of liquid. Here we have neglected the effect of water on the mode shapes.

Added mass and damping terms for the flexible modes, as well as their coupling with rigid modes, are

included in the total added mass and damping matrices. Hence, the linear hydrodynamic coupling between495

rigid and flexible modes has been modelled. The first two orthogonal modes are relevant for the ovalizing

deformations and are used as generalized modes in WAMIT, hence the matrices have a 8X8 dimension, i.e.

6 rigid plus 2 flexible modes. Generalized mass and stiffness matrices from the eigen value analysis of the

dry model are included in the equation system. The modal shapes of the first two orthogonal modes are

shown in Figure 23. The predicted radial ovalizing deformations are presented in Figure 21. The resonant500

frequencies in model tests are captured relatively well by the numerical model. The response amplitudes are

also well predicted, except in the resonant region, with an obvious overestimation. A possible reason for the

overestimation could be due to the free-surface nonlinearities in the experiments.
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The current numerical method in frequency domain is a practical approach for the initial design stage

to have a good overview of the hydroelatic response of a fish cage in a wide frequency range, with small505

computational cost. However, if nonlinear sloshing is present, a time domain simulation approach must be

considered in which free surface nonlinearity is adopted at least in the internal domain.

4.4. Transfer function of interior waves

Free-surface elevation inside the container was measured by the eight interior wave probes RW1-8, see

Figure 1. The probes were installed as fixed to the cage, so the measured values are related to the tank-fixed510

coordinate system. As an example, transfer functions of the wave probes RW1 and RW4 are provided in

Figure 24. The two peaks close to T12 and T21 are associated with the corresponding natural sloshing modes.

In fact, one should note that the coupling between sloshing and body motions affects the natural periods.

The maximum values occur at the same wave period as that of the ovalizing modes, i.e., at λ/D = 1.078. The

corresponding time histories of the wave elevation from the regular wave test are shown in Figure 25. The515

figure clearly shows that the interior wave is still accumulating and more time than examined experimentally

is needed to reach steady state. This is similar as that shown in Figure 22 for the elastic deformations. Also

in this case, it leads to unrealistic large error bars for the transfer functions, not presented in Figure 24.
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Figure 24: Transfer function of interior wave elevation for the wave probes RW1 and RW4. T11 and T12 = natural sloshing

periods associated with cos θ and sin θ free-surface mode dependence. T21 = natural sloshing period associated with cos 2θ and

sin 2θ free-surface mode dependence.

To better relate the interior wave elevation with sloshing modes, the Fourier components cosmθ and

sinmθ of the internal waves are calculated at r = 0.95R, based on the method explained in Section 3.2.520

Transfer functions of the first three cosmθ,m = 0, 1, 2 modes and the first two sinmθ,m = 1, 2 modes are

presented in Figure 26. Relevant sloshing natural periods for different modes are indicated by the vertical

dashed lines. There is only a cos θ component according to linear rigid-body theory. Numerical prediction

from WAMIT for cos θ mode is also provided and good agreement with the experimental results is observed

especially for shorter waves (λ/D < 1.5). The modes cos θ and sin θ are 90o out of phase at resonance, which525
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Figure 25: Time histories of internal wave elevation from the wave probes RW1 and RW4 for T = 1.02 s, H = 0.027 m and

λ/D = 1.08.

implies swirling. However, we note the dominant contribution of the cos 2θ and sin 2θ terms at resonance

and the corresponding phase difference is 180o. The phase difference is evaluated based on the approach

introduced in Section 3.3. The fact that the sin 2θ mode occurs is associated with structural asymmetry and

free-surface nonlinearities. The interior wave elevations associated with the ovalizing deformations are also

evaluated based on the hydroelasticity analysis introduced in section 4.3 and are presented in the bottom530

of Figure 26. Similar as that for the ovalizing deformations, the numerical tool can provide a reasonable

prediction of the interior wave amplitudes, but not in the resonant region, with a clear overestimation at the

resonant period.

4.5. Mean wave drift forces

When interacting with the cage, the incident waves will cause mean drift loads on the cage due to the535

far-field waves generated by the structure. The mean surge force is of particular interest as it is important

for a mooring analysis. Two methods are pursued to estimate the mean wave-drift force in surge: (1) from

tension measurement of the mooring lines; (2) by multiplying the mean surge motion with the equivalent

linear stiffness ks of the system documented in Section 2.2. In the left plot of Figure 27 we present the

time histories of the surge force from the two methods for T = 1.25 s, H = 0.041 m and λ/D = 1.628.540

The two strategies yield similar results when the cage is freely floating, without incoming waves (t < 40T ).

A possible reason that the cage has nonzero surge motion in still water is that the time interval between

two sucessive tests was not long enough to dampen out the slowly-varying surge motion. Larger differences

are observed for both the mean value and amplitude when the cage interacts with the incident waves. The

possible reasons for the differences are: (1) the model was moored by four horizontal mooring lines which545

were attached directly to horizontal free-hanging coil springs. The length of the mooring lines was quite

long (about 33 m in model scale), so the weight of the springs will influence the measured forces; (2) videos

from the tests show that part of the mooring lines got wet during the tests in waves; (3) cage deformations

would also influence the mooring loads. However, the large amplification of the cos 2θ and sin 2θ response at
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Figure 26: Interior-wave modes cosmθ and sinmθ. Top: m = 0. Middle: m = 1. Bottom: m = 2. Results from WAMIT for

cos θ, cos 2θ and sin 2θ modes are also provided for comparison. A zoomed view at the resonant zone is also provided for the

ovalizing modes. Tm1 and Tm2 = natural sloshing periods associated with cosmθ and sinmθ free-surface mode dependence.
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resonance (see Figure 21) indicates small wave radiation due to cage deformation and thereby small influence550

on the wave drift force. In the right of Figure 27, we shows the comparison of the mean surge forces from the

regular wave tests with those from WAMIT. Irregular wave periods, corresponding to eigenperiods for the

interior problem with zero Dirichlet condition on the body boundary condition, are suppressed in WAMIT

results. The kink at λ/D = 0.58 is associated with the sloshing natural period T12, as shown in Figure 13.

The experimental values are estimated by multiplying the mean surge motion with equivalent stiffness. The555

evaluation based on the measurement of mooring forces was also performed, but the obtained values were

quite scattered, so they are not shown. The asymptotic value of F̄1/ρgζ
2
aD is 1/3 for λ/D → 0, according

to second-order potential flow theory. This is in good agreement with WAMIT.
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Figure 27: Left: time history of the force acting on the cage in surge. Dashed line: from force measurement. Solid line: from

surge motion η1 multiplied with system stiffness ks. Right: Non-dimensional mean wave drift force F̄1 in surge versus λ/D.

Solid symbols: from regular wave tests. Solid line: from WAMIT. Dashed line: theoretical irregular periods.

5. Conclusions

In this paper, we presented a scaled experimental study of a closed floating cage in waves. The tests560

were performed in an ocean basin to avoid possible reflections from side tank walls. A main purpose was to

investigate how sloshing would influence the global response of the cage, the interior wave elevation and also

the mean drift loads. The model was tested in both regular waves and truncated white noise waves. A focus

was on the transfer functions in the wave period region associated with local wind generated waves. The

radial elastic deformations of the cage were extracted from the measurements of the eight markers installed565

on the freeboard and relatively large ovalizing radial deformations were observed for wave periods close to

the natural sloshing period T21 associated with the sloshing modes having a cos 2θ and sin 2θ dependence.

The Fourier modes of the interior wave were also evaluated based on the wave elevations of the eight internal

wave probes. The cos 2θ and sin 2θ modes were found to be dominant and the resonance period coincided

with that for the ovalizing radial deformations. The above results imply that hydroelasticity matters and a570
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non-dimensional parameter involving Young’s modulus should be introduced to scale the model test results

to full scale. A rational numerical hydroelastic method can be a useful tool in the scaling and requires further

studies.

Numerical predictions from the linear potential flow solver WAMIT were also provided, assuming a rigid

body. Good agreements between the numerical and experimental results were obtained for both the rigid575

body motions and corresponding interior wave elevation. Actually, linear potential flow theory can provide

a good description of the interior sloshing if the structure is rigid and the coupled natural frequency between

surge, pitch and sloshing ωcoupl,1 is not close to the lowest natural sloshing frequency ω1, as it is the case in

the present paper.

Nice agreement was also achieved between the numerical predictions and experimental results for the580

mean drift forces, despite large ovalizing radial modes involved. It seems that the mean wave forces are

not so influenced by the elastic deformations of the body and a reliable mooring force analysis can still be

performed, neglecting body elasticity. A numerical analysis of the ovalizing modes was also attempted by

combining the structural analysis program LS-DYNA with WAMIT. The resonant frequencies in model tests

were well captured. In terms of the ovalizing deformations and interior waves, the proposed numerical tool585

could provide reasonable predictions, except in the resonant zone where the free-surface nonlinearities may

matter, with a clear overestimation from the linear results.

In the present study, a torus-shaped floater was applied to increase the static stability of the cage in roll

and pitch. From the model tests, the floating collar can easily go in and out water due to small draft, causing

parametric pitch instability in long waves and consequently large pitch motion. To avoid such drawback, a590

floater with much larger draft is suggested, so to avoid a time-dependent change of the restoring stiffness

and consequently prevent instability.
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